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Abstract 

Motivation  The increasing number and volume of genomic and metagenomic data necessitates scalable and robust 
computational models for precise analysis. Sketching techniques utilizing k-mers from a biological sample have 
proven to be useful for large-scale analyses. In recent years, FracMinHash has emerged as a popular sketching tech-
nique and has been used in several useful applications. Recent studies on FracMinHash proved unbiased estimators 
for the containment and Jaccard indices. However, theoretical investigations for other metrics are still lacking.

Theoretical contributions  In this paper, we present a theoretical framework for estimating similarity/distance 
metrics by using FracMinHash sketches, when the metric is expressible in a certain form. We establish conditions 
under which such an estimation is sound and recommend a minimum scale factor s for accurate results. Experimental 
evidence supports our theoretical findings.

Practical contributions  We also present frac-kmc, a fast and efficient FracMinHash sketch generator program. 
frac-kmc is the fastest known FracMinHash sketch generator, delivering accurate and precise results for cosine 
similarity estimation on real data. frac-kmc is also the first parallel tool for this task, allowing for speeding up sketch 
generation using multiple CPU cores – an option lacking in existing serialized tools. We show that by computing 
FracMinHash sketches using frac-kmc, we can estimate pairwise similarity speedily and accurately on real data. 
frac-kmc is freely available here: https://​github.​com/​Kosli​ckiLab/​frac-​kmc/
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Introduction
With the growing number of reference genomes and the 
exponential increase in genomic and metagenomic data 
production, there is a critical need for the development 
of computational models that are both scalable and 
robust, as well as ensure precision in analysis. k-mer-
based algorithms, particularly those utilizing sketching 
methods, are becoming increasingly popular for large-
scale sequence analysis and metagenomic applications. 
A k-mer is a sequence of k consecutive nucleotides 
extracted from a longer sequence. Algorithms designed 
to work with k-mers decompose a long sequence into 
small k-mers and analyze based on the number of shared 
or dissimilar k-mers among multiple samples. Given the 
potentially vast number of distinct k-mers in a sequencing 
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sample, sketching methods create a fingerprint of the k
-mers (called a sketch) to work with these smaller sets, 
thereby reducing computational resource consumption. 
Using sketches become particularly useful when it is 
important to compare many query samples against many 
reference samples: as the sketches are much smaller, each 
of these many-vs-many computations become cheaper 
and more lightweight.

The most widely used sketching method for many 
years has been MinHash  [5], originally introduced for 
document comparisons. Mash  [31] was developed to 
apply MinHash to genomic data and has been extensively 
utilized. However, studies have revealed that MinHash 
sketches perform relatively poorly when comparing 
sets of very dissimilar sizes  [5, 23, 25]. Researchers 
have proposed various adjustments to MinHash to 
address this issue  [3, 21, 23, 30]. One such example is 
the recently introduced FracMinHash sketch, which 
uses a variable sketch size instead of MinHash’s fixed-
size scheme. FracMinHash was first introduced and 
used in the software sourmash [6, 33]. In simple words, 
a FracMinHash sketch retains s ( 0 ≤ s ≤ 1 ) fraction of 
the input set of k-mers. The scale factor s is a tunable 
parameter of the FracMinHash sketching technique, 
controlling the size of the generated sketch.

The first theoretical analysis of FracMinHash was 
introduced in [18], which showed how to obtain an 
unbiased estimator of the containment and the Jaccard 
indices computed using FracMinHash sketches. This 
work laid the theoretical foundation for calculating 
average nucleotide identity (ANI) via FracMinHash 
sketches and led to useful applications, such as ANI 
estimation in metagenomes  [39], obtaining taxonomy 
from metagenome samples  [19], obtaining a functional 
profile from metagenomes  [17], etc. Besides the Jaccard 
and the containment indices, there are other metrics 
used in the literature when comparing two samples, such 
as cosine similarity, Bray-Curtis dissimilarity, (first and 
second) Kulczynski measure, etc. A list of such metrics 
is given in Table 1. Aside from the containment and the 
Jaccard indices, cosine similarity is more widely used 
than the other metrics and has been used in finding 
similarities between chromosomes, genes, cell structures, 
and functions, and in many other applications  [7, 8, 34, 
41]. Although less common, the other metrics can also 
be useful in genomics as well as other disciplines such as 
ecology and community studies [4, 9, 10, 14, 35, 38].

As it has been around for many years, MinHash and its 
generalizations have been extensively studied from a the-
oretical point of view [5, 23, 24, 26, 40]. FracMinHash, on 
the other hand, has been introduced fairly recently, and 
a comprehensive analysis of various similarity/distance 

metrics in the context of FracMinHash is still missing. 
In this paper, we present this theoretical analysis for a 
class of similarity and distance metrics (which has been 
estimated using FracMinHash sketches). Let a similar-
ity/distance measure between two non-empty sets A 
and B be D (A,B) . Also, let D (A,B) be expressible as a 
certain form (which we introduce later in the paper). In 
this work, we show that there exists a scale factor s, for 
which, the metric D (A,B) can be accurately measured 
by D (FRACs(A),FRACs(B)) . We next show specific 
instances of D (A,B) in the form of the cosine similarity, 
the Bray-Curtis dissimilarity, the first Kulczynski meas-
ure, and the Sorensen index – and elaborate the required 
theoretical conditions. We supplement our theoretical 
findings with experimental evidence using simulations. 
These experiments show that our theoretical analyses are 
sound.

Apart from these theoretical results, our other 
contribution presented in this paper is implementing a 
fast, efficient, and parallel FracMinHash sketch generator 
program, frac-kmc. Although FracMinHash sketches 
can readily be generated using the software sourmash, 
we found the program sourmash sketch to be 
slow for very large samples. Furthermore, sourmash 
processes the k-mers in an input file in a serialized 
manner, and cannot parallelize the computation of a 
FracMinHash sketch. Therefore, we developed frac-
kmc by modifying a k-mer-counter tool KMC  [12, 13, 
22]. To the best of our knowledge, frac-kmc is the 
fastest FracMinHash sketch generator program. Our 
results show that frac-kmc on a single thread is already 
nearly 70% faster than sourmash sketch, and frac-
kmc can speed up FracMinHash sketch generation 
even more by using multiple CPU cores, an option 
lacking in sourmash. We used frac-kmc to compute 

Table 1  Mathematical expressions for several similarity and 
dissimilarity measures

Metric name Notation Expression

Jaccard similarity J(A, B) |A∩B|
|A∪B|

Containment index C(A, B) |A∩B|
|A|

Cosine similarity
(also known as Otsuka-Ochiai)

cos θ |A∩B|√
|A|·|B|

Kulczynski 1 K1(A, B) |A∩B|
|A�B|

Kulczynski 2 K2(A, B) 1
2

(

|A∩B|
|A| + |A∩B|

|B|

)

Whittaker distance W(A, B) 1− 1
2

(

|A∩B|
|A| + |A∩B|

|B|

)

Sorensen index S(A, B) 2
|A∩B|
|A|+|B|

Bray-Curtis dissimilarity BC(A, B) 1− 2
|A∩B|
|A|+|B|
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FracMinHash sketches and used the sketches to estimate 
cosine similarity values on real data, and found accurate 
and precise results. frac-kmc is freely available 
here: github.com/KoslickiLab/frac-kmc. The analyses 
presented in this paper can be reproduced using the code 
https://​www.​github.​com/​Kosli​ckiLab/​fmh_​cosine_​repro​
ducib​les.

Preliminaries
We present the following preliminaries in their full 
generality, using generic notation such as � , a universal 
set. All theorems presented in Section  Theoretical 
Results also hold for any universal set. In the case of 
sequence comparisons, the sets of interest, A and B are 
sets of k-mers, in the universe � = {A,C ,G,T }k.

Family of strongly-universal hash functions We 
define a range R = [1,H ] as a set of integers from 1 to 
H. Given a universe � and a range R , a hash function 
h : � → R maps elements in � to the range R . In this 
work, we consider H as a family of strongly 2-universal 
(also known as 2-wise independent) hash functions1. A 
hash family H is strongly 2-universal if for every ei, ej ∈ � , 
ei  = ej , and for every r1, r2 ∈ R , the following holds

In simpler and more relaxed terms, if h is drawn 
uniformly randomly from H , the following two hold: 

1.	 Uniformity: for any fixed e ∈ � , h(e) is uniformly 
distributed in R

2.	 Independence: given any two fixed distinct elements 
ei, ej ∈ � , h(ei) and h(ej) can be construed as 
independent random variates in R

FracMinHash sketching Given a hash function h 
randomly drawn from H for some fixed H ∈ N where 
H >> | � | , and given a fixed scale factor s where 
0 ≤ s ≤ 1 , a FracMinHash sketch of a set A, where 
A ⊆ � , is defined as follows:

The scale factor s is a tuneable parameter that can modify 
the size of the sketch. If one sets s = 0 , then FRACs(A) 

Pr
h∼H

[

h(ei) = r1 and h(ej) = r2

]

= 1

|R|2
.

(1)FRACs(A) =
{

h(a) | a ∈ A and h(a) ≤ Hs
}

.

results in an empty set; if one sets s = 1 , then FRACs(A) 
contains all the elements of A (or, more precisely, their hash-
values). On the other hand, for a fixed s, if the set A grows 
larger, the sketch FRACs(A) grows proportionally in size.

It is important to note that in practice, most FracMin-
Hash implementations (sourmash and frac-kmc) use 
MurMurHash3 as the hash function. MurMurHash func-
tions do not have a guarantee of universality, let alone 
strong universality. Yet, practical implementations yield 
results conforming to the theory we develop here assum-
ing a strongly universal hash family.

Difference with sketching using permutations
Hash functions are frequently used to permute 

elements in a set. The permutations can, in turn, be used 
to compute a sample from a given set. Such sampling/
sketching techniques include MinHash  [5], bottom-k 
(top-k) sketching  [11], and more recently introduced 
Affirmative Sampling [27], which takes advantage of the 
“hiring problem” [1] and various strategies used to solve 
the hiring problem (hiring above a certain quantile/
rank) [15, 16].

To highlight the difference with such rank-based 
sketching algorithms, we note that FRACs(A) is not 
defined on the permutation of � achieved by applying h, 
rather by using the hash-values themselves. This means 
that acceptance of an element e in the sketch does not 
depend on its rank, rather only on its hash value h(e) 
(and, of course, the acceptance threshold Hs).

Similarity and distance measures between two sets 
The degree of similarity and/or dissimilarity between 
two sets can be measured using several metrics. These 
metrics, or more precisely, similarity and dissimilarity 
measures, have different uses and interpretations, 
depending on the domain knowledge. Table  1 shows a 
number of these metrics as well as the mathematical 
expressions.

Chernoff bound for sum of Bernoulli random vari-
ables Recall the classic Chernoff bounds: Let Xi , i = 1, 2, 
..., n be n independent Bernoulli random variables. If 
X =

∑n
i=1 Xi and E[X] = µ , then the following holds for 

0 < ǫ < 1 [29]:

Theoretical Results
Let D = D

(

A,B
)

 be a similarity/distance measure 
between two sets A and B, and let 
D

′ = D

(

FRACs(A),FRACs(B)
)

 be the same measure 
between the sketches of A and B. Ideally, we want D ′ 
to be an unbiased estimator of D . Which is, we want 

Pr

[

∣

∣

∣
X − µ

∣

∣

∣
≥ ǫ µ

]

≤ 2 exp
{

− ǫ2µ/3
}

.

1  Strictly speaking, for the form of the Chernoff bound we use in the fol-
lowing, a fully mutually independent family of hash functions would be 
required, not just 2-wise independent. It is straightforward but not par-
ticularly illuminating to extend this hash family definition. Additionally, it 
is well known that such Chernoff-Hoeffding bounds hold for k-wise inde-
pendent families for any k [37, Theorem  1], with small, but intricate con-
stant factor differences, and it is convention in the sketching literature to 
use the “cleaner” Chernoff bounds we use below.

https://www.github.com/KoslickiLab/fmh_cosine_reproducibles
https://www.github.com/KoslickiLab/fmh_cosine_reproducibles
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E[D ′] = D . Previous works have shown how to obtain 
unbiased estimators for the Jaccard index and the 
containment index [18, 19]. We notice that the second 
Kulczynski index and the Whittaker distance can be 
expressed as linear combinations of the two 
containment indices C(A, B) and C(B, A). Therefore, it 
is easy to obtain unbiased estimators for the second 
Kulczynski index and the Whittaker distance. These 
estimators are listed in Table 2.

For the other metrics listed in Table  1, proving an 
unbiased estimator is not mathematically tractable. For 
these metrics, we attempt to prove that the following 
holds with high probability:

for any arbitrarily small ǫ . In other words, the similarity/
distance measure between two FracMinHash sketches 
approximates the similarity/distance measure between 
the original sets. Unfortunately, this does not hold in all 
cases. In this section, we present theoretical conditions 
where Equation 2 holds (and where it breaks down) when 
D is expressible to a certain mathematical form. For the 
sake of continuity, all proofs of the theorems are included 
in Section Methods.

Theorem  1  Let � = { ei }Ni=1 be a given set (universe), 
and let A ⊆ � . Let FRACs(A) be the FracMinHash sketch 
of A for a given s where 0 ≤ s ≤ 1 , and let the cardinality 
of FRACs(A) be XA . The expected number of elements in 
FRACs(A) is given by the following:

Proof  See Section Proofs of theorems. 	�  �

Theorem 1 quantifies the expected number of elements 
in FRACs(A) . We next show that the number of elements 
in FRACs(A) is well concentrated around this expected 
value.

(2)
∣

∣

∣
D

′ −D

∣

∣

∣
≤ ǫ D ,

(3)E
[

XA

]

= s |A|.

Theorem  2  Let � = { ei }Ni=1 be a given set (universe), 
and let A ⊆ � . If FRACs(A) is the FracMinHash sketch of 
A for a given s where 0 ≤ s ≤ 1 , and if the cardinality of 
FRACs(A) is XA , then the following holds for any ǫ where 
0 < ǫ < 1.

Proof  See Section Proofs of theorems. 	�  �

We use the results in Theorems 1 and 2 to quantify the 
error in estimating specific instances of D . We explicitly 
show this for the cosine similarity in the next three sec-
tions: Sections Safety conditions to estimate cosine simi-
larity using FracMinHash, Recommended scale factor s 
to safely estimate the cosine similarity189 using FracMin-
Hash, and Theoretical conditions for the other metrics.

Safety conditions to estimate cosine similarity using 
FracMinHash
Given two sets A and B, we can use the expected cardinal-
ity of FRACs(A) , FRACs(B) and FRACs(A) ∩ FRACs(B) 
to prove the following result.

Theorem  3  Let � = { ei }Ni=1 be a given set (universe), 
and let A,B ⊆ � be two sets in the universe. Let the cosine 
similarity of the sets A and B be cos θ , and that of the sets 
FRACs(A) and FRACs(B) be cos θ ′ , where FRACs(A) 
and FRACs(B) are the FracMinHash sketches of A and 
B respectively for a given s where 0 ≤ s ≤ 1 . Then, there 
exists a small ǫ where 0 < ǫ < 1 , such that the following 
holds

with a probability of at least 1− 6 exp
{

− s | A ∩ B |
ǫ2/ [3(2+ ǫ)2]

}

.

(4)

Pr

[

∣

∣

∣
XA − s |A|

∣

∣

∣
≥ ǫ s |A|

]

≤ 2 exp
(

− s |A| ǫ2/3
)

.

(5)
∣

∣

∣
cos θ ′ − cos θ

∣

∣

∣
≤ ǫ cos θ

Table 2  Unbiased estimators for the Jaccard similarity, the containment index, the second Kulczynski index, and the Whittaker 
distance, when using FracMinHash sketches instead of the original sets

Metric name Expression Unbiased estimator

Jaccard similarity J(A, B) = |A∩B|
|A∪B| Ĵ(A, B) = J

(

FRACs(A), FRACs(B)

)

× 1

1−(1−s)|A∪B|

Containment index C(A, B) = |A∩B|
|A| Ĉ(A, B) = C

(

FRACs(A), FRACs(B)

)

× 1

1−(1−s)|A|

Kulczynski 2
K2(A, B) = 1

2

(

|A∩B|
|A| + |A∩B|

|B|

)

K̂2(A, B) = 1
2

(

Ĉ(A, B)+ Ĉ(B, A)

)

Whittaker distance
W(A, B) = 1− 1

2

(

|A∩B|
|A| + |A∩B|

|B|

)

Ŵ(A, B) = 1− K̂2(A, B)
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Proof  See Section Proofs of theorems. 	�  �

Theorem 3 indicates that the cosine similarity between 
two sketched sets approximates the cosine similarity of 
the original sets with approximation error being bounded 
by the relative similarity of the original sets.

We note that when A and B are highly dissimilar and 
the set A ∩ B is very small, the probability guarantee 
becomes less meaningful and cannot be interpreted 
as “high probability”. In such a case, FRACs(A) and 
FRACs(B) will have nearly zero elements, and cos θ ′ will 
be close to zero. This small cos θ ′ reflects the dissimilarity 
of A and B, and estimating cosine seems reasonable. Nev-
ertheless, Theorem  3 cannot guarantee with high prob-
ability that two near-zero quantities ( cos θ ′ and cos θ ) are 
sufficiently close to each other.

Recommended scale factor s to safely estimate the cosine 
similarity using FracMinHash
We conclude our theoretical results for the cosine simi-
larity by suggesting a minimum scale factor that is safe to 
use when estimating the cosine similarity using FracMin-
Hash sketches. The probability guarantee in Theorem  3 
allows us to recommend a scale factor s for a desired 
error rate ǫ and a desired level of confidence α , 0 ≤ α < 1 . 
We define the desired confidence level α as the minimum 
guarantee we wish to have on the tolerable error rate ǫ 
such that cos θ ′ ∈ (1± ǫ) cos θ.

If we want to have a guarantee of at least α , 0 ≤ α < 1 , 
that the estimated cosine cos θ ′ will be in a 1± ǫ factor of 
the true cosine cos θ where 0 ≤ ǫ < 1 , then we require a 
scale factor s, such that

If we want a higher level of confidence, or if we want a 
smaller window of error, we require a larger scale factor. 
If A and B have a large number of common elements, 
then a smaller s suffices. Since estimating cosine is 

(6)s ≥
3(2+ ǫ)2 ln

[

6/(1− α)

]

ǫ2 min
{

|A|, |B|, | A ∩ B |
} .

reasonable for highly dissimilar pairs of sets, we found 

that recommending a scale factor by using min
{

|A|, |B|
}

 
suffices for practical purposes. Therefore, we recommend 
a scale factor as follows:

Theoretical conditions for the other metrics
We conclude the theoretical results section by 
recognizing that similar theoretical conditions can be 
derived for the other metrics in Table  1 (for which, 
an unbiased estimator cannot be proven). These 
theoretical conditions can be manipulated to obtain a 
recommended minimum scale factor for each of these 
metrics. For the sake of brevity, we show these conditions 
in Table  3 instead of writing individual theorems such 
as Theorem  3. For the entirety of Table  3, we use the 
notation that XS = | FRACs(S) | for some set S.

Experimental Results

In this section, we present our experimental results. We 
first show results supporting the theory we presented in 
Section Theoretical Results. Then, we discuss a fast and 
efficient program to compute FracMinHash sketches 
from nucleotide sequences. We named this program 
frac-kmc. Finally, we present the performance of 
frac-kmc on real biological sequences. For the sake 
of brevity, we only show results for the cosine similarity 
and the Bray-Curtis dissimilarity in this section, although 
we can obtain similar results for any of the similarity/
distance metrics listed in Table 3.

All results presented in this section have been gen-
erated on a server computer; having two AMD EPYC 
7763 Processors. It has 128 physical cores, distributed 
across two sockets, and supports SMT (two simulta-
neous threads per core); allowing for up to 256 logical 
cores. The processor has 4 MiB L1 instruction caches 

(7)s ≥
3(2+ ǫ)2 ln

[

6/(1− α)

]

ǫ2 min
{

|A|, |B|
} .

Table 3  Conditions when estimating the cosine similarity, the Bray-Curtis dissimilarity, the first Kulczynski measure, and the Sorensen 
index (by using FracMinHash sketches) are theoretically sound. These are shown for 0 ≤ ǫ < 1.

Metric name Error bound Probability with which error is bounded

Cosine similarity
∣

∣

∣
cos θ ′ − cos θ

∣

∣

∣
≤ ǫ cos θ >= 1− 6e−s | A∩B | ǫ2/ [3(2+ǫ)2]

Kulczynski 1
∣

∣

∣
K1

′(A, B)− K1(A, B)

∣

∣

∣
≤ ǫ K1(A, B) >= 1− 4e−s min{|A∩B|,|A�B|} ǫ2/ [3(2+ǫ)2]

Sorensen index
∣

∣

∣
S
′(A, B)− S(A, B)

∣

∣

∣
≤ ǫ S(A, B) >= 1− 6e−s | A∩B | ǫ2/ [3(2+ǫ)2]

Bray-Curtis dissimilarity
∣

∣

∣
BC

′(A, B)− BC(A, B)

∣

∣

∣
≤ ǫ BC(A, B) >= 1− 6e−s | A∩B | ǫ2/ [3(2+ǫ)2]
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(128 instances), 4 MiB L1 data caches (128 instances), 64 
MiB L2 caches (128 instances), and 512 MiB L3 caches 
(16 instances). The processor can operate at a maximum 
clock-speed of 3.53 GHz. The computer has 3.9 TiB of 
main memory and has 60 TBs of SSD disk storage.

Our suggested scale factors are safer to estimate the cosine 
similarity using FracMinHash sketches

We start by presenting what the scale factors 
suggested by Equation  7 look like for various desired 
levels of confidence α and tolerable error windows ǫ . 
Table  4 shows various suggested scale factors when 
min(m, n) = 10 K, and Table  5 shows suggested scale 
factors when min(m, n) = 10 M. We notice that the 
theory accounts for a larger number of elements in the 
sets that are being compared against each other. With 
only 10K elements, if we want the estimated cosine to be 
within ± 7% (meaning ǫ = 0.07 ) of the original cosine, 
then the theory suggests that we have to use a scale factor 

of 1. In other words, there is no scope for sub-sampling at 
this desired resolution. It is only at ǫ ≥ 0.08 that we can 
get away with sub-sampling, although the recommended 
scale factor is not very small to be drastically helpful in 
reducing computational resources.

On the other hand, as documented in Table 5, we can 
use a scale factor of roughly 0.0006 ∼ 0.0008 to allow 
a 10% window for error when we have at least 10M 
elements. If we want to be very accurate and only allow 
1% error, we need to obtain FracMinHash sketches with 
a scale factor of roughly 0.05 ∼ 0.08 . From Table  5, we 
also notice that with a higher level of desired confidence 
α , we need to employ larger scale factors; although the 
effect a larger α has on the suggested scale factor is less 
prominent than the effect of a smaller ǫ.

We next show the usefulness of using these 
recommended scale factors, in contrast to a preset 
value. The state-of-the-art program to compute and 
analyze FracMinHash sketches is sourmash  [6, 20], 
which uses a default scale factor of 1/1000. As a result, 
many studies that use sourmash use this default value, 
even though the tool can work with other non-default 
scale factors. We show that a preset scale factor may 
result in an error higher than expected. In this set of 
experiments, we simulated a universe of 1M elements. 
We then randomly selected two sets A and B from this 
universe. We varied the number of elements in these sets 
from 100K to 500K. The actual elements were selected 
randomly. We then calculated the true cosine of A and 
B using all elements. After that, we used the preset scale 
factor of 1/1000 to compute FracMinHash sketches of 
A and B, and estimated the cosine using these sketches. 
We also set the tolerable error rate ( ǫ ) at 5%, and desired 
level of confidence ( α ) at 95%. We then computed 
FracMinHash sketches of A and B using the scale factor 
suggested by Equation  7, and used these sketches to 
estimate the cosine. We then recorded if these estimated 
cosine values fall in the range cos θ (1± 0.05) . We 
repeated the experiment 1000 times for all sizes of A and 
B. Table  6 shows the fraction of times the similarities 
estimated using a fixed scale factor of 1/1000 fall within 
±5% of the true cosine. Table  8 shows the fraction of 
times the similarities estimated using the scale factor 
recommended by Equation  7 fall within ±5% of the 
true cosine. The list of suggested scale factors in these 
scenarios is shown in Table 7.

These results show that 100% of times, the recom-
mended scale factor can estimate a cosine within the tol-
erable error range, whereas using a preset scale factor can 
result in a larger error. Evidently, using the default scale 
factor of 1/1000 may not be well-suited where a higher 

Table 4  Suggested scale factors for various levels of desired 
confidence and various tolerable rates of error, when 
min(m, n) = 10000 . For only 10K elements, if the tolerable error 
is up to 7%, we cannot but use all elements to get the desired 
accuracy

Desired level of confidence, α

Tolerable Error, δ 0.91 0.93 0.95 0.97 0.99

0.01 1.0000 1.0000 1.0000 1.0000 1.0000

0.03 1.0000 1.0000 1.0000 1.0000 1.0000

0.05 1.0000 1.0000 1.0000 1.0000 1.0000

0.07 1.0000 1.0000 1.0000 1.0000 1.0000

0.09 0.6794 0.7201 0.7745 0.8572 1.0000

0.1 0.5556 0.5889 0.6334 0.7010 0.8463

Table 5  Suggested scale factors for various levels of desired 
confidence and various tolerable rates of error, when 
min(m, n) = 10000000 . For 10M elements, we can use a small 
fraction of the elements to get the desired accuracy when 
estimating the cosine similarity

Desired level of confidence, α

Tolerable Error, δ 0.91 0.93 0.95 0.97 0.99

0.01 0.0509 0.0539 0.0580 0.0642 0.0775

0.03 0.0058 0.0061 0.0066 0.0073 0.0088

0.05 0.0021 0.0022 0.0024 0.0027 0.0032

0.07 0.0011 0.0012 0.0013 0.0014 0.0017

0.09 0.0007 0.0007 0.0008 0.0009 0.0010

0.1 0.0006 0.0006 0.0006 0.0007 0.0008
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resolution around the true value is required but the input 
sets are not sufficiently large.

frac‑kmc computes FracMinHash sketches faster
After establishing the conditions when FracMinHash 
sketches can be safely used to estimate the cosine simi-
larity, we next wanted to use FracMinHash sketches 
on real biological sequences. Ideally, we wanted to 
show that by using FracMinHash sketches, we can 
compute the pairwise similarity matrix for a num-
ber of sequences faster than tools that use all k-mers. 
The fastest tool that can compute pairwise similarity/

distance matrix from a list of sequences is currently 
Simka  [2], whereas the state-of-the-art tool to com-
pute FracMinHash sketches is sourmash [6, 33]. Nat-
urally, we tried to use sourmash to first compute 
FracMinHash sketches, and later compare the sketches 
to obtain a pairwise similarity matrix. Unfortunately, 
we found that the command that computes FracMin-
Hash sketches (called sourmash sketch) is many 
times slower than Simka. We noted that this is because 
sourmash treats input sequence files in a serialized 
manner, where there is scope for parallelism over mul-
tiple threads to make the processing faster.

Therefore, for practical purposes, we decided to 
write a new FracMinHash sketch generator program by 
modifying a fast and efficient k-mer-counter KMC  [22]. 
When KMC merges its k-mer bins, frac-kmc filters 
the k-mers and keeps only those that are below the 
acceptance threshold Hs, discarding others. Details of 
frac-kmc are included in Section  Implementation 
of frac-kmc. We used gcc version 11.4.0 to compile 
frac-kmc and generate the following results.

Figure  1 shows a running time comparison for the 
commands sourmash sketch and frac-kmc 
sketch on files of different sizes. The files are fastq.
gz files. These files were randomly selected from the 
Human Microbiome Project  [32]. We verified that 
sketches produced by the two programs are identical by 
running sourmash compare. The comparison shows 

Table 6  Fraction of times the estimated cosine falls within 
±5% of the true cosine of A and B, for different sizes of A and B. 
The similarities were estimated using a scale factor of 1/1000, 
which is the default in sourmash. In a large fraction of times, 
the estimated cosine is not within ±5% of the true cosine

Num. 
elements in B

Num. elements in A

100K 200K 300K 400K 500K

100K 0.09 0.20 0.25 0.32 0.38

200K 0.17 0.29 0.55 0.47 0.51

300K 0.28 0.40 0.54 0.58 0.57

400K 0.32 0.45 0.61 0.71 0.74

500K 0.45 0.42 0.73 0.66 0.83

Table 7  Suggested scale factors for various min(|A|, |B|) , as 
calculated by Equation 7. α = 0.95 , δ = 0.05 was used

min(|A|, |B|) 100K 200K 300K 400K 500K

Suggested scale factor 0.2414 0.1207 0.0805 0.0604 0.0483

Table 8  Fraction of times the estimated cosine falls within ±5% 
of the true cosine of A and B, for different sizes of A and B. The 
similarities were estimated using the scale factor suggested 
by Equation 7. In almost all instances, the recommended scale 
factor can estimate the similarity so that the estimated value is 
within ±5% of the true similarity

 Num. 
elements in B

Num. elements in A

100K 200K 300K 400K 500K

100K 0.99 1.0 1.0 1.0 1.0

200K 1.0 1.0 1.0 1.0 1.0

300K 1.0 1.0 1.0 1.0 1.0

400K 1.0 1.0 1.0 1.0 1.0

500K 1.0 1.0 1.0 1.0 1.0

Fig. 1  Wall-clock time required by the commands mash sketch, 
sourmash sketch and frac-kmc-sketch to compute 
a sketch. The input files are fastq.gz files containing metagenome 
samples taken from the human gut. MinHash sketches of 1000 
was computed, and FracMinHash sketch with scale factors s = 0.001 
was computed. When using 32 threads, frac-kmc finishes roughly 
10 times faster than sourmash, and roughly 6.7 times faster 
than Mash. When running on a single thread, frac-kmc runs 
up to 70% faster than sourmash. On small inputs, frac-kmc runs 
roughly 20% slower than Mash, but runs roughly 15% faster for files 
larger than 5 GB
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that frac-kmc consistently runs about 10 times faster 
than sourmash to sketch input files when run on 32 
threads. When run on a single thread, frac-kmc runs 
roughly 30% faster on files of size 1 GB, and roughly 
70% faster on files of size 5 GB. For this set of analyses, 
we used the latest version of sourmash: 4.8.8, as of 
1 May 2024. Both tools were run to not keep track of 
abundances of k-mers. We ran the programs to compute 
sketches for k = 21 and scale factor s = 1/1000 . We 
tested with other values of k and s and saw similar results.

Figure  1 also shows the average running time to com-
pute MinHash sketches (sketch size = 1000 hashes) from 
the same files using Mash (version 2.0). On a single thread 
frac-kmc runs roughly 20% slower than Mash on files of 
size 1 GB, but runs roughly 15% faster for files larger than 
5 GB. It is important to highlight that neither of Mash 
and sourmash is a parallel tool: neither of these two can 
run on multiple CPU-cores to speed up sketch generation 
from a single input file. Therefore, computing sketch from 
a very large file would take a long time if we use Mash or 
sourmash, which can be sped up if we use frac-kmc.

frac‑kmc estimates cosine similarity accurately
We next show that by using FracMinHash sketches com-
puted by frac-kmc, we can estimate metrics faster 
than Simka  [2] (which uses all k-mers to operate), and 
more accurately than Mash  [31] (which uses fixed size 
MinHash sketches). For this set of experiments, we used 
two datasets: the Ecoli dataset contains 3682 E.coli 
genome assemblies, and the HMP dataset contains 

300 metagenome samples randomly collected from the 
human gut, taken from the Human Microbiome Pro-
ject [32]. We ran Simka, Mash, and frac-kmc on these 
datasets to compute the pairwise cosine similarity matrix 
and the pairwise Bray-Curtis dissimilarity matrix. We ran 
Simka and Mash by using a k-mer size of 21. We ran 
Mash to compute sketches of size 10K, and kept other 
settings at their default values. We used a scale factor 
s = 0.001 for the same k-mer size to compute FracMin-
Hash sketches using frac-kmc. Details of the datasets, 
how the programs were run, and how the metrics were 
computed are elaborated in Section Generating results in 
Section 4.

Before presenting the results, it is important to 
note that these two datasets only allow genome-
versus-genome and metagenome-versus-metagenome 
comparisons, but not genome-versus-metagenome 
comparisons. This is because MinHash sketches are 
shown to perform poorly when sets of very dissimilar 
sizes are compared, and therefore, for genome-versus-
metagenome comparisons, MinHash sketches would 
naturally perform poorly, as shown previously  [18]. 
Consequently, we only show comparisons among sets of 
similar sizes and use these two datasets.

Figure  2 shows the total wall-clock time required to 
run Simka, Mash, and frac-kmc to estimate the cosine 
similarity and the Bray-Curtis dissimilarity for 25-125 
randomly selected samples. We found that as the num-
ber of samples reaches roughly 125, Simka does not 
exit even after letting it run for more than 48 hours. In 

Fig. 2  Running time and accuracy of the tools on Ecoli and HMP datasets. A and E show the total wall-clock time to run the tools for 25-125 
randomly selected samples (Simka did not exit after > 48 hours). B and F show the distributions of the percentage errors when estimating 
cosine and Bray-Curtis, respectively, for 100 samples (ground truth was computed using Simka). C and D show estimated vs. true cosine 
values for the two datasets (100 samples), and G and H show the same plots for the Bray-Curtis dissimilarity. The plots show that frac-kmc 
is about 40-50% slower, but is comparatively more accurate in estimating the metrics
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addition to these extremes, we found that Simka oper-
ates by creating many SimkaCount and SimkaMerge 
processes, which are not spawned as descendants of the 
mother Simka process. Therefore, we found no good 
way to measure the CPU time/memory consumed by 
Simka, and are not including CPU time/memory for 
these smaller runs. Figure  2 also shows the accuracy of 
Mash and frac-kmc in estimating the metrics for the 
100 samples in the form of the distributions of errors (B, 
F), and in the form of true-vs-estimated values (C, D, G, 
and H). The ground truth, in these cases, was the out-
put of Simka. These results show that frac-kmc runs 
40-50% slower compared to Mash, and offers a great 
improvement in accuracy.

As shown in Figure  2, Simka does not scale beyond 
about 100 samples. We next investigate how Mash and 
frac-kmc scale for a larger number of samples. The 
resources used by these two tools are shown in Fig-
ure 3. The bars that show CPU time and wall-clock time 
are split into two parts: the bottom part shows the time 
required to only compute the sketches, and the top part 
shows the time to load the sketches into memory and 
estimate the metrics. For the Ecoli dataset where each 
sample is a relatively small genome, both MinHash and 
FracMinHash sketches are relatively small, and therefore, 
the wall-clock time and memory footprint are similar. 

The majority of the time, for both tools, is spent in com-
puting the metrics, as there are a large number of pairs. 
We note here that Mash stores the sketches (for all the 
input samples) in a single binary file. To get individual 
sketches from this single file, we need to perform a mash 
dump program, which is the reason Mash is slightly 
slower than frac-kmc for the Ecoli dataset.

On the other hand, for the HMP dataset, the 
FracMinHash sketches computed by frac-kmc are 
much larger than MinHash sketches computed by 
Mash. As a result, frac-kmc runs about 2-2.1x slower 
than Mash. As frac-kmc produces larger sketches, 
the memory usage is also about 10GBs, compared to 
only 100MBs for Mash. These higher running time 
and memory usage allows frac-kmc to facilitate very 
accurate results, as shown in Figure 2B and F.

Methods
Implementation of frac‑kmc
The core motivation behind implementing frac-kmc 
was that sourmash sketch dna was very slow 
for larger files. Therefore, we decided to use a fast and 
efficient k-mer-counting program. There are many k
-mer-counters available in the literature, namely jel-
lyfish  [28], DSK  [36], KMC  [22] etc. We decided to use 
KMC since its source code was easy to understand and 

Fig. 3  Computational resources consumed by Mash and frac-kmc when estimating metrics for a large number of samples. A, B, and C show 
the CPU time, wall-clock time, and peak memory usage for 1000-3682 samples in the Ecoli dataset. D, E, and F show the same plots for the HMP 
dataset, varying the number of samples from 100 to 300. Both tools were run using 128 threads. The bars in A, B, D, and E are split into two parts: 
the bottom part shows the time to compute the sketches only, and the top part shows the time to compute the metric from the sketches. Using 
frac-kmc is up to 18% faster and the memory usage is similar in the Ecoli dataset, where the samples are smaller genomes. On the other hand, 
frac-kmc runs about 2-2.1x slower in the HMP dataset (the samples are large metagenomes), and roughly uses 100x more memory than Mash. 
These heavier resource usages of frac-kmc allow for the highly accurate results shown in Figure 2
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navigate. Instead of running KMC and iterating through all 
k-mers in KMC’s output, we decided to modify the source 
code so that only the k-mers in the sketch were retained 
in the output. This made the entire program many times 
faster since typical scale factors used to compute Frac-
MinHash sketches are very small. Therefore, we imple-
mented the 64-bit MurMurHash function in C++ within 
the source code of KMC, and made the necessary changes 
so that instead of keeping track of all the k-mers, the pro-
gram now kept track of only the k-mers whose hash value 
fell below the cut-off threshold. As a result, the succinct 
k-mer-database constructed by this modified KMC now 
contained only the relevant k-mers. Finally, we modified 
the program kmc dump so that instead of writing all the 
k-mers in an output file, it now wrote the 64-bit Mur-
MurHash values for the kmers in a sorted list – which is 
the output format of sourmash sketch. We named 
this program frac-kmc. After generating sketches from 
the same file using frac-kmc and sourmash, we used 
sourmash compare to confirm that the sketches are 
identical.

Generating results in Section Experimental Results
Datasets
The datasets we used are: 

1.	 Ecoli We collected all 3682 E. coli genome assemblies 
in NCBI.

2.	 HMP We collected whole genome shotgun 
sequences from the Human Microbiome Project [32]. 
We randomly selected 300 gzipped fastq files 
corresponding to samples collected from the human 
gut.

The metagenome samples in the HMP dataset have an 
average file size of 1.88 GB and a median file size of 1.72 
GB. The smallest file size is 58 MB, and the largest file 
size is 5.5 GB. This dataset works as a stress test for all 
the tools, where the input files are very large, reflecting 
real-life metagenome data; although the number of total 
samples is manageable. On the other hand, the Ecoli 
dataset challenges all the tools because the number 
of samples is very large (there are roughly 67 million 
pairs), although every individual file is quite small and 
easy to process.

Running Simka, Mash, and frac‑kmc
We ran Simka, Mash, and frac-kmc on the Ecoli 
and the HMP dataset, to produce the pairwise 
cosine similarity matrix and the pairwise Bray-Curtis 
dissimilarity matrix. Simka readily produces several 
similarity and dissimilarity metrics when invoked on a 
list of input files. However, it does not produce cosine 

similarity. Therefore, we took the Chord distances 
generated by Simka and converted them to cosine 
similarities.

We used Mash and frac-kmc to compute MinHash 
and FracMinHash sketches of the input files, respec-
tively. We then used a parallelized program to read all the 
sketches and compute cosine and Bray-Curtis using the 
sketches. We ran Mash to generate MinHash sketches of 
size 10,000, which is 10x the default value. The minimum 
number of k-mers in all files we used was roughly 4.8 
million. In such a case, the minimum scale factor sug-
gested by Equation 7 is 0.0005 (using ǫ = 10%,α = 0.95 ). 
Therefore, we simply used the sourmash default value, 
1/1000 to generate the FracMinHash sketches when run-
ning frac-kmc. All three tools were run on 128 cores 
of the same machine, including the multi-threaded 
code segment that reads MinHash and FracMinHash 
sketches, computes pairwise cosine similarity values, and 
writes them into an output file. When we invoked Mash, 
we provided Mash with all files at once using a file list, 
and used the option-p to use 128 threads. When run-
ning frac-kmc, we did not use a file list, but spawned a 
different frac-kmc process for every input file.

Proofs of theorems

Theorem  1  Let � = { ei }Ni=1 be a given set (universe), 
and let A ⊆ � . Let FRACs(A) be the FracMinHash sketch 
of A for a given s where 0 ≤ s ≤ 1 , and let the cardinality 
of FRACs(A) be XA . The expected number of elements in 
FRACs(A) is given by the following:

Proof  Let Ii be an indicator variable as follows:

for all i such that ei ∈ A . Using the uniformity property 
of the hash family we consider in this work and taking 
expectations over this hash family, E[Ii] = Pr[Ii = 1] = s.

Using these facts, we have the following:

	�  �

Theorem  2  Let � = { ei }Ni=1 be a given set (universe), 
and let A ⊆ � . If FRACs(A) is the FracMinHash sketch of 
A for a given s where 0 ≤ s ≤ 1 , and if the cardinality of 

E
[

XA

]

= s |A|.

Ii(ei) =
{

1 if ei ∈ FRACs(A)
0 otherwise

E[XA] =
∑

i:ei∈A
E[Ii] =

∑

i:ei∈A
s = s |A|.
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FRACs(A) is XA , then the following holds for any ǫ where 
0 < ǫ < 1.

Proof  Using the same indicator Ii used in the proof of 
Theorem 1, we note the following:

Pr

[

∣

∣

∣
XA − s |A|

∣

∣

∣
≥ ǫ s |A|

]

≤ 2 exp
(

− s |A| ǫ2/3
)

.

XA =
∑

i:ei∈A
Ii .

The probability with which these three results hold are at 
least 1− 2e−s|A|ǫ2/3 , 1− 2e−s|B|ǫ2/3 , and 1− 2e−s|A∩B|ǫ2/3 , 
respectively, for 0 ≤ ǫ < 1.

By dividing Equation  10 by the square root of 
Equation 8 and Equation 9, we have the following:

The probability with which this expression holds is at 
least 1− 2e−s|A|ǫ2/3 − 2e−s|B|ǫ2/3 − 2e−s|A∩B|ǫ2/3 , which 
can be obtained by taking a union bound on the prob-
abilities associated with Equations 8 through 10.

We next note that if 1+ǫ
1−ǫ

= 1+ δ , then ǫ = δ
2+δ

 . Also, if 
1−ǫ
1+ǫ

= 1− δ , then ǫ = δ
2−δ

 . To facilitate the stricter con-
dition, we use the smaller value of ǫ given a δ , which is 
δ

2+δ
 . Therefore, we argue that the following holds:

with a probability of at least 1− 2e
−s|A|ǫ2/3

−2e
−s|B|ǫ2/3 − 2e

−s|A∩B|ǫ2/3 , where ǫ = δ
2+δ

 . Using the 
fact that min

{

|A|, |B|, |A ∩ B|
}

= |A ∩ B| completes the 

proof. 	 � �

Discussions
Conclusions
Sketching-based methods allow practitioners to 
lower computational resource usage many-fold while 
keeping the accuracy reasonably well. In this paper, we 
analyzed such a sketching technique, FracMinHash, in 
estimating an array of similarity and distance metrics. 
We analyzed the conditions when it is theoretically 
sound to use FracMinHash and estimate these metrics, 
and suggested a minimum scale factor that is safe to 
use. We also presented a fast FracMinHash sketch 
generator tool frac-kmc and benchmarked its 
running time against Simka and Mash. We found that 
when a huge number of small samples are compared, 
using frac-kmc is nearly as fast as Mash in wall-clock 
time. When a number of larger samples are compared, 

(9)(1− ǫ) s |B| ≤ XB ≤ (1+ ǫ) s |B| , and

(10)
(1− ǫ) s |A ∩ B| ≤ XA∩B ≤ (1+ ǫ) s |A ∩ B| .

1− ∈
1+ ∈

|A ∩ B|√
|A| × |B| ≤

XA∩B√
XA XB

≤ 1+ ∈
1− ∈

|A ∩ B|√
|A| × |B| ⇒

1− ∈
1+ ∈ cos θ ≤ cos θ ′ ≤ 1+ ∈

1− ∈ cos θ

(1− δ) cos θ ≤ cos θ ′ ≤ (1+ δ) cos θ ,

Using the independence property of the hash family, we 
note that all Ii are independent. Therefore, XA is simply 
a sum of independent Bernoulli random variables. This 
allows for the use of the Chernoff concentration inequal-
ity (introduced in Section  Preliminaries) for 

∑

i:ei∈A Ii , 
which completes the proof. 	�  �

Theorem  3  Let � = { ei }Ni=1 be a given set (universe), 
and let A,B ⊆ � be two sets in the universe. Let the cosine 
similarity of the sets A and B be cos θ , and that of the sets 
FRACs(A) and FRACs(B) be cos θ ′ , where FRACs(A) 
and FRACs(B) are the FracMinHash sketches of A and B 
respectively for a given s where 0 ≤ s ≤ 1 Then, there exists 
an ǫ where 0 < ǫ < 1 , such that the following holds.

with a probability of at least 1− 6 exp
{

− s | A ∩ B |
ǫ2/ [3(2+ ǫ)2]

}

.

Proof  As cos θ ′ is estimated using FRACs(A) and 
FRACs(B) , we have the following.

For notational simplicity, let XS be the cardinality of the 
set FRACs(S) . Therefore, we have the following.

By applying the results in Theorem  2 for the sets A, B, 
and A ∩ B , we have the following results:

∣

∣

∣
cos θ ′ − cos θ

∣

∣

∣
≤ ǫ cos θ

cos θ ′ = |FRACs(A) ∩ FRACs(A)|√
|FRACs(A)| × |FRACs(B)|

cos θ ′ = XA∩B√
XA XB

(8)(1− ǫ) s |A| ≤ XA ≤ (1+ ǫ) s |A| ,
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using frac-kmc requires more time, although the 
results produced by frac-kmc are more accurate 
and precise. Our analyses show that when very large 
sequence files need to be sketched using FracMinHash, 
using frac-kmc can be especially useful.

Further improvements
From a theoretical point of view, we can next study 
the behavior of other metrics that cannot be expressed 
as ratio of sizes of sets A, B, A ∩ B , etc. Examples of 
such metrics are the Chord distance, the Hellinger 
distance, and the Jensen-Shannon distance. Although 
these metrics do not follow an agreeable mathematical 
form, experiments as well as the law of large numbers 
suggest that for these, too, we can prove nice asymp-
totic behaviors. From an implementation perspective: 
the programs we used may be improved and extended 
in several ways: the code we used to read in MinHash 
and FracMinHash sketches (generated by Mash and 
frac-kmc) is written completely in Python, without a 
particular focus on optimization. A well-written C++ 
implementation may improve things further. The imple-
mentation of MurMurHash64 in frac-kmc makes use 
of C++ optimizations, although we did not explore if 
they can be improved further. frac-kmc currently 
does not support protein k-mers (which sourmash 
does). Instead of using an exact k-mer-counter, other 
approximation-based inexact k-mer-counter program 
may be explored. And finally, sketches of minimizers 
(instead of all k-mers) may be employed to investigate 
even more aggressive downsampling.
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