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Abstract 

Bayesian phylogenetics typically estimates a posterior distribution, or aspects thereof, using Markov chain Monte 
Carlo methods. These methods integrate over tree space by applying local rearrangements to move a tree through its 
space as a random walk. Previous work explored the possibility of replacing this random walk with a systematic 
search, but was quickly overwhelmed by the large number of probable trees in the posterior distribution. In this 
paper we develop methods to sidestep this problem using a recently introduced structure called the subsplit directed 
acyclic graph (sDAG). This structure can represent many trees at once, and local rearrangements of trees translate 
to methods of enlarging the sDAG. Here we propose two methods of introducing, ranking, and selecting local rear‑
rangements on sDAGs to produce a collection of trees with high posterior density. One of these methods successfully 
recovers the set of high posterior density trees across a range of data sets. However, we find that a simpler strategy 
of aggregating trees into an sDAG in fact is computationally faster and returns a higher fraction of probable trees.

Introduction
Despite decades of work, Bayesian phylogenetics remains 
a computationally challenging problem. Existing methods 
are based on the Markov chain Monte Carlo (MCMC) 
algorithm. These methods begin with a tree, which may 
be random or generated by another method (e.g., parsi-
mony), and propose random modifications to the tree. A 
random modification is accepted with probability pro-
portional to the Metropolis-Hastings ratio of the new 
tree and current tree, which biases the chain towards 
trees with higher likelihood and prior probability. We use 
the term topology for the graph theoretic tree structure 
and tree for a topology with branch lengths. Because the 
high-confidence region of topologies is a tiny subspace of 
a space of super-exponential size, most of these random 
modifications will result in a significantly worse tree, and 
thus substantial modifications are overwhelmingly dis-
carded. This leads to low acceptance rates, which may 
reduce efficiency. Thus, although MCMC is a robust and 
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flexible algorithm, it is inherently limited in its ability to 
efficiently infer phylogenetic posterior distributions.

Maximum likelihood methods take a different 
approach, and primarily work to find the maximum like-
lihood tree systematically rather than randomly. These 
methods are typically iterative and apply local rear-
rangements at each step to improve the likelihood of 
the current highest likelihood tree. These methods are 
substantially faster than MCMC methods, but do not 
attempt to characterize the entire credible set of possible 
trees or topologies.

Is it possible to combine these two approaches, in 
which one systematically infers an approximate Bayes-
ian posterior distribution on trees? Although the phylo-
genetic likelihood can only be evaluated on a tree with 
branch lengths, one can define the likelihood of a topol-
ogy to be the likelihood of the tree given by the topology 
along with optimal branch lengths. Previous work [14] 
performed a systematic and parallel exploration of tree 
space by local rearrangements of the visited topologies 
and collecting only the resulting topologies above some 
likelihood threshold. Normalizing the likelihoods of all 
visited topologies gives an approximation of the Bayesian 
posterior distribution. Although this formed an interest-
ing proof of concept, it was ultimately defeated by there 
being too many high quality trees to do likelihood-based 
branch length optimization on each one.

More recent work [2, 3, 6, 16–18] has developed com-
putational structures that are capable of storing and 
manipulating many trees or topologies at once. We use 
terminology from [6] and call this structure a subsplit 

Directed Acyclic Graph or sDAG for short. Different 
bifurcating tree-graphs in the sDAG correspond to differ-
ent tree topologies (Fig. 1).

In this paper, we develop systematic search strate-
gies with sDAGs instead of topologies, with the goal of 
finding the smallest sDAG that contains a credible set of 
topologies. Because sDAGs can represent many topolo-
gies at once, we avoid the problem of having too many 
topologies to consider individually. Our approach in this 
work is to extend the nearest neighbor interchange (NNI) 
operation on topologies to an operation on sDAGs. As 
detailed in the Methods section, we develop NNIs as an 
operation to enlarge an sDAG rather than a move from 
topology to topology.

This approach requires a means of deciding whether an 
NNI is worth applying to the sDAG. One cannot directly 
apply classical phylogenetic criteria that judge a single 
topology at a time, because a single NNI operation can 
add many topologies to the sDAG at once (see Methods 
section). We apply two approaches. Both approaches 
associate branch lengths with each edge of the sDAG, 
which means that there is a one-to-one correspondence 
between topologies in the sDAG and trees in the sDAG.

The first approach, top pruning, implements the idea 
that one would like to apply NNIs that generate at least 
one good topology; this corresponds to the idea of col-
lecting a credible set of topologies and merging them 
into a sDAG. In slightly more detail, top pruning main-
tains choice maps that can be used recursively to get 
a “best” tree containing the central edge of any given 
NNI, and branch lengths of new additions to the sDAG 

Fig. 1  The combination of two topologies τ1 and τ2 into a single sDAG. The sDAG (right) contains the union of the nodes and edges 
of the individual sDAGs from each of the topologies. It also contains additional topologies, such as the topology containing both {{0}, {1, 2, 3, 4, 5, 6}} 
and {{4, 6}, {5}} , that are not present in the original set of two topologies



Page 3 of 18Jennings‑Shaffer et al. Algorithms for Molecular Biology            (2025) 20:2 	

are optimized to maximize the likelihood of the “best” 
tree containing the central edge of that NNI. Thus, the 
likelihood of NNIs in the top pruning case is the clas-
sical Felsenstein phylogenetic likelihood of that “best” 
tree associated to the NNI. (Here “best” is put in quotes 
because the “best” tree is an approximation to the maxi-
mum likelihood tree.)

The second, generalized pruning, or GP, implements 
the idea that one would like to apply NNIs that gener-
ate many probable topologies, but with a composite-like 
approximation to the marginal likelihood. One can use 
this marginal likelihood to optimize branch lengths for 
newly added sDAG edges, as well as to decide if an NNI 
is worth applying to the sDAG under the GP criterion. 
Specifically, the likelihood for an NNI is this GP marginal 
likelihood with optimized branch lengths. All of this is 
made possible by a recently-developed algorithm to cal-
culate the marginal composite likelihood across topolo-
gies [6] for which computation time scales linearly in the 
number of edges of the sDAG.

When applied to benchmark data sets, we find that top 
pruning performs significantly better than generalized 
pruning in terms of discovering a credible set of topolo-
gies. However, neither method delivers a major advance 
in terms of finding a small subsplit DAG containing a 
credible set when compared to aggregating an sDAG 
from a short run of MrBayes [11]. Although this aggre-
gation approach was taken to generate sDAGs in past 
work (e.g., [6, 16, 17]), here we show, using a variety of 
data sets, that this aggregation strategy gives good rep-
resentation of the posterior distribution without being 
over-diffuse.

Methods
We begin by introducing the sDAG. Although it was 
described briefly as part of previous work  [6], which 
assumed that such a structure was given, here our goal is 
to infer such a structure, so we will spend more time on 
developing and motivating the idea. Other recent inde-
pendent work  [2] has developed a related but different 
structure.

Introduction to the subsplit DAG
We first describe how the subsplit DAG is a generaliza-
tion of a single, rooted, bifurcating topology, and how 
the general case can be considered the union of a collec-
tion of topologies. Take, for example, a single caterpillar 
topology on the taxon set {0, . . . , 6} (Fig. 1 left).

In this representation, we label each internal node with 
the two taxon sets that are leafward of each of the two 
edges coming from that internal node. So, for example, 
the second node below the root ρ has the taxon set {1} on 

one side and the taxon set {2, 3, 4, 5, 6} on the other, so the 
internal node is labeled with {{1}, {2, 3, 4, 5, 6}}.

We call such a bipartition of a subset of the taxon set a 
subsplit (following [6, 16–18]; subsplits were called par-
tial splits in  [10]). Each component of the subsplit is a 
clade of the subsplit, and each of these clade components 
is referred to as a subsplit-clade. One can represent any 
rooted phylogenetic topology as an sDAG: each node is 
labeled with a subsplit describing the bipartition of the 
taxa leafward of that node, and each edge is directed in 
a leafward direction from the root. More generally, an 
sDAG is a directed acyclic graph with subsplits as nodes 
and edges connecting parent subsplits to child subsplits 
partitioning individual clades in the parent subsplit. To 
distinguish which subsplit-clade is partitioned along an 
edge, we write (t,X) → s , where X is a subsplit-clade of 
the subsplit t, s is a child subsplit of t, and 

⋃
(s) = X . We 

underline the subsplit-clade X so that there is no ambi-
guity in which variables are subsplits and which are sub-
split-clades. For convenience, we assume there is an order 
on the taxa, which extends to an order on clades. We call 
the lesser subsplit-clade the left subsplit clade and the 
greater subsplit-clade the right subsplit-clade.

We extend some common terminology for clades to 
sDAG edges. Suppose t1 , t2 , s1 , s2 are subsplits, e1 is the 
edge from t1 to s1 , and e2 is the edge from t2 to s2 . When 
s1 = t2 , we say e1 is a parent edge of e2 and say e2 is a child 
edge of e1 ; we may refine this by saying left child edge or 
right child edge, depending on which subsplit clade of s1 
is partitioned by s2 . When t1 = t2 , but s1 and s2 partition 
distinct subsplit clades of t1 , we say e1 and e2 are sibling 
edges.

To build an sDAG encoding multiple topologies, we 
take the sDAG for each topology, then take the union of 
the nodes and edges in the two individual sDAG repre-
sentations (Fig. 1). Thus an sDAG may contain a collec-
tion of topologies: any graph-theoretic-tree-structured 
subset of the nodes and edges in an sDAG that contains 
all of the leaves represents a tree topology. Each subsplit-
clade of outdegree greater than one requires a choice 
between the descending arrows. For example, consider 
the edges leaving the subsplit-clade {4, 5, 6} in Fig. 1. If we 
pick the edge leading to {{4}, {5, 6}} , we will have a tree 
with {4} branching off first, and if we pick the edge lead-
ing to {{4, 6}, {5}} , we will have a tree with {5} branching 
off first.

Note that if we build the sDAG from a collection of 
topologies, the sDAG may contain additional topologies 
beyond those used to build the sDAG (Fig.  1). In many 
respects this is a feature, not a bug: it allows us to expand 
the support of the sDAG combinatorially beyond the 
set of topologies used to build it. On the other hand this 
can add topologies outside the credible set. The balance 
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between the advantage of additional topologies and dis-
advantage of “false positive” topologies will be a key con-
sideration in our systematic search strategies. However, 
as described next, we have finer control of the topology 
distributions than if we were to use the conditional clade 
distribution of [5] and [8].

Phylogenetic tree distributions
A key application of the sDAG is to represent a prob-
ability distribution on phylogenetic topologies and 
trees. If we assign such a probability distribution to 
the edges originating in each of the subsplit-clades, 
then we obtain a probability distribution on phylo-
genetic tree topologies. For example, in Fig.  1 we can 
assign probabilities to the two options for the root split 
and to the two options for resolving the subsplit-clade 
{4, 5, 6} : {{4}, {5, 6}} and {{4, 6}, {5}} . Suppose the prob-
ability of {{0, 1}, {2, 3, 4, 5, 6}} is 0.4 and the probability 
of {{4}, {5, 6}} is 0.3, then the probability of the topology 
((0, 1),  (2,  (3,  (4,  (5, 6))))) containing both of these sub-
splits is 0.4 × 0.3 = 0.12 . It is easy to see that assigning 
probability distributions to each set of edges leaving each 
subsplit-clade in the sDAG yields a (normalized) prob-
ability distribution on the topologies represented in the 
sDAG.

Such a distribution is a generalization of previous 
work [5, 8] that led to topology distributions called con-
ditional clade distributions (CCDs); CCDs consist of a 
distribution of subsplits conditioned on a clade, i.e. a set 
of taxa. Recently, these CCDs were attached to a directed 
acyclic graph structure similar to our sDAG [2]. The dif-
ference between this and the sDAG formulation is that 
the sDAG enables the expression of additional condi-
tional dependencies on the sister clade (Fig. 2). We have 
shown such flexibility greatly improves fit  [16]. How-
ever, if those are not important, one can allow them to 
be independent of the sister clade, recovering conditional 
clade distributions in a graph structure.

In terms of probabilities of edges, the sDAG formula-
tion takes a probability distribution on edges leaving each 
parent subsplit-clade, whereas the conditional clade dis-
tribution requires these distributions to be identical for 
parent subsplit-clades on the same clade.

If one has a sample of topologies, such as that from 
an MCMC algorithm, one can use it to fit the prob-
abilities labeling the edges of the sDAG. For an sDAG on 
rooted topologies, the probabilities for edges from a par-
ent subsplit to its child subsplits are simply normalized 
frequency counts of the child subsplits in the sampled 
topologies that contain the parent subsplit. If we desire a 
distribution on unrooted topologies, we can consider the 
sDAG containing all possible rootings of the topologies 

in the sample, and an expectation-maximization algo-
rithm can be used to infer probabilities [16].

To extend such a distribution on topologies to a distri-
bution on trees, we attach parameterized distributions for 
branch lengths to the sDAG edges. Taking such an sDAG 
and inferring the branch length and subsplit distributions 
is a case of variational Bayesian phylogenetic inference. 
This approach was introduced and studied in [17, 18], 
taking the sDAG as a fundamental object, although it was 
described using different terminology: “subsplit Bayesian 
networks.” However, in this paper, as described below, 
we will be assigning a single fixed branch length to each 
edge of an sDAG, so that each topology in an sDAG cor-
responds to a phylogenetic tree.

Performing NNIs to the subsplit DAG
The goal of this paper is to develop a systematic inference 
of the sDAG. In order to do so, we describe modifications 
of the sDAG that are analogous to the sort of modifica-
tions typically done to phylogenetic topologies. Nearest-
neighbor interchange (NNI) is a common method to make 
minor topological modifications and grow the topologi-
cal support. An NNI swaps two subtopologies of adjacent 
subsplits to create a new topology (see left-hand arrow of 
Fig. 3).

We can form an analogous operation on the sDAG, 
however, the NNI operation enlarges the sDAG rather 
than modifies it in place. That is, on an sDAG, we can 
perform NNI on two subsplit-clades, then combine the 
pre-NNI sDAG with the post-NNI sDAG into a single 

Fig. 2  An example showing how the sDAG is more flexible 
than the conditional clade distribution of [2, 5, 8]. Specifically, 
we may have different splitting probabilities for the clade {2, 3, 4} 
depending on which subsplit it is contained in (either {{0}, {2, 3, 4}} 
or {{1}, {2, 3, 4}} ), showing that our approach is a strict generalization 
of clade-conditional approaches
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new sDAG. Consider Fig.  3, where t and s are sub-
splits on the clade set X ∪ Y ∪ Z , with t = {X ∪ Y ,Z} 
and s = {X ,Y } . Performing an NNI on clades Y and Z 
produces a new sDAG with subsplits t ′ and s′ , where 
t ′ = {X ∪ Z,Y } and s′ = {X ,Z}.

To construct the combined sDAG from the pre-
NNI sDAG, we need only add subsplits t ′ , s′ (if not 
already in the sDAG) and edges (a) between the new 
nodes: t ′ → s′ , (b) parents of t ′ : u → t ′ for all u where 
u → t , and (c) descendants of the new subsplit-clades: 
(s′,X) → u for all u where (s,X) → u , (t ′,Y ) → u for 
all u where (s,Y ) → u , and (s′,Z) → u for all u where 
(t,Z) → u . The new edges described above will pre-
serve all previously existing incoming and outgoing 
edges from each clade. The addition of t ′ and s′ creates 
a locally different splitting order between the X, Y, and 
Z clades, leaving all other parts of the sDAG unmodi-
fied. We refer to the edge t ′ → s′ as the central edge of 
the NNI.

In our systematic inference methods, we maintain 
an sDAG with edges between all compatible subsplits, 
i.e. subsplits that can co-exist in a tree. Such sDAGs 
exhibit favorable properties. For example, when the 
pre-NNI sDAG has edges between all compatible sub-
splits, every new topology in the post-NNI sDAG is an 
NNI of a topology in the pre-NNI sDAG. Addition-
ally, any new topology must contain the central edge 
of the NNI. Both statements can fail when the original 
sDAG is missing compatible edges. Details are given 
in the appendix. However, after applying an NNI to an 
sDAG, the resulting sDAG may not have the maximum 
number of edges even when the original sDAG does. 
In particular, the sDAG may not have edges from t ′ to 
all compatible child subsplits and edges from all com-
patible parent subsplits to s′ . Thus, when enlarging an 
sDAG via an NNI in our systematic search algorithms, 
we will include these additional edges.

Evaluating new additions to the sDAG
Our inference algorithms proceed in a manner analogous 
to that for hill-climbing search of a single phylogenetic 
tree: evaluate all possible local modifications, and accept 
a modification according to an optimality criterion. Thus, 
we require a means of evaluating an NNI of the sDAG 
to decide if we should apply it to the sDAG. Specifically, 
we describe two ways that generalize the calculation of 
a likelihood for a phylogenetic tree. This is enabled by 
assigning a single fixed branch length to each edge of the 
sDAG, as described above, so that each topology in an 
sDAG corresponds to a phylogenetic tree.

Before describing these approaches in detail, we intro-
duce some further notation. We write Y for the given 
multiple sequence alignment written as a rectangular 
array, each sequence is one row. The ith column of Y is 
Y
i , which is the column vector containing the ith site of 

each sequence. As we deal only with fixed branch lengths, 
we write pψ(Y | τ ) for the phylogenetic likelihood for the 
data Y , branch lengths ψ , and topology τ : that is, this is 
the classical phylogenetic likelihood of a tree that has τ 
as the topology and branch lengths assigned according 
to ψ , assuming data Y . As commonly done, we assume 
site independence so that pψ(Y | τ ) =

∏K
i=1 pψ(Y

i | τ ) , 
where K is the number of sites. In this case, pψ(Yi | τ ) is 
efficiently calculated by Felsenstein’s pruning algorithm. 
In our implementation and benchmarking of our NNI-
search algorithms, we use the Jukes-Cantor substitution 
model for simplicity. We could use a general time revers-
ible model, as long as we take fixed model parameters 
(equilibrium frequencies and substitution rates) for the 
sDAG. One approach to infering these model param-
eters is to fit them on a single tree in the sDAG. We also 
do not consider across-site rate variation, although this 
could be added to both of the algorithms here if desired. 
Also, we optimize branch lengths rather than marginal-
ize over them, in the interest of efficiency. In Bayesian 

Fig. 3  Applying an NNI to a sDAG at subsplits t and s, then combining the pre-NNI sDAG with the post-NNI sDAG into a single sDAG. Here t′ and s′ 
are the new nodes, and the red dashed edges are the new edges. Triangles are substructures in the sDAG, and X, Y, and Z are clades
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phylogenetics one typically considers a distribution of 
branch lengths, however this style of approximation has 
shown surprisingly good performance [1, 4, 13].

The two approaches, described in detail in the following 
two sections, are called “top pruning” and “generalized 
pruning.” Each approach is based on its own definition 
of likelihood, described roughly above and in more detail 
in the following sections. However, for now, we note that 
generalized pruning is based on an across-tree margin-
alization so NNI operations are evaluated based on the 
sDAG as a whole, while top pruning is based on the (clas-
sical) likelihood of the single best additional tree enabled 
by the NNI.

Top Pruning
The idea behind top pruning is to add the highest like-
lihood tree, obtained by an NNI, not previously in the 
sDAG. Recall an NNI on an sDAG may introduce more 
than one new tree. Ideally one would select the NNI 
based on a computation like

where Te is the set of trees in the post-NNI sDAG with 
central edge e introduced by the NNI. However, this cri-
terion does not yield an efficient algorithm, as we would 
need to enumerate all trees in Te and compute their 
likelihoods.

Our approach is to instead store local choices of sub-
trees, which may yield a sufficient approximation to 
the tree maximizing the likelihood above. These local 
choices determine the topology and branch lengths, 
and so one can evaluate the likelihood of the tree in 
a classical way. In this section we focus on giving an 
intuitive understanding of how these local choices 

(1)max
τ∈Te

K∏

j=1

pψ(Y
j | τ ),

work, and full details are found in the supplementary 
material.

The local choices of subtrees are implemented by 
a data structure we call a “choice map”, which simply 
records a specific choice of neighboring edges for each 
edge of the sDAG (Fig. 4). We have a “rootward choice 
map”, which when given an edge returns a parent edge 
and sibling edge (assuming the given edge does not 
begin with the universal ancestor). We have a “leafward 
choice map”, which when given an edge returns a left 
child edge and right child edge (assuming the given 
edge does not end with a leaf ).

These choice maps can be recursively applied, defin-
ing tree structures as follows. The leafward choice 
map defines a tree in the direction of the leaves from 
any given edge of the sDAG by recursively applying 
it until reaching the leaves. To get a tree in the direc-
tion of the root from any given edge of the sDAG, one 
uses the rootward choice map to pick edges toward 
the root, and the leafward choice map to choose edges 
descending from these edges which haven’t already 
been determined. Combining these, we get a tree we 
call the “best known tree” for the edge. Although it may 
not be the maximum likelihood tree in the sDAG con-
taining the edge, by the way we construct the choice 
map (described below) we believe it should be a good 
approximation.

The following is a more precise description of the 
deterministic process to find the best known tree for a 
given edge. 

1.	 Initialize a graph G consisting of the single given 
edge.

2.	 While G is not a tree on the taxon set, we examine 
the edges of G. 

Fig. 4  An example of choice maps. In a the green solid edges are the parent and sibling edges returned by the rootward choice map (schematized 
by dashed line) for the given orange edge. In b the green solid edges are the left and right child edges returned by leafward choice map 
for the given orange edge. The “best known tree” for the given orange edge begins with the five highlighted edges: the orange edge common 
to both (a) and (b), the two solid green edges from (a), and the two solid green edges from (b)
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(a)	 For each edge e not ending in a leaf: if G does 
not contain a left and right child edge of e, 
then we add the two children provided by the 
leafward choice map at e.

(b)	 For each edge e not originating at the univer-
sal ancestor: if G does not contain a parent and 
sibling edge of e, then we add the parent and 
sibling edges provided by the rootward choice 
map at e.

Furthermore, we can perform this construction after per-
forming an NNI on the sDAG. If we cache partial like-
lihood vectors (PLVs) at the nodes of the sDAG, we can 
evaluate the likelihood of a best known tree in time that 
is constant in the number of leaves of the sDAG.

Next we explain which edges are selected for the 
choice maps. Suppose we generate an sDAG from a list 
of trees ordered by likelihood (the highest likelihood tree 
is first). To each edge of the sDAG, we assign the branch 
length from the first tree of the list containing the edge. 
Consider Fig.  4, where the given edge is highlighted in 
orange. In panel (a), we select the parent and sister edges 
highlighted in green; the two child edges are selected and 
highlighted in panel (b). The orange edge may appear 
in more than one tree of the original list, but since the 
trees are ordered by likelihood, we focus on the first 
(highest likelihood) tree with this edge. The four neigh-
boring edges are taken from this tree and the choices 
are recorded in the choice maps. In particular, note that 
the choice maps depend on the likelihood-ordered list of 
trees used to construct the sDAG.

Next we will write out a complete example for an sDAG 
constructed from two input trees (Fig.  5). In this toy 
example we have trees τ0 and τ1 on seven taxa. We assume 
the classical setup for phylogenetic inference, with a 
sequence alignment and model, as well as branch lengths 
along the edges, so we can calculate the likelihood of a 
tree topology. Assume that τ0 is of higher likelihood than 
τ1 . Figure 5a depicts τ0 , τ1 , and the sDAG spanned by the 
two. This sDAG contains two additional trees (Fig.  5b). 
The edges of the sDAG are labeled with the maximum 
likelihood input tree ( τ0 or τ1 ) containing the edge. To 
build the best known tree for an edge, which need not be 
one of the input trees, we begin with the given edge and 
attach the immediately neighboring edges from the τi of 
the label. For the attached neighboring edges that touch 
neither root nor leaf, we must choose two additional 
edges (either children or parent and sibling) to flesh out 
the best known tree. Such additional edges are taken 
from the input tree (again τ0 or τ1 ) given by the label of 
the attached edge. We continue this process until a tree 
is fully constructed. The best known tree for the edges of 
the sDAG labeled τ0 is τ0 . The best known tree for edges 

labeled τ1 is τ2 for edges above the subsplit {{1}, {2, 3, 4, 5}} 
and τ3 for edges below.

For most edges in the sDAG of Fig. 5, there is only one 
choice for parent, sibling, and child edges. The non-triv-
ial choices can be phrased as:

•	 Does {{1}, {2, 3, 4, 5}}→ {1} use the parent edge from 
{{1, 2, 3, 4, 5}, {6}} or {{0}, {1, 2, 3, 4, 5}}?

•	 Does {{1}, {2, 3, 4, 5}}→ {{2}, {3, 4, 5}} use the parent 
edge from {{1, 2, 3, 4, 5}, {6}} or {{0}, {1, 2, 3, 4, 5}}?

•	 Does {{1}, {2, 3, 4, 5}}→ {{2}, {3, 4, 5}} use the right 
child edge to {{3}, {4, 5}} or {{3, 4}, {5}}?

•	 Does {{2}, {3, 4, 5}}→ {2} use the sibling edge to 
{{3}, {4, 5}} or {{3, 4}, {5}}?

In Fig.  5c we highlight the edge {{1}, {2, 3, 4, 5}}→ {1} 
in orange along with its chosen neighbor edges. Addi-
tionally, we highlight {{1}, {2, 3, 4, 5}}→ {{2}, {3, 4, 5}} in 
green and {{2}, {3, 4, 5}}→ {2} in purple, as well as their 
chosen neighbor edges.

The key point is each edge of the sDAG is assigned a 
tree systematically. Importantly, we can extend this to 
assign trees to the central edges of NNIs of the sDAG. 
The details of extending the choice maps to such edges 
are given in the supplementary materials. Furthermore, 
this assignment of trees allows for efficient phylogenetic 
likelihood calculations. We define the “top pruning likeli-
hood” of an NNI to be the likelihood of the best known 
tree for the central edge of the NNI.

The top pruning algorithm proceeds in the following 
manner. Suppose we are given a list of trees, ordered by 
likelihood. 

	 1.	 Initialize D to the sDAG spanned by the topologies 
from the list of trees.

	 2.	 Assign branch lengths to the edges of D by taking 
the branch length from the first tree in the list con-
taining a given edge.

	 3.	 Initialize choice maps for the edges of D.
	 4.	 Add edges between all compatible parent and child 

subsplits. Assign choice maps with an argmax 
strategy (see Supplement, equation  (4)). Assign 
branch lengths optimizing best known trees for 
these edges.

	 5.	 Create a list of NNIs, ordering by top pruning like-
lihood, for each edge in the sDAG (two NNIs per 
sDAG edge). We do not record NNIs in the list if 
they do not enlarge D.

	 6.	 Enlarge D to D′ with the highest top pruning like-
lihood NNI of the list. Assign choice maps and 
branch lengths as in (3).
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	 7.	 Enlarge D′ to D′′ by adding all additional edges 
between compatible subsplits. Assign choice maps 
and branch lengths as in (4).

	 8.	 Remove the NNI of step 6 from the list.
	 9.	 Insert into the list, while maintaining the order by 

top pruning likelihood, the new NNIs that enlarge 

D
′′ . The top pruning likelihood is not updated for 

NNIs already present in the list.
	10.	 Return to step 6 with D′′ in place of D.

Fig. 5  Choice map initialization for an sDAG, assuming τ0 has higher likelihood than τ1 . In a are two trees on seven taxa and the sDAG built 
from the trees. The edges of the sDAG are labeled with the topology, τ0 in red or τ1 in blue, where the edges first appeared. In b are the two 
additional topologies in the sDAG. In c we highlight the edges that have an option in the choice maps. In orange is an edge (bold dashed line) 
and its chosen neighbors (lightweight dashed line), with a choice of parent edge; in purple is an edge and its chosen neighbors, with a choice 
of right child edge; and in green is an edge and its chosen neighbors, with a choice of parent edge and right child edge
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The looping step of the algorithm repeats either for a 
fixed number of iterations or until the likelihood of all 
NNIs in the list are below a given threshold.

Generalized pruning
The generalized pruning (GP) objective applies the NNI 
to an sDAG that most increases a topology-marginal 
composite likelihood called the generalized pruning like-
lihood [6]. Specifically, let De be the sDAG from applying 
an NNI with central edge e. Let Te be the set of trees of 
De that contain e. The GP algorithm applies the NNI that 
maximizes

across edges e. The term p(τ | e) is the relative prior 
probability of τ among the topologies of Te . Explicitly,

where p(τ ) is a prior distribution on topologies. Our 
implementation uses the uniform distribution, so that 
p(τ | e) = 1

|Te|
 . The likelihood in (2) is the per-edge mar-

ginal likelihood introduced in [6], the details of which are 
given in the section of the same name. Specifically, this 
is the generalized pruning per-edge composite marginal 
likelihood of the edge e in the sDAG after applying the 
NNI. We call this likelihood the generalized pruning like-
lihood of the NNI.

Note that we call (2) a “composite likelihood” because it 
is taking a product of per-site marginal likelihoods rather 
than marginalizing over the complete likelihood. This 
correct marginal likelihood of the edge would be

However, there are no efficient means known of directly 
calculating this correct marginal likelihood, whereas the 
generalized pruning version scales linearly in the size of 
the sDAG. The generalized pruning marginal likelihood 
is computed with a traversal of the sDAG that populates 
partial likelihood vectors at each node, where each node 
has a PLV for each site of the sequence alignment. In con-
trast, to compute the true marginal likelihood, each node 
would require a PLV not just for each site, but each site 
and distinct topology with that node. That is to say, the 
GP likelihood is computed using PLVs that are shared 
by topologies, while the true marginal likelihood would 
require separate PLVs for topologies. Although it is not 
the same as the true marginal likelihood, we have found 

(2)
K∏

j=1

∑

τ∈Te

pψ(Y
j | τ ) p(τ | e),

p(τ | e) =
p(τ )∑

τ
′∈Te

p(τ ′)
,

∑

τ∈Te

p(τ | e)

K∏

j=1

pψ(Y
j | τ ).

that the GP likelihood is a sufficient approximation of 
the true likelihood for the purpose of optimizing branch 
lengths [6].

Suppose we are given a list of starting trees ordered by 
likelihood, the generalized pruning systematic inference 
algorithm is as follows. 

1.	 Initialize D to the sDAG spanned by the topologies 
from the list of trees.

2.	 Assign branch lengths to the edges of D by taking the 
branch length from the first tree in the list contain-
ing a given edge. Optionally, we further optimize the 
branch lengths to maximize the overall generalized 
pruning likelihood of the sDAG.

3.	 Add edges between all compatible parent and child 
subsplits; assign GP per-edge composite marginal 
likelihood optimized branch lengths to these edges.

4.	 Create a list of NNIs, ordering by generalized prun-
ing likelihood, for each edge in the sDAG (two NNIs 
per sDAG edge). We do not record NNIs in the list if 
they do not enlarge D.

5.	 Enlarge D to D′ with the highest GP likelihood NNI 
of the list. Add any additional edges between either 
of the new subsplits and compatible existing sub-
splits. Assign GP per-edge composite marginal likeli-
hood optimized branch lengths to the new edges.

6.	 Remove the NNI of step 5 from the list.
7.	 Insert into the list, while maintaining the order by 

GP likelihood, the new NNIs that enlarge D′′ . The GP 
likelihood is not updated for NNIs already present in 
the list.

8.	 Return to step 5 with D′ in place of D.

The looping step of the algorithm repeats either for a 
fixed number of iterations or until the GP likelihood of 
all NNIs in the list are below a given threshold. The GP 
likelihoods in items 4 and 7 are calculated after optimiz-
ing branch lengths.

Implementation of systematic inference
The necessary functionality for both NNI-searches 
are implemented in the Python-interface C++ library 
bito(https://​github.​com/​phylo​vi/​bito) and an interface 
to perform a search is further implemented in Python 
(https://​github.​com/​matse​ngrp/​sdag-​nni-​exper​iments). 
Both top pruning and generalized pruning use PLVs for 
fast and efficient likelihood calculations. The PLVs for 
top pruning are defined as usual for a two-pass version of 
Felsenstein’s pruning algorithm and are propagated along 
the choice maps. The PLVs for generalized pruning fol-
low a different pattern and are discussed in detail in [6]. 
It is these likelihoods and associated PLVs that domi-
nate the computational expense of our algorithms, while 

https://github.com/phylovi/bito
https://github.com/matsengrp/sdag-nni-experiments
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maintaining the the graph structure of the current sDAG 
and potential additions is secondary.

When new edges are introduced for top or generalized 
pruning, the optimization of associated branch lengths is 
done as follows. We take one branch length, hold the oth-
ers fixed, apply Brent optimization (maximizing the like-
lihood of the edge in terms of best known tree likelihood 
or generalized pruning), repeat with another branch 
length, and continue until values have approximately 
converged. We leave the branch lengths of old edges 
unaltered. This approach showed good performance for 
branch length optimization in previous work [6].

Benchmarking setup
As in previous work (e.g., [4, 5, 7, 8, 15]), we compare 
our inferences to very long MrBayes “golden runs”. We 
use common benchmark data sets, which we call the 
DS-datasets, as well as a 100 influenza A (flu) sequence 
data set from [18]. Each very long run of MrBayes yields 
numerous topologies and posterior density estimates of 
these topologies, which form the empirical posterior. We 
take the 95% credible set to be the minimal size set of 
topologies whose cumulative density is at least 95%. Basic 
information for the data sets and their empirical posteri-
ors is in Table 1. We say a subsplit is credible if it appears 
in at least one topology of the 95% credible set. This is 
different from taking a credible set of subsplits from a 
topology marginalized probability on subsplits.

We will use the term “diffuse” to qualitatively describe 
the size of the posterior credible set. Taking the num-
bers in Table  1 (either for credible topologies or poste-
rior topologies) the order of data sets from least to most 
diffuse is DS3, DS1, DS4, DS7, DS8, DS6, and DS5. The 
data sets DS1, DS3, DS4, and DS7 are not diffuse, while 
DS5 and DS6 are very diffuse, and DS8 is somewhere 
between. While there is another data set, commonly 
called DS2, the posterior is only a few topologies and so 
we ignore it here.

For each data set, we calculate how much of the pos-
terior density is captured per NNI-search iteration and 
by run time. We use short runs of MrBayes for a direct 
comparison of run time. These short runs of MrBayes 
use similar specifications to the golden runs, except 
we record all topologies (i.e., sample frequency 1 and 
no burn-in). With these short runs, we have two com-
parisons with an NNI-search. First, we compare the 
cumulative posterior density of the topologies from an 
NNI-search to that of the topologies from the short run. 
While this is a fair comparison in terms of run time, 
comparing the density from topologies of an sDAG to 
topologies from a simple list puts the short runs at a 
disadvantage. Our second comparison addresses this 
issue by comparing the density of topologies from 
an NNI-search to the density of the topologies in the 
sDAG spanned by the topologies from the short run of 
MrBayes. This gives a more accurate comparison in 
terms of cumulative density, as we compare an sDAG 
to an sDAG. We emphasize that while our systematic 
inference algorithms produce sDAGs that represent 
trees, we ignore branch lengths and work with topolo-
gies for these comparisons. While we can efficiently 
build an sDAG from a large list of topologies, there 
is required processing of topologies from MrBayes 
before building the sDAG (rerooting, ordering of splits 
of subtopologies in the newick string, etc.). When 
memory is not a constraint, this processing of topolo-
gies is also quick and efficient. However, for a very large 
number of topologies (as is the case with DS5), we use 
a less efficient method. The run-time we report for the 
sDAG spanned by topologies of MrBayes includes the 
run-time for MrBayes, the estimated run-time of pro-
cessing topologies with the efficient implementation, 
and the run-time for constructing the sDAG from the 
processed topologies. As discussed in the following 
section, generalized pruning performs poorly and so we 
do not show it in every benchmark.

We start all of the searches (top pruning, generalized 
pruning, and short runs of MrBayes) with the maximum 
posterior density topology of the golden run with branch 
lengths optimized by iqtree for likelihood. Starting the 
searches at the maximum posterior density topology is a 
best-case scenario for performance, as the search starts at 
the highest peak of the distribution.

We also compare top pruning and the short runs of 
MrBayes by the quality of subsplits. We calculate both 
how many of the credible subsplits are found by a search 
and how many of the subsplits found by a search are 
credible. The comparison with top pruning and short 
runs of MrBayes matches the two on the number of sub-
splits encountered. In the ideal setting, the search meth-
ods would only add subsplits present in the posterior.

Table 1  Description of the DS-datasets

Data set Taxa Sites 95% Credible set Empirical posterior
Topology count Topology count

1 27 1949 42 1245

3 36 1812 16 240

4 41 1137 219 4539

5 50 378 260894 298768

6 50 1133 157942 195816

7 59 1824 756 6000

8 64 1008 4329 26442

flu 100 1681 16475 20262
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Our search methods can take multiple trees as input, 
so we investigate two additional starting points. The first 
is a “best case” minor variation: we begin the search with 
the top 10 posterior density topologies with likelihood 
optimized branch lengths. The second is a more realis-
tic setting and randomized: we take the unique topolo-
gies produced by 200 runs of RAxML [12] with likelihood 
optimized branch lengths. We find that RAxML produces 
more distinct topologies than iqtree when given ran-
dom starting trees (data not shown). We compare the 
performance with different starting trees by cumulative 
density per iteration. There is not a comparison with 
short runs of MrBayes. It is worth noting that we may 
use the trees from RAxML without any knowledge of the 
credible set or an empirical posterior distribution.

For consistency, all timing scripts were run with the 
SLURM job scheduler with exclusive access to a single 
node. The experiments of this section can be recreated 
by following the instructions in the experiments GitHub 
repository (https://​github.​com/​matse​ngrp/​sdag-​nni-​
exper​iments).

Results
We first describe the disappointing performance of gen-
eralized pruning, and then the somewhat better perfor-
mance of top-pruning. For top-pruning we also provide a 
more detailed analysis, discussing run time, performance 
with multiple starting points, and performance on the 
larger flu data set. For this first set of analyses, we will be 
interested in the total posterior density of the topologies 
present in the sDAG generated by the various methods 
through time.

The performance of generalized pruning is lackluster. 
Regardless of data set, generalized pruning fails to cap-
ture a reasonable amount of posterior density in a reason-
able amount of time (Fig. 6 for DS1 and DS3-6, Figure S1 
for DS7-8). It is not competitive with the list of topolo-
gies from the short runs of MrBayes. Even on DS3, the 
least diffusive data set, generalized pruning spends many 
iterations adding subsplits and edges not contributing to 
the density.

Top pruning fares better than generalized pruning on 
the DS-datasets. It consistently outperforms the topolo-
gies of a short MCMC run and is competitive with the 
sDAG spanned by these topologies. While top pruning 
experiences long lengths of time with little to no increase 
in coverage of the posterior density, it usually finds its 
way back and captures much of the posterior density 
(Fig. 7 for DS1 and DS3-6, Figure S2 for DS7-8).

The credibility of subsplits found by top-pruning tends 
to be worse than the short runs of MrBayes (recall that 
we say that a subsplit is credible if it appears in at least 
one topology of the 95% credible set). Top pruning and 

MrBayes are very similar on DS3 and DS7, but on the 
other datasets top pruning adds many non-credible sub-
splits along with credible subsplits (Fig.  8). The orange 
(magenta) lines are essentially the true-positive rates of 
top pruning (short MCMC, respectively) in terms of sub-
splits. While not included here, we performed the same 
analysis with sDAG edges rather than subsplits and the 
results were similar.

Multiple starting trees are beneficial, but the benefit 
depends on the trees. Using the 10 highest probability 
trees from the credible set, or high likelihood trees gener-
ated by RAxML, of course, provides the gain in cumula-
tive density of the additional topologies (Fig. 9). Past that, 
performance improvements are more subtle. Suppose 
we take the sDAG formed by the multiple initial trees 
and compare with the sDAG from running top pruning, 
without the additional trees, until we have approximately 
the same cumulative density of topologies in the sDAGs. 
After applying a few iterations of top pruning to both of 
these sDAGs, one may have a higher cumulative density 
of topologies than the other. Using the 10 highest prob-
ability trees usually does not give this kind of improve-
ment, while using the high likelihood RAxML trees often 
does. That is, using the trees from RAxML improves the 
selection of NNIs toward the beginning of the search, 
while using the 10 highest probability trees does not. 
One possible explanation is the top 10 trees may be too 
close to each other in the posterior distribution and top 
pruning would visit these topologies fairly quickly and 
approximately in order, while the trees from RAxML may 
be near different peaks of the distribution.

Our implementation of top pruning does not exhibit 
linear run time with the number of iterations (Figure S3). 
This is important to consider, since we compare top 
pruning against MCMC by run-time. Later iterations of 
top pruning may add more edges than in previous itera-
tions. This means we expect more likelihood calculations 
on average in later iterations than in early iterations. 
With this, we do not expect linear run time is possible, 
but it is at worst quadratic. There is also the issue of scal-
ing in terms of the number of taxa (the number of leaves 
in the sDAG, the number of sequences in the alignment, 
etc.). The performance of top pruning on the flu data set 
is consistent with that of the DS-datasets (Fig. 10). This 
suggests top pruning may scale well with the number of 
taxa.

Lastly, we compare the empirical posterior probabil-
ity of an edge to the likelihood of the best known tree 
for the edge (the top pruning likelihood). By posterior 
probability of an edge, we mean the topology marginal-
ized probability, which is the sum of posterior probabil-
ities of topologies containing the edge. Across data sets, 
high posterior probability corresponds well to high 

https://github.com/matsengrp/sdag-nni-experiments
https://github.com/matsengrp/sdag-nni-experiments
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Fig. 6  The empirical posterior density found by generalized pruning on a subset of the DS-datasets and a comparison with MCMC. The red dots 
in the plots of the left indicate the last iteration finding a topology of the credible set and the blue dots indicate the last iteration finding a topology 
of the empirical posterior
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Fig. 7  The empirical posterior density found by top pruning on a subset of the DS-datasets and a comparison with MCMC. Note the x-axis scale 
varies between data sets
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likelihood of the best known tree of an edge (Fig. 11). 
This suggests that the challenge with the top pruning 
algorithm is its tendency to find and include edges out-
side of the credible set of topologies, but top pruning 
does a fair job of ranking edges within the credible set.

Discussion
In this paper we develop strategies to identify potentially 
high posterior density regions of tree space. This fits as 
part of a larger program to infer Bayesian phylogenetic 
posterior distributions via optimization  [6, 16–18]. We 

Fig. 8  Quality of sDAGs generated by top-pruning and short-MCMC in terms of subsplits. For each data set, two sDAGs were iteratively enlarged 
(by top pruning or aggregating trees from MrBayes). On the x-axis we have the number of subsplits in the sDAGs and on the y-axis we have 
the fraction of credible subsplits in the sDAGs and the fraction of subsplits in the sDAGs that are credible. In all cases, the initial sDAGs are 
given by the maximum posterior density topology, and so all subsplits of the initial sDAGs are credible
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emphasize that our goal for this paper is to find high-
posterior regions of topologies, rather than trying to 
determine posterior densities of these topologies. Once a 
region is located by a search method, be it a systematic 
inference or aggregation of trees, another method such 
as variational inference may be used to infer posterior 
densities in this region. Such methods may additionally 
infer distributions for branch lengths and evolutionary 

process parameters, allowing for joint posterior density 
estimates. One could also imagine using sDAG inference 
to build a means of estimating split frequency as a recent 
development of adaptive MCMC [9].

While top pruning performs well on our test data 
sets, the number of sequences is relatively small, with 
100 being the largest. We do not yet know how well 
top pruning scales to larger data sets, where we have 

Fig. 9  Performance of top pruning with different starting points
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thousands or tens of thousands of sequences. Our cur-
rent method of benchmarking is not possible for such 
data sets, as we require an empirical estimate of the 
true posterior. However, since top pruning lags behind 
the performance of aggregating MCMC-sampled trees 
into an sDAG on these small datasets, that seems 
like a more promising approach for future work and 
benchmarking.

Generalized pruning demonstrates poor performance 
with an NNI search, yet it has been shown useful when 
determining branch lengths [6]. We have not found any 
way to improve the performance here. Perhaps the gener-
alized pruning likelihood of an edge does not sufficiently 
capture the quality of the newly introduced topologies.

One could imagine extensions allowing more general 
additions to the sDAG in our search algorithms. When 
proposing and ranking NNIs for top pruning, we could 
try edges other than those present in the choice maps. 
For example, rather than using the parent of t specified 
in the choice map, we could try the other edges to t as 
candidate parents for t ′ (such as the dotted blue edge in 
Figure S5). This requires only a little extra evaluation and 
branch length optimization.

Furthermore, when we apply the best NNI to the sDAG 
and remove it from the ranked list, the best known trees 
for some of the NNIs in the list may now have an edge 
present in the current sDAG that was not present before. 
Such an edge has a branch length and choice maps that 
may yield a different likelihood from before. In such 
cases, we could trigger re-optimization of branch lengths 
for that NNI and replace the corresponding likelihoods, 
PLVs, and choice maps.

An alternative version of top pruning adds exactly five 
new edges of the best known tree associated to an NNI. 
That is, in each iteration, there are at most five edges of 
the best known tree for an NNI that are new to the sDAG. 
We can add only these edges to the sDAG, rather than 
edges between all compatible subsplits or the five types 
of edges detailed in the subsection on Performing NNIs 
to the subsplit DAG. This algorithm would enjoy linear 
run time, which the current implementation does not. 
However, this approach has a fundamental flaw: there 
are unobtainable subsplits and edges. One can begin 
with a single topology on a set of taxa, iteratively build an 
sDAG by adding the five edges from the best known tree 
for an NNI, continue until all NNIs are exhausted, and 

Fig. 10  Performance of top pruning on the flu100 data set
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Fig. 11  A comparison of edges ranked by posterior probability and top pruning likelihood. The edges are ordered by their posterior probability 
along the x-axis (with the lowest probability edge at 0) and by their top pruning likelihood along the y-axis (with the lowest likelihood edge at 0). 
Edges are binned for counts, with a darker color meaning a higher count
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obtain an sDAG missing valid subsplits and edges. This 
is in strict contrast to NNIs on topologies, where every 
topology can be reached from any other topology by a 
sequence of NNIs.

Overall, our goal in this work is to do systematic infer-
ence to find high posterior density regions of tree space. 
We introduce the first structures and operations on those 
structures to make this possible without considering each 
tree individually. In order to do systematic inference, 
one needs a means of evaluating these structures, and 
here we introduce top pruning and generalized pruning. 
Although top pruning shows reasonable performance, 
further work will be needed to improve performance 
over aggregating trees from an MCMC sampler into an 
sDAG.
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