
Cicherski et al.
Algorithms for Molecular Biology (2025) 20:7
https://doi.org/10.1186/s13015-025-00277-7

RESEARCH Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Algorithms for
Molecular Biology

AlfaPang: alignment free algorithm
for pangenome graph construction
Adam Cicherski1*, Anna Lisiecka1* and Norbert Dojer1*

Abstract

The success of pangenome-based approaches to genomics analysis depends largely on the existence of efficient
methods for constructing pangenome graphs that are applicable to large genome collections. In the current paper
we present AlfaPang, a new pangenome graph building algorithm. AlfaPang is based on a novel alignment-free
approach that allows to construct pangenome graphs using significantly less computational resources than state-of-
the-art tools. The code of AlfaPang is freely available at https:// github. com/ AdamC icher ski/ AlfaP ang.

Keywords Pangenome, Variation graph, Genome alignment, Population genomics

Background
Pangenome (or variation) graphs serve as models for joint
representation of populations of genomes [1–5]. They
have proven to be useful in analyzing sequence evolution
and variation [6, 7], as well as in reducing the so-called
reference bias in the analysis of experimental data [8, 9].

A first draft of the human pangenome reference,
constructed from 47 high-quality assemblies, was
recently published by the Human Pangenome Reference
Consortium, demonstrating its effectiveness in reducing
errors in the detection of small and structural variants
[10]. Additionally, the use of a pangenome has improved
short-read mapping, as well as ChIP-seq and ATAC-
seq analyses. To further enhance its accuracy and
completeness, the consortium plans to expand the
reference to 350 assemblies in the coming years.

However, the success of the pangenome-based
approaches depends on the existence of efficient

construction methods, applicable to large collections of
genomes. Most pangenome building algorithms adapt the
approaches used in whole genome alignment tools. Early
versions of the VG toolkit [8] constructed pangenome
graphs iteratively, i.e. aligning consecutive sequences to
a current graph. In the current version of VG, by default,
graphs are constructed from genomic sequences using
Minigraph-Cactus [11], which aligns all genomes to
a reference genome.

In both approaches the outcome depends on an
arbitrary choice of genome order (VG) or the reference
(Minigraph-Cactus). To avoid such biases, several
alternatives have recently been proposed. seqwish
[12] builds pangenome graphs from all-to-all pairwise
genome alignments. Unfortunately, the construction
doesn’t scale linearly with respect to the number of
genomes, and the final graph requires refinement. The
last problem was addressed in pggb [13] – a pipeline
that builds a pangenome graph in three steps:

1. All-to-all genome alignment (wfmash),
2. Graph inference from pairwise alignment

(seqwish),
3. Graph refinement (smoothxg+gfaffix).

All the above-mentioned tools build variation graphs,
in which the concatenation of the labels of all the

*Correspondence:
Adam Cicherski
a.cicherski2@uw.edu.pl
Anna Lisiecka
a.lisiecka@mimuw.edu.pl
Norbert Dojer
dojer@mimuw.edu.pl
1 Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw,
Poland

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-025-00277-7&domain=pdf
https://github.com/AdamCicherski/AlfaPang

Page 2 of 21Cicherski et al. Algorithms for Molecular Biology (2025) 20:7

nodes in a path constitutes the sequence represented
by the path. As a result, variation graphs provide
an intuitive, common coordinate system in which
each base pair in any genomic sequence is uniquely
represented in the graph. One of the most important
alternatives are de Bruijn graphs, in which nodes are
uniquely labeled with k-mers, and edges connect
nodes with labels that are consecutive k-mers in the
represented sequences (and thus overlap with k − 1
characters). Consequently, a single base pair occurs
in k different node labels (i.e. the k-mers covering
the base pair), and therefore de Bruijn graphs pose
a challenge for downstream analysis, especially in
terms of annotation, visualization and information
extraction [14]. On the other hand, their structure is
strictly determined by the parameter k, and hence the
order and reference bias problems do not occur in
building de Bruijn graphs. Moreover, the construction
is conceptually simple, and optimized building
algorithms such as TwoPaCo [15] or bifrost [16]
are orders of magnitude faster than alignment-based
building algorithms for variation graphs.

A bridge between both models that could combine
their advantages was proposed in [17]. The paper
introduces the notion of a string graph, which
is a generalization of both variation graph and
de Bruijn graph. Moreover, the authors propose
an axiomatization of the desired properties of
representing a sequence collection in such a graph.
It is shown that the axioms are always satisfied in de
Bruijn graphs and that they determine the structure of
variation graphs up to merging unbranched paths into
single nodes and the opposite operation. Furthermore,
authors explore the relationship between de Bruijn
graphs and variation graphs satisfying the axioms to
design an algorithm transforming the former into
the latter. The proposed transformation algorithm
can potentially be used as a crucial component of an
efficient variation graph building pipeline.

In this paper we go one step further to achieve a
more efficient construction of the variation graph. We
design and implement AlfaPang – an algorithm that
builds directly from the input sequences a variation
graph satisfying the axioms introduced in [17]. We
show that replacing the first two steps of pggb
with our algorithm results in significant efficiency
improvement and yields output graphs of similar
properties.

The rest of the paper is organized as follows. In
section "Representing sequences with variation
graphs" we introduce the necessary notation and
prove theoretical results underlying the correctness

of our algorithm. In section "AlfaPang algorithm"
we describe the algorithm and study its complexity.
Sections "Design of experiments" and "Results" present
experiments’ design and results, respectively.

Representing sequences with variation graphs
In this section we give a mathematical formalism
behind our algorithm. We start with introducing
directed variation graphs, i.e. directed graphs with
nodes labeled with sequences. We provide some
necessary definitions, including the extension of
the labeling function to paths, the quotient graph
construction, and the notion of singular (i.e. single-
character-labeled) graphs. Because every variation
graph can be transformed to an equivalent (in the sense
defined in [17]) singular one, in the rest of this section
we restrict our attention to singular graphs.

In subsection "Representations of collections of
sequences" we formalize the notion of a singular
directed variation graph representing given set of
sequences. Then we introduce two properties of such
representations: k-completeness and k-faithfulness.
Intuitively, the k-completeness states that every
occurrence in the sequences of the same k-mer is
represented by the same path in the graph, while
k-faithfulness states that different sequence fragments
can be represented by the same path only when it
is essential to satisfy k-completeness. We conclude
subsection "Representations of collections of
sequences" showing that, given the set of sequences,
these properties uniquely define the structure of their
representation by a singular directed variation graph.

In the last subsection, we introduce bidirected
variation graphs and show how the above concepts
and results generalize to them. In bidirected variation
graphs paths pass through nodes in one of two possible
directions, corresponding to two DNA strands. In
this way they naturally represent the double-stranded
structure of DNA, which helps modeling the collections
of genomes with sequence differences resulting from
inversions. The directed case is described first for
clarity, since the bidirected case is technically more
complex but conceptually similar.

Directed variation graphs
A directed variation graph is a tuple G = �V ,E, l� ,
where:

• V is a set of vertices,
• E ⊆ V 2 is a set of directed edges,

Page 3 of 21Cicherski et al. Algorithms for Molecular Biology (2025) 20:7

• l : V → �+ is a function labeling vertices with
non-empty strings over the DNA alphabet
� = {A,C ,G,T }.

A path in a variation graph is a sequence of ver-
tices 〈v1, . . . , vm〉 such that �vj , vj+1� ∈ E for
every j ∈ {1, . . . ,m− 1} . The set of all paths in
G will be denoted by P(G) . The labeling func-
tion l extends to l̂ : P(G) → �+ defined by formula
l̂(�v0, . . . , vm�) = l(v0) · . . . · l(vm) , i.e. the label of the
path is the concatenation of the labels of its consecutive
vertices.

Assume that G = �V ,E, l� is a directed variation
graph and ∼ is an equivalence relation on the set of
G-nodes satisfying v ∼ v′ ⇒ l(v) = l(v′) for all v, v′ ∈ V .
Then the quotient graph of G by ∼ can be defined as
G′ = �V ′,E′, l′� , where

• V ′ = V / ∼,
• E′ = {�[v]∼, [v

′]∼� | �v, v
′� ∈ E},

• l′([v]∼) = l(v).

The correctness of the definition of l′ (i.e. independ-
ence on the choice of [v]∼-representative) is guaranteed
by the above assumption on ∼ . Note that the quotient
construction saves the labels of paths, i.e. given a path
p = �v1, . . . , vm� in G, p′ = �[v1]∼, . . . , [vm]∼� is a path in
G′ and l̂′(p′) = l̂(p).

Given a path p = �v1, . . . , vm� , the subpath of p is any
path p[j1..j2] = �vj1 , . . . , vj2� , where 1 ≤ j1 ≤ j2 ≤ m . Sim-
ilarly, S[j1..j2] denotes the substring of a string S consist-
ing of the characters from positions j1, . . . , j2.

If |l(v)| = 1 for every vertex v, the graph is called sin-
gular. Every variation graph can be transformed into a
singular one by splitting each node v into an unbranched
path with |l(v)| nodes, labeled with consecutive l(v) char-
acters. This transformation can be reversed by contract-
ing the edges on the unbranched paths. Contraction
reduces the number of nodes and edges, so the reverse
transformation leads to more compact graphs. On the
other hand, singular graphs provide a simpler and more
convenient representation, because the substrings of
the string labeling a path p are themselves labels of
subpaths of p (namely, l̂(p[j1..j2]) = l̂(p)[j1..j2] for all
1 ≤ j1 ≤ j2 ≤ |p|). Since the core part of our algorithm
builds a singular graph (compressed in the last step), we
define the notions of sequence representation and its
properties only for singular graphs. However, all these
definitions can be generalized to any variation graphs, see
[17] for details.

Representations of collections of sequences
Given a set of sequences S = {S1, . . . , Sn} , a singular
directed variation graph G〈V ,E, l〉 and π : S → P(G) ,
we say that 〈G,π〉 represents S iff the following conditions
are satisfied:

• l̂(π(Si)) = Si for every i ∈ {1, . . . , n},
• every vertex in G occurs in some path π(Si),
• every edge in G joins two consecutive vertices in

some path π(Si).

We define the set of positions in S as
Pos(S) = {�i, j� | 1 ≤ i ≤ n ∧ 1 ≤ j ≤ |Si|} . The
set of π-occurrences of a vertex v is defined as
Occπ (v) = {�i, j� ∈ Pos(S) | π(Si)[j] = v} . Define the
generic representation of S as the representation 〈G0,π0〉 ,
where G0 = �V0,E0, l0� and:

• V0 = Pos(S),
• E0 = {��i, j�, �i, j + 1�� | 1 ≤ i ≤ n ∧ 1 ≤ j < |Si|},
• l0(�i, j�) = Si[j],
• π0(Si) = ��i, 1�, . . . , �i, |Si|��.

Lemma 1 For every singular representation 〈G,π〉 of
S = {S1, . . . , Sn} , there exists an equivalence relation
∼�G,π� on Pos(S) such that:

1. G is isomorphic to a quotient graph of G0 by ∼�G,π�,
2. π(Si) = �[�i, 1�]∼�G,π�

, . . . , [�i, |Si|�]∼�G,π�
� for all

i ∈ {1, . . . , n}.

Proof The relation ∼�G,π� is defined as follows:

Verifying that both conditions are satisfied is
straightforward. �

Let Si, Si′ be two (not necessarily different)
sequences from S and assume that they have a
common k-mer Si[p..p+ k − 1] = Si′ [p

′..p′ + k − 1] .
We say that π reflects this common k-mer iff it
is represented by the same path in the graph, i.e.
π(Si)[p..p+ k − 1] = π(Si′)[p

′..p′ + k − 1] . We say that
〈G,π〉 represents S k-completely iff all common k-mers in
S are reflected by π.

We say the pair of π-occurrences �i, j�, �i′, j′� of a vertex
v is:

�i, j� ∼�G,π� �i
′
, j′� ⇐⇒ π(Si)[j] = π(Si′)[j

′]

Page 4 of 21Cicherski et al. Algorithms for Molecular Biology (2025) 20:7

• directly k-extendable iff these occurrences
extend to a common k-mer reflected by π , i.e.
π(Si)[j −m..j +m′] = π(Si′)[j

′ −m..j′ +m′] for
some m,m′ ≥ 0 satisfying m+m′ ≥ k − 1,

• k-extendable if there is a sequence of occurrences
of v that starts from 〈i, j〉 , ends at �i′, j′� and each two
consecutive occurrences in that sequence are directly
k-extendable.

We say that 〈G,π〉 represents S k-faithfully if every pair of
occurrences of a vertex is k-extendable.

Note that the k-completeness property specifies which
fragments of S-strings must be unified in the representa-
tion, while k-faithfulness states that anything that is not
a consequence of k-completeness cannot be unified (see
example on Figure 1).

Theorem 1 Let S = {S1, . . . , Sn} be a set of sequences.
Then a k-complete and k-faithful representation of S
exists and is unique up to isomorphism.

The above theorem is roughly equivalent to Theorems 1
and 2 in [17]. In that paper the proof of the existence was
based on the transformation of a de Bruijn graph into a
variation graph. Here we propose an alternative proof
that leads to a more efficient variation graph construction
algorithm.

Proof Let G0 = �V0,E0, l0� be a generic representation
of S . We define a binary relation ∼0 indicating the pairs
of positions in S that should be merged in a representa-
tion reflecting common k-mers:

Fig. 1 Example of a 3-faithful and 3-complete variation graph. Edge
colors are used to mark genomic paths (graph has no multi-edges,
they are used only for purpose of paths visualisation). All occurrences
of vertex “A” filled with pink are 3-extendable, as occurrences
on the red and green paths can both be extended to the path
labeled with TAT, on the red and cyan paths to ATT, on the purple
and cyan paths to GAT, and on the purple and green paths to ATG.
On the other hand, occurrences of the grey vertex “A” on the orange
and blue paths can be extended to ATC but are not extendable
to any of the previously mentioned 3-mers, and therefore this vertex
cannot be merged with the pink one

Fig. 2 Representing DNA sequences with bidirected variation graphs. A Input DNA sequences and their reverse complements. B Generic
representation of the sequences. Each node is labeled with two complementary nucleotides, from DNA strands + (upper part) and − (lower part).
A node has orientation +1 on a path that enters it on the left side and exits on the right side, otherwise it has orientation −1 . Arrows on the edges
indicate the orientation of strand + of the represented sequences. The dashed arrows indicate common DNA 3-mers in the input sequences: TTG/
CAA , TCG/CGA and AAC/GTT . C 3-complete and 3-faithful representation of the sequences. The quotient construction merged each pair of paths
in the generic representation indicated by dashed arrows of the same color. Consequently, every 3-mer from the input sequences is represented
by a unique path

Page 5 of 21Cicherski et al. Algorithms for Molecular Biology (2025) 20:7

Let ∼ denote the equivalence closure of ∼0 . Obviously,
the above definition implies that Si[j] = Si′ [j

′] whenever
�i, j� ∼0 �i

′, j′� and, consequently, the same property holds
for ∼ . Therefore a quotient graph G of G0 by ∼ is properly
defined. Moreover, each G0-path π0(Si) = �v1, . . . , v|Si|�
can be transformed into G through the quotient
construction: π(Si) = �[v1]∼, . . . , [v|Si|]∼�.

Hence we have a representation 〈G,π〉 of S that is:

• k-complete, because consecutive vertices in paths
representing common k-mers were merged in the
quotient construction,

• k-faithful, because all occurrences of a node v are in
relation ∼ , so for each pair �i, j�, �i′, j′� ∈ Occπ (v) there
exists a sequence �i, j� = �i0, j0�, . . . , �ip, jp� = �i′, j′�
of v-occurrences such that for each l ∈ {1, . . . , p}
the condition �il−1, jl−1� ∼0 �il , jl� is satisfied, which
means that occurrences �il−1, jl−1� and 〈il , jl〉 are
directly k-extendable.

Moreover, by Lemma 1, every representation �G′,π ′� of
S is isomorphic to a quotient of G0 by some relation ∼′
on the set of oriented G0-vertices. It is easily seen that
�G′,π ′� is

• k-complete iff �i, j� ∼ �i′, j′� ⇒ �i, j� ∼′ �i′, j′�,
• k-faithful iff �i, j� ∼′ �i′, j′� ⇒ �i, j� ∼ �i′, j′�.

Therefore, if �G′,π ′� has both properties, graphs G and G′
must be isomorphic. �

Bidirected variation graphs
In bidirected graphs each node has two sides (denoted
here ±1) and undirected edges join adjacent nodes on
particular sides [18]. Both sides are equivalent in the
sense that swapping sides at any node yields an isomor-
phic bidirected graph.

A path entering a node on one side must exit it on the
other side. More formally, a path in a bidirected graph is
a sequence 〈〈v1, o1〉, . . . , 〈vm, om〉〉 such that for all respec-
tive j

• oj = ±1 determines the orientation of vj in the path,
• side oj−1 of vj−1 is connected by an edge with side −oj

of vj.

�i, j� ∼0 �i
′
, j′� ⇐⇒ ∃0≤m<k Si[j −m..j + k − 1−m]

= Si′ [j
′ −m..j′ + k − 1−m]

Paths may be reversed, but it requires reversing
both order and orientation of the nodes, i.e. given
path p = ��v0, o0�, . . . , �vm, om�� , its reverse is
p−1 = ��vm,−om�, . . . , �v0,−o0��.

Bidirected variation graphs naturally represent the
double-stranded structure of DNA. The orientation
of a node indicates the strand of the represented
DNA fragment, i.e. strand �v,+1� has sequence
l(v), while �v,−1� has sequence l(v)−1 , where S−1
denotes the reverse complement of sequence S. For
convenience, we introduce notation S+1 = S and
p+1 = p . The label of the path is the concatenation
of the oriented labels of consecutive vertices, i.e.
l̂(��v0, o0�, . . . , �vm, om��) = l(v0)

o0 · . . . · l(vm)
om . Note

that hence l̂(p−1) = l̂(p)−1.
Bidirected representations of sequence collections

are defined similarly to directed ones. Positions
and vertex occurrences are extended to include the
orientation, i.e.

• Pos(S) = {�i, j, o� | 1 ≤ i ≤ n ∧ 1 ≤ j ≤ |Si| ∧ o = ±1},
• Occπ (v) = {�i, j, o� ∈ Pos(S) | π(Si)[j] = �v, o�}.

Because the strands of the represented sequences
are treated in the same way, the concept of reflecting
common k-mers applies to occurrences of k-mers
on both strands. Below we adapt the definitions of
k-completeness and k-faithfulness to take this into
account.

Let Si, Si′ be two (not necessarily different) strings
from S and assume that they have a common k-
mer Soi [p..p+ k − 1] = So

′

i′ [p
′..p′ + k − 1] (o and o′

indicate the strands, on which the k-mer occurs).
We say that π reflects this common k-mer iff it
is represented by the same path in the graph, i.e.
π(Si)

o[p..p+ k − 1] = π(Si′)
o′ [p′..p′ + k − 1] . We say

that 〈G,π〉 represents S k-completely iff all common
k-mers in S are reflected by π.

We say the pair of π-occurrences �i, j, o�, �i′, j′, o′� of a
vertex v is:

• directly k-extendable iff these occurrences
extend to a common k-mer reflected by π , i.e.
π(Si)

o[j −m..j +m′] = π(Si′)
o′ [j′ −m..j′ +m′] for

m,m′ ≥ 0 satisfying m+m′ ≥ k − 1,
• k-extendable if there is a sequence of occurrences

of v that starts from 〈i, j, o〉 , ends at �i′, j′, o′� and
each two consecutive occurrences in that sequence
are directly k-extendable.

Page 6 of 21Cicherski et al. Algorithms for Molecular Biology (2025) 20:7

We say that 〈G,π〉 represents S k-faithfully if every pair
of occurrences of a vertex is k-extendable.

Theorem 2 Let S = {S1, . . . , Sn} be a set of DNA
sequences. Then the k-complete and k-faithful representa-
tion of S as a singular bidirected variation graph exists
and is unique up to isomorphism.

Proof As in the directed case, the desired representa-
tion is constructed as a quotient of the generic repre-
sentation. The definition of the quotient is slightly more
complicated in the bidirected case, because each node
of the original graph can either retain or reverse its ori-
entation in the resulting graph. In our construction the
choice depends on the strands on which the common
k-mers occur in the S-sequences: nodes corresponding
to two occurrences of a k-mer should have the same ori-
entation when the occurrences lie on the same strand,
and the opposite orientation otherwise (see Figure 2).
This ensures that the labels of oriented nodes match
each other when merging, which means that the quotient
is defined correctly. The scheme of the proof and argu-
ments are analogous to the proof of Theorem 1. �

AlfaPang algorithm
In this section we present AlfaPang – ALignment
Free Algorithm for PANGenome graph building.
The core part of AlfaPang is based on the quotient
construction described in the proofs of Theorems 1
and 2. In subsection "Algorithm overview" we
present the algorithm and in subsection "Compact
graph representation" we describe an efficient
implementation of the data structures it requires.
Subsection "Unbranched paths compression" shows
how the resulting k-complete and k-faithful singular
variation graph is compressed to a non-singular one.
Finally, the computational complexity of AlfaPang is
analyzed in the last subsection.

Algorithm overview
Given a collection of sequences S and a positive natu-
ral number k, we first build its generic representation
G = �V ,E� . Then we build a weighted bipartite graph
with parts V and B, where V = Pos(S) and B is a set of
vertices labeled by canonical k-mers of S , and edges
satisfy the following conditions:

• each edge e is assigned a value from the set
{−k , . . . ,−1, 1, . . . , k} , denoted as C(e). We refer to
the absolute value of C(e) as color.

• C(��i, j�, b�) = c iff

– Si[j − c + 1..j + k − c] = l(b) for c > 0 ,
– Si[j − c − k ..j − c − 1] = l(b)−1 for c < 0.

Therefore, an edge between 〈i, j〉 and b indicates that
the position in the sequence corresponding to 〈i, j〉 can
be extended to a k-mer represented by b, and the value
assigned to the edge indicates its position in that k-mer.
Hence such graph allows us to represent the relation
described in the previous section.

To find all vertices in G that should be merged with a
chosen vertex v, we traverse the bipartite graph starting
from v using a BFS manner, but with the following
constraints:

• If we enter a vertex belonging to V, we can leave it
by any edge.

• If we visit a vertex belonging to B from an edge
with color c, we can leave it only through edges that
share the same color.

All vertices of V visited during one such run establish
one equivalence class of the relation presented in the
theorems. For each such class, we choose a canonical
orientation arbitrarily to be consistent with a canonical
label of the first vertex visited in the run. Therefore,
to find a quotient graph, we start a new run as long
as there are vertices not visited in previous runs. The
simplified (directed graph-based) version of the above
construction is illustrated on Figure 3A-D.

Compact graph representation
We reduce the memory requirements of our algorithm
by representing the redundant information from the
bipartite graph implicitly. First, we store only the edges
with values 1 or −k and calculate the rest on the fly.
This optimization is based on the observation that if
e1 = {�i, j�, b} and C(e1) = 1 , then for 1 < q < k and
e2 = {�i, j − q�, b} , we have C(e2) = 1+ q . Similarly, if
e1 = {�i, j�, b} and C(e1) = −k , then for 1 < q < k and
e2 = {�i, j − q�, b} , we have C(e2) = −k + q . We can then
modify the constraints for graph traversal:

• From a node belonging to an equivalence class,
we can exit by an edge or jump q < k positions
backward in the generic representation and then

Page 7 of 21Cicherski et al. Algorithms for Molecular Biology (2025) 20:7

Fig. 3 AlfaPang algorithm: construction concept and actual data structures. A Input sequences. B Generic variation graph representation. C
Bipartite graph for k = 3 . Colors of edges represent values assigned to them (blue: 1, red: 2, green: 3). Nodes filled with a color other than white
belong to the same equivalence class. Orange nodes are both connected to the 3-mer GAT by blue edges. The first and the second pink nodes are
connected to GAT by red edges, and the first and third pink nodes are connected to ATG by blue edges. The first and the second yellow nodes are
connected to GAT by green edges, and the first and the third are connected to ATG by red edges. Grey nodes are connected to ATG by green edges.
D Variation graph resulting from the quotient algorithm. Different edge colors mark different genomic paths (not multi-edges) and are consistent
with edge colors in B. Node colors are consistent with equivalence classes shown in C. E Data structures used in the algorithm: s – concatenation
of the input sequences, K – vector storing ids of k-mers starting at given positions in s, R – inverted index, enabling locating of k-mer occurrences
in s, F – output vector, assigning positions in s to the vertices of the output graph. To find a pink equivalence class, start from symbol “A” at position
3 (note that we use 1-based indexing) – we assign F[3] a new value (2 in this example). Since K [3] = 2 , we look into the vector R[2]. The first entry
in this vector is 3, and we used the first color. Therefore we need to visit all other positions pointed to by R[2], so we assign F[15] = 2 and push it
into the queue. Next, we backtrack one position to K[2]. Since K [2] = 1 , we look into R[1]. 2 is canonical vertex position for this (k-mer, color) pair,
so we look at the other elements of R[1]. R[1] points to position 9, so we move one position forward and assign F[10] = 2 . After backtracking two
steps from the starting position, we find K [1] = 0 , indicating that this “A” is not the third symbol in any k-mer. We repeat the procedure from found
positions 10 and 15, identifying no additional positions

Page 8 of 21Cicherski et al. Algorithms for Molecular Biology (2025) 20:7

traverse through the edge incident with that vertex
(this vertex is not marked as visited since it does not
need to belong to the same class).

• From vertices belonging to B, we can exit by both
types of edges (those assigned to 1 and those assigned
to −k).

• If we exit from a node belonging to B by an edge
with the same sign as the edge we used to enter that
vertex, we need to jump q vertices forward in the
generic representation to find a vertex belonging to
the equivalence class.

• If we exit from a vertex belonging to B by an edge
with the opposite sign to the one we used to enter
that vertex, we need to jump k − 1− q vertices for-
ward to find a vertex belonging to the equivalence
class.

To implement the algorithm, we do not build such
a graph explicitly. Instead, we use the following data
structures (see example on Figure 3E):

• A concatenation of all sequences from the set S as a
single string s, with an additional special character $
at the ends of original sequences.

• A vector K of the same size as s, that stores the ID
(positive integer) assigned to the k-mer b at posi-
tion i if s[i..i + k − 1] = b , or the negative of that
value if S[i..i + k − 1] = b−1 . If the k-mer starting
at position i is not fully included in a sequence from
S, then K [i] = 0 . IDs of all canonical k-mers of S are
obtained by enumeration with positive numbers,
which can be done efficiently using a hash table. Our
implementation uses a hash table from an external
library unordered_dense [19] and the hashing
algorithm ntHash [20], designed specifically for
DNA sequences.

• A vector R that stores M vectors, where M is the
number of distinct canonical k-mers in S . This vector
is used as an inverted index, enabling fast locating of
k-mer occurrences in s. If for some i, j > 0 we have
K [i] = ±j , then we push i into the vector R[j].

• A vector F of the same size as s, initially filled with
zeros. This vector represents the assignment of posi-
tions in s to the vertices of the output graph. The
absolute value of a number in this vector identifies a
vertex ID, and its sign determines the vertex orienta-
tion.

• Moreover, we retain the order in which the sequences
of S were concatenated, allowing us to track different
genomes and reconstruct genomic paths from F.

In such framework we can identify vertices belonging to
V with indices of K and vertices belonging to B with indi-
ces of R.

To traverse the graph under the assumed constraints,
we should store in a queue the visited V-nodes and pairs
〈B-node, edge color〉 . Due to the number of possible pairs,
this can lead to excessive memory complexity. To avoid
this, for each pair 〈b, c〉 we define its canonical V-node
– the node adjacent to b via an edge of color c with the
lowest K-index. We update the graph traversal condition
as follows: when traversing an edge from a V-node to a
B-node, we check whether the V-node is canonical for
the B-node and the edge color. If it is, we add to queue all
other vertices adjacent via edges of the same color from
the B-node. Otherwise, we enqueue only the canonical
V-node. In both cases, the nodes are added to the queue
unless they have already been visited, which is checked in
the vector F.

The pseudocode of the algorithm is presented in
Algorithm 1.

Page 9 of 21Cicherski et al. Algorithms for Molecular Biology (2025) 20:7

Algorithm 1 Quotient Algorithm

Page 10 of 21Cicherski et al. Algorithms for Molecular Biology (2025) 20:7

Unbranched paths compression
The graph resulting from the described algorithm is sin-
gular. As a final step in our tool, we compress unbranched
paths into vertices to reduce its size. Since it is k-com-
plete, we know that, (similarly to the vertices of the de
Bruijn graph) each vertex has no more than |�| vertices
connected to it on each side, and each of these has a dif-
ferent symbol as a label. Therefore, based on ideas pro-
posed in [21], we implemented a similar algorithm for
our variation graphs. For each vertex, we can assign a
state that encodes whether the vertex is inside such a path
or is a branching node. Initially, vertices are assigned to
one of the (� + 1)2 states representing symbols on their
sides (+1 for a special character representing the end of
a sequence), or to one of three special states represent-
ing branching vertices - two different states for situations
when a vertex has only one edge on one side and more
than one edge on the other, and a state for vertices with
more than one edge on each side. To recognize branching
vertices, we build a vector D of length equal to the num-
ber of vertices in the singular graph, filled with 0. Then
we traverse vector F and update D as follows:

• If D[abs(F [i])] = 0 , we assign it a state encoding
labels of the previous and next vertex (s[i − 1] and
s[i + 1]).

• Otherwise, we check if labels of vertices on both
sides of a vertex are consistent with the state assigned
to it. If so, we do nothing. Otherwise, we change the
state to one of the special states (depending on which
side of the vertex differs).

• If a vertex is assigned to a special state, we need to
check only one of the sides or none of them.

• Additionally, we check if −F [i − 1] = F [i] or
F [i] = −F [i + 1] . If so, we also need to change the
state to one of the specials.

Next, we simplify states by changing all non-special states
to a single value. Then, we traverse vector F once again to

merge maximal unbranching paths into vertices, identi-
fied by combinations of branching nodes at the ends of
the paths.

Algorithm complexity
Below we analyze the complexity of the subsequent steps
of AlfaPang. In all the following lemmas N denotes the
total size of the collection of genomic sequences S , k is
the chosen k-mer size and M is the number of distinct
k-mers in S . We start by examining the construction of
the input structures for the Quotient Algorithm: s, K, and
R (see Figure 3).

Lemma 2 All input structures for the Quotient Algo-
rithm can be build from S in O(kN) time and O(N) space.

Proof Each data structure used by the Quotient Algo-
rithm has a total size of O(N).

To construct the vector K, we iterate over the string s
exactly once, using an additional hash table to assign
identifiers to k-mers. Since we can use pointers to the
first occurrence of each k-mer in s as keys (instead of
storing the k-mers explicitly), size of the table is O(M) .
However, key comparisons require O(k) time, so the
overall time complexity for constructing K is O(kN).

To construct the reverse index R, we initialize a vec-
tor of length M, where each entry is an empty vector. We
then traverse K once, filling values in R, which requires
O(N) operations. �

In the next lemma we investigate the complexity of the
Quotient Algorithm.

Lemma 3 The Quotient Algorithm runs in O(kN) time
and uses O(N) space.

Table 1 Graph properties for selected values of k corresponding to specific rare k-mer fractions

rare k-mers fraction 0.01 0.02 0.03 0.05 0.10

E. coli 100

 k 15 47 83 165 379

 Fraction of sequence in private nodes 0.003 0.009 0.012 0.020 0.040

 Max node coverage 244604 768 685 574 470

S. cerevisiae 64

 k 11 27 45 77 163

 Fraction of sequence in private nodes 0.000 0.003 0.005 0.009 0.020

 Max node coverage 2.7× 10
8 10894 6839 5116 3498

Page 11 of 21Cicherski et al. Algorithms for Molecular Biology (2025) 20:7

Proof Since the Quotient Algorithm consists of travers-
ing all edges of a bipartite graph – essentially performing
a breadth-first search with additional constraints on the
edges used – its time complexity is O(kN).

The only additional structures used during execution
are the output vector F, which is of size the same length
as s, and a FIFO queue storing nodes to be processed.
The modified procedure of passing through the B-nodes
enables us to store only V-nodes, so the total size of the
queue is bounded by N. �

Finally, we examine the complexity of the output graph
compression.

Lemma 4 The unbranched paths are compressed in
O(N) time and space.

Proof For unbranched path compression, we construct
a state vector D with the number of elements equal to
the number of vertices in the singular graph, which is
bounded by N. We then traverse the vector F, obtained
from the Quotient Algorithm, once to assign values in D.
Next, we traverse D again to change all non-special val-
ues to zero.

Branching vertices are identified in F as those assigned
nonzero values in D. Each compressed vertex is uniquely
defined by its endpoints, so we initialize a hash table
that assigns consecutive integers to such pairs. We also
initialize vectors for paths in the compressed graph and a
hash table linking each compressed vertex identifier to its
label, derived from the indices of its first occurrence.

Finally, a single traversal of F populates these
structures, all of which have size O(N) and require O(N)
time. �

The following theorem summarizes the above results.

Theorem 3 The AlfaPang algorithm runs in O(kN) time
and uses O(N) space.

Proof Follows directly from Lemmas 2-4. �

Design of experiments
Datasets and k-mer length selection
We tested our tool on two series of genome collections:
the Escherichia coli series containing 50, 100, 200, and
400 Escherichia coli haplotypes, obtained from [13],
which we further extended by datasets of 800, 1600
and 3412 sequences downloaded from GenBank (with
total lengths ranging from 250Mbp to 17.3Gbp; specific
queries are available in our GitHub repository), and the
Saccharomyces cerevisiae series containing 16, 32, 64, and
118 haplotypes (total length from 195Mbp to 1.44Gbp),
obtained from [22].

Before conducting the analysis, we assessed the
complexity and repetitiveness of the sequences in the
datasets to guide the choice of the parameter k for
AlfaPang. Too small k may lead to merging non-
homologous fragments, while too large k may hinder the
detection of sequence similarity.

To explore this, we selected one dataset with an
intermediate number of genomes from each series (E. coli
100 and S. cerevisiae 64) and calculated the fraction of
rare k-mers, i.e. occurring only once in the entire dataset.
We used KMC3 [23] to compute this fraction across
a selected range of k. Since the fraction of rare k-mers
increases approximately linearly with k, we estimated it
at a few key points. For both datasets, we examined graph
structures for values of k yielding rare k-mer fractions of
0.1, 0.2, 0.3, 0.5, and 0.10. For each case, we measured
the maximum node coverage (the number of occurrences
of the node in all genomic paths) and the fraction of the
pangenome located in private nodes (having coverage
equal to 1). The results are summarized in Table 1.

Based on these observations, we decided to use a k
yielding 5% rare k-mers for all AlfaPang tests. We
assumed that this choice would maintain the fraction of
private nodes at approximately 1-2% while ensuring a
reasonable maximum node coverage. This assumption
was confirmed in tests on all graphs. The selected values
for each dataset are summarized in Table 2.

Although the above approach provides practical advice
on how to choose k, the final decision is up to the user.
It may depend not only on the properties of the dataset
being analyzed (number of genomes, their length,
repetitiveness, etc.), but also on the level of separation of
input genomes required in the subsequent analysis.

Table 2 Values of k chosen for different datasets

 Sequences E. coli S. cerevisiae

50 100 200 400 800 1600 3412 16 32 64 118

k 47 165 217 267 371 533 745 47 47 77 117

Page 12 of 21Cicherski et al. Algorithms for Molecular Biology (2025) 20:7

Compared algorithms
In the pggb pipeline, the preliminary graph constructed
in its two first steps (wfmash+seqwish) is further
locally refined in the third step. Similarly to seqwish,
AlfaPang may produce pangenome graphs with
complex local structures due to the close relationship to
de Bruijn graphs. We therefore evaluate AlfaPang on
two levels.

On the first level, we compared the computational effi-
ciency of AlfaPang and the first two steps of the pggb
workflow, i.e. wfmash+seqwish. Because we were
unable to complete the wfmash+seqwish calcula-
tions even for the 400 E. coli sequences (after 6 days of
computations on a server with 512 GB RAM, the pro-
cess crashed due to excessive memory consumption),
we repeated the calculations on the E. coli series with
the Erdős-Rényi random graph sparsification option

Fig. 4 Plots of performance of AlfaPang vs wfmash+seqwish. All wfmash+seqwish tests were performed using 20 CPU threads.
For graph construction with splitting by chromosome 16 AlfaPang processes were running in parallel

Page 13 of 21Cicherski et al. Algorithms for Molecular Biology (2025) 20:7

activated. With that approach, we computed variation
graphs for 400 and 800 sequences, but 1600 still required
too much memory.

In order to prepare the second-level comparison, we
modified the pggb pipeline by replacing the first two
steps with AlfaPang. Thus, the new workflow, called
AlfaPang+, consists of AlfaPang followed by the
graph refinement tools smoothxg and gfaffix. For all S.

cerevisiae datasets and datasets of 50, 100, 200, and 400
E. coli sequences, we compared AlfaPang+ with pggb
and Minigraph-Cactus in terms of computational
efficiency and output graph properties.

In the case of S. cerevisiae datasets we applied all tools
in two ways: to the entire genomes and to each of 16 yeast
chromosomes separately (after removing from genomes
aneuploid sequences). Both approaches are practiced in

Fig. 5 Performance of AlfaPang+ vs pggb vs Minigraph-Cactus. All pggb and Minigraph-Cactus tests, as well as smoothxg
in AlfaPang+ were performed using 20 CPU threads. For graph construction with splitting by chromosome 16 AlfaPang processes were
running in parallel

Page 14 of 21Cicherski et al. Algorithms for Molecular Biology (2025) 20:7

pangenome analysis. Moreover, Minigraph-Cactus
remaps all genomic sequences onto the initial graph and
assigns each sequence to one of the reference chromo-
somes. Sequences that cannot be confidently assigned
to any chromosome are left out of further analysis. Thus,
subsequent steps may be performed independently and
in parallel for each reference chromosome, resulting in
significant computational speedup for multichromo-
somal genomes. This comes at the cost of leaving inter-
chromosomal homologies not included in the graph. Our
experiments allow us to assess the importance of this fac-
tor for the results of comparing the performance of the
three tools.

Results
Performance comparison
The performance of each tool was evaluated in terms
of running time and peak memory consumption. Run-
ning time was measured as wall clock time, and peak
memory as maximum resident set size using the |time|
command for all tests, except for parallel AlfaPang
runs on S. cerevisiae chromosomes, where |cgmem-
time| was used for peak memory measurement. All
benchmarks were performed on a Supermicro X10DRi
server with 512GB RAM and two 14-cores CPUs Intel
Xeon E5-2690V4, using single thread for AlfaPang
applied to entire genomes, 16 threads for AlfaPang
applied to each chromosome separately, and 20 threads
for all other tools.

Figure 4 presents the comparison of AlfaPang
and wfmash+seqwish, without the refine-
ment step of pggb. For construction from whole
genomes AlfaPang consumes less memory
than wfmash+seqwish on all datasets and is

substantially faster than it on all the datasets except
the smallest S. cerevisiae dataset. Moreover, unlike
wfmash+seqwish, AlfaPang scales almost linearly
with respect to the number of genomes. The devia-
tion from perfect linearity is due to the dependence of
the time complexity on the parameter k. This is most
visible in the E. coli dataset series, where the k values
chosen for the largest and smallest datasets differ by
more than 15 times. Additionally, AlfaPang has a
memory usage increase when scaling from 400 to 800
E. coli genomes due to the need to switch from 4-byte
to 8-byte integers, but linear scaling resumes afterward.
Despite the above deviations from linearity, the dif-
ference between AlfaPang and wfmash+seqwish
grows with the dataset size. For example, on 100 E. coli

Table 3 Number of nodes (in 106)

* Graphs constructed separately for each chromosome

Dataset AlfaPang+ pggb Minigraph-
cactus

S. cerevisiae 16 0.92 0.89 1.08

S. cerevisiae 32 1.78 1.80 2.22

S. cerevisiae 64 2.75 2.85 3.86

S. cerevisiae 118 3.61 3.87 5.44

S. cerevisiae 16* 1.00 0.90 1.08

S. cerevisiae 32* 1.91 1.79 2.21

S. cerevisiae 64* 2.78 2.83 3.78

S. cerevisiae 118* 3.65 3.85 5.22

E. coli 50 1.74 1.62 1.93

E. coli 100 1.76 1.79 2.67

E. coli 200 2.49 2.61 4.13

E. coli 400 3.27 3.25 5.80

Table 4 Number of edges (in 106)

* Graphs constructed separately for each chromosome

Dataset AlfaPang+ pggb Minigraph-
Cactus

S. cerevisiae 16 1.27 1.22 1.48

S. cerevisiae 32 2.47 2.48 3.05

S. cerevisiae 64 3.87 3.98 5.37

S. cerevisiae 118 5.11 5.49 7.68

S. cerevisiae 16* 1.37 1.23 1.47

S. cerevisiae 32* 2.63 2.46 3.03

S. cerevisiae 64* 3.85 3.93 5.26

S. cerevisiae 118* 5.08 5.43 7.37

E. coli 50 2.37 2.20 2.64

E. coli 100 2.40 2.45 3.65

E. coli 200 3.42 3.60 5.72

E. coli 400 4.52 4.53 8.16

Table 5 Total number of base pairs in nodes (in 106 bp)

* Graphs constructed separately for each chromosome

Dataset AlfaPang+ pggb Minigraph-
Cactus

Input size

S. cerevisiae 16 12.61 17.03 18.59 192.04

S. cerevisiae 32 13.64 20.73 26.54 384.52

S. cerevisiae 64 16.01 26.52 38.58 769.61

S. cerevisiae 118 19.37 29.56 53.67 1416.23

S. cerevisiae 16* 14.10 16.78 17.95 189.02

S. cerevisiae 32* 15.93 20.68 24.71 374.53

S. cerevisiae 64* 20.33 26.25 34.12 746.54

S. cerevisiae 118* 26.28 30.89 47.69 1376.10

E. coli 50 14.02 19.01 28.89 249.52

E. coli 100 17.92 20.20 43.61 539.83

E. coli 200 28.59 27.37 67.28 1050.67

E. coli 400 43.37 68.21 90.75 2027.21

Page 15 of 21Cicherski et al. Algorithms for Molecular Biology (2025) 20:7

sequences, AlfaPang is more than 20 times faster
than wfmash+seqwish (and 15 times faster than
wfmash+seqwish with activated sparsification) and
consumes 5 times less memory, while on E. coli 200,
the largest dataset where a full wfmash+seqwish run
was successfully completed, AlfaPang is more than
30 times faster and consumes 13 times less memory.

It is worth pointing out that AlfaPang achieved these
results using only one thread, while wfmash+seqwish
was tested on 20 CPU threads. For the construction of
a separate graph for each S. cerevisiae chromosome, we
run 16 AlfaPang processes in parallel. This allowed us
to outperform the wfmash+seqwish pipeline on all
datasets, although at the cost of higher memory usage,
as wfmash+seqwish processed each chromosome
sequentially using 20 CPUs, while AlfaPang+ pro-
cessed all 16 chromosomes simultaneously.

Figure 5 summarizes the computational efficiency of
full pangenome building pipelines. For the series of E.
coli datasets, AlfaPang+ proved to be the most efficient
tool and shows almost linear scalability with respect to
the size of the data.

On the dataset consisting of 400 E. coli sequences,
AlfaPang+ is more than 3 times as fast as pggb
(with sparsification enabled) and 4 times faster than
Minigraph-Cactus, while using 4-5 times less
memory than other tools.

For the series of S. cerevisiae datasets, the results are
slightly more ambiguous. As the number of S. cerevi-
siae haplotypes goes from 16 to 118, the memory usage
of algorithms applied to whole genomes increases
by 12.5 times for pggb, 3.4 times for Minigraph-
Cactus, and 2.4 times for AlfaPang+, which again

demonstrates AlfaPang+ scalability in this regard.
The runtime for both pggb and AlfaPang+ is mostly
dependent on smoothxg, which runs faster in pggb.
However, as the number of haplotypes increases,
AlfaPang+ gains an advantage and becomes twice
as fast for the largest dataset. Minigraph-Cactus
proved to be the fastest tool in this case. For construc-
tion from whole genomes it is 3 to 13 times faster than
pggb, depending on the number of haplotypes, and
6-8 times faster than AlfaPang+. This comes at the
cost of loosing interchromosomal structural variants
in the resulting variation graph. As opposite to pggb
and AlfaPang+, for all yeast datasets Minigraph-
Cactus constructed graphs with 16 connected com-
ponents, corresponding to 16 chromosomes of S.
cerevisiae.

When applying the tools separately to each
chromosome, Minigraph-Cactus is still the fastest,
but the difference in running time between AlfaPang+
and Minigraph-Cactus is visibly reduced (pggb
takes almost the same amount of time as without
splitting). Furthermore, both pggb and AlfaPang+
outperforms Minigraph-Cactus in terms of memory
usage.

Graphs topology
To measure the complexity of the produced pange-
nome graphs, we compared such graph characteristics
as the number of nodes and edges. Results are displayed
in Tables 3 and 4. We also compared the total length
of nodes labels to check the ability of all the tools to

Table 6 Number of aligned positions pairs (in 109)

* Graphs constructed separately for each chromosome. A pair of positions from
input sequences is aligned in a graph if they are both represented by the same
position in a label of the same vertex

Dataset AlfaPang+ pggb Minigraph-Cactus

S. cerevisiae 16 2.20 1.52 1.26

S. cerevisiae 32 8.47 6.33 5.14

S. cerevisiae 64 33.81 25.81 21.00

S. cerevisiae 118 108.69 90.95 71.50

S. cerevisiae 16* 1.45 1.40 1.25

S. cerevisiae 32* 5.79 5.65 4.99

S. cerevisiae 64* 22.64 22.32 20.06

S. cerevisiae 118* 76.61 76.67 68.94

E. coli 50 5.55 5.08 4.72

E. coli 100 26.09 25.31 19.04

E. coli 200 88.94 92.37 73.70

E. coli 400 354.57 343.97 298.79

Table 7 The values of the Jaccard index between sets of aligned
pairs

* Graphs constructed separately for each chromosome

Dataset pggb vs
AlfaPang+

Minigraph-Cactus
vs AlfaPang+

Minigraph-
Cactus vs
pggb

S. cerevisiae 16 68.3 56.8 81.6

S. cerevisiae 32 72.9 59.9 80.0

S. cerevisiae 64 72.9 60.9 79.9

S. cerevisiae 118 76.5 64.4 77.2

S. cerevisiae 16* 95.3 85.4 88.4

S. cerevisiae 32* 95.8 85.1 87.2

S. cerevisiae 64* 95.1 86.6 88.4

S. cerevisiae 118* 94.6 87.1 88.4

E. coli 50 88.5 82.7 91.4

E. coli 100 84.3 69.8 74.1

E. coli 200 83.0 73.7 78.2

E. coli 400 77.4 70.5 84.5

Page 16 of 21Cicherski et al. Algorithms for Molecular Biology (2025) 20:7

compress input sequences (see Table 5). In all the follow-
ing tables, we refer to the graphs produced by the pggb
pipeline without sparsification, except for the graph of
the largest E. coli dataset, for which sparsification was
activated.

For E. coli and S. cerevisiae datasets constructed for
entire genomes, the number of nodes in graphs from
AlfaPang+ and pggb differs by at most 7%. For
graphs constructed separately for each chromosome,
the differences are up to 10%. Minigraph-Cactus
produces graphs with a noticeably larger number of
nodes and edges. On S. cerevisiae datasets, Minigraph-
Cactus graphs contain 17-50% and 8-43% more
nodes than AlfaPang+ for graphs without and with
chromosome splitting, respectively (20-40% more than
pggb). On E. coli data, Minigraph-Cactus graphs
have 10-77% more nodes than AlfaPang+ (19-78%
more than pggb).

For all graphs, the number of edges is 35-45% larger
than the number of nodes. Moreover, going from 16
to 118 S. cerevisiae haplotypes increases the number
of nodes 4-5 times, while going from 50 to 400 E. coli
sequences, the number of nodes increases by at most 3
times across all tools, indicating that for all tools graph

size grows sublinearly with respect to the number of
input sequences. Similar conclusion can be drawn from

Fig. 6 Venn diagrams for sets of aligned pairs in graphs build
with pggb, Minigraph-Cactus and AlfaPang+ for E. coli
datasets

Fig. 7 Venn diagrams for sets of aligned pairs in graphs build with pggb, Minigraph-Cactus and AlfaPang+ for whole S. cerevisiae
datasets. Subsets are colored as in Figure 6

Fig. 8 Venn diagrams for sets of aligned pairs in graphs build with pggb, Minigraph-Cactus and AlfaPang+ for S. cerevisiae datasets split
by chromosomes. Subsets are colored as in Figure 6

Page 17 of 21Cicherski et al. Algorithms for Molecular Biology (2025) 20:7

Table 5. When the number of S. cerevisiae haplotypes
increases from 16 to 118, the total size of node sequences
increases by 1.5, 1.7, and 2.9 times for AlfaPang+,
pggb, and Minigraph-Cactus, respectively. For
E. coli data, increasing the number of sequences from
50 to 400 results in the total size of node sequences
increasing by around 3 times for both AlfaPang+ and
Minigraph-Cactus. For pggb, the graph constructed
from a dataset of 400 sequences deviates from this trend:
increasing the number of sequences from 50 to 200
increases the total length of node labels by 1.4 times,
while increasing from 200 to 400 sequences increases
this value by 2.5 times. This deviation is suspected to
result from the sparsification used for that dataset.
For all datasets, AlfaPang+ shows a higher rate of
compression than pggb, which in turn has a higher rate
of compression than Minigraph-Cactus.

Graphs similarity
Below we analyze the similarity between sequence
alignments induced by the graphs constructed with
different tools. To define the measure of this similarity,
we introduce the following equivalence relation: a
pair of positions in two (not necessary different)

sequences is aligned in graph G if both are represented
by the same position in a label of the same vertex. In
the case of singular graphs this could be expressed
Si[p] ≡G Sj[p

′] ⇐⇒ π(Si)[p] = π(Sj)[p
′] . We define

µ(G) as the set of all aligned pairs in G. The similarity
between two variation graphs G1,G2 is measured using
Jaccard index between µ(G1) and µ(G2).

Table 6 summarizes the number of aligned pairs
in all graphs. With some exceptions, AlfaPang+
found more pairs than pggb. For whole-genome S.
cerevisiae series, pggb identified 69-84% as many
pairs as AlfaPang+. For the split-chromosome series,
these values are much higher and pggb found 96-99%
as many pairs as AlfaPang+, except for the largest
dataset, in which case pggb identified more pairs
than AlfaPang+. For E. coli datasets, pggb found
91-97% as many pairs as AlfaPang+ (except for the
dataset with 200 sequences, in which case pggb found
approximately 4% more pairs than AlfaPang+), while
Minigraph-Cactus found 73-85%.

As expected, the number of aligned pairs scales quad-
ratically with the number of sequences.

The Jaccard index between sets of aligned pairs is
presented in Table 7. On the S. cerevisiae datasets

Fig. 9 Distribution of aligned pair classes in graphs constructed with AlfaPang+, pggb, or Minigraph-Cactus for S. cerevisiae datasets
(whole genomes). The notion of an aligned pair is defined in Section "Graphs similarity"

Page 18 of 21Cicherski et al. Algorithms for Molecular Biology (2025) 20:7

constructed for whole genomes, the Jaccard index
between AlfaPang+ and pggb increases from 68%
to 77% as the number of haplotypes grows, while for
the pair AlfaPang+ and Minigraph-Cactus an
increase from 56% to 64% is observed. The Jaccard index
for pggb and Minigraph-Cactus ranges between
82% and 87% on S. cerevisiae datasets, with a decreasing
tendency as the number of haplotypes grows. For
graphs constructed separately for each chromosome,
these values are noticeably higher: approximately 95%
for AlfaPang+ and pggb, 85− 87% for AlfaPang+
and Minigraph-Cactus, and 87− 88% for pggb and
Minigraph-Cactus.

For E. coli datasets, the Jaccard index between
AlfaPang+ and pggb and between AlfaPang+
and Minigraph-Cactus decreases as the number
of sequences increases. For the first mentioned pair,
the index drops from 89% to 77% , and for the second
one from 83% to 70% . In contrast, the Jaccard index
between pggb and Minigraph-Cactus varies
between 74 and 91% , showing no clear dependencies on
the number of sequences.

The values of the Jaccard index are very close to the
ratios of the numbers of aligned pairs between the

tools. A more detailed analysis of these relationships
is presented in Figures 6, 7 and 8. It shows that, in E.
coli datasets, AlfaPang+ is able to identify 88–99%
of the pairs found by both pggb and Minigraph-
Cactus. The proportion of AlfaPang+ pairs
found by pggb varies between 86% and 93% with no
clear dependencies on the number of sequences (for
Minigraph-Cactus, it varies between 71% and 84%).

For S. cerevisiae datasets without splitting,
AlfaPang+ is able to find 95–99% of the pairs identified
by pggb and 98–99% of those found by Minigraph-
Cactus. In comparison, pggb and Minigraph-
Cactus find 68–80% and 57–65% of the pairs identified
by AlfaPang+, respectively. Similarity is much higher
when the graphs are constructed separately for each
chromosome. Namely, AlfaPang+ identifies over 97%
and 98% of pggb and Minigraph-Cactus pairs,
respectively, while pggb finds over 95% of AlfaPang+
pairs and Minigraph-Cactus finds 85–88% of
AlfaPang+ pairs. For all datasets, the set of aligned
pairs found by Minigraph-Cactus is almost entirely
included in set found by pggb.

Fig. 10 Distribution of aligned pair classes in graphs constructed with AlfaPang+, pggb, or Minigraph-Cactus for S. cerevisiae datasets
(spliting). The notion of an aligned pair is defined in Section "Graphs similarity"

Page 19 of 21Cicherski et al. Algorithms for Molecular Biology (2025) 20:7

Thus, we conclude that the differences between pair
sets are mainly due to the differences in sensitivity to
sequence similarity between tools.

Aligned pairs annotations
Below we investigate whether differences among pange-
nome graphs produced by various tools occur in func-
tionally important regions. To do this, we first extract
aligned pairs from each graph and randomly sample
1,000,000 pairs per graph. Next, we classify each genomic
position based on overlapping features using GenBank
annotations, considering positions without any feature as
intergenic. Finally, we analyze the distribution of annota-
tion pairs. Since classifications other than gene, pseudo-
gene (only in E. coli), or intergenic are exceedingly rare,
our analysis focuses exclusively on these categories.

In Figure 9 we show the annotation distributions on S.
cerevisiae data without splitting. Approximately 70-71%
of AlfaPang+ pairs were located in genes, 22–24% were
classified as intergenic-intergenic, and 6–7% as gene-
intergenic. For pggb, these values are 67–69%, 27–29%,
and 3–4% and for Minigraph-Cactus it was 72%, 25%
and 3% respectively.

Annotation distributions for S. cerevisiae data divided
into chromosomes are presented in Figure 10. These val-
ues are very close to each other for both AlfaPang+
and pggb, with 66–68% gene-gene pairs, 28–30% inter-
genic-intergenic pairs, and around 3% gene-intergenic
pairs. Minigraph-Cactus shows a slightly higher pro-
portion of gene-gene pairs (68–72%) and a lower propor-
tion of intergenic-intergenic pairs (23–24%).

Figure 11 presents annotation distributions for E.
coli genomes. For datasets with 50 and 100 and 200
sequences, the proportion of gene-gene pairs was simi-
lar across all tools (85%, 86%, and 86% for 50 sequences,
81%, 81%, and 83% for 100 sequences and 84%, 83%
and 85% for 200 sequences for AlfaPang+, pggb,
and Minigraph-Cactus, respectively). However, for
AlfaPang+, the proportion of gene-intergenic pairs
was slightly higher, at 0.7% compared to 0.3% in both
pggb and Minigraph-Cactus for 50 sequences, and
0.7% compared to 0.5% and 0.4% in pggb and Mini-
graph-Cactus for 100 sequences and 1.3% compared
to 1.2% and 1% for 200 sequences.

For 400 sequences, the proportion of gene-gene pairs
in AlfaPang+ graph remains similar to the other
tools - 82% compared to 82% in pggb and 85% in

Fig. 11 Distribution of aligned pair classes in graphs constructed with AlfaPang+, pggb, or Minigraph-Cactus for E. coli datasets. The
notion of an aligned pair is defined in Section "Graphs similarity"

Page 20 of 21Cicherski et al. Algorithms for Molecular Biology (2025) 20:7

Minigraph-Cactus. On the other hand, the propor-
tion of gene-intergenic pairs was significantly higher in
AlfaPang+, at 3.7%, compared to 1.5% in pggb and 1%
Minigraph-Cactus.

Conclusion
We presented AlfaPang – a novel algorithm for
building pangenome graphs. Unlike alternative
algorithms, AlfaPang constructs graphs with their
structure strictly defined by the k-completeness and
k-faithfulness properties introduced in [17]. The runtime
and memory usage of AlfaPang scales linearly with
the number of genomes, allowing it to process much
larger sets of genomes than state-of-the-art alternatives
such as wfmash+seqwish. Replacing the latter with
AlfaPang in the pggb pipeline results in output graphs
with similar properties in terms of graph structure,
but with a larger number of aligned genome residues.
Although the decision whether or not given fragments
of genomic sequences should be aligned in a pangenome
graph is somewhat arbitrary, this fact reflects the high
sensitivity of AlfaPang to sequence similarity.

Another state-of-the-art pangenome graph builder
tool, Minigraph-Cactus, substantially differs from
both pggb and AlfaPang in the assumptions on how
the pangenome graph should look like. First, it aligns
neither paralogs (i.e. similar sequence fragments in
the same genome) nor homologuous sequences that
in different genomes occur on different chromosomes.
Second, it requires the user to choose a reference
genome. This choice highly influences the output
graph, as it may ignore similarity between fragments
of non-reference genomes that have no homologs
in the reference. Both design assumptions make it
possible to reduce the number of sequence alignments
necessary to build the graph, which consequently
allows Minigraph-Cactus to provide much better
computational efficiency than pggb. However, the
alignment-free approach of AlfaPang allows even
greater reduction, especially in terms of required
memory, and this difference increases with the size of
the dataset.

Current population sequencing projects aim to
assemble the genomic sequences of thousands of
individuals. The success of pangenome-based approaches
in analyzing the resulting genome collections depends
largely on the existence of efficient methods for
building pangenomes. Because the total size of such
data is in the terabytes, memory efficiency may be of
paramount importance here, and it may turn out that the
computational advantages of AlfaPang will enable new
insights and discoveries that are not possible using other
tools.

The close relationship between the variation graphs
constructed by AlfaPang and the de Bruijn graphs
provides a bridge between both pangenome models. On
the other hand, this is a limitation of the AlfaPang
approach, as the structure of resulting graphs resembles
the structure of de Bruijn graphs with their drawbacks,
such as excessive entanglement in areas representing
low-complexity sequence regions. Such entanglement
is removed in the refinement step of the AlfaPang+
pipeline by the smoothxg tool. However, due to
high AlfaPang efficiency, this step dominates the
whole AlfaPang+ computation time (∼ 95% on all
datasets). Perhaps more precise tuning of the smoothxg
parameters would allow to reduce this time without
affecting the output. More substantial reduction would
probably require incorporation of the refinement
procedure in the graph building process of AlfaPang.

Acknowledgements
This work was supported by the National Science Centre, Poland, under grant
number 2022/47/B/ST6/03154.

Author contributions
A.C. designed and implemented AlfaPang, contributed to its evaluation
and to writing the manuscript. A.L. contributed to AlfaPang evaluation and
to writing the manuscript. N.D. designed the study, supervised the research,
contributed to developing the algorithm and writing the manuscript. All
authors read and approved the final manuscript.

Data availability
C++ implementation of AlfaPang can be found at: https:// github. com/
AdamC icher ski/ AlfaP ang.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 31 October 2024 Accepted: 9 April 2025

References
 1. Paten B, Novak AM, Eizenga JM, Garrison E. Genome graphs and the

evolution of genome inference. Genom Res. 2017;27(5):665–76. https://
doi. org/ 10. 1101/ gr. 214155. 116.

 2. Consortium CPG. Computational pan-genomics: status, promises and
challenges. Brief Bioinform. 2018;19(1):118–35. https:// doi. org/ 10. 1093/
bib/ bbw089.

 3. Eizenga JM, Novak AM, Sibbesen JA, Heumos S, Ghaffaari A, Hickey G,
et al. Pangenome graphs. Annu Rev Genom Hum Genet. 2020;21:139–62.
https:// doi. org/ 10. 1146/ annur ev- genom- 120219- 080406.

 4. Baaijens JA, Bonizzoni P, Boucher C, Vedova GD, Pirola Y, Rizzi R, et al.
Computational graph pangenomics: a tutorial on data structures and
their applications. Nat Comput. 2022;21(1):81–108. https:// doi. org/ 10.
1007/ s11047- 022- 09882-6.

 5. Garg S, Balboa R, Kuja J. Chromosome-scale haplotype-resolved
pangenomics. Trend Gen. 2022;38(11):1103–7. https:// doi. org/ 10. 1016/j.
tig. 2022. 06. 011.

 6. Baaijens JA, Van der Roest B, Köster J, Stougie L, Schönhuth A. Full-
length de novo viral quasispecies assembly through variation graph

https://github.com/AdamCicherski/AlfaPang
https://github.com/AdamCicherski/AlfaPang
https://doi.org/10.1101/gr.214155.116
https://doi.org/10.1101/gr.214155.116
https://doi.org/10.1093/bib/bbw089
https://doi.org/10.1093/bib/bbw089
https://doi.org/10.1146/annurev-genom-120219-080406
https://doi.org/10.1007/s11047-022-09882-6
https://doi.org/10.1007/s11047-022-09882-6
https://doi.org/10.1016/j.tig.2022.06.011
https://doi.org/10.1016/j.tig.2022.06.011

Page 21 of 21Cicherski et al. Algorithms for Molecular Biology (2025) 20:7

construction. Bioinformatics. 2019;35(24):5086–94. https:// doi. org/ 10.
1093/ bioin forma tics/ btz443.

 7. Guarracino A, Heumos S, Nahnsen S, Prins P, Garrison E. ODGI: under-
standing pangenome graphs. Bioinformatics. 2022;38(13):3319–26.
https:// doi. org/ 10. 1093/ bioin forma tics/ btac3 08.

 8. Garrison E, Sirén J, Novak AM, Hickey G, Eizenga JM, Dawson ET, et al.
Variation graph toolkit improves read mapping by representing genetic
variation in the reference. Nat Biotechnol. 2018;36(9):875–9. https:// doi.
org/ 10. 1038/ nbt. 4227.

 9. Rautiainen M, Marschall T. GraphAligner: rapid and versatile sequence-to-
graph alignment. Genom Biol. 2020;21(1):253. https:// doi. org/ 10. 1186/
s13059- 020- 02157-2.

 10. Liao WW, Asri M, Ebler J, Doerr D, Haukness M, Hickey G, et al. A draft
human pangenome reference. Nature. 2023;617(7960):312–24. https://
doi. org/ 10. 1038/ s41586- 023- 05896-x.

 11. Hickey G, Monlong J, Ebler J, Novak AM, Eizenga JM, Gao Y, et al. Pange-
nome graph construction from genome alignments with minigraph-
cactus. Nat Biotechnol. 2023;42(4):663–73. https:// doi. org/ 10. 1038/
s41587- 023- 01793-w.

 12. Garrison E, Guarracino A. Unbiased pangenome graphs. Bioinformatics.
2023. https:// doi. org/ 10. 1093/ bioin forma tics/ btac7 43.

 13. Garrison E, Guarracino A, Heumos S, Villani F, Bao Z, Tattini L, et al. Building
pangenome graphs. bioRxiv. 2023;https:// doi. org/ 10. 1101/ 2023. 04. 05.
535718.

 14. Andreace F, Lechat P, Dufresne Y, Chikhi R. Comparing methods for
constructing and representing human pangenome graphs. Genom Biol.
2023. https:// doi. org/ 10. 1186/ s13059- 023- 03098-2.

 15. Minkin I, Pham S, Medvedev P. TwoPaCo: an efficient algorithm to build
the compacted de Bruijn graph from many complete genomes. Bioin-
formatics. 2017;33(24):4024–32. https:// doi. org/ 10. 1093/ bioin forma tics/
btw609.

 16. Holley G, Melsted P. Bifrost: highly parallel construction and indexing of
colored and compacted de Bruijn graphs. Genom Biol. 2020. https:// doi.
org/ 10. 1186/ s13059- 020- 02135-8.

 17. Cicherski A, Dojer N. From de Bruijn graphs to variation graphs—relation-
ships between pangenome models. In: Nardini FM, Pisanti N, Venturini R,
editors. String processing and information retrieval 2023. Cham: Springer
Nature Switzerland; 2023. p. 114–28.

 18. Edmonds J, Johnson EL. Matching: a well-solved class of integer linear
programs. In: Jünger M, Reinelt G, Rinaldi G, Goos G, Hartmanis J, van
Leeuwen J, editors. Combinatorial optimization —eureka, you shrink!
papers dedicated to jack Edmonds 5th international workshop Aussois,
France, march 5-9, 2001 revised papers. Lecture notes in computer sci-
ence, vol. 2570. Berlin, Heidelberg: Springer Berlin Heidelberg; 2003. p.
27–30.

 19. Leitner-Ankerl M.: ankerl::unordered_dense::map, set. https:// github. com/
marti nus/ unord ered_ dense.

 20. Mohamadi H, Chu J, Vandervalk BP, Birol I. ntHash: recursive nucleotide
hashing. Bioinform. 2016;32(22):3492–4. https:// doi. org/ 10. 1093/ BIOIN
FORMA TICS/ BTW397.

 21. Khan J, Patro R. Cuttlefish: fast, parallel and low-memory compaction of
de Bruijn graphs from large-scale genome collections. Bioinformatics.
2021. https:// doi. org/ 10. 1093/ bioin forma tics/ btab3 09.

 22. O’Donnell S, Yue JX, Saada OA, Agier N, Caradec C, Cokelaer T, et al.
Telomere-to-telomere assemblies of 142 strains characterize the
genome structural landscape in Saccharomyces cerevisiae. Nat Genet.
2023;55(8):1390–9. https:// doi. org/ 10. 1038/ s41588- 023- 01459-y.

 23. Kokot M, Dlugosz M, Deorowicz S. KMC 3: counting and manipulating
k-mer statistics. Bioinform. 2017;33(17):2759–61. https:// doi. org/ 10. 1093/
BIOIN FORMA TICS/ BTX304.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1093/bioinformatics/btz443
https://doi.org/10.1093/bioinformatics/btz443
https://doi.org/10.1093/bioinformatics/btac308
https://doi.org/10.1038/nbt.4227
https://doi.org/10.1038/nbt.4227
https://doi.org/10.1186/s13059-020-02157-2
https://doi.org/10.1186/s13059-020-02157-2
https://doi.org/10.1038/s41586-023-05896-x
https://doi.org/10.1038/s41586-023-05896-x
https://doi.org/10.1038/s41587-023-01793-w
https://doi.org/10.1038/s41587-023-01793-w
https://doi.org/10.1093/bioinformatics/btac743
https://doi.org/10.1101/2023.04.05.535718
https://doi.org/10.1101/2023.04.05.535718
https://doi.org/10.1186/s13059-023-03098-2
https://doi.org/10.1093/bioinformatics/btw609
https://doi.org/10.1093/bioinformatics/btw609
https://doi.org/10.1186/s13059-020-02135-8
https://doi.org/10.1186/s13059-020-02135-8
https://github.com/martinus/unordered_dense
https://github.com/martinus/unordered_dense
https://doi.org/10.1093/BIOINFORMATICS/BTW397
https://doi.org/10.1093/BIOINFORMATICS/BTW397
https://doi.org/10.1093/bioinformatics/btab309
https://doi.org/10.1038/s41588-023-01459-y
https://doi.org/10.1093/BIOINFORMATICS/BTX304
https://doi.org/10.1093/BIOINFORMATICS/BTX304

	AlfaPang: alignment free algorithm for pangenome graph construction
	Abstract
	Background
	Representing sequences with variation graphs
	Directed variation graphs
	Representations of collections of sequences
	Bidirected variation graphs

	AlfaPang algorithm
	Algorithm overview
	Compact graph representation
	Unbranched paths compression
	Algorithm complexity

	Design of experiments
	Datasets and k-mer length selection
	Compared algorithms

	Results
	Performance comparison
	Graphs topology
	Graphs similarity
	Aligned pairs annotations

	Conclusion
	Acknowledgements
	References

