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Abstract 

The success of pangenome-based approaches to genomics analysis depends largely on the existence of efficient 
methods for constructing pangenome graphs that are applicable to large genome collections. In the current paper 
we present AlfaPang, a new pangenome graph building algorithm. AlfaPang is based on a novel alignment-free 
approach that allows to construct pangenome graphs using significantly less computational resources than state-of-
the-art tools. The code of AlfaPang is freely available at https:// github. com/ AdamC icher ski/ AlfaP ang.
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Background
Pangenome (or variation) graphs serve as models for joint 
representation of populations of genomes [1–5]. They 
have proven to be useful in analyzing sequence evolution 
and variation [6, 7], as well as in reducing the so-called 
reference bias in the analysis of experimental data [8, 9].

A first draft of the human pangenome reference, 
constructed from 47 high-quality assemblies, was 
recently published by the Human Pangenome Reference 
Consortium, demonstrating its effectiveness in reducing 
errors in the detection of small and structural variants 
[10]. Additionally, the use of a pangenome has improved 
short-read mapping, as well as ChIP-seq and ATAC-
seq analyses. To further enhance its accuracy and 
completeness, the consortium plans to expand the 
reference to 350 assemblies in the coming years.

However, the success of the pangenome-based 
approaches depends on the existence of efficient 

construction methods, applicable to large collections of 
genomes. Most pangenome building algorithms adapt the 
approaches used in whole genome alignment tools. Early 
versions of the VG toolkit [8] constructed pangenome 
graphs iteratively, i.e. aligning consecutive sequences to 
a current graph. In the current version of VG, by default, 
graphs are constructed from genomic sequences using 
Minigraph-Cactus [11], which aligns all genomes to 
a reference genome.

In both approaches the outcome depends on an 
arbitrary choice of genome order (VG) or the reference 
(Minigraph-Cactus). To avoid such biases, several 
alternatives have recently been proposed. seqwish 
[12] builds pangenome graphs from all-to-all pairwise 
genome alignments. Unfortunately, the construction 
doesn’t scale linearly with respect to the number of 
genomes, and the final graph requires refinement. The 
last problem was addressed in pggb [13] – a pipeline 
that builds a pangenome graph in three steps: 

1. All-to-all genome alignment (wfmash),
2. Graph inference from pairwise alignment 

(seqwish),
3. Graph refinement (smoothxg+gfaffix).

All the above-mentioned tools build variation graphs, 
in which the concatenation of the labels of all the 

*Correspondence:
Adam Cicherski
a.cicherski2@uw.edu.pl
Anna Lisiecka
a.lisiecka@mimuw.edu.pl
Norbert Dojer
dojer@mimuw.edu.pl
1 Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, 
Poland

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-025-00277-7&domain=pdf
https://github.com/AdamCicherski/AlfaPang


Page 2 of 21Cicherski et al. Algorithms for Molecular Biology            (2025) 20:7 

nodes in a path constitutes the sequence represented 
by the path. As a result, variation graphs provide 
an intuitive, common coordinate system in which 
each base pair in any genomic sequence is uniquely 
represented in the graph. One of the most important 
alternatives are de Bruijn graphs, in which nodes are 
uniquely labeled with k-mers, and edges connect 
nodes with labels that are consecutive k-mers in the 
represented sequences (and thus overlap with k − 1 
characters). Consequently, a single base pair occurs 
in k different node labels (i.e. the k-mers covering 
the base pair), and therefore de Bruijn graphs pose 
a challenge for downstream analysis, especially in 
terms of annotation, visualization and information 
extraction [14]. On the other hand, their structure is 
strictly determined by the parameter k, and hence the 
order and reference bias problems do not occur in 
building de Bruijn graphs. Moreover, the construction 
is conceptually simple, and optimized building 
algorithms such as TwoPaCo [15] or bifrost [16] 
are orders of magnitude faster than alignment-based 
building algorithms for variation graphs.

A bridge between both models that could combine 
their advantages was proposed in [17]. The paper 
introduces the notion of a string graph, which 
is a generalization of both variation graph and 
de Bruijn graph. Moreover, the authors propose 
an axiomatization of the desired properties of 
representing a sequence collection in such a graph. 
It is shown that the axioms are always satisfied in de 
Bruijn graphs and that they determine the structure of 
variation graphs up to merging unbranched paths into 
single nodes and the opposite operation. Furthermore, 
authors explore the relationship between de Bruijn 
graphs and variation graphs satisfying the axioms to 
design an algorithm transforming the former into 
the latter. The proposed transformation algorithm 
can potentially be used as a crucial component of an 
efficient variation graph building pipeline.

In this paper we go one step further to achieve a 
more efficient construction of the variation graph. We 
design and implement AlfaPang – an algorithm that 
builds directly from the input sequences a variation 
graph satisfying the axioms introduced in [17]. We 
show that replacing the first two steps of pggb 
with our algorithm results in significant efficiency 
improvement and yields output graphs of similar 
properties.

The rest of the paper is organized as follows. In 
section  "Representing sequences with variation 
graphs" we introduce the necessary notation and 
prove theoretical results underlying the correctness 

of our algorithm. In section  "AlfaPang algorithm" 
we describe the algorithm and study its complexity. 
Sections "Design of experiments" and "Results" present 
experiments’ design and results, respectively.

Representing sequences with variation graphs
In this section we give a mathematical formalism 
behind our algorithm. We start with introducing 
directed variation graphs, i.e. directed graphs with 
nodes labeled with sequences. We provide some 
necessary definitions, including the extension of 
the labeling function to paths, the quotient graph 
construction, and the notion of singular (i.e. single-
character-labeled) graphs. Because every variation 
graph can be transformed to an equivalent (in the sense 
defined in [17]) singular one, in the rest of this section 
we restrict our attention to singular graphs.

In subsection  "Representations of collections of 
sequences" we formalize the notion of a singular 
directed variation graph representing given set of 
sequences. Then we introduce two properties of such 
representations: k-completeness and k-faithfulness. 
Intuitively, the k-completeness states that every 
occurrence in the sequences of the same k-mer is 
represented by the same path in the graph, while 
k-faithfulness states that different sequence fragments 
can be represented by the same path only when it 
is essential to satisfy k-completeness. We conclude 
subsection  "Representations of collections of 
sequences" showing that, given the set of sequences, 
these properties uniquely define the structure of their 
representation by a singular directed variation graph.

In the last subsection, we introduce bidirected 
variation graphs and show how the above concepts 
and results generalize to them. In bidirected variation 
graphs paths pass through nodes in one of two possible 
directions, corresponding to two DNA strands. In 
this way they naturally represent the double-stranded 
structure of DNA, which helps modeling the collections 
of genomes with sequence differences resulting from 
inversions. The directed case is described first for 
clarity, since the bidirected case is technically more 
complex but conceptually similar.

Directed variation graphs
A directed variation graph is a tuple G = �V ,E, l� , 
where:

• V is a set of vertices,
• E ⊆ V 2 is a set of directed edges,
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• l : V → �+ is a function labeling vertices with 
non-empty strings over the DNA alphabet 
� = {A,C ,G,T }.

A path in a variation graph is a sequence of ver-
tices 〈v1, . . . , vm〉 such that �vj , vj+1� ∈ E for 
every j ∈ {1, . . . ,m− 1} . The set of all paths in 
G will be denoted by P(G) . The labeling func-
tion l extends to l̂ : P(G) → �+ defined by formula 
l̂(�v0, . . . , vm�) = l(v0) · . . . · l(vm) , i.e. the label of the 
path is the concatenation of the labels of its consecutive 
vertices.

Assume that G = �V ,E, l� is a directed variation 
graph and ∼ is an equivalence relation on the set of 
G-nodes satisfying v ∼ v′ ⇒ l(v) = l(v′) for all v, v′ ∈ V  . 
Then the quotient graph of G by ∼ can be defined as 
G′ = �V ′,E′, l′� , where

• V ′ = V / ∼,
• E′ = {�[v]∼, [v

′]∼� | �v, v
′� ∈ E},

• l′([v]∼) = l(v).

The correctness of the definition of l′ (i.e. independ-
ence on the choice of [v]∼-representative) is guaranteed 
by the above assumption on ∼ . Note that the quotient 
construction saves the labels of paths, i.e. given a path 
p = �v1, . . . , vm� in G, p′ = �[v1]∼, . . . , [vm]∼� is a path in 
G′ and l̂′(p′) = l̂(p).

Given a path p = �v1, . . . , vm� , the subpath of p is any 
path p[j1..j2] = �vj1 , . . . , vj2� , where 1 ≤ j1 ≤ j2 ≤ m . Sim-
ilarly, S[j1..j2] denotes the substring of a string S consist-
ing of the characters from positions j1, . . . , j2.

If |l(v)| = 1 for every vertex v, the graph is called sin-
gular. Every variation graph can be transformed into a 
singular one by splitting each node v into an unbranched 
path with |l(v)| nodes, labeled with consecutive l(v) char-
acters. This transformation can be reversed by contract-
ing the edges on the unbranched paths. Contraction 
reduces the number of nodes and edges, so the reverse 
transformation leads to more compact graphs. On the 
other hand, singular graphs provide a simpler and more 
convenient representation, because the substrings of 
the string labeling a path p are themselves labels of 
subpaths of p (namely, l̂(p[j1..j2]) = l̂(p)[j1..j2] for all 
1 ≤ j1 ≤ j2 ≤ |p| ). Since the core part of our algorithm 
builds a singular graph (compressed in the last step), we 
define the notions of sequence representation and its 
properties only for singular graphs. However, all these 
definitions can be generalized to any variation graphs, see 
[17] for details.

Representations of collections of sequences
Given a set of sequences S = {S1, . . . , Sn} , a singular 
directed variation graph G〈V ,E, l〉 and π : S → P(G) , 
we say that 〈G,π〉 represents S iff the following conditions 
are satisfied:

• l̂(π(Si)) = Si for every i ∈ {1, . . . , n},
• every vertex in G occurs in some path π(Si),
• every edge in G joins two consecutive vertices in 

some path π(Si).

We define the set of positions in S as 
Pos(S) = {�i, j� | 1 ≤ i ≤ n ∧ 1 ≤ j ≤ |Si|} . The 
set of π-occurrences of a vertex v is defined as 
Occπ (v) = {�i, j� ∈ Pos(S) | π(Si)[j] = v} . Define the 
generic representation of S as the representation 〈G0,π0〉 , 
where G0 = �V0,E0, l0� and:

• V0 = Pos(S),
• E0 = {��i, j�, �i, j + 1�� | 1 ≤ i ≤ n ∧ 1 ≤ j < |Si|},
• l0(�i, j�) = Si[j],
• π0(Si) = ��i, 1�, . . . , �i, |Si|��.

Lemma 1 For every singular representation 〈G,π〉 of 
S = {S1, . . . , Sn} , there exists an equivalence relation 
∼�G,π� on Pos(S) such that: 

1. G is isomorphic to a quotient graph of G0 by ∼�G,π�,
2. π(Si) = �[�i, 1�]∼�G,π�

, . . . , [�i, |Si|�]∼�G,π�
� for all 

i ∈ {1, . . . , n}.

Proof The relation ∼�G,π� is defined as follows:

Verifying that both conditions are satisfied is 
straightforward.   �

Let Si, Si′ be two (not necessarily different) 
sequences from S and assume that they have a 
common k-mer Si[p..p+ k − 1] = Si′ [p

′..p′ + k − 1] . 
We say that π reflects this common k-mer iff it 
is represented by the same path in the graph, i.e. 
π(Si)[p..p+ k − 1] = π(Si′)[p

′..p′ + k − 1] . We say that 
〈G,π〉 represents S k-completely iff all common k-mers in 
S are reflected by π.

We say the pair of π-occurrences �i, j�, �i′, j′� of a vertex 
v is:

�i, j� ∼�G,π� �i
′
, j′� ⇐⇒ π(Si)[j] = π(Si′)[j

′]
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• directly k-extendable iff these occurrences 
extend to a common k-mer reflected by π , i.e. 
π(Si)[j −m..j +m′] = π(Si′)[j

′ −m..j′ +m′] for 
some m,m′ ≥ 0 satisfying m+m′ ≥ k − 1,

• k-extendable if there is a sequence of occurrences 
of v that starts from 〈i, j〉 , ends at �i′, j′� and each two 
consecutive occurrences in that sequence are directly 
k-extendable.

We say that 〈G,π〉 represents S k-faithfully if every pair of 
occurrences of a vertex is k-extendable.

Note that the k-completeness property specifies which 
fragments of S-strings must be unified in the representa-
tion, while k-faithfulness states that anything that is not 
a consequence of k-completeness cannot be unified (see 
example on Figure 1).

Theorem  1 Let S = {S1, . . . , Sn} be a set of sequences. 
Then a k-complete and k-faithful representation of S 
exists and is unique up to isomorphism.

The above theorem is roughly equivalent to Theorems 1 
and 2 in [17]. In that paper the proof of the existence was 
based on the transformation of a de Bruijn graph into a 
variation graph. Here we propose an alternative proof 
that leads to a more efficient variation graph construction 
algorithm.

Proof Let G0 = �V0,E0, l0� be a generic representation 
of S . We define a binary relation ∼0 indicating the pairs 
of positions in S that should be merged in a representa-
tion reflecting common k-mers:

Fig. 1 Example of a 3-faithful and 3-complete variation graph. Edge 
colors are used to mark genomic paths (graph has no multi-edges, 
they are used only for purpose of paths visualisation). All occurrences 
of vertex “A” filled with pink are 3-extendable, as occurrences 
on the red and green paths can both be extended to the path 
labeled with TAT, on the red and cyan paths to ATT, on the purple 
and cyan paths to GAT, and on the purple and green paths to ATG. 
On the other hand, occurrences of the grey vertex “A” on the orange 
and blue paths can be extended to ATC but are not extendable 
to any of the previously mentioned 3-mers, and therefore this vertex 
cannot be merged with the pink one

Fig. 2 Representing DNA sequences with bidirected variation graphs. A Input DNA sequences and their reverse complements. B Generic 
representation of the sequences. Each node is labeled with two complementary nucleotides, from DNA strands + (upper part) and − (lower part). 
A node has orientation +1 on a path that enters it on the left side and exits on the right side, otherwise it has orientation −1 . Arrows on the edges 
indicate the orientation of strand + of the represented sequences. The dashed arrows indicate common DNA 3-mers in the input sequences: TTG/
CAA , TCG/CGA  and AAC/GTT . C 3-complete and 3-faithful representation of the sequences. The quotient construction merged each pair of paths 
in the generic representation indicated by dashed arrows of the same color. Consequently, every 3-mer from the input sequences is represented 
by a unique path
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Let ∼ denote the equivalence closure of ∼0 . Obviously, 
the above definition implies that Si[j] = Si′ [j

′] whenever 
�i, j� ∼0 �i

′, j′� and, consequently, the same property holds 
for ∼ . Therefore a quotient graph G of G0 by ∼ is properly 
defined. Moreover, each G0-path π0(Si) = �v1, . . . , v|Si|� 
can be transformed into G through the quotient 
construction: π(Si) = �[v1]∼, . . . , [v|Si|]∼�.

Hence we have a representation 〈G,π〉 of S that is:

• k-complete, because consecutive vertices in paths 
representing common k-mers were merged in the 
quotient construction,

• k-faithful, because all occurrences of a node v are in 
relation ∼ , so for each pair �i, j�, �i′, j′� ∈ Occπ (v) there 
exists a sequence �i, j� = �i0, j0�, . . . , �ip, jp� = �i′, j′� 
of v-occurrences such that for each l ∈ {1, . . . , p} 
the condition �il−1, jl−1� ∼0 �il , jl� is satisfied, which 
means that occurrences �il−1, jl−1� and 〈il , jl〉 are 
directly k-extendable.

Moreover, by Lemma  1, every representation �G′,π ′� of 
S is isomorphic to a quotient of G0 by some relation ∼′ 
on the set of oriented G0-vertices. It is easily seen that 
�G′,π ′� is

• k-complete iff �i, j� ∼ �i′, j′� ⇒ �i, j� ∼′ �i′, j′�,
• k-faithful iff �i, j� ∼′ �i′, j′� ⇒ �i, j� ∼ �i′, j′�.

Therefore, if �G′,π ′� has both properties, graphs G and G′ 
must be isomorphic.   �

Bidirected variation graphs
In bidirected graphs each node has two sides (denoted 
here ±1 ) and undirected edges join adjacent nodes on 
particular sides [18]. Both sides are equivalent in the 
sense that swapping sides at any node yields an isomor-
phic bidirected graph.

A path entering a node on one side must exit it on the 
other side. More formally, a path in a bidirected graph is 
a sequence 〈〈v1, o1〉, . . . , 〈vm, om〉〉 such that for all respec-
tive j

• oj = ±1 determines the orientation of vj in the path,
• side oj−1 of vj−1 is connected by an edge with side −oj 

of vj.

�i, j� ∼0 �i
′
, j′� ⇐⇒ ∃0≤m<k Si[j −m..j + k − 1−m]

= Si′ [j
′ −m..j′ + k − 1−m]

Paths may be reversed, but it requires reversing 
both order and orientation of the nodes, i.e. given 
path p = ��v0, o0�, . . . , �vm, om�� , its reverse is 
p−1 = ��vm,−om�, . . . , �v0,−o0��.

Bidirected variation graphs naturally represent the 
double-stranded structure of DNA. The orientation 
of a node indicates the strand of the represented 
DNA fragment, i.e. strand �v,+1� has sequence 
l(v), while �v,−1� has sequence l(v)−1 , where S−1 
denotes the reverse complement of sequence S. For 
convenience, we introduce notation S+1 = S and 
p+1 = p . The label of the path is the concatenation 
of the oriented labels of consecutive vertices, i.e. 
l̂(��v0, o0�, . . . , �vm, om��) = l(v0)

o0 · . . . · l(vm)
om . Note 

that hence l̂(p−1) = l̂(p)−1.
Bidirected representations of sequence collections 

are defined similarly to directed ones. Positions 
and vertex occurrences are extended to include the 
orientation, i.e.

• Pos(S) = {�i, j, o� | 1 ≤ i ≤ n ∧ 1 ≤ j ≤ |Si| ∧ o = ±1},
• Occπ (v) = {�i, j, o� ∈ Pos(S) | π(Si)[j] = �v, o�}.

Because the strands of the represented sequences 
are treated in the same way, the concept of reflecting 
common k-mers applies to occurrences of k-mers 
on both strands. Below we adapt the definitions of 
k-completeness and k-faithfulness to take this into 
account.

Let Si, Si′ be two (not necessarily different) strings 
from S and assume that they have a common k-
mer Soi [p..p+ k − 1] = So

′

i′ [p
′..p′ + k − 1] (o and o′ 

indicate the strands, on which the k-mer occurs). 
We say that π reflects this common k-mer iff it 
is represented by the same path in the graph, i.e. 
π(Si)

o[p..p+ k − 1] = π(Si′)
o′ [p′..p′ + k − 1] . We say 

that 〈G,π〉 represents S k-completely iff all common 
k-mers in S are reflected by π.

We say the pair of π-occurrences �i, j, o�, �i′, j′, o′� of a 
vertex v is:

• directly k-extendable iff these occurrences 
extend to a common k-mer reflected by π , i.e. 
π(Si)

o[j −m..j +m′] = π(Si′)
o′ [j′ −m..j′ +m′] for 

m,m′ ≥ 0 satisfying m+m′ ≥ k − 1,
• k-extendable if there is a sequence of occurrences 

of v that starts from 〈i, j, o〉 , ends at �i′, j′, o′� and 
each two consecutive occurrences in that sequence 
are directly k-extendable.
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We say that 〈G,π〉 represents S k-faithfully if every pair 
of occurrences of a vertex is k-extendable.

Theorem  2 Let S = {S1, . . . , Sn} be a set of DNA 
sequences. Then the k-complete and k-faithful representa-
tion of S as a singular bidirected variation graph exists 
and is unique up to isomorphism.

Proof As in the directed case, the desired representa-
tion is constructed as a quotient of the generic repre-
sentation. The definition of the quotient is slightly more 
complicated in the bidirected case, because each node 
of the original graph can either retain or reverse its ori-
entation in the resulting graph. In our construction the 
choice depends on the strands on which the common 
k-mers occur in the S-sequences: nodes corresponding 
to two occurrences of a k-mer should have the same ori-
entation when the occurrences lie on the same strand, 
and the opposite orientation otherwise (see Figure  2). 
This ensures that the labels of oriented nodes match 
each other when merging, which means that the quotient 
is defined correctly. The scheme of the proof and argu-
ments are analogous to the proof of Theorem 1.   �

AlfaPang algorithm
In this section we present AlfaPang – ALignment 
Free Algorithm for PANGenome graph building. 
The core part of AlfaPang is based on the quotient 
construction described in the proofs of Theorems  1 
and  2. In subsection  "Algorithm overview"  we 
present the algorithm and in subsection  "Compact 
graph representation" we describe an efficient 
implementation of the data structures it requires. 
Subsection  "Unbranched paths compression" shows 
how the resulting k-complete and k-faithful singular 
variation graph is compressed to a non-singular one. 
Finally, the computational complexity of AlfaPang is 
analyzed in the last subsection.

Algorithm overview
Given a collection of sequences S and a positive natu-
ral number k, we first build its generic representation 
G = �V ,E� . Then we build a weighted bipartite graph 
with parts V and B, where V = Pos(S) and B is a set of 
vertices labeled by canonical k-mers of S , and edges 
satisfy the following conditions:

• each edge e is assigned a value from the set 
{−k , . . . ,−1, 1, . . . , k} , denoted as C(e). We refer to 
the absolute value of C(e) as color.

• C(��i, j�, b�) = c iff

– Si[j − c + 1..j + k − c] = l(b) for c > 0 ,
– Si[j − c − k ..j − c − 1] = l(b)−1 for c < 0.

Therefore, an edge between 〈i, j〉 and b indicates that 
the position in the sequence corresponding to 〈i, j〉 can 
be extended to a k-mer represented by b, and the value 
assigned to the edge indicates its position in that k-mer. 
Hence such graph allows us to represent the relation 
described in the previous section.

To find all vertices in G that should be merged with a 
chosen vertex v, we traverse the bipartite graph starting 
from v using a BFS manner, but with the following 
constraints:

• If we enter a vertex belonging to V, we can leave it 
by any edge.

• If we visit a vertex belonging to B from an edge 
with color c, we can leave it only through edges that 
share the same color.

All vertices of V visited during one such run establish 
one equivalence class of the relation presented in the 
theorems. For each such class, we choose a canonical 
orientation arbitrarily to be consistent with a canonical 
label of the first vertex visited in the run. Therefore, 
to find a quotient graph, we start a new run as long 
as there are vertices not visited in previous runs. The 
simplified (directed graph-based) version of the above 
construction is illustrated on Figure 3A-D.

Compact graph representation
We reduce the memory requirements of our algorithm 
by representing the redundant information from the 
bipartite graph implicitly. First, we store only the edges 
with values 1 or −k and calculate the rest on the fly. 
This optimization is based on the observation that if 
e1 = {�i, j�, b} and C(e1) = 1 , then for 1 < q < k and 
e2 = {�i, j − q�, b} , we have C(e2) = 1+ q . Similarly, if 
e1 = {�i, j�, b} and C(e1) = −k , then for 1 < q < k and 
e2 = {�i, j − q�, b} , we have C(e2) = −k + q . We can then 
modify the constraints for graph traversal:

• From a node belonging to an equivalence class, 
we can exit by an edge or jump q < k positions 
backward in the generic representation and then 
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Fig. 3 AlfaPang algorithm: construction concept and actual data structures. A Input sequences. B Generic variation graph representation. C 
Bipartite graph for k = 3 . Colors of edges represent values assigned to them (blue: 1, red: 2, green: 3). Nodes filled with a color other than white 
belong to the same equivalence class. Orange nodes are both connected to the 3-mer GAT by blue edges. The first and the second pink nodes are 
connected to GAT by red edges, and the first and third pink nodes are connected to ATG by blue edges. The first and the second yellow nodes are 
connected to GAT by green edges, and the first and the third are connected to ATG by red edges. Grey nodes are connected to ATG by green edges. 
D Variation graph resulting from the quotient algorithm. Different edge colors mark different genomic paths (not multi-edges) and are consistent 
with edge colors in B. Node colors are consistent with equivalence classes shown in C. E Data structures used in the algorithm: s – concatenation 
of the input sequences, K – vector storing ids of k-mers starting at given positions in s, R – inverted index, enabling locating of k-mer occurrences 
in s, F – output vector, assigning positions in s to the vertices of the output graph. To find a pink equivalence class, start from symbol “A” at position 
3 (note that we use 1-based indexing) – we assign F[3] a new value (2 in this example). Since K [3] = 2 , we look into the vector R[2]. The first entry 
in this vector is 3, and we used the first color. Therefore we need to visit all other positions pointed to by R[2], so we assign F[15] = 2 and push it 
into the queue. Next, we backtrack one position to K[2]. Since K [2] = 1 , we look into R[1]. 2 is canonical vertex position for this (k-mer, color) pair, 
so we look at the other elements of R[1]. R[1] points to position 9, so we move one position forward and assign F[10] = 2 . After backtracking two 
steps from the starting position, we find K [1] = 0 , indicating that this “A” is not the third symbol in any k-mer. We repeat the procedure from found 
positions 10 and 15, identifying no additional positions
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traverse through the edge incident with that vertex 
(this vertex is not marked as visited since it does not 
need to belong to the same class).

• From vertices belonging to B, we can exit by both 
types of edges (those assigned to 1 and those assigned 
to −k).

• If we exit from a node belonging to B by an edge 
with the same sign as the edge we used to enter that 
vertex, we need to jump q vertices forward in the 
generic representation to find a vertex belonging to 
the equivalence class.

• If we exit from a vertex belonging to B by an edge 
with the opposite sign to the one we used to enter 
that vertex, we need to jump k − 1− q vertices for-
ward to find a vertex belonging to the equivalence 
class.

To implement the algorithm, we do not build such 
a graph explicitly. Instead, we use the following data 
structures (see example on Figure 3E):

• A concatenation of all sequences from the set S as a 
single string s, with an additional special character $ 
at the ends of original sequences.

• A vector K of the same size as s, that stores the ID 
(positive integer) assigned to the k-mer b at posi-
tion i if s[i..i + k − 1] = b , or the negative of that 
value if S[i..i + k − 1] = b−1 . If the k-mer starting 
at position i is not fully included in a sequence from 
S, then K [i] = 0 . IDs of all canonical k-mers of S are 
obtained by enumeration with positive numbers, 
which can be done efficiently using a hash table. Our 
implementation uses a hash table from an external 
library unordered_dense [19] and the hashing 
algorithm ntHash [20], designed specifically for 
DNA sequences.

• A vector R that stores M vectors, where M is the 
number of distinct canonical k-mers in S . This vector 
is used as an inverted index, enabling fast locating of 
k-mer occurrences in s. If for some i, j > 0 we have 
K [i] = ±j , then we push i into the vector R[j].

• A vector F of the same size as s, initially filled with 
zeros. This vector represents the assignment of posi-
tions in s to the vertices of the output graph. The 
absolute value of a number in this vector identifies a 
vertex ID, and its sign determines the vertex orienta-
tion.

• Moreover, we retain the order in which the sequences 
of S were concatenated, allowing us to track different 
genomes and reconstruct genomic paths from F.

In such framework we can identify vertices belonging to 
V with indices of K and vertices belonging to B with indi-
ces of R.

To traverse the graph under the assumed constraints, 
we should store in a queue the visited V-nodes and pairs 
〈B-node, edge color〉 . Due to the number of possible pairs, 
this can lead to excessive memory complexity. To avoid 
this, for each pair 〈b, c〉 we define its canonical V-node 
– the node adjacent to b via an edge of color c with the 
lowest K-index. We update the graph traversal condition 
as follows: when traversing an edge from a V-node to a 
B-node, we check whether the V-node is canonical for 
the B-node and the edge color. If it is, we add to queue all 
other vertices adjacent via edges of the same color from 
the B-node. Otherwise, we enqueue only the canonical 
V-node. In both cases, the nodes are added to the queue 
unless they have already been visited, which is checked in 
the vector F.

The pseudocode of the algorithm is presented in 
Algorithm 1.
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Algorithm 1 Quotient Algorithm
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Unbranched paths compression
The graph resulting from the described algorithm is sin-
gular. As a final step in our tool, we compress unbranched 
paths into vertices to reduce its size. Since it is k-com-
plete, we know that, (similarly to the vertices of the de 
Bruijn graph) each vertex has no more than |�| vertices 
connected to it on each side, and each of these has a dif-
ferent symbol as a label. Therefore, based on ideas pro-
posed in [21], we implemented a similar algorithm for 
our variation graphs. For each vertex, we can assign a 
state that encodes whether the vertex is inside such a path 
or is a branching node. Initially, vertices are assigned to 
one of the (� + 1)2 states representing symbols on their 
sides (+1 for a special character representing the end of 
a sequence), or to one of three special states represent-
ing branching vertices - two different states for situations 
when a vertex has only one edge on one side and more 
than one edge on the other, and a state for vertices with 
more than one edge on each side. To recognize branching 
vertices, we build a vector D of length equal to the num-
ber of vertices in the singular graph, filled with 0. Then 
we traverse vector F and update D as follows:

• If D[abs(F [i])] = 0 , we assign it a state encoding 
labels of the previous and next vertex ( s[i − 1] and 
s[i + 1]).

• Otherwise, we check if labels of vertices on both 
sides of a vertex are consistent with the state assigned 
to it. If so, we do nothing. Otherwise, we change the 
state to one of the special states (depending on which 
side of the vertex differs).

• If a vertex is assigned to a special state, we need to 
check only one of the sides or none of them.

• Additionally, we check if −F [i − 1] = F [i] or 
F [i] = −F [i + 1] . If so, we also need to change the 
state to one of the specials.

Next, we simplify states by changing all non-special states 
to a single value. Then, we traverse vector F once again to 

merge maximal unbranching paths into vertices, identi-
fied by combinations of branching nodes at the ends of 
the paths.

Algorithm complexity
Below we analyze the complexity of the subsequent steps 
of AlfaPang. In all the following lemmas N denotes the 
total size of the collection of genomic sequences S , k is 
the chosen k-mer size and M is the number of distinct 
k-mers in S . We start by examining the construction of 
the input structures for the Quotient Algorithm: s, K, and 
R (see Figure 3).

Lemma 2 All input structures for the Quotient Algo-
rithm can be build from S in O(kN ) time and O(N ) space.

Proof Each data structure used by the Quotient Algo-
rithm has a total size of O(N ).

To construct the vector K, we iterate over the string s 
exactly once, using an additional hash table to assign 
identifiers to k-mers. Since we can use pointers to the 
first occurrence of each k-mer in s as keys (instead of 
storing the k-mers explicitly), size of the table is O(M) . 
However, key comparisons require O(k) time, so the 
overall time complexity for constructing K is O(kN ).

To construct the reverse index R, we initialize a vec-
tor of length M, where each entry is an empty vector. We 
then traverse K once, filling values in R, which requires 
O(N ) operations.   �

In the next lemma we investigate the complexity of the 
Quotient Algorithm.

Lemma 3 The Quotient Algorithm runs in O(kN ) time 
and uses O(N ) space.

Table 1 Graph properties for selected values of k corresponding to specific rare k-mer fractions

rare k-mers fraction 0.01 0.02 0.03 0.05 0.10

E. coli 100

 k 15 47 83 165 379

 Fraction of sequence in private nodes 0.003 0.009 0.012 0.020 0.040

 Max node coverage 244604 768 685 574 470

S. cerevisiae 64

 k 11 27 45 77 163

 Fraction of sequence in private nodes 0.000 0.003 0.005 0.009 0.020

 Max node coverage 2.7× 10
8 10894 6839 5116 3498
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Proof Since the Quotient Algorithm consists of travers-
ing all edges of a bipartite graph – essentially performing 
a breadth-first search with additional constraints on the 
edges used – its time complexity is O(kN ).

The only additional structures used during execution 
are the output vector F, which is of size the same length 
as s, and a FIFO queue storing nodes to be processed. 
The modified procedure of passing through the B-nodes 
enables us to store only V-nodes, so the total size of the 
queue is bounded by N.   �

Finally, we examine the complexity of the output graph 
compression.

Lemma 4 The unbranched paths are compressed in 
O(N ) time and space.

Proof For unbranched path compression, we construct 
a state vector D with the number of elements equal to 
the number of vertices in the singular graph, which is 
bounded by N. We then traverse the vector F, obtained 
from the Quotient Algorithm, once to assign values in D. 
Next, we traverse D again to change all non-special val-
ues to zero.

Branching vertices are identified in F as those assigned 
nonzero values in D. Each compressed vertex is uniquely 
defined by its endpoints, so we initialize a hash table 
that assigns consecutive integers to such pairs. We also 
initialize vectors for paths in the compressed graph and a 
hash table linking each compressed vertex identifier to its 
label, derived from the indices of its first occurrence.

Finally, a single traversal of F populates these 
structures, all of which have size O(N ) and require O(N ) 
time.   �

The following theorem summarizes the above results.

Theorem 3 The AlfaPang algorithm runs in O(kN ) time 
and uses O(N ) space.

Proof Follows directly from Lemmas 2-4.   �

Design of experiments
Datasets and k-mer length selection
We tested our tool on two series of genome collections: 
the Escherichia coli series containing 50, 100, 200, and 
400 Escherichia coli haplotypes, obtained from [13], 
which we further extended by datasets of 800, 1600 
and 3412 sequences downloaded from GenBank (with 
total lengths ranging from 250Mbp to 17.3Gbp; specific 
queries are available in our GitHub repository), and the 
Saccharomyces cerevisiae series containing 16, 32, 64, and 
118 haplotypes (total length from 195Mbp to 1.44Gbp), 
obtained from [22].

Before conducting the analysis, we assessed the 
complexity and repetitiveness of the sequences in the 
datasets to guide the choice of the parameter k for 
AlfaPang. Too small k may lead to merging non-
homologous fragments, while too large k may hinder the 
detection of sequence similarity.

To explore this, we selected one dataset with an 
intermediate number of genomes from each series (E. coli 
100 and S. cerevisiae 64) and calculated the fraction of 
rare k-mers, i.e. occurring only once in the entire dataset. 
We used KMC3 [23] to compute this fraction across 
a selected range of k. Since the fraction of rare k-mers 
increases approximately linearly with k, we estimated it 
at a few key points. For both datasets, we examined graph 
structures for values of k yielding rare k-mer fractions of 
0.1, 0.2, 0.3, 0.5, and 0.10. For each case, we measured 
the maximum node coverage (the number of occurrences 
of the node in all genomic paths) and the fraction of the 
pangenome located in private nodes (having coverage 
equal to 1). The results are summarized in Table 1.

Based on these observations, we decided to use a k 
yielding 5% rare k-mers for all AlfaPang tests. We 
assumed that this choice would maintain the fraction of 
private nodes at approximately 1-2% while ensuring a 
reasonable maximum node coverage. This assumption 
was confirmed in tests on all graphs. The selected values 
for each dataset are summarized in Table 2.

Although the above approach provides practical advice 
on how to choose k, the final decision is up to the user. 
It may depend not only on the properties of the dataset 
being analyzed (number of genomes, their length, 
repetitiveness, etc.), but also on the level of separation of 
input genomes required in the subsequent analysis.

Table 2 Values of k chosen for different datasets

 Sequences E. coli S. cerevisiae

50 100 200 400 800 1600 3412 16 32 64 118

k 47 165 217 267 371 533 745 47 47 77 117
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Compared algorithms
In the pggb pipeline, the preliminary graph constructed 
in its two first steps (wfmash+seqwish) is further 
locally refined in the third step. Similarly to seqwish, 
AlfaPang may produce pangenome graphs with 
complex local structures due to the close relationship to 
de Bruijn graphs. We therefore evaluate AlfaPang on 
two levels.

On the first level, we compared the computational effi-
ciency of AlfaPang and the first two steps of the pggb 
workflow, i.e. wfmash+seqwish. Because we were 
unable to complete the wfmash+seqwish calcula-
tions even for the 400 E. coli sequences (after 6 days of 
computations on a server with 512 GB RAM, the pro-
cess crashed due to excessive memory consumption), 
we repeated the calculations on the E. coli series with 
the Erdős-Rényi random graph sparsification option 

Fig. 4 Plots of performance of AlfaPang vs wfmash+seqwish. All wfmash+seqwish tests were performed using 20 CPU threads. 
For graph construction with splitting by chromosome 16 AlfaPang processes were running in parallel
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activated. With that approach, we computed variation 
graphs for 400 and 800 sequences, but 1600 still required 
too much memory.

In order to prepare the second-level comparison, we 
modified the pggb pipeline by replacing the first two 
steps with AlfaPang. Thus, the new workflow, called 
AlfaPang+, consists of AlfaPang followed by the 
graph refinement tools smoothxg and gfaffix. For all S. 

cerevisiae datasets and datasets of 50, 100, 200, and 400 
E. coli sequences, we compared AlfaPang+ with pggb 
and Minigraph-Cactus in terms of computational 
efficiency and output graph properties.

In the case of S. cerevisiae datasets we applied all tools 
in two ways: to the entire genomes and to each of 16 yeast 
chromosomes separately (after removing from genomes 
aneuploid sequences). Both approaches are practiced in 

Fig. 5 Performance of AlfaPang+ vs pggb vs Minigraph-Cactus. All pggb and Minigraph-Cactus tests, as well as smoothxg 
in AlfaPang+ were performed using 20 CPU threads. For graph construction with splitting by chromosome 16 AlfaPang processes were 
running in parallel
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pangenome analysis. Moreover, Minigraph-Cactus 
remaps all genomic sequences onto the initial graph and 
assigns each sequence to one of the reference chromo-
somes. Sequences that cannot be confidently assigned 
to any chromosome are left out of further analysis. Thus, 
subsequent steps may be performed independently and 
in parallel for each reference chromosome, resulting in 
significant computational speedup for multichromo-
somal genomes. This comes at the cost of leaving inter-
chromosomal homologies not included in the graph. Our 
experiments allow us to assess the importance of this fac-
tor for the results of comparing the performance of the 
three tools.

Results
Performance comparison
The performance of each tool was evaluated in terms 
of running time and peak memory consumption. Run-
ning time was measured as wall clock time, and peak 
memory as maximum resident set size using the |time| 
command for all tests, except for parallel AlfaPang 
runs on S. cerevisiae chromosomes, where |cgmem-
time| was used for peak memory measurement. All 
benchmarks were performed on a Supermicro X10DRi 
server with 512GB RAM and two 14-cores CPUs Intel 
Xeon E5-2690V4, using single thread for AlfaPang 
applied to entire genomes, 16 threads for AlfaPang 
applied to each chromosome separately, and 20 threads 
for all other tools.

Figure  4 presents the comparison of AlfaPang 
and wfmash+seqwish, without the refine-
ment step of pggb. For construction from whole 
genomes AlfaPang consumes less memory 
than wfmash+seqwish on all datasets and is 

substantially faster than it on all the datasets except 
the smallest S. cerevisiae dataset. Moreover, unlike 
wfmash+seqwish, AlfaPang scales almost linearly 
with respect to the number of genomes. The devia-
tion from perfect linearity is due to the dependence of 
the time complexity on the parameter k. This is most 
visible in the E. coli dataset series, where the k values 
chosen for the largest and smallest datasets differ by 
more than 15 times. Additionally, AlfaPang has a 
memory usage increase when scaling from 400 to 800 
E. coli genomes due to the need to switch from 4-byte 
to 8-byte integers, but linear scaling resumes afterward. 
Despite the above deviations from linearity, the dif-
ference between AlfaPang and wfmash+seqwish 
grows with the dataset size. For example, on 100 E. coli 

Table 3 Number of nodes (in 106)

* Graphs constructed separately for each chromosome

Dataset AlfaPang+ pggb Minigraph-
cactus

S. cerevisiae 16 0.92 0.89 1.08

S. cerevisiae 32 1.78 1.80 2.22

S. cerevisiae 64 2.75 2.85 3.86

S. cerevisiae 118 3.61 3.87 5.44

S. cerevisiae 16* 1.00 0.90 1.08

S. cerevisiae 32* 1.91 1.79 2.21

S. cerevisiae 64* 2.78 2.83 3.78

S. cerevisiae 118* 3.65 3.85 5.22

E. coli 50 1.74 1.62 1.93

E. coli 100 1.76 1.79 2.67

E. coli 200 2.49 2.61 4.13

E. coli 400 3.27 3.25 5.80

Table 4 Number of edges (in 106)

* Graphs constructed separately for each chromosome

Dataset AlfaPang+ pggb Minigraph-
Cactus

S. cerevisiae 16 1.27 1.22 1.48

S. cerevisiae 32 2.47 2.48 3.05

S. cerevisiae 64 3.87 3.98 5.37

S. cerevisiae 118 5.11 5.49 7.68

S. cerevisiae 16* 1.37 1.23 1.47

S. cerevisiae 32* 2.63 2.46 3.03

S. cerevisiae 64* 3.85 3.93 5.26

S. cerevisiae 118* 5.08 5.43 7.37

E. coli 50 2.37 2.20 2.64

E. coli 100 2.40 2.45 3.65

E. coli 200 3.42 3.60 5.72

E. coli 400 4.52 4.53 8.16

Table 5 Total number of base pairs in nodes (in 106 bp)

* Graphs constructed separately for each chromosome

Dataset AlfaPang+ pggb Minigraph-
Cactus

Input size

S. cerevisiae 16 12.61 17.03 18.59  192.04

S. cerevisiae 32 13.64 20.73 26.54  384.52

S. cerevisiae 64 16.01 26.52 38.58  769.61

S. cerevisiae 118 19.37 29.56 53.67 1416.23

S. cerevisiae 16* 14.10 16.78 17.95  189.02

S. cerevisiae 32* 15.93 20.68 24.71  374.53

S. cerevisiae 64* 20.33 26.25 34.12  746.54

S. cerevisiae 118* 26.28 30.89 47.69 1376.10

E. coli 50 14.02 19.01 28.89  249.52

E. coli 100 17.92 20.20 43.61  539.83

E. coli 200 28.59 27.37 67.28 1050.67

E. coli 400 43.37 68.21 90.75 2027.21
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sequences, AlfaPang is more than 20 times faster 
than wfmash+seqwish (and 15 times faster than 
wfmash+seqwish with activated sparsification) and 
consumes 5 times less memory, while on E. coli 200, 
the largest dataset where a full wfmash+seqwish run 
was successfully completed, AlfaPang is more than 
30 times faster and consumes 13 times less memory.

It is worth pointing out that AlfaPang achieved these 
results using only one thread, while wfmash+seqwish 
was tested on 20 CPU threads. For the construction of 
a separate graph for each S. cerevisiae chromosome, we 
run 16 AlfaPang processes in parallel. This allowed us 
to outperform the wfmash+seqwish pipeline on all 
datasets, although at the cost of higher memory usage, 
as wfmash+seqwish processed each chromosome 
sequentially using 20 CPUs, while AlfaPang+ pro-
cessed all 16 chromosomes simultaneously.

Figure  5 summarizes the computational efficiency of 
full pangenome building pipelines. For the series of E. 
coli datasets, AlfaPang+ proved to be the most efficient 
tool and shows almost linear scalability with respect to 
the size of the data.

On the dataset consisting of 400 E. coli sequences, 
AlfaPang+ is more than 3 times as fast as pggb 
(with sparsification enabled) and 4 times faster than 
Minigraph-Cactus, while using 4-5 times less 
memory than other tools.

For the series of S. cerevisiae datasets, the results are 
slightly more ambiguous. As the number of S. cerevi-
siae haplotypes goes from 16 to 118, the memory usage 
of algorithms applied to whole genomes increases 
by 12.5 times for pggb, 3.4 times for Minigraph-
Cactus, and 2.4 times for AlfaPang+, which again 

demonstrates AlfaPang+ scalability in this regard. 
The runtime for both pggb and AlfaPang+ is mostly 
dependent on smoothxg, which runs faster in pggb. 
However, as the number of haplotypes increases, 
AlfaPang+ gains an advantage and becomes twice 
as fast for the largest dataset. Minigraph-Cactus 
proved to be the fastest tool in this case. For construc-
tion from whole genomes it is 3 to 13 times faster than 
pggb, depending on the number of haplotypes, and 
6-8 times faster than AlfaPang+. This comes at the 
cost of loosing interchromosomal structural variants 
in the resulting variation graph. As opposite to pggb 
and AlfaPang+, for all yeast datasets Minigraph-
Cactus constructed graphs with 16 connected com-
ponents, corresponding to 16 chromosomes of S. 
cerevisiae.

When applying the tools separately to each 
chromosome, Minigraph-Cactus is still the fastest, 
but the difference in running time between AlfaPang+ 
and Minigraph-Cactus is visibly reduced (pggb 
takes almost the same amount of time as without 
splitting). Furthermore, both pggb and AlfaPang+ 
outperforms Minigraph-Cactus in terms of memory 
usage.

Graphs topology
To measure the complexity of the produced pange-
nome graphs, we compared such graph characteristics 
as the number of nodes and edges. Results are displayed 
in Tables  3 and  4. We also compared the total length 
of nodes labels to check the ability of all the tools to 

Table 6 Number of aligned positions pairs (in 109)

* Graphs constructed separately for each chromosome. A pair of positions from 
input sequences is aligned in a graph if they are both represented by the same 
position in a label of the same vertex

Dataset AlfaPang+ pggb Minigraph-Cactus

S. cerevisiae 16   2.20   1.52   1.26

S. cerevisiae 32   8.47   6.33   5.14

S. cerevisiae 64  33.81  25.81  21.00

S. cerevisiae 118 108.69  90.95  71.50

S. cerevisiae 16*   1.45   1.40   1.25

S. cerevisiae 32*   5.79   5.65   4.99

S. cerevisiae 64*  22.64  22.32  20.06

S. cerevisiae 118*  76.61  76.67  68.94

E. coli 50   5.55   5.08   4.72

E. coli 100  26.09  25.31  19.04

E. coli 200  88.94  92.37  73.70

E. coli 400 354.57 343.97 298.79

Table 7 The values of the Jaccard index between sets of aligned 
pairs

* Graphs constructed separately for each chromosome

Dataset pggb vs 
AlfaPang+

Minigraph-Cactus 
vs AlfaPang+

Minigraph-
Cactus vs 
pggb

S. cerevisiae 16 68.3 56.8 81.6

S. cerevisiae 32 72.9 59.9 80.0

S. cerevisiae 64 72.9 60.9 79.9

S. cerevisiae 118 76.5 64.4 77.2

S. cerevisiae 16* 95.3 85.4 88.4

S. cerevisiae 32* 95.8 85.1 87.2

S. cerevisiae 64* 95.1 86.6 88.4

S. cerevisiae 118* 94.6 87.1 88.4

E. coli 50 88.5 82.7 91.4

E. coli 100 84.3 69.8 74.1

E. coli 200 83.0 73.7 78.2

E. coli 400 77.4 70.5 84.5
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compress input sequences (see Table 5). In all the follow-
ing tables, we refer to the graphs produced by the pggb 
pipeline without sparsification, except for the graph of 
the largest E. coli dataset, for which sparsification was 
activated.

For E. coli and S. cerevisiae datasets constructed for 
entire genomes, the number of nodes in graphs from 
AlfaPang+ and pggb differs by at most 7%. For 
graphs constructed separately for each chromosome, 
the differences are up to 10%. Minigraph-Cactus 
produces graphs with a noticeably larger number of 
nodes and edges. On S. cerevisiae datasets, Minigraph-
Cactus graphs contain 17-50% and 8-43% more 
nodes than AlfaPang+ for graphs without and with 
chromosome splitting, respectively (20-40% more than 
pggb). On E. coli data, Minigraph-Cactus graphs 
have 10-77% more nodes than AlfaPang+ (19-78% 
more than pggb).

For all graphs, the number of edges is 35-45% larger 
than the number of nodes. Moreover, going from 16 
to 118 S. cerevisiae haplotypes increases the number 
of nodes 4-5 times, while going from 50 to 400 E. coli 
sequences, the number of nodes increases by at most 3 
times across all tools, indicating that for all tools graph 

size grows sublinearly with respect to the number of 
input sequences. Similar conclusion can be drawn from 

Fig. 6 Venn diagrams for sets of aligned pairs in graphs build 
with pggb, Minigraph-Cactus and AlfaPang+ for E. coli 
datasets

Fig. 7 Venn diagrams for sets of aligned pairs in graphs build with pggb, Minigraph-Cactus and AlfaPang+ for whole S. cerevisiae 
datasets. Subsets are colored as in Figure 6

Fig. 8 Venn diagrams for sets of aligned pairs in graphs build with pggb, Minigraph-Cactus and AlfaPang+ for S. cerevisiae datasets split 
by chromosomes. Subsets are colored as in Figure 6
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Table  5. When the number of S. cerevisiae haplotypes 
increases from 16 to 118, the total size of node sequences 
increases by 1.5, 1.7, and 2.9 times for AlfaPang+, 
pggb, and Minigraph-Cactus, respectively. For 
E. coli data, increasing the number of sequences from 
50 to 400 results in the total size of node sequences 
increasing by around 3 times for both AlfaPang+ and 
Minigraph-Cactus. For pggb, the graph constructed 
from a dataset of 400 sequences deviates from this trend: 
increasing the number of sequences from 50 to 200 
increases the total length of node labels by 1.4 times, 
while increasing from 200 to 400 sequences increases 
this value by 2.5 times. This deviation is suspected to 
result from the sparsification used for that dataset. 
For all datasets, AlfaPang+ shows a higher rate of 
compression than pggb, which in turn has a higher rate 
of compression than Minigraph-Cactus.

Graphs similarity
Below we analyze the similarity between sequence 
alignments induced by the graphs constructed with 
different tools. To define the measure of this similarity, 
we introduce the following equivalence relation: a 
pair of positions in two (not necessary different) 

sequences is aligned in graph G if both are represented 
by the same position in a label of the same vertex. In 
the case of singular graphs this could be expressed 
Si[p] ≡G Sj[p

′] ⇐⇒ π(Si)[p] = π(Sj)[p
′] . We define 

µ(G) as the set of all aligned pairs in G. The similarity 
between two variation graphs G1,G2 is measured using 
Jaccard index between µ(G1) and µ(G2).

Table  6 summarizes the number of aligned pairs 
in all graphs. With some exceptions, AlfaPang+ 
found more pairs than pggb. For whole-genome S. 
cerevisiae series, pggb identified 69-84% as many 
pairs as AlfaPang+. For the split-chromosome series, 
these values are much higher and pggb found 96-99% 
as many pairs as AlfaPang+, except for the largest 
dataset, in which case pggb identified more pairs 
than AlfaPang+. For E. coli datasets, pggb found 
91-97% as many pairs as AlfaPang+ (except for the 
dataset with 200 sequences, in which case pggb found 
approximately 4% more pairs than AlfaPang+), while 
Minigraph-Cactus found 73-85%.

As expected, the number of aligned pairs scales quad-
ratically with the number of sequences.

The Jaccard index between sets of aligned pairs is 
presented in Table  7. On the S. cerevisiae datasets 

Fig. 9 Distribution of aligned pair classes in graphs constructed with AlfaPang+, pggb, or Minigraph-Cactus for S. cerevisiae datasets 
(whole genomes). The notion of an aligned pair is defined in Section "Graphs similarity"
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constructed for whole genomes, the Jaccard index 
between AlfaPang+ and pggb increases from 68% 
to 77% as the number of haplotypes grows, while for 
the pair AlfaPang+ and Minigraph-Cactus an 
increase from 56% to 64% is observed. The Jaccard index 
for pggb and Minigraph-Cactus ranges between 
82% and 87% on S. cerevisiae datasets, with a decreasing 
tendency as the number of haplotypes grows. For 
graphs constructed separately for each chromosome, 
these values are noticeably higher: approximately 95% 
for AlfaPang+ and pggb, 85− 87% for AlfaPang+ 
and Minigraph-Cactus, and 87− 88% for pggb and 
Minigraph-Cactus.

For E. coli datasets, the Jaccard index between 
AlfaPang+ and pggb and between AlfaPang+ 
and Minigraph-Cactus decreases as the number 
of sequences increases. For the first mentioned pair, 
the index drops from 89% to 77% , and for the second 
one from 83% to 70% . In contrast, the Jaccard index 
between pggb and Minigraph-Cactus varies 
between 74 and 91% , showing no clear dependencies on 
the number of sequences.

The values of the Jaccard index are very close to the 
ratios of the numbers of aligned pairs between the 

tools. A more detailed analysis of these relationships 
is presented in Figures  6, 7 and  8. It shows that, in E. 
coli datasets, AlfaPang+ is able to identify 88–99% 
of the pairs found by both pggb and Minigraph-
Cactus. The proportion of AlfaPang+ pairs 
found by pggb varies between 86% and 93% with no 
clear dependencies on the number of sequences (for 
Minigraph-Cactus, it varies between 71% and 84%).

For S. cerevisiae datasets without splitting, 
AlfaPang+ is able to find 95–99% of the pairs identified 
by pggb and 98–99% of those found by Minigraph-
Cactus. In comparison, pggb and Minigraph-
Cactus find 68–80% and 57–65% of the pairs identified 
by AlfaPang+, respectively. Similarity is much higher 
when the graphs are constructed separately for each 
chromosome. Namely, AlfaPang+ identifies over 97% 
and 98% of pggb and Minigraph-Cactus pairs, 
respectively, while pggb finds over 95% of AlfaPang+ 
pairs and Minigraph-Cactus finds 85–88% of 
AlfaPang+ pairs. For all datasets, the set of aligned 
pairs found by Minigraph-Cactus is almost entirely 
included in set found by pggb.

Fig. 10 Distribution of aligned pair classes in graphs constructed with AlfaPang+, pggb, or Minigraph-Cactus for S. cerevisiae datasets 
(spliting). The notion of an aligned pair is defined in Section "Graphs similarity"
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Thus, we conclude that the differences between pair 
sets are mainly due to the differences in sensitivity to 
sequence similarity between tools.

Aligned pairs annotations
Below we investigate whether differences among pange-
nome graphs produced by various tools occur in func-
tionally important regions. To do this, we first extract 
aligned pairs from each graph and randomly sample 
1,000,000 pairs per graph. Next, we classify each genomic 
position based on overlapping features using GenBank 
annotations, considering positions without any feature as 
intergenic. Finally, we analyze the distribution of annota-
tion pairs. Since classifications other than gene, pseudo-
gene (only in E. coli), or intergenic are exceedingly rare, 
our analysis focuses exclusively on these categories.

In Figure 9 we show the annotation distributions on S. 
cerevisiae data without splitting. Approximately 70-71% 
of AlfaPang+ pairs were located in genes, 22–24% were 
classified as intergenic-intergenic, and 6–7% as gene-
intergenic. For pggb, these values are 67–69%, 27–29%, 
and 3–4% and for Minigraph-Cactus it was 72%, 25% 
and 3% respectively.

Annotation distributions for S. cerevisiae data divided 
into chromosomes are presented in Figure 10. These val-
ues are very close to each other for both AlfaPang+ 
and pggb, with 66–68% gene-gene pairs, 28–30% inter-
genic-intergenic pairs, and around 3% gene-intergenic 
pairs. Minigraph-Cactus shows a slightly higher pro-
portion of gene-gene pairs (68–72%) and a lower propor-
tion of intergenic-intergenic pairs (23–24%).

Figure  11 presents annotation distributions for E. 
coli genomes. For datasets with 50 and 100 and 200 
sequences, the proportion of gene-gene pairs was simi-
lar across all tools (85%, 86%, and 86% for 50 sequences, 
81%, 81%, and 83% for 100 sequences and 84%, 83% 
and 85% for 200 sequences for AlfaPang+, pggb, 
and Minigraph-Cactus, respectively). However, for 
AlfaPang+, the proportion of gene-intergenic pairs 
was slightly higher, at 0.7% compared to 0.3% in both 
pggb and Minigraph-Cactus for 50 sequences, and 
0.7% compared to 0.5% and 0.4% in pggb and Mini-
graph-Cactus for 100 sequences and 1.3% compared 
to 1.2% and 1% for 200 sequences.

For 400 sequences, the proportion of gene-gene pairs 
in AlfaPang+ graph remains similar to the other 
tools - 82% compared to 82% in pggb and 85% in 

Fig. 11 Distribution of aligned pair classes in graphs constructed with AlfaPang+, pggb, or Minigraph-Cactus for E. coli datasets. The 
notion of an aligned pair is defined in Section "Graphs similarity"
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Minigraph-Cactus. On the other hand, the propor-
tion of gene-intergenic pairs was significantly higher in 
AlfaPang+, at 3.7%, compared to 1.5% in pggb and 1% 
Minigraph-Cactus.

Conclusion
We presented AlfaPang – a novel algorithm for 
building pangenome graphs. Unlike alternative 
algorithms, AlfaPang constructs graphs with their 
structure strictly defined by the k-completeness and 
k-faithfulness properties introduced in [17]. The runtime 
and memory usage of AlfaPang scales linearly with 
the number of genomes, allowing it to process much 
larger sets of genomes than state-of-the-art alternatives 
such as wfmash+seqwish. Replacing the latter with 
AlfaPang in the pggb pipeline results in output graphs 
with similar properties in terms of graph structure, 
but with a larger number of aligned genome residues. 
Although the decision whether or not given fragments 
of genomic sequences should be aligned in a pangenome 
graph is somewhat arbitrary, this fact reflects the high 
sensitivity of AlfaPang to sequence similarity.

Another state-of-the-art pangenome graph builder 
tool, Minigraph-Cactus, substantially differs from 
both pggb and AlfaPang in the assumptions on how 
the pangenome graph should look like. First, it aligns 
neither paralogs (i.e. similar sequence fragments in 
the same genome) nor homologuous sequences that 
in different genomes occur on different chromosomes. 
Second, it requires the user to choose a reference 
genome. This choice highly influences the output 
graph, as it may ignore similarity between fragments 
of non-reference genomes that have no homologs 
in the reference. Both design assumptions make it 
possible to reduce the number of sequence alignments 
necessary to build the graph, which consequently 
allows Minigraph-Cactus to provide much better 
computational efficiency than pggb. However, the 
alignment-free approach of AlfaPang allows even 
greater reduction, especially in terms of required 
memory, and this difference increases with the size of 
the dataset.

Current population sequencing projects aim to 
assemble the genomic sequences of thousands of 
individuals. The success of pangenome-based approaches 
in analyzing the resulting genome collections depends 
largely on the existence of efficient methods for 
building pangenomes. Because the total size of such 
data is in the terabytes, memory efficiency may be of 
paramount importance here, and it may turn out that the 
computational advantages of AlfaPang will enable new 
insights and discoveries that are not possible using other 
tools.

The close relationship between the variation graphs 
constructed by AlfaPang and the de Bruijn graphs 
provides a bridge between both pangenome models. On 
the other hand, this is a limitation of the AlfaPang 
approach, as the structure of resulting graphs resembles 
the structure of de Bruijn graphs with their drawbacks, 
such as excessive entanglement in areas representing 
low-complexity sequence regions. Such entanglement 
is removed in the refinement step of the AlfaPang+ 
pipeline by the smoothxg tool. However, due to 
high AlfaPang efficiency, this step dominates the 
whole AlfaPang+ computation time ( ∼ 95% on all 
datasets). Perhaps more precise tuning of the smoothxg 
parameters would allow to reduce this time without 
affecting the output. More substantial reduction would 
probably require incorporation of the refinement 
procedure in the graph building process of AlfaPang.
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