
Jennings‑Shaffer et al.
Algorithms for Molecular Biology (2025) 20:2
https://doi.org/10.1186/s13015‑025‑00273‑x

RESEARCH Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Algorithms for
Molecular Biology

Finding high posterior density phylogenies
by systematically extending a directed acyclic
graph
Chris Jennings‑Shaffer1, David H. Rich1, Matthew Macaulay2, Michael D. Karcher3, Tanvi Ganapathy1,
Shosuke Kiami1, Anna Kooperberg1, Cheng Zhang4, Marc A. Suchard5,6,7 and Frederick A. Matsen IV1,8,9,10*

Abstract

Bayesian phylogenetics typically estimates a posterior distribution, or aspects thereof, using Markov chain Monte
Carlo methods. These methods integrate over tree space by applying local rearrangements to move a tree through its
space as a random walk. Previous work explored the possibility of replacing this random walk with a systematic
search, but was quickly overwhelmed by the large number of probable trees in the posterior distribution. In this
paper we develop methods to sidestep this problem using a recently introduced structure called the subsplit directed
acyclic graph (sDAG). This structure can represent many trees at once, and local rearrangements of trees translate
to methods of enlarging the sDAG. Here we propose two methods of introducing, ranking, and selecting local rear‑
rangements on sDAGs to produce a collection of trees with high posterior density. One of these methods successfully
recovers the set of high posterior density trees across a range of data sets. However, we find that a simpler strategy
of aggregating trees into an sDAG in fact is computationally faster and returns a higher fraction of probable trees.

Introduction
Despite decades of work, Bayesian phylogenetics remains
a computationally challenging problem. Existing methods
are based on the Markov chain Monte Carlo (MCMC)
algorithm. These methods begin with a tree, which may
be random or generated by another method (e.g., parsi-
mony), and propose random modifications to the tree. A
random modification is accepted with probability pro-
portional to the Metropolis-Hastings ratio of the new
tree and current tree, which biases the chain towards
trees with higher likelihood and prior probability. We use
the term topology for the graph theoretic tree structure
and tree for a topology with branch lengths. Because the
high-confidence region of topologies is a tiny subspace of
a space of super-exponential size, most of these random
modifications will result in a significantly worse tree, and
thus substantial modifications are overwhelmingly dis-
carded. This leads to low acceptance rates, which may
reduce efficiency. Thus, although MCMC is a robust and

*Correspondence:
Frederick A. Matsen IV
matsen@fredhutch.org
1 Public Health Sciences Division, Fred Hutchinson Cancer Research
Center, Seattle, Washington, USA
2 Australian Institute for Microbiology & Infection, University
of Technology Sydney, Sydney, Australia
3 Department of Math & Computer Science, Muhlenberg College,
Allentown, Pennsylvania, USA
4 School of Mathematical Sciences, Peking University, Beijing, China
5 Department of Human Genetics, University of California, Los Angeles,
USA
6 Department of Computational Medicine, University of California, Los
Angeles, USA
7 Department of Biostatistics, University of California, Los Angeles, USA
8 Department of Genome Sciences, University of Washington, Seattle,
USA
9 Howard Hughes Medical Institute, Fred Hutchinson Cancer Research
Center, Seattle, Washington, USA
10 Computational Biology Program, Fred Hutchinson Cancer Research
Center, 1100 Fairview Ave. N., Mail stop: S2‑140, Seattle 98109‑1024, WA,
USA

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-025-00273-x&domain=pdf

Page 2 of 18Jennings‑Shaffer et al. Algorithms for Molecular Biology (2025) 20:2

flexible algorithm, it is inherently limited in its ability to
efficiently infer phylogenetic posterior distributions.

Maximum likelihood methods take a different
approach, and primarily work to find the maximum like-
lihood tree systematically rather than randomly. These
methods are typically iterative and apply local rear-
rangements at each step to improve the likelihood of
the current highest likelihood tree. These methods are
substantially faster than MCMC methods, but do not
attempt to characterize the entire credible set of possible
trees or topologies.

Is it possible to combine these two approaches, in
which one systematically infers an approximate Bayes-
ian posterior distribution on trees? Although the phylo-
genetic likelihood can only be evaluated on a tree with
branch lengths, one can define the likelihood of a topol-
ogy to be the likelihood of the tree given by the topology
along with optimal branch lengths. Previous work [14]
performed a systematic and parallel exploration of tree
space by local rearrangements of the visited topologies
and collecting only the resulting topologies above some
likelihood threshold. Normalizing the likelihoods of all
visited topologies gives an approximation of the Bayesian
posterior distribution. Although this formed an interest-
ing proof of concept, it was ultimately defeated by there
being too many high quality trees to do likelihood-based
branch length optimization on each one.

More recent work [2, 3, 6, 16–18] has developed com-
putational structures that are capable of storing and
manipulating many trees or topologies at once. We use
terminology from [6] and call this structure a subsplit

Directed Acyclic Graph or sDAG for short. Different
bifurcating tree-graphs in the sDAG correspond to differ-
ent tree topologies (Fig. 1).

In this paper, we develop systematic search strate-
gies with sDAGs instead of topologies, with the goal of
finding the smallest sDAG that contains a credible set of
topologies. Because sDAGs can represent many topolo-
gies at once, we avoid the problem of having too many
topologies to consider individually. Our approach in this
work is to extend the nearest neighbor interchange (NNI)
operation on topologies to an operation on sDAGs. As
detailed in the Methods section, we develop NNIs as an
operation to enlarge an sDAG rather than a move from
topology to topology.

This approach requires a means of deciding whether an
NNI is worth applying to the sDAG. One cannot directly
apply classical phylogenetic criteria that judge a single
topology at a time, because a single NNI operation can
add many topologies to the sDAG at once (see Methods
section). We apply two approaches. Both approaches
associate branch lengths with each edge of the sDAG,
which means that there is a one-to-one correspondence
between topologies in the sDAG and trees in the sDAG.

The first approach, top pruning, implements the idea
that one would like to apply NNIs that generate at least
one good topology; this corresponds to the idea of col-
lecting a credible set of topologies and merging them
into a sDAG. In slightly more detail, top pruning main-
tains choice maps that can be used recursively to get
a “best” tree containing the central edge of any given
NNI, and branch lengths of new additions to the sDAG

Fig. 1 The combination of two topologies τ1 and τ2 into a single sDAG. The sDAG (right) contains the union of the nodes and edges
of the individual sDAGs from each of the topologies. It also contains additional topologies, such as the topology containing both {{0}, {1, 2, 3, 4, 5, 6}}
and {{4, 6}, {5}} , that are not present in the original set of two topologies

Page 3 of 18Jennings‑Shaffer et al. Algorithms for Molecular Biology (2025) 20:2

are optimized to maximize the likelihood of the “best”
tree containing the central edge of that NNI. Thus, the
likelihood of NNIs in the top pruning case is the clas-
sical Felsenstein phylogenetic likelihood of that “best”
tree associated to the NNI. (Here “best” is put in quotes
because the “best” tree is an approximation to the maxi-
mum likelihood tree.)

The second, generalized pruning, or GP, implements
the idea that one would like to apply NNIs that gener-
ate many probable topologies, but with a composite-like
approximation to the marginal likelihood. One can use
this marginal likelihood to optimize branch lengths for
newly added sDAG edges, as well as to decide if an NNI
is worth applying to the sDAG under the GP criterion.
Specifically, the likelihood for an NNI is this GP marginal
likelihood with optimized branch lengths. All of this is
made possible by a recently-developed algorithm to cal-
culate the marginal composite likelihood across topolo-
gies [6] for which computation time scales linearly in the
number of edges of the sDAG.

When applied to benchmark data sets, we find that top
pruning performs significantly better than generalized
pruning in terms of discovering a credible set of topolo-
gies. However, neither method delivers a major advance
in terms of finding a small subsplit DAG containing a
credible set when compared to aggregating an sDAG
from a short run of MrBayes [11]. Although this aggre-
gation approach was taken to generate sDAGs in past
work (e.g., [6, 16, 17]), here we show, using a variety of
data sets, that this aggregation strategy gives good rep-
resentation of the posterior distribution without being
over-diffuse.

Methods
We begin by introducing the sDAG. Although it was
described briefly as part of previous work [6], which
assumed that such a structure was given, here our goal is
to infer such a structure, so we will spend more time on
developing and motivating the idea. Other recent inde-
pendent work [2] has developed a related but different
structure.

Introduction to the subsplit DAG
We first describe how the subsplit DAG is a generaliza-
tion of a single, rooted, bifurcating topology, and how
the general case can be considered the union of a collec-
tion of topologies. Take, for example, a single caterpillar
topology on the taxon set {0, . . . , 6} (Fig. 1 left).

In this representation, we label each internal node with
the two taxon sets that are leafward of each of the two
edges coming from that internal node. So, for example,
the second node below the root ρ has the taxon set {1} on

one side and the taxon set {2, 3, 4, 5, 6} on the other, so the
internal node is labeled with {{1}, {2, 3, 4, 5, 6}}.

We call such a bipartition of a subset of the taxon set a
subsplit (following [6, 16–18]; subsplits were called par-
tial splits in [10]). Each component of the subsplit is a
clade of the subsplit, and each of these clade components
is referred to as a subsplit-clade. One can represent any
rooted phylogenetic topology as an sDAG: each node is
labeled with a subsplit describing the bipartition of the
taxa leafward of that node, and each edge is directed in
a leafward direction from the root. More generally, an
sDAG is a directed acyclic graph with subsplits as nodes
and edges connecting parent subsplits to child subsplits
partitioning individual clades in the parent subsplit. To
distinguish which subsplit-clade is partitioned along an
edge, we write (t,X) → s , where X is a subsplit-clade of
the subsplit t, s is a child subsplit of t, and

⋃
(s) = X . We

underline the subsplit-clade X so that there is no ambi-
guity in which variables are subsplits and which are sub-
split-clades. For convenience, we assume there is an order
on the taxa, which extends to an order on clades. We call
the lesser subsplit-clade the left subsplit clade and the
greater subsplit-clade the right subsplit-clade.

We extend some common terminology for clades to
sDAG edges. Suppose t1 , t2 , s1 , s2 are subsplits, e1 is the
edge from t1 to s1 , and e2 is the edge from t2 to s2 . When
s1 = t2 , we say e1 is a parent edge of e2 and say e2 is a child
edge of e1 ; we may refine this by saying left child edge or
right child edge, depending on which subsplit clade of s1
is partitioned by s2 . When t1 = t2 , but s1 and s2 partition
distinct subsplit clades of t1 , we say e1 and e2 are sibling
edges.

To build an sDAG encoding multiple topologies, we
take the sDAG for each topology, then take the union of
the nodes and edges in the two individual sDAG repre-
sentations (Fig. 1). Thus an sDAG may contain a collec-
tion of topologies: any graph-theoretic-tree-structured
subset of the nodes and edges in an sDAG that contains
all of the leaves represents a tree topology. Each subsplit-
clade of outdegree greater than one requires a choice
between the descending arrows. For example, consider
the edges leaving the subsplit-clade {4, 5, 6} in Fig. 1. If we
pick the edge leading to {{4}, {5, 6}} , we will have a tree
with {4} branching off first, and if we pick the edge lead-
ing to {{4, 6}, {5}} , we will have a tree with {5} branching
off first.

Note that if we build the sDAG from a collection of
topologies, the sDAG may contain additional topologies
beyond those used to build the sDAG (Fig. 1). In many
respects this is a feature, not a bug: it allows us to expand
the support of the sDAG combinatorially beyond the
set of topologies used to build it. On the other hand this
can add topologies outside the credible set. The balance

Page 4 of 18Jennings‑Shaffer et al. Algorithms for Molecular Biology (2025) 20:2

between the advantage of additional topologies and dis-
advantage of “false positive” topologies will be a key con-
sideration in our systematic search strategies. However,
as described next, we have finer control of the topology
distributions than if we were to use the conditional clade
distribution of [5] and [8].

Phylogenetic tree distributions
A key application of the sDAG is to represent a prob-
ability distribution on phylogenetic topologies and
trees. If we assign such a probability distribution to
the edges originating in each of the subsplit-clades,
then we obtain a probability distribution on phylo-
genetic tree topologies. For example, in Fig. 1 we can
assign probabilities to the two options for the root split
and to the two options for resolving the subsplit-clade
{4, 5, 6} : {{4}, {5, 6}} and {{4, 6}, {5}} . Suppose the prob-
ability of {{0, 1}, {2, 3, 4, 5, 6}} is 0.4 and the probability
of {{4}, {5, 6}} is 0.3, then the probability of the topology
((0, 1), (2, (3, (4, (5, 6))))) containing both of these sub-
splits is 0.4 × 0.3 = 0.12 . It is easy to see that assigning
probability distributions to each set of edges leaving each
subsplit-clade in the sDAG yields a (normalized) prob-
ability distribution on the topologies represented in the
sDAG.

Such a distribution is a generalization of previous
work [5, 8] that led to topology distributions called con-
ditional clade distributions (CCDs); CCDs consist of a
distribution of subsplits conditioned on a clade, i.e. a set
of taxa. Recently, these CCDs were attached to a directed
acyclic graph structure similar to our sDAG [2]. The dif-
ference between this and the sDAG formulation is that
the sDAG enables the expression of additional condi-
tional dependencies on the sister clade (Fig. 2). We have
shown such flexibility greatly improves fit [16]. How-
ever, if those are not important, one can allow them to
be independent of the sister clade, recovering conditional
clade distributions in a graph structure.

In terms of probabilities of edges, the sDAG formula-
tion takes a probability distribution on edges leaving each
parent subsplit-clade, whereas the conditional clade dis-
tribution requires these distributions to be identical for
parent subsplit-clades on the same clade.

If one has a sample of topologies, such as that from
an MCMC algorithm, one can use it to fit the prob-
abilities labeling the edges of the sDAG. For an sDAG on
rooted topologies, the probabilities for edges from a par-
ent subsplit to its child subsplits are simply normalized
frequency counts of the child subsplits in the sampled
topologies that contain the parent subsplit. If we desire a
distribution on unrooted topologies, we can consider the
sDAG containing all possible rootings of the topologies

in the sample, and an expectation-maximization algo-
rithm can be used to infer probabilities [16].

To extend such a distribution on topologies to a distri-
bution on trees, we attach parameterized distributions for
branch lengths to the sDAG edges. Taking such an sDAG
and inferring the branch length and subsplit distributions
is a case of variational Bayesian phylogenetic inference.
This approach was introduced and studied in [17, 18],
taking the sDAG as a fundamental object, although it was
described using different terminology: “subsplit Bayesian
networks.” However, in this paper, as described below,
we will be assigning a single fixed branch length to each
edge of an sDAG, so that each topology in an sDAG cor-
responds to a phylogenetic tree.

Performing NNIs to the subsplit DAG
The goal of this paper is to develop a systematic inference
of the sDAG. In order to do so, we describe modifications
of the sDAG that are analogous to the sort of modifica-
tions typically done to phylogenetic topologies. Nearest-
neighbor interchange (NNI) is a common method to make
minor topological modifications and grow the topologi-
cal support. An NNI swaps two subtopologies of adjacent
subsplits to create a new topology (see left-hand arrow of
Fig. 3).

We can form an analogous operation on the sDAG,
however, the NNI operation enlarges the sDAG rather
than modifies it in place. That is, on an sDAG, we can
perform NNI on two subsplit-clades, then combine the
pre-NNI sDAG with the post-NNI sDAG into a single

Fig. 2 An example showing how the sDAG is more flexible
than the conditional clade distribution of [2, 5, 8]. Specifically,
we may have different splitting probabilities for the clade {2, 3, 4}
depending on which subsplit it is contained in (either {{0}, {2, 3, 4}}
or {{1}, {2, 3, 4}}), showing that our approach is a strict generalization
of clade‑conditional approaches

Page 5 of 18Jennings‑Shaffer et al. Algorithms for Molecular Biology (2025) 20:2

new sDAG. Consider Fig. 3, where t and s are sub-
splits on the clade set X ∪ Y ∪ Z , with t = {X ∪ Y ,Z}
and s = {X ,Y } . Performing an NNI on clades Y and Z
produces a new sDAG with subsplits t ′ and s′ , where
t ′ = {X ∪ Z,Y } and s′ = {X ,Z}.

To construct the combined sDAG from the pre-
NNI sDAG, we need only add subsplits t ′ , s′ (if not
already in the sDAG) and edges (a) between the new
nodes: t ′ → s′ , (b) parents of t ′ : u → t ′ for all u where
u → t , and (c) descendants of the new subsplit-clades:
(s′,X) → u for all u where (s,X) → u , (t ′,Y) → u for
all u where (s,Y) → u , and (s′,Z) → u for all u where
(t,Z) → u . The new edges described above will pre-
serve all previously existing incoming and outgoing
edges from each clade. The addition of t ′ and s′ creates
a locally different splitting order between the X, Y, and
Z clades, leaving all other parts of the sDAG unmodi-
fied. We refer to the edge t ′ → s′ as the central edge of
the NNI.

In our systematic inference methods, we maintain
an sDAG with edges between all compatible subsplits,
i.e. subsplits that can co-exist in a tree. Such sDAGs
exhibit favorable properties. For example, when the
pre-NNI sDAG has edges between all compatible sub-
splits, every new topology in the post-NNI sDAG is an
NNI of a topology in the pre-NNI sDAG. Addition-
ally, any new topology must contain the central edge
of the NNI. Both statements can fail when the original
sDAG is missing compatible edges. Details are given
in the appendix. However, after applying an NNI to an
sDAG, the resulting sDAG may not have the maximum
number of edges even when the original sDAG does.
In particular, the sDAG may not have edges from t ′ to
all compatible child subsplits and edges from all com-
patible parent subsplits to s′ . Thus, when enlarging an
sDAG via an NNI in our systematic search algorithms,
we will include these additional edges.

Evaluating new additions to the sDAG
Our inference algorithms proceed in a manner analogous
to that for hill-climbing search of a single phylogenetic
tree: evaluate all possible local modifications, and accept
a modification according to an optimality criterion. Thus,
we require a means of evaluating an NNI of the sDAG
to decide if we should apply it to the sDAG. Specifically,
we describe two ways that generalize the calculation of
a likelihood for a phylogenetic tree. This is enabled by
assigning a single fixed branch length to each edge of the
sDAG, as described above, so that each topology in an
sDAG corresponds to a phylogenetic tree.

Before describing these approaches in detail, we intro-
duce some further notation. We write Y for the given
multiple sequence alignment written as a rectangular
array, each sequence is one row. The ith column of Y is
Y
i , which is the column vector containing the ith site of

each sequence. As we deal only with fixed branch lengths,
we write pψ(Y | τ) for the phylogenetic likelihood for the
data Y , branch lengths ψ , and topology τ : that is, this is
the classical phylogenetic likelihood of a tree that has τ
as the topology and branch lengths assigned according
to ψ , assuming data Y . As commonly done, we assume
site independence so that pψ(Y | τ) =

∏K
i=1 pψ(Y

i | τ) ,
where K is the number of sites. In this case, pψ(Yi | τ) is
efficiently calculated by Felsenstein’s pruning algorithm.
In our implementation and benchmarking of our NNI-
search algorithms, we use the Jukes-Cantor substitution
model for simplicity. We could use a general time revers-
ible model, as long as we take fixed model parameters
(equilibrium frequencies and substitution rates) for the
sDAG. One approach to infering these model param-
eters is to fit them on a single tree in the sDAG. We also
do not consider across-site rate variation, although this
could be added to both of the algorithms here if desired.
Also, we optimize branch lengths rather than marginal-
ize over them, in the interest of efficiency. In Bayesian

Fig. 3 Applying an NNI to a sDAG at subsplits t and s, then combining the pre‑NNI sDAG with the post‑NNI sDAG into a single sDAG. Here t′ and s′
are the new nodes, and the red dashed edges are the new edges. Triangles are substructures in the sDAG, and X, Y, and Z are clades

Page 6 of 18Jennings‑Shaffer et al. Algorithms for Molecular Biology (2025) 20:2

phylogenetics one typically considers a distribution of
branch lengths, however this style of approximation has
shown surprisingly good performance [1, 4, 13].

The two approaches, described in detail in the following
two sections, are called “top pruning” and “generalized
pruning.” Each approach is based on its own definition
of likelihood, described roughly above and in more detail
in the following sections. However, for now, we note that
generalized pruning is based on an across-tree margin-
alization so NNI operations are evaluated based on the
sDAG as a whole, while top pruning is based on the (clas-
sical) likelihood of the single best additional tree enabled
by the NNI.

Top Pruning
The idea behind top pruning is to add the highest like-
lihood tree, obtained by an NNI, not previously in the
sDAG. Recall an NNI on an sDAG may introduce more
than one new tree. Ideally one would select the NNI
based on a computation like

where Te is the set of trees in the post-NNI sDAG with
central edge e introduced by the NNI. However, this cri-
terion does not yield an efficient algorithm, as we would
need to enumerate all trees in Te and compute their
likelihoods.

Our approach is to instead store local choices of sub-
trees, which may yield a sufficient approximation to
the tree maximizing the likelihood above. These local
choices determine the topology and branch lengths,
and so one can evaluate the likelihood of the tree in
a classical way. In this section we focus on giving an
intuitive understanding of how these local choices

(1)max
τ∈Te

K∏

j=1

pψ(Y
j | τ),

work, and full details are found in the supplementary
material.

The local choices of subtrees are implemented by
a data structure we call a “choice map”, which simply
records a specific choice of neighboring edges for each
edge of the sDAG (Fig. 4). We have a “rootward choice
map”, which when given an edge returns a parent edge
and sibling edge (assuming the given edge does not
begin with the universal ancestor). We have a “leafward
choice map”, which when given an edge returns a left
child edge and right child edge (assuming the given
edge does not end with a leaf).

These choice maps can be recursively applied, defin-
ing tree structures as follows. The leafward choice
map defines a tree in the direction of the leaves from
any given edge of the sDAG by recursively applying
it until reaching the leaves. To get a tree in the direc-
tion of the root from any given edge of the sDAG, one
uses the rootward choice map to pick edges toward
the root, and the leafward choice map to choose edges
descending from these edges which haven’t already
been determined. Combining these, we get a tree we
call the “best known tree” for the edge. Although it may
not be the maximum likelihood tree in the sDAG con-
taining the edge, by the way we construct the choice
map (described below) we believe it should be a good
approximation.

The following is a more precise description of the
deterministic process to find the best known tree for a
given edge.

1. Initialize a graph G consisting of the single given
edge.

2. While G is not a tree on the taxon set, we examine
the edges of G.

Fig. 4 An example of choice maps. In a the green solid edges are the parent and sibling edges returned by the rootward choice map (schematized
by dashed line) for the given orange edge. In b the green solid edges are the left and right child edges returned by leafward choice map
for the given orange edge. The “best known tree” for the given orange edge begins with the five highlighted edges: the orange edge common
to both (a) and (b), the two solid green edges from (a), and the two solid green edges from (b)

Page 7 of 18Jennings‑Shaffer et al. Algorithms for Molecular Biology (2025) 20:2

(a) For each edge e not ending in a leaf: if G does
not contain a left and right child edge of e,
then we add the two children provided by the
leafward choice map at e.

(b) For each edge e not originating at the univer-
sal ancestor: if G does not contain a parent and
sibling edge of e, then we add the parent and
sibling edges provided by the rootward choice
map at e.

Furthermore, we can perform this construction after per-
forming an NNI on the sDAG. If we cache partial like-
lihood vectors (PLVs) at the nodes of the sDAG, we can
evaluate the likelihood of a best known tree in time that
is constant in the number of leaves of the sDAG.

Next we explain which edges are selected for the
choice maps. Suppose we generate an sDAG from a list
of trees ordered by likelihood (the highest likelihood tree
is first). To each edge of the sDAG, we assign the branch
length from the first tree of the list containing the edge.
Consider Fig. 4, where the given edge is highlighted in
orange. In panel (a), we select the parent and sister edges
highlighted in green; the two child edges are selected and
highlighted in panel (b). The orange edge may appear
in more than one tree of the original list, but since the
trees are ordered by likelihood, we focus on the first
(highest likelihood) tree with this edge. The four neigh-
boring edges are taken from this tree and the choices
are recorded in the choice maps. In particular, note that
the choice maps depend on the likelihood-ordered list of
trees used to construct the sDAG.

Next we will write out a complete example for an sDAG
constructed from two input trees (Fig. 5). In this toy
example we have trees τ0 and τ1 on seven taxa. We assume
the classical setup for phylogenetic inference, with a
sequence alignment and model, as well as branch lengths
along the edges, so we can calculate the likelihood of a
tree topology. Assume that τ0 is of higher likelihood than
τ1 . Figure 5a depicts τ0 , τ1 , and the sDAG spanned by the
two. This sDAG contains two additional trees (Fig. 5b).
The edges of the sDAG are labeled with the maximum
likelihood input tree (τ0 or τ1) containing the edge. To
build the best known tree for an edge, which need not be
one of the input trees, we begin with the given edge and
attach the immediately neighboring edges from the τi of
the label. For the attached neighboring edges that touch
neither root nor leaf, we must choose two additional
edges (either children or parent and sibling) to flesh out
the best known tree. Such additional edges are taken
from the input tree (again τ0 or τ1) given by the label of
the attached edge. We continue this process until a tree
is fully constructed. The best known tree for the edges of
the sDAG labeled τ0 is τ0 . The best known tree for edges

labeled τ1 is τ2 for edges above the subsplit {{1}, {2, 3, 4, 5}}
and τ3 for edges below.

For most edges in the sDAG of Fig. 5, there is only one
choice for parent, sibling, and child edges. The non-triv-
ial choices can be phrased as:

• Does {{1}, {2, 3, 4, 5}}→ {1} use the parent edge from
{{1, 2, 3, 4, 5}, {6}} or {{0}, {1, 2, 3, 4, 5}}?

• Does {{1}, {2, 3, 4, 5}}→ {{2}, {3, 4, 5}} use the parent
edge from {{1, 2, 3, 4, 5}, {6}} or {{0}, {1, 2, 3, 4, 5}}?

• Does {{1}, {2, 3, 4, 5}}→ {{2}, {3, 4, 5}} use the right
child edge to {{3}, {4, 5}} or {{3, 4}, {5}}?

• Does {{2}, {3, 4, 5}}→ {2} use the sibling edge to
{{3}, {4, 5}} or {{3, 4}, {5}}?

In Fig. 5c we highlight the edge {{1}, {2, 3, 4, 5}}→ {1}
in orange along with its chosen neighbor edges. Addi-
tionally, we highlight {{1}, {2, 3, 4, 5}}→ {{2}, {3, 4, 5}} in
green and {{2}, {3, 4, 5}}→ {2} in purple, as well as their
chosen neighbor edges.

The key point is each edge of the sDAG is assigned a
tree systematically. Importantly, we can extend this to
assign trees to the central edges of NNIs of the sDAG.
The details of extending the choice maps to such edges
are given in the supplementary materials. Furthermore,
this assignment of trees allows for efficient phylogenetic
likelihood calculations. We define the “top pruning likeli-
hood” of an NNI to be the likelihood of the best known
tree for the central edge of the NNI.

The top pruning algorithm proceeds in the following
manner. Suppose we are given a list of trees, ordered by
likelihood.

 1. Initialize D to the sDAG spanned by the topologies
from the list of trees.

 2. Assign branch lengths to the edges of D by taking
the branch length from the first tree in the list con-
taining a given edge.

 3. Initialize choice maps for the edges of D.
 4. Add edges between all compatible parent and child

subsplits. Assign choice maps with an argmax
strategy (see Supplement, equation (4)). Assign
branch lengths optimizing best known trees for
these edges.

 5. Create a list of NNIs, ordering by top pruning like-
lihood, for each edge in the sDAG (two NNIs per
sDAG edge). We do not record NNIs in the list if
they do not enlarge D.

 6. Enlarge D to D′ with the highest top pruning like-
lihood NNI of the list. Assign choice maps and
branch lengths as in (3).

Page 8 of 18Jennings‑Shaffer et al. Algorithms for Molecular Biology (2025) 20:2

 7. Enlarge D′ to D′′ by adding all additional edges
between compatible subsplits. Assign choice maps
and branch lengths as in (4).

 8. Remove the NNI of step 6 from the list.
 9. Insert into the list, while maintaining the order by

top pruning likelihood, the new NNIs that enlarge

D
′′ . The top pruning likelihood is not updated for

NNIs already present in the list.
 10. Return to step 6 with D′′ in place of D.

Fig. 5 Choice map initialization for an sDAG, assuming τ0 has higher likelihood than τ1 . In a are two trees on seven taxa and the sDAG built
from the trees. The edges of the sDAG are labeled with the topology, τ0 in red or τ1 in blue, where the edges first appeared. In b are the two
additional topologies in the sDAG. In c we highlight the edges that have an option in the choice maps. In orange is an edge (bold dashed line)
and its chosen neighbors (lightweight dashed line), with a choice of parent edge; in purple is an edge and its chosen neighbors, with a choice
of right child edge; and in green is an edge and its chosen neighbors, with a choice of parent edge and right child edge

Page 9 of 18Jennings‑Shaffer et al. Algorithms for Molecular Biology (2025) 20:2

The looping step of the algorithm repeats either for a
fixed number of iterations or until the likelihood of all
NNIs in the list are below a given threshold.

Generalized pruning
The generalized pruning (GP) objective applies the NNI
to an sDAG that most increases a topology-marginal
composite likelihood called the generalized pruning like-
lihood [6]. Specifically, let De be the sDAG from applying
an NNI with central edge e. Let Te be the set of trees of
De that contain e. The GP algorithm applies the NNI that
maximizes

across edges e. The term p(τ | e) is the relative prior
probability of τ among the topologies of Te . Explicitly,

where p(τ) is a prior distribution on topologies. Our
implementation uses the uniform distribution, so that
p(τ | e) = 1

|Te|
 . The likelihood in (2) is the per-edge mar-

ginal likelihood introduced in [6], the details of which are
given in the section of the same name. Specifically, this
is the generalized pruning per-edge composite marginal
likelihood of the edge e in the sDAG after applying the
NNI. We call this likelihood the generalized pruning like-
lihood of the NNI.

Note that we call (2) a “composite likelihood” because it
is taking a product of per-site marginal likelihoods rather
than marginalizing over the complete likelihood. This
correct marginal likelihood of the edge would be

However, there are no efficient means known of directly
calculating this correct marginal likelihood, whereas the
generalized pruning version scales linearly in the size of
the sDAG. The generalized pruning marginal likelihood
is computed with a traversal of the sDAG that populates
partial likelihood vectors at each node, where each node
has a PLV for each site of the sequence alignment. In con-
trast, to compute the true marginal likelihood, each node
would require a PLV not just for each site, but each site
and distinct topology with that node. That is to say, the
GP likelihood is computed using PLVs that are shared
by topologies, while the true marginal likelihood would
require separate PLVs for topologies. Although it is not
the same as the true marginal likelihood, we have found

(2)
K∏

j=1

∑

τ∈Te

pψ(Y
j | τ) p(τ | e),

p(τ | e) =
p(τ)∑

τ
′∈Te

p(τ ′)
,

∑

τ∈Te

p(τ | e)

K∏

j=1

pψ(Y
j | τ).

that the GP likelihood is a sufficient approximation of
the true likelihood for the purpose of optimizing branch
lengths [6].

Suppose we are given a list of starting trees ordered by
likelihood, the generalized pruning systematic inference
algorithm is as follows.

1. Initialize D to the sDAG spanned by the topologies
from the list of trees.

2. Assign branch lengths to the edges of D by taking the
branch length from the first tree in the list contain-
ing a given edge. Optionally, we further optimize the
branch lengths to maximize the overall generalized
pruning likelihood of the sDAG.

3. Add edges between all compatible parent and child
subsplits; assign GP per-edge composite marginal
likelihood optimized branch lengths to these edges.

4. Create a list of NNIs, ordering by generalized prun-
ing likelihood, for each edge in the sDAG (two NNIs
per sDAG edge). We do not record NNIs in the list if
they do not enlarge D.

5. Enlarge D to D′ with the highest GP likelihood NNI
of the list. Add any additional edges between either
of the new subsplits and compatible existing sub-
splits. Assign GP per-edge composite marginal likeli-
hood optimized branch lengths to the new edges.

6. Remove the NNI of step 5 from the list.
7. Insert into the list, while maintaining the order by

GP likelihood, the new NNIs that enlarge D′′ . The GP
likelihood is not updated for NNIs already present in
the list.

8. Return to step 5 with D′ in place of D.

The looping step of the algorithm repeats either for a
fixed number of iterations or until the GP likelihood of
all NNIs in the list are below a given threshold. The GP
likelihoods in items 4 and 7 are calculated after optimiz-
ing branch lengths.

Implementation of systematic inference
The necessary functionality for both NNI-searches
are implemented in the Python-interface C++ library
bito(https:// github. com/ phylo vi/ bito) and an interface
to perform a search is further implemented in Python
(https:// github. com/ matse ngrp/ sdag- nni- exper iments).
Both top pruning and generalized pruning use PLVs for
fast and efficient likelihood calculations. The PLVs for
top pruning are defined as usual for a two-pass version of
Felsenstein’s pruning algorithm and are propagated along
the choice maps. The PLVs for generalized pruning fol-
low a different pattern and are discussed in detail in [6].
It is these likelihoods and associated PLVs that domi-
nate the computational expense of our algorithms, while

https://github.com/phylovi/bito
https://github.com/matsengrp/sdag-nni-experiments

Page 10 of 18Jennings‑Shaffer et al. Algorithms for Molecular Biology (2025) 20:2

maintaining the the graph structure of the current sDAG
and potential additions is secondary.

When new edges are introduced for top or generalized
pruning, the optimization of associated branch lengths is
done as follows. We take one branch length, hold the oth-
ers fixed, apply Brent optimization (maximizing the like-
lihood of the edge in terms of best known tree likelihood
or generalized pruning), repeat with another branch
length, and continue until values have approximately
converged. We leave the branch lengths of old edges
unaltered. This approach showed good performance for
branch length optimization in previous work [6].

Benchmarking setup
As in previous work (e.g., [4, 5, 7, 8, 15]), we compare
our inferences to very long MrBayes “golden runs”. We
use common benchmark data sets, which we call the
DS-datasets, as well as a 100 influenza A (flu) sequence
data set from [18]. Each very long run of MrBayes yields
numerous topologies and posterior density estimates of
these topologies, which form the empirical posterior. We
take the 95% credible set to be the minimal size set of
topologies whose cumulative density is at least 95%. Basic
information for the data sets and their empirical posteri-
ors is in Table 1. We say a subsplit is credible if it appears
in at least one topology of the 95% credible set. This is
different from taking a credible set of subsplits from a
topology marginalized probability on subsplits.

We will use the term “diffuse” to qualitatively describe
the size of the posterior credible set. Taking the num-
bers in Table 1 (either for credible topologies or poste-
rior topologies) the order of data sets from least to most
diffuse is DS3, DS1, DS4, DS7, DS8, DS6, and DS5. The
data sets DS1, DS3, DS4, and DS7 are not diffuse, while
DS5 and DS6 are very diffuse, and DS8 is somewhere
between. While there is another data set, commonly
called DS2, the posterior is only a few topologies and so
we ignore it here.

For each data set, we calculate how much of the pos-
terior density is captured per NNI-search iteration and
by run time. We use short runs of MrBayes for a direct
comparison of run time. These short runs of MrBayes
use similar specifications to the golden runs, except
we record all topologies (i.e., sample frequency 1 and
no burn-in). With these short runs, we have two com-
parisons with an NNI-search. First, we compare the
cumulative posterior density of the topologies from an
NNI-search to that of the topologies from the short run.
While this is a fair comparison in terms of run time,
comparing the density from topologies of an sDAG to
topologies from a simple list puts the short runs at a
disadvantage. Our second comparison addresses this
issue by comparing the density of topologies from
an NNI-search to the density of the topologies in the
sDAG spanned by the topologies from the short run of
MrBayes. This gives a more accurate comparison in
terms of cumulative density, as we compare an sDAG
to an sDAG. We emphasize that while our systematic
inference algorithms produce sDAGs that represent
trees, we ignore branch lengths and work with topolo-
gies for these comparisons. While we can efficiently
build an sDAG from a large list of topologies, there
is required processing of topologies from MrBayes
before building the sDAG (rerooting, ordering of splits
of subtopologies in the newick string, etc.). When
memory is not a constraint, this processing of topolo-
gies is also quick and efficient. However, for a very large
number of topologies (as is the case with DS5), we use
a less efficient method. The run-time we report for the
sDAG spanned by topologies of MrBayes includes the
run-time for MrBayes, the estimated run-time of pro-
cessing topologies with the efficient implementation,
and the run-time for constructing the sDAG from the
processed topologies. As discussed in the following
section, generalized pruning performs poorly and so we
do not show it in every benchmark.

We start all of the searches (top pruning, generalized
pruning, and short runs of MrBayes) with the maximum
posterior density topology of the golden run with branch
lengths optimized by iqtree for likelihood. Starting the
searches at the maximum posterior density topology is a
best-case scenario for performance, as the search starts at
the highest peak of the distribution.

We also compare top pruning and the short runs of
MrBayes by the quality of subsplits. We calculate both
how many of the credible subsplits are found by a search
and how many of the subsplits found by a search are
credible. The comparison with top pruning and short
runs of MrBayes matches the two on the number of sub-
splits encountered. In the ideal setting, the search meth-
ods would only add subsplits present in the posterior.

Table 1 Description of the DS‑datasets

Data set Taxa Sites 95% Credible set Empirical posterior
Topology count Topology count

1 27 1949 42 1245

3 36 1812 16 240

4 41 1137 219 4539

5 50 378 260894 298768

6 50 1133 157942 195816

7 59 1824 756 6000

8 64 1008 4329 26442

flu 100 1681 16475 20262

Page 11 of 18Jennings‑Shaffer et al. Algorithms for Molecular Biology (2025) 20:2

Our search methods can take multiple trees as input,
so we investigate two additional starting points. The first
is a “best case” minor variation: we begin the search with
the top 10 posterior density topologies with likelihood
optimized branch lengths. The second is a more realis-
tic setting and randomized: we take the unique topolo-
gies produced by 200 runs of RAxML [12] with likelihood
optimized branch lengths. We find that RAxML produces
more distinct topologies than iqtree when given ran-
dom starting trees (data not shown). We compare the
performance with different starting trees by cumulative
density per iteration. There is not a comparison with
short runs of MrBayes. It is worth noting that we may
use the trees from RAxML without any knowledge of the
credible set or an empirical posterior distribution.

For consistency, all timing scripts were run with the
SLURM job scheduler with exclusive access to a single
node. The experiments of this section can be recreated
by following the instructions in the experiments GitHub
repository (https:// github. com/ matse ngrp/ sdag- nni-
exper iments).

Results
We first describe the disappointing performance of gen-
eralized pruning, and then the somewhat better perfor-
mance of top-pruning. For top-pruning we also provide a
more detailed analysis, discussing run time, performance
with multiple starting points, and performance on the
larger flu data set. For this first set of analyses, we will be
interested in the total posterior density of the topologies
present in the sDAG generated by the various methods
through time.

The performance of generalized pruning is lackluster.
Regardless of data set, generalized pruning fails to cap-
ture a reasonable amount of posterior density in a reason-
able amount of time (Fig. 6 for DS1 and DS3-6, Figure S1
for DS7-8). It is not competitive with the list of topolo-
gies from the short runs of MrBayes. Even on DS3, the
least diffusive data set, generalized pruning spends many
iterations adding subsplits and edges not contributing to
the density.

Top pruning fares better than generalized pruning on
the DS-datasets. It consistently outperforms the topolo-
gies of a short MCMC run and is competitive with the
sDAG spanned by these topologies. While top pruning
experiences long lengths of time with little to no increase
in coverage of the posterior density, it usually finds its
way back and captures much of the posterior density
(Fig. 7 for DS1 and DS3-6, Figure S2 for DS7-8).

The credibility of subsplits found by top-pruning tends
to be worse than the short runs of MrBayes (recall that
we say that a subsplit is credible if it appears in at least
one topology of the 95% credible set). Top pruning and

MrBayes are very similar on DS3 and DS7, but on the
other datasets top pruning adds many non-credible sub-
splits along with credible subsplits (Fig. 8). The orange
(magenta) lines are essentially the true-positive rates of
top pruning (short MCMC, respectively) in terms of sub-
splits. While not included here, we performed the same
analysis with sDAG edges rather than subsplits and the
results were similar.

Multiple starting trees are beneficial, but the benefit
depends on the trees. Using the 10 highest probability
trees from the credible set, or high likelihood trees gener-
ated by RAxML, of course, provides the gain in cumula-
tive density of the additional topologies (Fig. 9). Past that,
performance improvements are more subtle. Suppose
we take the sDAG formed by the multiple initial trees
and compare with the sDAG from running top pruning,
without the additional trees, until we have approximately
the same cumulative density of topologies in the sDAGs.
After applying a few iterations of top pruning to both of
these sDAGs, one may have a higher cumulative density
of topologies than the other. Using the 10 highest prob-
ability trees usually does not give this kind of improve-
ment, while using the high likelihood RAxML trees often
does. That is, using the trees from RAxML improves the
selection of NNIs toward the beginning of the search,
while using the 10 highest probability trees does not.
One possible explanation is the top 10 trees may be too
close to each other in the posterior distribution and top
pruning would visit these topologies fairly quickly and
approximately in order, while the trees from RAxML may
be near different peaks of the distribution.

Our implementation of top pruning does not exhibit
linear run time with the number of iterations (Figure S3).
This is important to consider, since we compare top
pruning against MCMC by run-time. Later iterations of
top pruning may add more edges than in previous itera-
tions. This means we expect more likelihood calculations
on average in later iterations than in early iterations.
With this, we do not expect linear run time is possible,
but it is at worst quadratic. There is also the issue of scal-
ing in terms of the number of taxa (the number of leaves
in the sDAG, the number of sequences in the alignment,
etc.). The performance of top pruning on the flu data set
is consistent with that of the DS-datasets (Fig. 10). This
suggests top pruning may scale well with the number of
taxa.

Lastly, we compare the empirical posterior probabil-
ity of an edge to the likelihood of the best known tree
for the edge (the top pruning likelihood). By posterior
probability of an edge, we mean the topology marginal-
ized probability, which is the sum of posterior probabil-
ities of topologies containing the edge. Across data sets,
high posterior probability corresponds well to high

https://github.com/matsengrp/sdag-nni-experiments
https://github.com/matsengrp/sdag-nni-experiments

Page 12 of 18Jennings‑Shaffer et al. Algorithms for Molecular Biology (2025) 20:2

Fig. 6 The empirical posterior density found by generalized pruning on a subset of the DS‑datasets and a comparison with MCMC. The red dots
in the plots of the left indicate the last iteration finding a topology of the credible set and the blue dots indicate the last iteration finding a topology
of the empirical posterior

Page 13 of 18Jennings‑Shaffer et al. Algorithms for Molecular Biology (2025) 20:2

Fig. 7 The empirical posterior density found by top pruning on a subset of the DS‑datasets and a comparison with MCMC. Note the x‑axis scale
varies between data sets

Page 14 of 18Jennings‑Shaffer et al. Algorithms for Molecular Biology (2025) 20:2

likelihood of the best known tree of an edge (Fig. 11).
This suggests that the challenge with the top pruning
algorithm is its tendency to find and include edges out-
side of the credible set of topologies, but top pruning
does a fair job of ranking edges within the credible set.

Discussion
In this paper we develop strategies to identify potentially
high posterior density regions of tree space. This fits as
part of a larger program to infer Bayesian phylogenetic
posterior distributions via optimization [6, 16–18]. We

Fig. 8 Quality of sDAGs generated by top‑pruning and short‑MCMC in terms of subsplits. For each data set, two sDAGs were iteratively enlarged
(by top pruning or aggregating trees from MrBayes). On the x‑axis we have the number of subsplits in the sDAGs and on the y‑axis we have
the fraction of credible subsplits in the sDAGs and the fraction of subsplits in the sDAGs that are credible. In all cases, the initial sDAGs are
given by the maximum posterior density topology, and so all subsplits of the initial sDAGs are credible

Page 15 of 18Jennings‑Shaffer et al. Algorithms for Molecular Biology (2025) 20:2

emphasize that our goal for this paper is to find high-
posterior regions of topologies, rather than trying to
determine posterior densities of these topologies. Once a
region is located by a search method, be it a systematic
inference or aggregation of trees, another method such
as variational inference may be used to infer posterior
densities in this region. Such methods may additionally
infer distributions for branch lengths and evolutionary

process parameters, allowing for joint posterior density
estimates. One could also imagine using sDAG inference
to build a means of estimating split frequency as a recent
development of adaptive MCMC [9].

While top pruning performs well on our test data
sets, the number of sequences is relatively small, with
100 being the largest. We do not yet know how well
top pruning scales to larger data sets, where we have

Fig. 9 Performance of top pruning with different starting points

Page 16 of 18Jennings‑Shaffer et al. Algorithms for Molecular Biology (2025) 20:2

thousands or tens of thousands of sequences. Our cur-
rent method of benchmarking is not possible for such
data sets, as we require an empirical estimate of the
true posterior. However, since top pruning lags behind
the performance of aggregating MCMC-sampled trees
into an sDAG on these small datasets, that seems
like a more promising approach for future work and
benchmarking.

Generalized pruning demonstrates poor performance
with an NNI search, yet it has been shown useful when
determining branch lengths [6]. We have not found any
way to improve the performance here. Perhaps the gener-
alized pruning likelihood of an edge does not sufficiently
capture the quality of the newly introduced topologies.

One could imagine extensions allowing more general
additions to the sDAG in our search algorithms. When
proposing and ranking NNIs for top pruning, we could
try edges other than those present in the choice maps.
For example, rather than using the parent of t specified
in the choice map, we could try the other edges to t as
candidate parents for t ′ (such as the dotted blue edge in
Figure S5). This requires only a little extra evaluation and
branch length optimization.

Furthermore, when we apply the best NNI to the sDAG
and remove it from the ranked list, the best known trees
for some of the NNIs in the list may now have an edge
present in the current sDAG that was not present before.
Such an edge has a branch length and choice maps that
may yield a different likelihood from before. In such
cases, we could trigger re-optimization of branch lengths
for that NNI and replace the corresponding likelihoods,
PLVs, and choice maps.

An alternative version of top pruning adds exactly five
new edges of the best known tree associated to an NNI.
That is, in each iteration, there are at most five edges of
the best known tree for an NNI that are new to the sDAG.
We can add only these edges to the sDAG, rather than
edges between all compatible subsplits or the five types
of edges detailed in the subsection on Performing NNIs
to the subsplit DAG. This algorithm would enjoy linear
run time, which the current implementation does not.
However, this approach has a fundamental flaw: there
are unobtainable subsplits and edges. One can begin
with a single topology on a set of taxa, iteratively build an
sDAG by adding the five edges from the best known tree
for an NNI, continue until all NNIs are exhausted, and

Fig. 10 Performance of top pruning on the flu100 data set

Page 17 of 18Jennings‑Shaffer et al. Algorithms for Molecular Biology (2025) 20:2

Fig. 11 A comparison of edges ranked by posterior probability and top pruning likelihood. The edges are ordered by their posterior probability
along the x‑axis (with the lowest probability edge at 0) and by their top pruning likelihood along the y‑axis (with the lowest likelihood edge at 0).
Edges are binned for counts, with a darker color meaning a higher count

Page 18 of 18Jennings‑Shaffer et al. Algorithms for Molecular Biology (2025) 20:2

obtain an sDAG missing valid subsplits and edges. This
is in strict contrast to NNIs on topologies, where every
topology can be reached from any other topology by a
sequence of NNIs.

Overall, our goal in this work is to do systematic infer-
ence to find high posterior density regions of tree space.
We introduce the first structures and operations on those
structures to make this possible without considering each
tree individually. In order to do systematic inference,
one needs a means of evaluating these structures, and
here we introduce top pruning and generalized pruning.
Although top pruning shows reasonable performance,
further work will be needed to improve performance
over aggregating trees from an MCMC sampler into an
sDAG.

Supplementary Information
The online version contains supplementary material available at https:// doi.
org/ 10. 1186/ s13015‑ 025‑ 00273‑x.

Supplementary file 1.

Acknowledgements
This work was supported through US National Institutes of Health grant
AI162611. Scientific Computing Infrastructure at Fred Hutch was funded by
ORIP grant S10OD028685. Dr. Matsen is an Investigator of the Howard Hughes
Medical Institute.

Author contributions
CJ‑S, DHR, and FAM developed the algorithms, implementations, and bench‑
marks. CJ‑S and FAM wrote the main manuscript text. All authors reviewed the
manuscript.

Data availability
Data is provided within the manuscript.

Declarations

Competing interests
The authors declare no Competing interests.

Received: 11 June 2024 Accepted: 13 February 2025

References
 1. Anisimova M, Gil M, Dufayard J‑F, Dessimoz C, Gascuel O. Survey of

branch support methods demonstrates accuracy, power, and robust‑
ness of fast likelihood‑based approximation schemes. Syst Biol.
2011;60(5):685–99.

 2. Berling L, Klawitter J, Bouckaert R, Xie D, Gavryushkin A, Drummond AJ.
A tractable tree distribution parameterized by clade probabilities and its
application to Bayesian phylogenetic point estimation. bioRxiv, 2024.

 3. Dumm W, Barker M, Howard‑Snyder W, DeWitt WS III, Matsen FA IV. Repre‑
senting and extending ensembles of parsimonious evolutionary histories
with a directed acyclic graph. J Mathe Biol. 2023;87(5):75.

 4. Fourment M, Magee AF, Whidden C, Bilge A, Matsen FA IV, Minin VN. 19
dubious ways to compute the marginal likelihood of a phylogenetic tree
topology. Syst Biol. 2020;69(2):209–20.

 5. Höhna S, Drummond AJ. Guided tree topology proposals for Bayesian
phylogenetic inference. Syst Biol. 2012;61(1):1–11.

 6. Jun S‑H, Nasif H, Jennings‑Shaffer C, Rich DH, Kooperberg A, Fourment
M, Zhang C, Suchard MA, Matsen FA IV. A topology‑marginal composite
likelihood via a generalized phylogenetic pruning algorithm. Algorithms
Mol Biol. 2023;18(1):10.

 7. Lakner C, van der Mark P, Huelsenbeck JP, Larget B, Ronquist F. Efficiency
of Markov chain Monte Carlo tree proposals in Bayesian phylogenetics.
Syst Biol. 2008;57(1):86–103.

 8. Larget B. The estimation of tree posterior probabilities using conditional
clade probability distributions. Syst Biol. 2013;62(4):501–11.

 9. Meyer X. Adaptive tree proposals for Bayesian phylogenetic inference.
Syst Biol. 2021;70(5):1015–32.

 10. Redelings B. Bayesian phylogenies unplugged: majority consensus trees
with wandering taxa. work in progress, 2011.

 11. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S,
Larget B, Liu L, Suchard MA, Huelsenbeck JP. MrBayes 3.2: efficient Bayes‑
ian phylogenetic inference and model choice across a large model space.
Syst Biol. 2012;61(3):539–42.

 12. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post‑
analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–3.

 13. Suchard MA, Weiss RE, Dorman KS, Sinsheimer JS. Inferring spatial phylo‑
genetic variation along nucleotide sequences: a multiple changepoint
model. J Am Stat Assoc. 2003;98(462):427–37.

 14. Whidden C, Claywell BC, Fisher T, Magee AF, Fourment M, Matsen FA IV.
Systematic exploration of the high likelihood set of phylogenetic tree
topologies. Syst Biol. 2020;69(2):280–93.

 15. Whidden C, Matsen FA IV. Quantifying MCMC exploration of phylogenetic
tree space. Syst Biol. 2015;64(3):472–91.

 16. Zhang C, Matsen FA IV. Generalizing tree probability estimation via Bayes‑
ian networks. Adv Neural Inf Proc Syst. 2018;31:1449–58.

 17. Zhang C, Matsen FA IV. Variational Bayesian phylogenetic inference. In
International Conference on Learning Representations (ICLR), (2019).

 18. Zhang C, Matsen FA IV. A variational approach to Bayesian phylogenetic
inference. arXiv preprint, 2022.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1186/s13015-025-00273-x
https://doi.org/10.1186/s13015-025-00273-x

	Finding high posterior density phylogenies by systematically extending a directed acyclic graph
	Abstract
	Introduction
	Methods
	Introduction to the subsplit DAG
	Phylogenetic tree distributions

	Performing NNIs to the subsplit DAG
	Evaluating new additions to the sDAG
	Top Pruning
	Generalized pruning

	Implementation of systematic inference
	Benchmarking setup

	Results
	Discussion
	Acknowledgements
	References

