
Rahman Hera and Koslicki ﻿
Algorithms for Molecular Biology (2025) 20:8
https://doi.org/10.1186/s13015-025-00276-8

RESEARCH Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Algorithms for
Molecular Biology

Estimating similarity and distance using
FracMinHash
Mahmudur Rahman Hera1*    and David Koslicki1,2,3*    

Abstract 

Motivation  The increasing number and volume of genomic and metagenomic data necessitates scalable and robust
computational models for precise analysis. Sketching techniques utilizing k-mers from a biological sample have
proven to be useful for large-scale analyses. In recent years, FracMinHash has emerged as a popular sketching tech-
nique and has been used in several useful applications. Recent studies on FracMinHash proved unbiased estimators
for the containment and Jaccard indices. However, theoretical investigations for other metrics are still lacking.

Theoretical contributions  In this paper, we present a theoretical framework for estimating similarity/distance
metrics by using FracMinHash sketches, when the metric is expressible in a certain form. We establish conditions
under which such an estimation is sound and recommend a minimum scale factor s for accurate results. Experimental
evidence supports our theoretical findings.

Practical contributions  We also present frac-kmc, a fast and efficient FracMinHash sketch generator program.
frac-kmc is the fastest known FracMinHash sketch generator, delivering accurate and precise results for cosine
similarity estimation on real data. frac-kmc is also the first parallel tool for this task, allowing for speeding up sketch
generation using multiple CPU cores – an option lacking in existing serialized tools. We show that by computing
FracMinHash sketches using frac-kmc, we can estimate pairwise similarity speedily and accurately on real data.
frac-kmc is freely available here: https://​github.​com/​Kosli​ckiLab/​frac-​kmc/

Keywords  Hashing, Sketching, FracMinHash, Min-Hash, k-mer, Similarity, Theory

Introduction
With the growing number of reference genomes and the
exponential increase in genomic and metagenomic data
production, there is a critical need for the development
of computational models that are both scalable and
robust, as well as ensure precision in analysis. k-mer-
based algorithms, particularly those utilizing sketching
methods, are becoming increasingly popular for large-
scale sequence analysis and metagenomic applications.
A k-mer is a sequence of k consecutive nucleotides
extracted from a longer sequence. Algorithms designed
to work with k-mers decompose a long sequence into
small k-mers and analyze based on the number of shared
or dissimilar k-mers among multiple samples. Given the
potentially vast number of distinct k-mers in a sequencing

This manuscript is an extension to the paper “Cosine Similarity Estimation
Using FracMinHash: Theoretical Analysis, Safety Conditions, and
Implementation”, WABI 2024.

*Correspondence:
Mahmudur Rahman Hera
mbr5797@psu.edu
David Koslicki
dmk333@psu.edu
1 School of Electrical Engineering and Computer Science, Pennsylvania
State University, University Park, USA
2 Huck Institutes of the Life Sciences, Pennsylvania State University,
University Park, USA
3 Department of Biology, Pennsylvania State University, University Park,
USA

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-025-00276-8&domain=pdf
https://orcid.org/0000-0002-5992-9012
https://orcid.org/0000-0002-0640-954X
https://github.com/KoslickiLab/frac-kmc/

Page 2 of 13Rahman Hera and Koslicki ﻿Algorithms for Molecular Biology (2025) 20:8

sample, sketching methods create a fingerprint of the k
-mers (called a sketch) to work with these smaller sets,
thereby reducing computational resource consumption.
Using sketches become particularly useful when it is
important to compare many query samples against many
reference samples: as the sketches are much smaller, each
of these many-vs-many computations become cheaper
and more lightweight.

The most widely used sketching method for many
years has been MinHash [5], originally introduced for
document comparisons. Mash [31] was developed to
apply MinHash to genomic data and has been extensively
utilized. However, studies have revealed that MinHash
sketches perform relatively poorly when comparing
sets of very dissimilar sizes [5, 23, 25]. Researchers
have proposed various adjustments to MinHash to
address this issue [3, 21, 23, 30]. One such example is
the recently introduced FracMinHash sketch, which
uses a variable sketch size instead of MinHash’s fixed-
size scheme. FracMinHash was first introduced and
used in the software sourmash [6, 33]. In simple words,
a FracMinHash sketch retains s ( 0 ≤ s ≤ 1 ) fraction of
the input set of k-mers. The scale factor s is a tunable
parameter of the FracMinHash sketching technique,
controlling the size of the generated sketch.

The first theoretical analysis of FracMinHash was
introduced in [18], which showed how to obtain an
unbiased estimator of the containment and the Jaccard
indices computed using FracMinHash sketches. This
work laid the theoretical foundation for calculating
average nucleotide identity (ANI) via FracMinHash
sketches and led to useful applications, such as ANI
estimation in metagenomes [39], obtaining taxonomy
from metagenome samples [19], obtaining a functional
profile from metagenomes [17], etc. Besides the Jaccard
and the containment indices, there are other metrics
used in the literature when comparing two samples, such
as cosine similarity, Bray-Curtis dissimilarity, (first and
second) Kulczynski measure, etc. A list of such metrics
is given in Table 1. Aside from the containment and the
Jaccard indices, cosine similarity is more widely used
than the other metrics and has been used in finding
similarities between chromosomes, genes, cell structures,
and functions, and in many other applications [7, 8, 34,
41]. Although less common, the other metrics can also
be useful in genomics as well as other disciplines such as
ecology and community studies [4, 9, 10, 14, 35, 38].

As it has been around for many years, MinHash and its
generalizations have been extensively studied from a the-
oretical point of view [5, 23, 24, 26, 40]. FracMinHash, on
the other hand, has been introduced fairly recently, and
a comprehensive analysis of various similarity/distance

metrics in the context of FracMinHash is still missing.
In this paper, we present this theoretical analysis for a
class of similarity and distance metrics (which has been
estimated using FracMinHash sketches). Let a similar-
ity/distance measure between two non-empty sets A
and B be D (A,B) . Also, let D (A,B) be expressible as a
certain form (which we introduce later in the paper). In
this work, we show that there exists a scale factor s, for
which, the metric D (A,B) can be accurately measured
by D (FRACs(A),FRACs(B)) . We next show specific
instances of D (A,B) in the form of the cosine similarity,
the Bray-Curtis dissimilarity, the first Kulczynski meas-
ure, and the Sorensen index – and elaborate the required
theoretical conditions. We supplement our theoretical
findings with experimental evidence using simulations.
These experiments show that our theoretical analyses are
sound.

Apart from these theoretical results, our other
contribution presented in this paper is implementing a
fast, efficient, and parallel FracMinHash sketch generator
program, frac-kmc. Although FracMinHash sketches
can readily be generated using the software sourmash,
we found the program sourmash sketch to be
slow for very large samples. Furthermore, sourmash
processes the k-mers in an input file in a serialized
manner, and cannot parallelize the computation of a
FracMinHash sketch. Therefore, we developed frac-
kmc by modifying a k-mer-counter tool KMC [12, 13,
22]. To the best of our knowledge, frac-kmc is the
fastest FracMinHash sketch generator program. Our
results show that frac-kmc on a single thread is already
nearly 70% faster than sourmash sketch, and frac-
kmc can speed up FracMinHash sketch generation
even more by using multiple CPU cores, an option
lacking in sourmash. We used frac-kmc to compute

Table 1  Mathematical expressions for several similarity and
dissimilarity measures

Metric name Notation Expression

Jaccard similarity J(A, B) |A∩B|
|A∪B|

Containment index C(A, B) |A∩B|
|A|

Cosine similarity
(also known as Otsuka-Ochiai)

cos θ |A∩B|√
|A|·|B|

Kulczynski 1 K1(A, B) |A∩B|
|A�B|

Kulczynski 2 K2(A, B) 1
2

(

|A∩B|
|A| + |A∩B|

|B|

)

Whittaker distance W(A, B) 1− 1
2

(

|A∩B|
|A| + |A∩B|

|B|

)

Sorensen index S(A, B) 2
|A∩B|
|A|+|B|

Bray-Curtis dissimilarity BC(A, B) 1− 2
|A∩B|
|A|+|B|

Page 3 of 13Rahman Hera and Koslicki ﻿Algorithms for Molecular Biology (2025) 20:8 	

FracMinHash sketches and used the sketches to estimate
cosine similarity values on real data, and found accurate
and precise results. frac-kmc is freely available
here: github.com/KoslickiLab/frac-kmc. The analyses
presented in this paper can be reproduced using the code
https://​www.​github.​com/​Kosli​ckiLab/​fmh_​cosine_​repro​
ducib​les.

Preliminaries
We present the following preliminaries in their full
generality, using generic notation such as � , a universal
set. All theorems presented in Section Theoretical
Results also hold for any universal set. In the case of
sequence comparisons, the sets of interest, A and B are
sets of k-mers, in the universe � = {A,C ,G,T }k.

Family of strongly-universal hash functions We
define a range R = [1,H] as a set of integers from 1 to
H. Given a universe � and a range R , a hash function
h : � → R maps elements in � to the range R . In this
work, we consider H as a family of strongly 2-universal
(also known as 2-wise independent) hash functions1. A
hash family H is strongly 2-universal if for every ei, ej ∈ � ,
ei = ej , and for every r1, r2 ∈ R , the following holds

In simpler and more relaxed terms, if h is drawn
uniformly randomly from H , the following two hold:

1.	 Uniformity: for any fixed e ∈ � , h(e) is uniformly
distributed in R

2.	 Independence: given any two fixed distinct elements
ei, ej ∈ � , h(ei) and h(ej) can be construed as
independent random variates in R

FracMinHash sketching Given a hash function h
randomly drawn from H for some fixed H ∈ N where
H >> | � | , and given a fixed scale factor s where
0 ≤ s ≤ 1 , a FracMinHash sketch of a set A, where
A ⊆ � , is defined as follows:

The scale factor s is a tuneable parameter that can modify
the size of the sketch. If one sets s = 0 , then FRACs(A)

Pr
h∼H

[

h(ei) = r1 and h(ej) = r2

]

= 1

|R|2
.

(1)FRACs(A) =
{

h(a) | a ∈ A and h(a) ≤ Hs
}

.

results in an empty set; if one sets s = 1 , then FRACs(A)
contains all the elements of A (or, more precisely, their hash-
values). On the other hand, for a fixed s, if the set A grows
larger, the sketch FRACs(A) grows proportionally in size.

It is important to note that in practice, most FracMin-
Hash implementations (sourmash and frac-kmc) use
MurMurHash3 as the hash function. MurMurHash func-
tions do not have a guarantee of universality, let alone
strong universality. Yet, practical implementations yield
results conforming to the theory we develop here assum-
ing a strongly universal hash family.

Difference with sketching using permutations
Hash functions are frequently used to permute

elements in a set. The permutations can, in turn, be used
to compute a sample from a given set. Such sampling/
sketching techniques include MinHash [5], bottom-k
(top-k) sketching [11], and more recently introduced
Affirmative Sampling [27], which takes advantage of the
“hiring problem” [1] and various strategies used to solve
the hiring problem (hiring above a certain quantile/
rank) [15, 16].

To highlight the difference with such rank-based
sketching algorithms, we note that FRACs(A) is not
defined on the permutation of � achieved by applying h,
rather by using the hash-values themselves. This means
that acceptance of an element e in the sketch does not
depend on its rank, rather only on its hash value h(e)
(and, of course, the acceptance threshold Hs).

Similarity and distance measures between two sets
The degree of similarity and/or dissimilarity between
two sets can be measured using several metrics. These
metrics, or more precisely, similarity and dissimilarity
measures, have different uses and interpretations,
depending on the domain knowledge. Table 1 shows a
number of these metrics as well as the mathematical
expressions.

Chernoff bound for sum of Bernoulli random vari-
ables Recall the classic Chernoff bounds: Let Xi , i = 1, 2,
..., n be n independent Bernoulli random variables. If
X =

∑n
i=1 Xi and E[X] = µ , then the following holds for

0 < ǫ < 1 [29]:

Theoretical Results
Let D = D

(

A,B
)

 be a similarity/distance measure
between two sets A and B, and let
D

′ = D

(

FRACs(A),FRACs(B)
)

 be the same measure
between the sketches of A and B. Ideally, we want D ′
to be an unbiased estimator of D . Which is, we want

Pr

[

∣

∣

∣
X − µ

∣

∣

∣
≥ ǫ µ

]

≤ 2 exp
{

− ǫ2µ/3
}

.

1  Strictly speaking, for the form of the Chernoff bound we use in the fol-
lowing, a fully mutually independent family of hash functions would be
required, not just 2-wise independent. It is straightforward but not par-
ticularly illuminating to extend this hash family definition. Additionally, it
is well known that such Chernoff-Hoeffding bounds hold for k-wise inde-
pendent families for any k [37, Theorem 1], with small, but intricate con-
stant factor differences, and it is convention in the sketching literature to
use the “cleaner” Chernoff bounds we use below.

https://www.github.com/KoslickiLab/fmh_cosine_reproducibles
https://www.github.com/KoslickiLab/fmh_cosine_reproducibles

Page 4 of 13Rahman Hera and Koslicki ﻿Algorithms for Molecular Biology (2025) 20:8

E[D ′] = D . Previous works have shown how to obtain
unbiased estimators for the Jaccard index and the
containment index [18, 19]. We notice that the second
Kulczynski index and the Whittaker distance can be
expressed as linear combinations of the two
containment indices C(A, B) and C(B, A). Therefore, it
is easy to obtain unbiased estimators for the second
Kulczynski index and the Whittaker distance. These
estimators are listed in Table 2.

For the other metrics listed in Table 1, proving an
unbiased estimator is not mathematically tractable. For
these metrics, we attempt to prove that the following
holds with high probability:

for any arbitrarily small ǫ . In other words, the similarity/
distance measure between two FracMinHash sketches
approximates the similarity/distance measure between
the original sets. Unfortunately, this does not hold in all
cases. In this section, we present theoretical conditions
where Equation 2 holds (and where it breaks down) when
D is expressible to a certain mathematical form. For the
sake of continuity, all proofs of the theorems are included
in Section Methods.

Theorem 1  Let � = { ei }Ni=1 be a given set (universe),
and let A ⊆ � . Let FRACs(A) be the FracMinHash sketch
of A for a given s where 0 ≤ s ≤ 1 , and let the cardinality
of FRACs(A) be XA . The expected number of elements in
FRACs(A) is given by the following:

Proof  See Section Proofs of theorems. 	� �

Theorem 1 quantifies the expected number of elements
in FRACs(A) . We next show that the number of elements
in FRACs(A) is well concentrated around this expected
value.

(2)
∣

∣

∣
D

′ −D

∣

∣

∣
≤ ǫ D ,

(3)E
[

XA

]

= s |A|.

Theorem 2  Let � = { ei }Ni=1 be a given set (universe),
and let A ⊆ � . If FRACs(A) is the FracMinHash sketch of
A for a given s where 0 ≤ s ≤ 1 , and if the cardinality of
FRACs(A) is XA , then the following holds for any ǫ where
0 < ǫ < 1.

Proof  See Section Proofs of theorems. 	� �

We use the results in Theorems 1 and 2 to quantify the
error in estimating specific instances of D . We explicitly
show this for the cosine similarity in the next three sec-
tions: Sections Safety conditions to estimate cosine simi-
larity using FracMinHash, Recommended scale factor s
to safely estimate the cosine similarity189 using FracMin-
Hash, and Theoretical conditions for the other metrics.

Safety conditions to estimate cosine similarity using
FracMinHash
Given two sets A and B, we can use the expected cardinal-
ity of FRACs(A) , FRACs(B) and FRACs(A) ∩ FRACs(B)
to prove the following result.

Theorem 3  Let � = { ei }Ni=1 be a given set (universe),
and let A,B ⊆ � be two sets in the universe. Let the cosine
similarity of the sets A and B be cos θ , and that of the sets
FRACs(A) and FRACs(B) be cos θ ′ , where FRACs(A)
and FRACs(B) are the FracMinHash sketches of A and
B respectively for a given s where 0 ≤ s ≤ 1 . Then, there
exists a small ǫ where 0 < ǫ < 1 , such that the following
holds

with a probability of at least 1− 6 exp
{

− s | A ∩ B |
ǫ2/ [3(2+ ǫ)2]

}

.

(4)

Pr

[

∣

∣

∣
XA − s |A|

∣

∣

∣
≥ ǫ s |A|

]

≤ 2 exp
(

− s |A| ǫ2/3
)

.

(5)
∣

∣

∣
cos θ ′ − cos θ

∣

∣

∣
≤ ǫ cos θ

Table 2  Unbiased estimators for the Jaccard similarity, the containment index, the second Kulczynski index, and the Whittaker
distance, when using FracMinHash sketches instead of the original sets

Metric name Expression Unbiased estimator

Jaccard similarity J(A, B) = |A∩B|
|A∪B| Ĵ(A, B) = J

(

FRACs(A), FRACs(B)

)

× 1

1−(1−s)|A∪B|

Containment index C(A, B) = |A∩B|
|A| Ĉ(A, B) = C

(

FRACs(A), FRACs(B)

)

× 1

1−(1−s)|A|

Kulczynski 2
K2(A, B) = 1

2

(

|A∩B|
|A| + |A∩B|

|B|

)

K̂2(A, B) = 1
2

(

Ĉ(A, B)+ Ĉ(B, A)

)

Whittaker distance
W(A, B) = 1− 1

2

(

|A∩B|
|A| + |A∩B|

|B|

)

Ŵ(A, B) = 1− K̂2(A, B)

Page 5 of 13Rahman Hera and Koslicki ﻿Algorithms for Molecular Biology (2025) 20:8 	

Proof  See Section Proofs of theorems. 	� �

Theorem 3 indicates that the cosine similarity between
two sketched sets approximates the cosine similarity of
the original sets with approximation error being bounded
by the relative similarity of the original sets.

We note that when A and B are highly dissimilar and
the set A ∩ B is very small, the probability guarantee
becomes less meaningful and cannot be interpreted
as “high probability”. In such a case, FRACs(A) and
FRACs(B) will have nearly zero elements, and cos θ ′ will
be close to zero. This small cos θ ′ reflects the dissimilarity
of A and B, and estimating cosine seems reasonable. Nev-
ertheless, Theorem 3 cannot guarantee with high prob-
ability that two near-zero quantities ( cos θ ′ and cos θ ) are
sufficiently close to each other.

Recommended scale factor s to safely estimate the cosine
similarity using FracMinHash
We conclude our theoretical results for the cosine simi-
larity by suggesting a minimum scale factor that is safe to
use when estimating the cosine similarity using FracMin-
Hash sketches. The probability guarantee in Theorem 3
allows us to recommend a scale factor s for a desired
error rate ǫ and a desired level of confidence α , 0 ≤ α < 1 .
We define the desired confidence level α as the minimum
guarantee we wish to have on the tolerable error rate ǫ
such that cos θ ′ ∈ (1± ǫ) cos θ.

If we want to have a guarantee of at least α , 0 ≤ α < 1 ,
that the estimated cosine cos θ ′ will be in a 1± ǫ factor of
the true cosine cos θ where 0 ≤ ǫ < 1 , then we require a
scale factor s, such that

If we want a higher level of confidence, or if we want a
smaller window of error, we require a larger scale factor.
If A and B have a large number of common elements,
then a smaller s suffices. Since estimating cosine is

(6)s ≥
3(2+ ǫ)2 ln

[

6/(1− α)

]

ǫ2 min
{

|A|, |B|, | A ∩ B |
} .

reasonable for highly dissimilar pairs of sets, we found

that recommending a scale factor by using min
{

|A|, |B|
}

suffices for practical purposes. Therefore, we recommend
a scale factor as follows:

Theoretical conditions for the other metrics
We conclude the theoretical results section by
recognizing that similar theoretical conditions can be
derived for the other metrics in Table 1 (for which,
an unbiased estimator cannot be proven). These
theoretical conditions can be manipulated to obtain a
recommended minimum scale factor for each of these
metrics. For the sake of brevity, we show these conditions
in Table 3 instead of writing individual theorems such
as Theorem 3. For the entirety of Table 3, we use the
notation that XS = | FRACs(S) | for some set S.

Experimental Results

In this section, we present our experimental results. We
first show results supporting the theory we presented in
Section Theoretical Results. Then, we discuss a fast and
efficient program to compute FracMinHash sketches
from nucleotide sequences. We named this program
frac-kmc. Finally, we present the performance of
frac-kmc on real biological sequences. For the sake
of brevity, we only show results for the cosine similarity
and the Bray-Curtis dissimilarity in this section, although
we can obtain similar results for any of the similarity/
distance metrics listed in Table 3.

All results presented in this section have been gen-
erated on a server computer; having two AMD EPYC
7763 Processors. It has 128 physical cores, distributed
across two sockets, and supports SMT (two simulta-
neous threads per core); allowing for up to 256 logical
cores. The processor has 4 MiB L1 instruction caches

(7)s ≥
3(2+ ǫ)2 ln

[

6/(1− α)

]

ǫ2 min
{

|A|, |B|
} .

Table 3  Conditions when estimating the cosine similarity, the Bray-Curtis dissimilarity, the first Kulczynski measure, and the Sorensen
index (by using FracMinHash sketches) are theoretically sound. These are shown for 0 ≤ ǫ < 1.

Metric name Error bound Probability with which error is bounded

Cosine similarity
∣

∣

∣
cos θ ′ − cos θ

∣

∣

∣
≤ ǫ cos θ >= 1− 6e−s | A∩B | ǫ2/ [3(2+ǫ)2]

Kulczynski 1
∣

∣

∣
K1

′(A, B)− K1(A, B)

∣

∣

∣
≤ ǫ K1(A, B) >= 1− 4e−s min{|A∩B|,|A�B|} ǫ2/ [3(2+ǫ)2]

Sorensen index
∣

∣

∣
S
′(A, B)− S(A, B)

∣

∣

∣
≤ ǫ S(A, B) >= 1− 6e−s | A∩B | ǫ2/ [3(2+ǫ)2]

Bray-Curtis dissimilarity
∣

∣

∣
BC

′(A, B)− BC(A, B)

∣

∣

∣
≤ ǫ BC(A, B) >= 1− 6e−s | A∩B | ǫ2/ [3(2+ǫ)2]

Page 6 of 13Rahman Hera and Koslicki ﻿Algorithms for Molecular Biology (2025) 20:8

(128 instances), 4 MiB L1 data caches (128 instances), 64
MiB L2 caches (128 instances), and 512 MiB L3 caches
(16 instances). The processor can operate at a maximum
clock-speed of 3.53 GHz. The computer has 3.9 TiB of
main memory and has 60 TBs of SSD disk storage.

Our suggested scale factors are safer to estimate the cosine
similarity using FracMinHash sketches

We start by presenting what the scale factors
suggested by Equation 7 look like for various desired
levels of confidence α and tolerable error windows ǫ .
Table 4 shows various suggested scale factors when
min(m, n) = 10 K, and Table 5 shows suggested scale
factors when min(m, n) = 10 M. We notice that the
theory accounts for a larger number of elements in the
sets that are being compared against each other. With
only 10K elements, if we want the estimated cosine to be
within ± 7% (meaning ǫ = 0.07 ) of the original cosine,
then the theory suggests that we have to use a scale factor

of 1. In other words, there is no scope for sub-sampling at
this desired resolution. It is only at ǫ ≥ 0.08 that we can
get away with sub-sampling, although the recommended
scale factor is not very small to be drastically helpful in
reducing computational resources.

On the other hand, as documented in Table 5, we can
use a scale factor of roughly 0.0006 ∼ 0.0008 to allow
a 10% window for error when we have at least 10M
elements. If we want to be very accurate and only allow
1% error, we need to obtain FracMinHash sketches with
a scale factor of roughly 0.05 ∼ 0.08 . From Table 5, we
also notice that with a higher level of desired confidence
α , we need to employ larger scale factors; although the
effect a larger α has on the suggested scale factor is less
prominent than the effect of a smaller ǫ.

We next show the usefulness of using these
recommended scale factors, in contrast to a preset
value. The state-of-the-art program to compute and
analyze FracMinHash sketches is sourmash [6, 20],
which uses a default scale factor of 1/1000. As a result,
many studies that use sourmash use this default value,
even though the tool can work with other non-default
scale factors. We show that a preset scale factor may
result in an error higher than expected. In this set of
experiments, we simulated a universe of 1M elements.
We then randomly selected two sets A and B from this
universe. We varied the number of elements in these sets
from 100K to 500K. The actual elements were selected
randomly. We then calculated the true cosine of A and
B using all elements. After that, we used the preset scale
factor of 1/1000 to compute FracMinHash sketches of
A and B, and estimated the cosine using these sketches.
We also set the tolerable error rate ( ǫ ) at 5%, and desired
level of confidence ( α ) at 95%. We then computed
FracMinHash sketches of A and B using the scale factor
suggested by Equation 7, and used these sketches to
estimate the cosine. We then recorded if these estimated
cosine values fall in the range cos θ (1± 0.05) . We
repeated the experiment 1000 times for all sizes of A and
B. Table 6 shows the fraction of times the similarities
estimated using a fixed scale factor of 1/1000 fall within
±5% of the true cosine. Table 8 shows the fraction of
times the similarities estimated using the scale factor
recommended by Equation 7 fall within ±5% of the
true cosine. The list of suggested scale factors in these
scenarios is shown in Table 7.

These results show that 100% of times, the recom-
mended scale factor can estimate a cosine within the tol-
erable error range, whereas using a preset scale factor can
result in a larger error. Evidently, using the default scale
factor of 1/1000 may not be well-suited where a higher

Table 4  Suggested scale factors for various levels of desired
confidence and various tolerable rates of error, when
min(m, n) = 10000 . For only 10K elements, if the tolerable error
is up to 7%, we cannot but use all elements to get the desired
accuracy

Desired level of confidence, α

Tolerable Error, δ 0.91 0.93 0.95 0.97 0.99

0.01 1.0000 1.0000 1.0000 1.0000 1.0000

0.03 1.0000 1.0000 1.0000 1.0000 1.0000

0.05 1.0000 1.0000 1.0000 1.0000 1.0000

0.07 1.0000 1.0000 1.0000 1.0000 1.0000

0.09 0.6794 0.7201 0.7745 0.8572 1.0000

0.1 0.5556 0.5889 0.6334 0.7010 0.8463

Table 5  Suggested scale factors for various levels of desired
confidence and various tolerable rates of error, when
min(m, n) = 10000000 . For 10M elements, we can use a small
fraction of the elements to get the desired accuracy when
estimating the cosine similarity

Desired level of confidence, α

Tolerable Error, δ 0.91 0.93 0.95 0.97 0.99

0.01 0.0509 0.0539 0.0580 0.0642 0.0775

0.03 0.0058 0.0061 0.0066 0.0073 0.0088

0.05 0.0021 0.0022 0.0024 0.0027 0.0032

0.07 0.0011 0.0012 0.0013 0.0014 0.0017

0.09 0.0007 0.0007 0.0008 0.0009 0.0010

0.1 0.0006 0.0006 0.0006 0.0007 0.0008

Page 7 of 13Rahman Hera and Koslicki ﻿Algorithms for Molecular Biology (2025) 20:8 	

resolution around the true value is required but the input
sets are not sufficiently large.

frac‑kmc computes FracMinHash sketches faster
After establishing the conditions when FracMinHash
sketches can be safely used to estimate the cosine simi-
larity, we next wanted to use FracMinHash sketches
on real biological sequences. Ideally, we wanted to
show that by using FracMinHash sketches, we can
compute the pairwise similarity matrix for a num-
ber of sequences faster than tools that use all k-mers.
The fastest tool that can compute pairwise similarity/

distance matrix from a list of sequences is currently
Simka [2], whereas the state-of-the-art tool to com-
pute FracMinHash sketches is sourmash [6, 33]. Nat-
urally, we tried to use sourmash to first compute
FracMinHash sketches, and later compare the sketches
to obtain a pairwise similarity matrix. Unfortunately,
we found that the command that computes FracMin-
Hash sketches (called sourmash sketch) is many
times slower than Simka. We noted that this is because
sourmash treats input sequence files in a serialized
manner, where there is scope for parallelism over mul-
tiple threads to make the processing faster.

Therefore, for practical purposes, we decided to
write a new FracMinHash sketch generator program by
modifying a fast and efficient k-mer-counter KMC [22].
When KMC merges its k-mer bins, frac-kmc filters
the k-mers and keeps only those that are below the
acceptance threshold Hs, discarding others. Details of
frac-kmc are included in Section Implementation
of frac-kmc. We used gcc version 11.4.0 to compile
frac-kmc and generate the following results.

Figure 1 shows a running time comparison for the
commands sourmash sketch and frac-kmc
sketch on files of different sizes. The files are fastq.
gz files. These files were randomly selected from the
Human Microbiome Project [32]. We verified that
sketches produced by the two programs are identical by
running sourmash compare. The comparison shows

Table 6  Fraction of times the estimated cosine falls within
±5% of the true cosine of A and B, for different sizes of A and B.
The similarities were estimated using a scale factor of 1/1000,
which is the default in sourmash. In a large fraction of times,
the estimated cosine is not within ±5% of the true cosine

Num.
elements in B

Num. elements in A

100K 200K 300K 400K 500K

100K 0.09 0.20 0.25 0.32 0.38

200K 0.17 0.29 0.55 0.47 0.51

300K 0.28 0.40 0.54 0.58 0.57

400K 0.32 0.45 0.61 0.71 0.74

500K 0.45 0.42 0.73 0.66 0.83

Table 7  Suggested scale factors for various min(|A|, |B|) , as
calculated by Equation 7. α = 0.95 , δ = 0.05 was used

min(|A|, |B|) 100K 200K 300K 400K 500K

Suggested scale factor 0.2414 0.1207 0.0805 0.0604 0.0483

Table 8  Fraction of times the estimated cosine falls within ±5%
of the true cosine of A and B, for different sizes of A and B. The
similarities were estimated using the scale factor suggested
by Equation 7. In almost all instances, the recommended scale
factor can estimate the similarity so that the estimated value is
within ±5% of the true similarity

 Num.
elements in B

Num. elements in A

100K 200K 300K 400K 500K

100K 0.99 1.0 1.0 1.0 1.0

200K 1.0 1.0 1.0 1.0 1.0

300K 1.0 1.0 1.0 1.0 1.0

400K 1.0 1.0 1.0 1.0 1.0

500K 1.0 1.0 1.0 1.0 1.0

Fig. 1  Wall-clock time required by the commands mash sketch,
sourmash sketch and frac-kmc-sketch to compute
a sketch. The input files are fastq.gz files containing metagenome
samples taken from the human gut. MinHash sketches of 1000
was computed, and FracMinHash sketch with scale factors s = 0.001
was computed. When using 32 threads, frac-kmc finishes roughly
10 times faster than sourmash, and roughly 6.7 times faster
than Mash. When running on a single thread, frac-kmc runs
up to 70% faster than sourmash. On small inputs, frac-kmc runs
roughly 20% slower than Mash, but runs roughly 15% faster for files
larger than 5 GB

Page 8 of 13Rahman Hera and Koslicki ﻿Algorithms for Molecular Biology (2025) 20:8

that frac-kmc consistently runs about 10 times faster
than sourmash to sketch input files when run on 32
threads. When run on a single thread, frac-kmc runs
roughly 30% faster on files of size 1 GB, and roughly
70% faster on files of size 5 GB. For this set of analyses,
we used the latest version of sourmash: 4.8.8, as of
1 May 2024. Both tools were run to not keep track of
abundances of k-mers. We ran the programs to compute
sketches for k = 21 and scale factor s = 1/1000 . We
tested with other values of k and s and saw similar results.

Figure 1 also shows the average running time to com-
pute MinHash sketches (sketch size = 1000 hashes) from
the same files using Mash (version 2.0). On a single thread
frac-kmc runs roughly 20% slower than Mash on files of
size 1 GB, but runs roughly 15% faster for files larger than
5 GB. It is important to highlight that neither of Mash
and sourmash is a parallel tool: neither of these two can
run on multiple CPU-cores to speed up sketch generation
from a single input file. Therefore, computing sketch from
a very large file would take a long time if we use Mash or
sourmash, which can be sped up if we use frac-kmc.

frac‑kmc estimates cosine similarity accurately
We next show that by using FracMinHash sketches com-
puted by frac-kmc, we can estimate metrics faster
than Simka [2] (which uses all k-mers to operate), and
more accurately than Mash [31] (which uses fixed size
MinHash sketches). For this set of experiments, we used
two datasets: the Ecoli dataset contains 3682 E.coli
genome assemblies, and the HMP dataset contains

300 metagenome samples randomly collected from the
human gut, taken from the Human Microbiome Pro-
ject [32]. We ran Simka, Mash, and frac-kmc on these
datasets to compute the pairwise cosine similarity matrix
and the pairwise Bray-Curtis dissimilarity matrix. We ran
Simka and Mash by using a k-mer size of 21. We ran
Mash to compute sketches of size 10K, and kept other
settings at their default values. We used a scale factor
s = 0.001 for the same k-mer size to compute FracMin-
Hash sketches using frac-kmc. Details of the datasets,
how the programs were run, and how the metrics were
computed are elaborated in Section Generating results in
Section 4.

Before presenting the results, it is important to
note that these two datasets only allow genome-
versus-genome and metagenome-versus-metagenome
comparisons, but not genome-versus-metagenome
comparisons. This is because MinHash sketches are
shown to perform poorly when sets of very dissimilar
sizes are compared, and therefore, for genome-versus-
metagenome comparisons, MinHash sketches would
naturally perform poorly, as shown previously [18].
Consequently, we only show comparisons among sets of
similar sizes and use these two datasets.

Figure 2 shows the total wall-clock time required to
run Simka, Mash, and frac-kmc to estimate the cosine
similarity and the Bray-Curtis dissimilarity for 25-125
randomly selected samples. We found that as the num-
ber of samples reaches roughly 125, Simka does not
exit even after letting it run for more than 48 hours. In

Fig. 2  Running time and accuracy of the tools on Ecoli and HMP datasets. A and E show the total wall-clock time to run the tools for 25-125
randomly selected samples (Simka did not exit after > 48 hours). B and F show the distributions of the percentage errors when estimating
cosine and Bray-Curtis, respectively, for 100 samples (ground truth was computed using Simka). C and D show estimated vs. true cosine
values for the two datasets (100 samples), and G and H show the same plots for the Bray-Curtis dissimilarity. The plots show that frac-kmc
is about 40-50% slower, but is comparatively more accurate in estimating the metrics

Page 9 of 13Rahman Hera and Koslicki ﻿Algorithms for Molecular Biology (2025) 20:8 	

addition to these extremes, we found that Simka oper-
ates by creating many SimkaCount and SimkaMerge
processes, which are not spawned as descendants of the
mother Simka process. Therefore, we found no good
way to measure the CPU time/memory consumed by
Simka, and are not including CPU time/memory for
these smaller runs. Figure 2 also shows the accuracy of
Mash and frac-kmc in estimating the metrics for the
100 samples in the form of the distributions of errors (B,
F), and in the form of true-vs-estimated values (C, D, G,
and H). The ground truth, in these cases, was the out-
put of Simka. These results show that frac-kmc runs
40-50% slower compared to Mash, and offers a great
improvement in accuracy.

As shown in Figure 2, Simka does not scale beyond
about 100 samples. We next investigate how Mash and
frac-kmc scale for a larger number of samples. The
resources used by these two tools are shown in Fig-
ure 3. The bars that show CPU time and wall-clock time
are split into two parts: the bottom part shows the time
required to only compute the sketches, and the top part
shows the time to load the sketches into memory and
estimate the metrics. For the Ecoli dataset where each
sample is a relatively small genome, both MinHash and
FracMinHash sketches are relatively small, and therefore,
the wall-clock time and memory footprint are similar.

The majority of the time, for both tools, is spent in com-
puting the metrics, as there are a large number of pairs.
We note here that Mash stores the sketches (for all the
input samples) in a single binary file. To get individual
sketches from this single file, we need to perform a mash
dump program, which is the reason Mash is slightly
slower than frac-kmc for the Ecoli dataset.

On the other hand, for the HMP dataset, the
FracMinHash sketches computed by frac-kmc are
much larger than MinHash sketches computed by
Mash. As a result, frac-kmc runs about 2-2.1x slower
than Mash. As frac-kmc produces larger sketches,
the memory usage is also about 10GBs, compared to
only 100MBs for Mash. These higher running time
and memory usage allows frac-kmc to facilitate very
accurate results, as shown in Figure 2B and F.

Methods
Implementation of frac‑kmc
The core motivation behind implementing frac-kmc
was that sourmash sketch dna was very slow
for larger files. Therefore, we decided to use a fast and
efficient k-mer-counting program. There are many k
-mer-counters available in the literature, namely jel-
lyfish [28], DSK [36], KMC [22] etc. We decided to use
KMC since its source code was easy to understand and

Fig. 3  Computational resources consumed by Mash and frac-kmc when estimating metrics for a large number of samples. A, B, and C show
the CPU time, wall-clock time, and peak memory usage for 1000-3682 samples in the Ecoli dataset. D, E, and F show the same plots for the HMP
dataset, varying the number of samples from 100 to 300. Both tools were run using 128 threads. The bars in A, B, D, and E are split into two parts:
the bottom part shows the time to compute the sketches only, and the top part shows the time to compute the metric from the sketches. Using
frac-kmc is up to 18% faster and the memory usage is similar in the Ecoli dataset, where the samples are smaller genomes. On the other hand,
frac-kmc runs about 2-2.1x slower in the HMP dataset (the samples are large metagenomes), and roughly uses 100x more memory than Mash.
These heavier resource usages of frac-kmc allow for the highly accurate results shown in Figure 2

Page 10 of 13Rahman Hera and Koslicki ﻿Algorithms for Molecular Biology (2025) 20:8

navigate. Instead of running KMC and iterating through all
k-mers in KMC’s output, we decided to modify the source
code so that only the k-mers in the sketch were retained
in the output. This made the entire program many times
faster since typical scale factors used to compute Frac-
MinHash sketches are very small. Therefore, we imple-
mented the 64-bit MurMurHash function in C++ within
the source code of KMC, and made the necessary changes
so that instead of keeping track of all the k-mers, the pro-
gram now kept track of only the k-mers whose hash value
fell below the cut-off threshold. As a result, the succinct
k-mer-database constructed by this modified KMC now
contained only the relevant k-mers. Finally, we modified
the program kmc dump so that instead of writing all the
k-mers in an output file, it now wrote the 64-bit Mur-
MurHash values for the kmers in a sorted list – which is
the output format of sourmash sketch. We named
this program frac-kmc. After generating sketches from
the same file using frac-kmc and sourmash, we used
sourmash compare to confirm that the sketches are
identical.

Generating results in Section Experimental Results
Datasets
The datasets we used are:

1.	 Ecoli We collected all 3682 E. coli genome assemblies
in NCBI.

2.	 HMP We collected whole genome shotgun
sequences from the Human Microbiome Project [32].
We randomly selected 300 gzipped fastq files
corresponding to samples collected from the human
gut.

The metagenome samples in the HMP dataset have an
average file size of 1.88 GB and a median file size of 1.72
GB. The smallest file size is 58 MB, and the largest file
size is 5.5 GB. This dataset works as a stress test for all
the tools, where the input files are very large, reflecting
real-life metagenome data; although the number of total
samples is manageable. On the other hand, the Ecoli
dataset challenges all the tools because the number
of samples is very large (there are roughly 67 million
pairs), although every individual file is quite small and
easy to process.

Running Simka, Mash, and frac‑kmc
We ran Simka, Mash, and frac-kmc on the Ecoli
and the HMP dataset, to produce the pairwise
cosine similarity matrix and the pairwise Bray-Curtis
dissimilarity matrix. Simka readily produces several
similarity and dissimilarity metrics when invoked on a
list of input files. However, it does not produce cosine

similarity. Therefore, we took the Chord distances
generated by Simka and converted them to cosine
similarities.

We used Mash and frac-kmc to compute MinHash
and FracMinHash sketches of the input files, respec-
tively. We then used a parallelized program to read all the
sketches and compute cosine and Bray-Curtis using the
sketches. We ran Mash to generate MinHash sketches of
size 10,000, which is 10x the default value. The minimum
number of k-mers in all files we used was roughly 4.8
million. In such a case, the minimum scale factor sug-
gested by Equation 7 is 0.0005 (using ǫ = 10%,α = 0.95 ).
Therefore, we simply used the sourmash default value,
1/1000 to generate the FracMinHash sketches when run-
ning frac-kmc. All three tools were run on 128 cores
of the same machine, including the multi-threaded
code segment that reads MinHash and FracMinHash
sketches, computes pairwise cosine similarity values, and
writes them into an output file. When we invoked Mash,
we provided Mash with all files at once using a file list,
and used the option-p to use 128 threads. When run-
ning frac-kmc, we did not use a file list, but spawned a
different frac-kmc process for every input file.

Proofs of theorems

Theorem 1  Let � = { ei }Ni=1 be a given set (universe),
and let A ⊆ � . Let FRACs(A) be the FracMinHash sketch
of A for a given s where 0 ≤ s ≤ 1 , and let the cardinality
of FRACs(A) be XA . The expected number of elements in
FRACs(A) is given by the following:

Proof  Let Ii be an indicator variable as follows:

for all i such that ei ∈ A . Using the uniformity property
of the hash family we consider in this work and taking
expectations over this hash family, E[Ii] = Pr[Ii = 1] = s.

Using these facts, we have the following:

	� �

Theorem 2  Let � = { ei }Ni=1 be a given set (universe),
and let A ⊆ � . If FRACs(A) is the FracMinHash sketch of
A for a given s where 0 ≤ s ≤ 1 , and if the cardinality of

E
[

XA

]

= s |A|.

Ii(ei) =
{

1 if ei ∈ FRACs(A)
0 otherwise

E[XA] =
∑

i:ei∈A
E[Ii] =

∑

i:ei∈A
s = s |A|.

Page 11 of 13Rahman Hera and Koslicki ﻿Algorithms for Molecular Biology (2025) 20:8 	

FRACs(A) is XA , then the following holds for any ǫ where
0 < ǫ < 1.

Proof  Using the same indicator Ii used in the proof of
Theorem 1, we note the following:

Pr

[

∣

∣

∣
XA − s |A|

∣

∣

∣
≥ ǫ s |A|

]

≤ 2 exp
(

− s |A| ǫ2/3
)

.

XA =
∑

i:ei∈A
Ii .

The probability with which these three results hold are at
least 1− 2e−s|A|ǫ2/3 , 1− 2e−s|B|ǫ2/3 , and 1− 2e−s|A∩B|ǫ2/3 ,
respectively, for 0 ≤ ǫ < 1.

By dividing Equation 10 by the square root of
Equation 8 and Equation 9, we have the following:

The probability with which this expression holds is at
least 1− 2e−s|A|ǫ2/3 − 2e−s|B|ǫ2/3 − 2e−s|A∩B|ǫ2/3 , which
can be obtained by taking a union bound on the prob-
abilities associated with Equations 8 through 10.

We next note that if 1+ǫ
1−ǫ

= 1+ δ , then ǫ = δ
2+δ

 . Also, if
1−ǫ
1+ǫ

= 1− δ , then ǫ = δ
2−δ

 . To facilitate the stricter con-
dition, we use the smaller value of ǫ given a δ , which is
δ

2+δ
 . Therefore, we argue that the following holds:

with a probability of at least 1− 2e
−s|A|ǫ2/3

−2e
−s|B|ǫ2/3 − 2e

−s|A∩B|ǫ2/3 , where ǫ = δ
2+δ

 . Using the
fact that min

{

|A|, |B|, |A ∩ B|
}

= |A ∩ B| completes the

proof. 	 � �

Discussions
Conclusions
Sketching-based methods allow practitioners to
lower computational resource usage many-fold while
keeping the accuracy reasonably well. In this paper, we
analyzed such a sketching technique, FracMinHash, in
estimating an array of similarity and distance metrics.
We analyzed the conditions when it is theoretically
sound to use FracMinHash and estimate these metrics,
and suggested a minimum scale factor that is safe to
use. We also presented a fast FracMinHash sketch
generator tool frac-kmc and benchmarked its
running time against Simka and Mash. We found that
when a huge number of small samples are compared,
using frac-kmc is nearly as fast as Mash in wall-clock
time. When a number of larger samples are compared,

(9)(1− ǫ) s |B| ≤ XB ≤ (1+ ǫ) s |B| , and

(10)
(1− ǫ) s |A ∩ B| ≤ XA∩B ≤ (1+ ǫ) s |A ∩ B| .

1− ∈
1+ ∈

|A ∩ B|√
|A| × |B| ≤

XA∩B√
XA XB

≤ 1+ ∈
1− ∈

|A ∩ B|√
|A| × |B| ⇒

1− ∈
1+ ∈ cos θ ≤ cos θ ′ ≤ 1+ ∈

1− ∈ cos θ

(1− δ) cos θ ≤ cos θ ′ ≤ (1+ δ) cos θ ,

Using the independence property of the hash family, we
note that all Ii are independent. Therefore, XA is simply
a sum of independent Bernoulli random variables. This
allows for the use of the Chernoff concentration inequal-
ity (introduced in Section Preliminaries) for

∑

i:ei∈A Ii ,
which completes the proof. 	� �

Theorem 3  Let � = { ei }Ni=1 be a given set (universe),
and let A,B ⊆ � be two sets in the universe. Let the cosine
similarity of the sets A and B be cos θ , and that of the sets
FRACs(A) and FRACs(B) be cos θ ′ , where FRACs(A)
and FRACs(B) are the FracMinHash sketches of A and B
respectively for a given s where 0 ≤ s ≤ 1 Then, there exists
an ǫ where 0 < ǫ < 1 , such that the following holds.

with a probability of at least 1− 6 exp
{

− s | A ∩ B |
ǫ2/ [3(2+ ǫ)2]

}

.

Proof  As cos θ ′ is estimated using FRACs(A) and
FRACs(B) , we have the following.

For notational simplicity, let XS be the cardinality of the
set FRACs(S) . Therefore, we have the following.

By applying the results in Theorem 2 for the sets A, B,
and A ∩ B , we have the following results:

∣

∣

∣
cos θ ′ − cos θ

∣

∣

∣
≤ ǫ cos θ

cos θ ′ = |FRACs(A) ∩ FRACs(A)|√
|FRACs(A)| × |FRACs(B)|

cos θ ′ = XA∩B√
XA XB

(8)(1− ǫ) s |A| ≤ XA ≤ (1+ ǫ) s |A| ,

Page 12 of 13Rahman Hera and Koslicki ﻿Algorithms for Molecular Biology (2025) 20:8

using frac-kmc requires more time, although the
results produced by frac-kmc are more accurate
and precise. Our analyses show that when very large
sequence files need to be sketched using FracMinHash,
using frac-kmc can be especially useful.

Further improvements
From a theoretical point of view, we can next study
the behavior of other metrics that cannot be expressed
as ratio of sizes of sets A, B, A ∩ B , etc. Examples of
such metrics are the Chord distance, the Hellinger
distance, and the Jensen-Shannon distance. Although
these metrics do not follow an agreeable mathematical
form, experiments as well as the law of large numbers
suggest that for these, too, we can prove nice asymp-
totic behaviors. From an implementation perspective:
the programs we used may be improved and extended
in several ways: the code we used to read in MinHash
and FracMinHash sketches (generated by Mash and
frac-kmc) is written completely in Python, without a
particular focus on optimization. A well-written C++
implementation may improve things further. The imple-
mentation of MurMurHash64 in frac-kmc makes use
of C++ optimizations, although we did not explore if
they can be improved further. frac-kmc currently
does not support protein k-mers (which sourmash
does). Instead of using an exact k-mer-counter, other
approximation-based inexact k-mer-counter program
may be explored. And finally, sketches of minimizers
(instead of all k-mers) may be employed to investigate
even more aggressive downsampling.

Acknowledgements
We want to thank Marek Kokot and Sebastian Deorowicz for providing us with
directions to navigate through the source code of KMC.

Author contributions
MRH and DK derived all theoretical analyses. MRH coded all experiments
and created all plots and tables. MRH prepared the manuscript. MRH and DK
curated and revised the manuscript.

Funding
The work was supported by NIH grant R01GM146462.

Data availability
No datasets were generated or analysed during the current study.

Declarations

Competing interests
The authors declare no competing interests.

Received: 25 October 2024 Accepted: 30 March 2025

References
	1.	 Archibald Margaret, Martínez Conrado, The hiring problem and permuta-

tions. Discrete Mathematics & Theoretical Computer Science, (Proceedings),
2009; Hagenberg, Austria.

	2.	 Benoit Gaëtan, Peterlongo Pierre, Mariadassou Mahendra, Drezen Erwan,
Schbath Sophie, Lavenier Dominique, Lemaitre Claire. Multiple compara-
tive metagenomics using multiset k-mer counting. PeerJ Comput Sci.
2016;2: e94.

	3.	 Antonio Blanca, Harris Robert S, David Koslicki. Medvedev Paul The sta-
tistics of K-mers from a sequence undergoing a simple mutation process
without spurious matches. J Comput Biol. 2022;29(2):155–68.

	4.	 Bocianowski Jan, Niemann Janetta, Jagieniak Anna, Szwarc Justyna. Com-
parison of six measures of genetic similarity of interspecific brassicaceae
hybrids f2 generation and their parental forms estimated on the basis of
issr markers. Genes. 2024;15(9):1114.

	5.	 Broder Andrei Z, On the resemblance and containment of documents.
In Proceedings. Compression and Complexity of SEQUENCES 1997 (Cat. No.
97TB100171), 1997; Salerno, Italy; 21–29. IEEE.

	6.	 Titus Brown C, Luiz Irber. sourmash: a library for minhash sketching of
DNA. J Open Source Soft. 2016;1(5):27.

	7.	 Stanley Cai, Georgakilas Georgios K, Johnson John L, Golnaz Vahedi. A
cosine similarity-based method to infer variability of chromatin acces-
sibility at the single-cell level. Front Gen. 2018;9:319.

	8.	 Illyoung Choi, Ponsero Alise J. Libra: scalable k-mer-based tool for massive
all-vs-all metagenome comparisons. GigaScience. 2019;8(2):165.

	9.	 Chung Dahye, Zhang Kaiyuan, Yang Jihoon. Method for identifying
cancer-related genes using gene similarity-based collaborative filtering. J
Comput Biol. 2019;26(8):875–81.

	10.	 Robert Clarke K, Somerfield Paul J, Gee Chapman M. On resemblance
measures for ecological studies, including taxonomic dissimilarities and
a zero-adjusted bray-curtis coefficient for denuded assemblages. J Exp
Marine Biol Ecol. 2006;330(1):55–80.

	11.	 Cohen Edith, Kaplan Haim, Summarizing data using bottom-k sketches.
In Proceedings of the twenty-sixth annual ACM symposium on Principles of
distributed computing, 2007; Portland, Oregon, USA; p. 225–234.

	12.	 Deorowicz Sebastian, Debudaj-Grabysz Agnieszka, Grabowski Szymon.
Disk-based k-mer counting on a pc. BMC Bioinformatics. 2013;14:1–12.

	13.	 Deorowicz Sebastian, Kokot Marek, Grabowski Szymon, Debudaj-Grabysz
Agnieszka. Kmc 2: fast and resource-frugal k-mer counting. Bioinformat-
ics. 2015;31(10):1569–76.

	14.	 EL ALOUANI Daoud, KOUZRITE Mustafa, Molecular and chemotaxonomic
comparative study (based on jaccard’s and kulczynski’s coefficients) of
the genus saccharomonospora. 2023.

	15.	 Ahmed Helmi, Conrado Martínez, Alois Panholzer. Hiring above the
m-th best candidate: a generalization of records in permutations. Cham:
Springer; 2012.

	16.	 Helmi Ahmed, Panholzer Alois. Analysis of the “hiring above the median’’
selection strategy for the hiring problem. Algorithmica. 2013;66:762–803.

	17.	 Hera Mahmudur Rahman, Liu Shaopeng, Wei Wei, Rodriguez Judith S,
Ma Chunyu, Koslicki David, Fast, lightweight, and accurate metagenomic
functional profiling using fracminhash sketches. bioRxiv, 2023;2023–11.

	18.	 Rahman Hera Mahmudur, Tessa Pierce-Ward N, David Koslicki. Deriving
confidence intervals for mutation rates across a wide range of evolution-
ary distances using fracminhash. Gen Res. 2023;33(7):1061–8.

	19.	 Irber Luiz, Brooks Phillip T, Reiter Taylor, Pierce-Ward N Tessa, Hera Mah-
mudur Rahman, Koslicki David, Brown C Titus, Lightweight compositional
analysis of metagenomes with fracminhash and minimum metagenome
covers. BioRxiv, 2022;2022–01.

	20.	 Luiz Irber, Tessa Pierce-Ward N, Mohamed Abuelanin, Harriet Alexander,
Abhishek Anant, Keya Barve, Colton Baumler, Olga Botvinnik, Phillip
Brooks, Daniel Dsouza, et al. sourmash v4: A multitool to quickly search,
compare, and analyze genomic and metagenomic data sets. J Source
Soft. 2024;9(98):6830.

	21.	 Jain Chirag, Rodriguez-R Luis M, Phillippy Adam M, Konstantinidis
Konstantinos T, Srinivas Aluru. High throughput ani analysis of 90k
prokaryotic genomes reveals clear species boundaries. Nat Commun.
2018;9(1):5114.

	22.	 Kokot Marek, Długosz Maciej, Deorowicz Sebastian. Kmc 3: counting and
manipulating k-mer statistics. Bioinformatics. 2017;33(17):2759–61.

Page 13 of 13Rahman Hera and Koslicki ﻿Algorithms for Molecular Biology (2025) 20:8 	

	23.	 Koslicki David, Zabeti Hooman. Improving minhash via the containment
index with applications to metagenomic analysis. Appl Mathemat Com-
put. 2019;354:206–15.

	24.	 Li Xiaoyun, Li Ping, C-minhash: Improving minwise hashing with circulant
permutation. 2022.

	25.	 Shaopeng Liu, David Koslicki. mash: fast, multi-resolution estima-
tion of k-mer-based jaccard and containment indices. Bioinformatics.
2022;38(1):8-i35.

	26.	 Lumbroso Jérémie, Martínez Conrado, Affirmative sampling: theory and
applications. In 33rd International Conference on Probabilistic, Combina-
torial and Asymptotic Methods for the Analysis of Algorithms (AofA 2022).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

	27.	 Lumbroso Jérémie, Martínez Conrado, Affirmative sampling: theory and
applications. In 33rd International Conference on Probabilistic, Combina-
torial and Asymptotic Methods for the Analysis of Algorithms (AofA 2022).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

	28.	 Marçais Guillaume, Kingsford Carl. A fast, lock-free approach for
efficient parallel counting of occurrences of k-mers. Bioinformatics.
2011;27(6):764–70.

	29.	 Michael Mitzenmacher, Eli Upfal. Probability and computing: Randomi-
zation and probabilistic techniques in algorithms and data analysis.
Cambridge: Cambridge University Press; 2017.

	30.	 high-throughput sequence containment estimation for genome dis-
covery. Brian D Ondov, Gabriel J Starrett, Anna Sappington, Aleksandra
Kostic, Sergey Koren, Christopher B Buck, and Adam M Phillippy. Mash
screen. Genome Bio. 2019;20:1–13.

	31.	 Ondov Brian D, Treangen Todd J, Melsted Páll, Mallonee Adam B, Berg-
man Nicholas H, Koren Sergey, Phillippy Adam M. Mash: fast genome and
metagenome distance estimation using minhash. Gen Biol. 2016;7:1–14.

	32.	 Jane Peterson, Susan Garges, Maria Giovanni, Pamela McInnes, Wang
Lu, Schloss Jeffery A, Vivien Bonazzi, McEwen Jean E, Wetterstrand Kris
A, Carolyn Deal, et al. The nih human microbiome project. Genome Res.
2009;19(12):2317–23.

	33.	 Pierce N Tessa, Irber Luiz, Reiter Taylor, Brooks Phillip, Brown C Titus, Large-
scale sequence comparisons with sourmash. F1000Research, 2019;8.

	34.	 Someswara Rao Chinta, Viswanadha Raju S. Similarity analysis between
chromosomes of homo sapiens and monkeys with correlation coeffi-
cient, rank correlation coefficient and cosine similarity measures. Genom-
ics data. 2016;7:202–9.

	35.	 Ricotta Carlo, Podani Janos. On some properties of the bray-curtis dis-
similarity and their ecological meaning. Ecol Compl. 2017;31:201–5.

	36.	 Rizk Guillaume, Lavenier Dominique, Chikhi Rayan. Dsk: k-mer counting
with very low memory usage. Bioinformatics. 2013;29(5):652–3.

	37.	 Schmidt Jeanette P, Alan Siegel, Aravind Srinivasan. Chernoff-hoeffding
bounds for applications with limited independence. SIAM J Disc Math-
ematics. 1995;8(2):223–50.

	38.	 Ekta Shah, Pradipta Maji. hypercuboid Rough, modified kulczynski coef-
ficient for disease gene identification. Cham: Springer; 2017.

	39.	 Jim Shaw and Yun William Yu. Fast and robust metagenomic sequence
comparison through sparse chaining with skani. Nature Methods.
2023;20(11):1661–5.

	40.	 Anshumali Shrivastava, Ping Li. In defense of Minhash Over Simhash. Artif
Intell Stat. 2014;886:94.

	41.	 Juanying Xie, Wang Mingzhao Xu, Shengquan Huang Zhao, Grant Philip
W. The unsupervised feature selection algorithms based on standard
deviation and cosine similarity for genomic data analysis. Front Gen.
2021;12: 684100.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

	Estimating similarity and distance using FracMinHash
	Abstract
	Motivation
	Theoretical contributions
	Practical contributions

	Introduction
	Preliminaries
	Theoretical Results
	Safety conditions to estimate cosine similarity using FracMinHash
	Recommended scale factor s to safely estimate the cosine similarity using FracMinHash
	Theoretical conditions for the other metrics

	Experimental Results
	Our suggested scale factors are safer to estimate the cosine similarity using FracMinHash sketches
	frac-kmc computes FracMinHash sketches faster
	frac-kmc estimates cosine similarity accurately

	Methods
	Implementation of frac-kmc
	Generating results in Section Experimental Results
	Datasets
	Running Simka, Mash, and frac-kmc

	Proofs of theorems

	Discussions
	Conclusions
	Further improvements

	Acknowledgements
	References

