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Abstract 

Analyzing and comparing sequences of symbols is among the most fundamental problems in computer science, 
possibly even more so in bioinformatics. Maximal Common Subsequences (MCSs), i.e., inclusion-maximal sequences 
of non-contiguous symbols common to two or more strings, have only recently received attention in this area, 
despite being a basic notion and a natural generalization of more common tools like Longest Common Substrings/
Subsequences. In this paper we simplify and engineer recent advancements in MCSs into a practical tool called 
McDag , the first publicly available tool that can index MCSs of real genomic data, and show that its definition can be 
generalized to multiple strings. We demonstrate that our tool can index pairs of sequences exceeding 10,000 base 
pairs within minutes, utilizing only 4-7% more than the minimum required nodes. For three or more sequences, we 
observe experimentally that the minimum index may exhibit a significant increase in the number of nodes.
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Introduction
Strings are fundamental in computer science, and their 
analysis, indexing, and processing are among the old-
est and best-studied problems. A central aspect of these 
problems is searching for relevant patterns in strings, 
which vary based on the application. We focus here on 
patterns that are common between two or more strings.

In some real-world domains, a common substring 
may be too strict of a requirement: to make an exam-
ple, a sequence of bases in genetic data may represent 
an important gene, but different specimens may have 
undergone different micro-variations in their genetic 
code that very slightly altered the gene, and even the 
act of sequencing introduces noise in the data so that 
an exact match is not guaranteed even when comparing 

samples from the same specimen. In these domains, it is 
relevant to consider the common subsequence: an ordered 
sequence of characters that occurs in all given strings, 
but not necessarily contiguously, i.e., the characters of the 
sequence may be interleaved with others.

As the number of common subsequences between even 
just two strings can be exponentially high, a common 
idea is looking at only the one of maximum length, the 
longest common subsequence (LCS hereafter). LCSs are 
used to see how well two or more sequences align, or how 
similar they are [1]. While LCS-based approaches can be 
effective, they have significant limitations: firstly, effi-
ciency is limited as finding a single LCS among an arbi-
trary number of strings is NP-complete [2], and still takes 
quadratic time with just two strings (see the conditional 
lower bounds in [3, 4]). Also, Fig.  1 shows an example 
case where a critical but relatively short sequence can-
not be extended to a common subsequence as long as an 
LCS, thus any analysis based on LCSs would completely 
disregard this information. Of course, the problem per-
sists when considering more than two strings.

On the other extreme, it is possible to consider all 
common subsequences with a Common Subsequence 
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Automaton [5]. However, these will include many solu-
tions (possibly most) that are included within other 
longer solutions, and thus pollute the set with redundant 
information. For these reasons, we focus on a generali-
zation of LCSs called Maximal Common Subsequences 
(MCS hereafter), which provides an interesting mid-
dle point between LCS and all subsequences: an MCS S 
between two (or more) strings is a sequence of characters 
that occurs as a subsequence in each of the strings and 
that is (inclusion) maximal, that is, S cannot be extended 
with any character in any position and still be a common 
subsequence. For example, in Fig.  1, the critical shorter 
common subsequence of two strings X and Y may be 
included in the set of MCSs, and could improve the align-
ment of some critical common parts.

Once established our interest in MCSs for string 
analysis, the natural question is: which tools should be 
employed? In fact, very little was possible until recently. 
We now have an algorithm to enumerate all MCSs effi-
ciently [6] but they can be exponential in number (in fact, 
this is true for LCSs too [7]) and it would be inconvenient 
to both enumerate and store all of them. A useful tool 
to facilitate analysis using MCSs would be a sufficiently 
small index that allows us to retrieve and query MCSs 
efficiently.

First steps in this direction have been taken: [8] proves 
the existence of a DAG (Directed Acyclic Graph) of poly-
nomial size that is able to represent all MCSs for two 
strings, count them, and reconstruct them as needed. 
Similar structures have also been shown in [9]. In this 
paper, we consider the general problem of representing 
all MCSs for k ≥ 2 strings and present an extended ver-
sion of our preliminary results in [10].

Contribution
Based on these results, the contribution of this paper is 
to build an indexing tool, which we call McDag , that is 
simultaneously simpler in concept and faster to construct 
than existing approaches. Moreover, while McDag was 
designed in the preliminary version of this paper [10] to 
index MCSs between two strings, in this paper we further 
generalize it to be able to index MCSs between k strings, 

MCS(Z) , where Z is a collection of |Z| = k ≥ 2 strings. 
This is the first tool able to perform such task, to the best 
of our knowledge.

For input strings Z = {Z1,Z2} , Fig.  2 shows our pro-
posed McDag at the bottom, along with two other DAGs 
obtained from the literature [5, 8].1 Apart from the differ-
ent number of nodes and edges, all share the same con-
ceptual structure:

•	 There exists a single source s, labeled with marker #, 
and a single sink t, labeled with marker $. All other 
nodes are labeled with characters from the alphabet 
� of the strings in Z.

•	 Each st-path is associated with a unique string in 
MCS(Z) spelled out in its traversed nodes; vice 
versa, each string in MCS(Z) has a unique st-path 
associated.

•	 The out-neighbors of each node are labeled with dis-
tinct characters from � , so the out-degree is at most 
|�| (ignoring # and $ labeling s and t respectively).

As a result, each prefix of an MCS has a unique path 
from s. For example, ACA​ is found in McDag follow-
ing #, A, C, and A in this order, each time with a unique 
branching choice on the current node. The McDag for 
k = 2 has less than |Z1| × |Z2| nodes in our experimen-
tal study of Sect.  4, only 4-7% more than the minimum 
required nodes. It takes quadratic time in practice, which 
allows us to index sequences exceeding 10,000 base pairs 
within minutes. Note that, in general, no DAG storing 
MCS({Z1,Z2}) can take sub-quadratic time in the worst 
case unless SETH or OVH fail, as an LCS is an MCS of 
maximum length, and the problem of finding the LCS 
length has a quadratic conditional lower bound [3, 4].

In general, for k = |Z| ≥ 2 , we can extend our argu-
ment and conjecture that McDag has O(nk) nodes, 
assuming without loss of generality that all strings in Z 
have the same length n. A smaller number of nodes is 
unlikely, as O(nk) time is required to find an LCS of the 
string set Z under a conditional lower bound from fine-
grained complexity. However, our experiments in Sect. 4 
indicate that the number of nodes in McDag for k > 2 
could be exponentially large in n, contrary to our conjec-
ture, which is an interesting observation.

In any case, the benefit of the above conceptual struc-
ture is that it fits several efficient algorithms on the state 
of the art for querying deterministic acyclic automata. 
For instance, listing all the strings in MCS(Z) , report-
ing only those of (up to) a given length, or matching a 

Fig. 1  In the example considering two genetic sequences, the LCS 
only shows the longer white “promoter sequence”, a common 
occurrence in genomic sequences. The critical (but shorter) shaded 
common part cannot be extended to a common subsequence 
of the same length and is thus not shown by LCS-based analysis

1  Based on our understanding of [9], the DAG introduced therein could 
potentially fit our definition. However, we lack sufficient details to make this 
assertion with certainty. Also, we illustrate the case k = 2 as we can com-
pare McDag to the literature.



Page 3 of 21Buzzega et al. Algorithms for Molecular Biology            (2025) 20:6 	

simple regular expression, and counting the number of 
the above strings (e.g. see [8]). We argue that McDag is 
a significant first step in this type of analysis. It is—to the 
best of our knowledge—the first publicly available tool 
that allows for efficiently indexing and analyzing MCSs 
and can process sequences of over 10000 symbols in just 
a few minutes (https://​github.​com/​giova​nni-​buzze​ga/​
McDag). While of course complex genes such as human 
ones are orders of magnitude longer and require further 
development of the tool, this already allows for a deeper 
analysis of simpler genomic data or selected segments.

Related work
The concept of MCSs first appeared in a general form 
in the data mining community [11]. In this context, the 
authors considered ordered sequences of sets of items 
rather than strings. A subsequence is obtained from a 
sequence by deleting any number of items from any set 
at any position. The focus was on finding frequent sub-
sequences, which are subsequences that appear in more 
than a user-defined number of sequences in the data-
base. One of the problems proposed was to find inclu-
sion-maximal frequent subsequences, which are not 
subsequences of any other frequent subsequences. Our 
problem can be seen as a special case of this framework 
by considering k ≥ 2 sequences of singletons and setting 
the frequency threshold to k.

The MCS problem was later formalized in [12], along 
with several variations of the common subsequences, for 
which they studied the computational complexity and 
dynamic programming solutions in some cases. Further 
solutions to this problem have been proposed in vari-
ous studies. Sakai provided the first (almost) linear-time 
algorithm to extract one MCS between two strings [13]. 
Bulteau et al. [14] used MCSs as a tool for a new param-
eterized LCS algorithm. Hirota and Sakai explored MCSs 
for multiple strings [15]. Conte et al. [8] and Hirota and 

Sakai [9] independently proposed DAGs for enumerating 
MCSs of two strings. Conte et al. [8] published the first 
polynomial-size DAG in the literature, where each node 
represents at least one prefix of some MCS.

We give some detail of the latter: if there is an edge 
from node u to node v, all prefixes of u are prefixes of 
some MCS and when extended with the character associ-
ated with that edge they do not lose this property. This 
allows for the direct construction of an MCS index, but 
maintaining it can be costly [6], as finding the right char-
acter to extend a prefix may require expensive compu-
tation. For instance, finding a character that extends an 
MCS prefix to a common subsequence prefix is simple, 
but it may yield prefixes that do not lead to any MCS. The 
current approach for finding suitable extensions associ-
ates a distinct quadruple of integers to each node, causing 
the automaton size to be n3 or more in terms of nodes.

Subsequence-related problems have been previously 
addressed using automata. Baeza-Yates [16] introduced 
the Directed Acyclic Subsequence Graph (DASG), which 
accepts all subsequences of a given string and can be 
generalized to accept subsequences of any string in a 
set. A subsequent result was the common subsequence 
automaton (CSA) [5, 17, 18]: it accepts common subse-
quences of a set of strings, including non-maximal ones, 
and it is similar in concept to the common subsequence 
tree of [19]. The CSA can also be used to find an LCS 
between two strings [20]. Moreover, automaton-inspired 
tools such as binary decision diagrams like ZDD [21] and 
SeqBDD [22] can be used to compactly represent the 
set MCS({Z1,Z2}) , but construction is non-trivial: one 
potentially needs to first generate all MCSs and this can 
take exponential time and space.

As for LCSs, some algorithms for their computation 
can be seen as dynamic programming on some DAG [23, 
24]. Furthermore, a DAG representation of LCSs was also 

Fig. 2  M- Dag (on the left, taken from [8]), CSA- maximal (on the right, derived from [5] and our filtering methods), and McDag (at the bottom, 
this paper), for input strings Z1 = TCA​CAG​AGA​ and Z2 = ACC​CGT​AGG​. Here, MCS(Z) = ACGAG​, ACAGG​, CCGAG​, CCAGG​, TAGG​ 

https://github.com/giovanni-buzzega/McDag
https://github.com/giovanni-buzzega/McDag
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recently used in [25] for the problem of finding diverse 
LCSs.

Paper organization
In the rest of this section, we first introduce some prelim-
inary notions employed in the paper. In order to describe 
our index McDag in a clear way, we need to go by steps.

We will start in Sect.  2 by presenting a procedure, 
McConstruct , which constructs a deterministic MCS 
index, given in input an approximate one, that is, an 
index that contains all MCSs, but also contains non-
maximal common subsequences. Indeed, McConstruct 
can generate different MCS indices, with McDag among 
them, depending on the input. Section  2.1 will present 
one possible simple input, to generate a first MCS index 
CSA- maximal . The McConstruct algorithm is of inde-
pendent interest, and of non-trivial correctness proof, 
which is given in Sect. 2.2.

In Sect.  3 we will describe the optimized input index 
CSA- filtered for the McConstruct procedure, which 
will finally give rise to McDag as output. Once again, the 
correctness proofs are separately given in Sect. 3.2.

We conclude by presenting our experimental analy-
sis in Sect. 4, showcasing the practical advantages of the 
optimized McDag with respect to both the initial index 
CSA- maximal , and the previously existing index from 
[8]. We discuss index sizes and construction time for the 
case of two strings, and we analyze the size of the mini-
mal MCS index in the general case of k > 2 strings.

Preliminaries
We consider a string X = X[1] . . .X[|X |] as a sequence of 
characters from an alphabet � , where X[j] ∈ � denotes 
the character at position j in X and |X| denotes the total 
number of characters in X. We use special characters 
{#, $} as markers delimiting input strings.

A string W is a subsequence of X if there exist indi-
ces 1 ≤ j1 < · · · < j|W | ≤ |X | such that X[jh] = W [h] 
for 1 ≤ h ≤ |W | . Let us consider a collection of k strings 
Z = (Zi)

k
i=1 . W is a common subsequence of strings Z 

if W is a subsequence of Zi for all i. We say that a k-ple 
m = (mi)

k
i=1 is a match if there is a character c ∈ � such 

that Zi[mi] = c for all i; for short we identify c = Z[m] . 
We can define a partial order relation between matches 
as follows: we say that m < m′ if and only if for each i 
we have that mi < m′

i ; analogously, we say that m ≤ m′ 
if and only if for each i we have that mi ≤ m′

i . Clearly, 
for each common subsequence W of Z there must exist 
at least one sequence of matches m1, . . . ,m|W | such that 
W = Z[m1] . . .Z[m|W |] and m1 < · · · < m|W | ; we refer 
to such sequence of matches as a matching in Z , with 
corresponding string W.

In our example of Fig. 2, W = CGA​ is a common sub-
sequence of Z1 = TCACA​GAGA and Z2 = ACCCGTAGG, 
and one of its matchings is underlined in Z1 and Z2 as 
(2, 3), (6, 5), (9, 7).

We say that W is a longest common subsequence (LCS), 
or belongs to LCS(Z) , if there is no common subse-
quence that is strictly longer than W. Finally, W is a maxi-
mal common subsequence (MCS) of Z if there is no string 
X that satisfies both conditions: (i) X is a common subse-
quence of Z , and (ii) W is a proper subsequence of X. The 
set of all strings that are maximal common subsequences 
is denoted by MCS(Z) . Note that LCS(Z) ⊆ MCS(Z) , as 
an LCS is an MCS of maximum length.

We next introduce some graph notions. A directed 
graph G = (V ,E) , where V is the set of nodes and 
E ⊆ V × V  is the set of edges, is a graph so that each 
edge (u, v) has a direction from u to v. Specifically, two 
edges (u, v) and (w, z) are adjacent if v = w . A path in G 
is a sequence of distinct edges, each adjacent to the next. 
If the path starts at node s and ends at node t, it is called 
an st-path; it is a cycle when s = t . A DAG G = (V ,E) is 
a directed acyclic graph. Given a node u, the set N+(u) 
indicates the out-neighbor nodes v such that (u, v) ∈ E , 
and the set N−(u) indicates the in-neighbor nodes v such 
that (v,u) ∈ E . The out-degree of u is d+(u) = |N+(u)| , 
and its in-degree is d−(u) = |N−(u)| ; u is a source 
if d−(u) = 0 , and a sink if d+(u) = 0 . We consider a 
labeled DAG G = (V ,E, ℓ) , where each node u is associ-
ated with a character ℓ(u) ∈ � ∪ {#, $}.

Definition of index for MCS

Definition 1  (Index for MCS) Given a collection of 
strings Z = (Zi)

k
i=1 , a labeled DAG G = (V ,E, ℓ) is an 

index for MCS(Z) if the following conditions hold: 

1.	 Each node u (other than source or sink) is associ-
ated with match m(u) and has label ℓ(u) = Z[m(u)] , 
where 1 ≤ m(u)i ≤ |Zi| for each i ∈ [1 . . . k].

2.	 There is a single source s and a single sink t with 
special values ℓ(s) = # and ℓ(t) = $ and matches 
m(s)i = 0 and m(t)i = |Zi| + 1 for each i ∈ [1 . . . k].

3.	 Each st-path s,u1, . . . ,uh, t is associated with a 
unique string W = ℓ(u1) . . . ℓ(uh) ∈ MCS(Z).

4.	 The endpoints u and v of edge (u, v) ∈ E have associ-
ated matches such that m(u) < m(v).

5.	 Each W ∈ MCS(Z) has a corresponding st-path 
s,u1, . . . ,uh, t such that W = ℓ(u1) . . . ℓ(uh).

Definition 2  (Approximate index) We say a labeled 
DAG is an approximate index for MCS(Z) when condi-
tion  3 is relaxed, so that W is not necessarily maximal, 
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and so there could be st-paths in the DAG that store non-
maximal common subsequences. All other conditions 
must hold.

Definition 3  (Determinism and co-determinism) We 
say that the DAG is deterministic if each node has out-
neighbors labeled with distinct characters (and so its 
out-degree is at most |�| and each prefix of an MCS has 
a unique path from s), and co-deterministic if the condi-
tion applies to the in-neighbors of each node (which has 
in-degree at most |�| ). In both cases, there cannot be two 
distinct st-paths corresponding to the same string.

The DAGs in Fig.  2 are all deterministic indices for the 
same set MCS(Z) , and they all satisfy the above condi-
tions. The leftmost is called M- Dag and has been intro-
duced in [8]. The one on the right is called CSA- maximal 
and has been derived from the Common Subsequence 
Automaton [5] by filtering out the non-maximal common 
subsequences, as we shall explain in Sect. 2. The bottom 
one is McDag , our proposed index that further reduces 
the number of nodes.

Definition 4  (Rightmost and Leftmost indices) An 
(approximate) MCS index is rightmost if, for each edge 
(u, v) and for each i, there is no occurrence of character 
ℓ(u) in string Zi[m(u)i + 1] . . .Zi[m(v)i − 1] . In other 
words, starting from match m(v), the match m(u) is con-
structed using the rightmost occurrences of character 
ℓ(u) . The leftmost property is analogously defined for 
character ℓ(v).

When any of the above deterministic indices for the set 
MCS(Z) is available, a number of classical operations can 
be supported. For instance:

•	 List all the strings in MCS(Z).
•	 Report only the strings in MCS(Z) of (up to) given 

length.
•	 List the strings in MCS(Z) containing a given string 

S, or similar regular expressions.
•	 Count the number of the above strings (all kinds).

We refer the reader to [8] for these operations, which 
can be implemented using standard algorithms from the 
literature on strings and automata, following the above 
definition of a deterministic index for MCS. As a final 
remark, the associated matches m(u) for the nodes u in 
the DAGs are not strictly necessary for these operations 
but help to quickly reconstruct a possible matching of a 
given MCS W of Z.

Deterministic MCS index
In order to define the McDag index for input string set 
Z , we need to introduce McConstruct . This procedure 
takes as input an approximate co-deterministic right-
most index A for MCS(Z) , and generates a determin-
istic MCS index eliminating from A the non-maximal 
sequences. We stress that the time and space complexi-
ties of the McConstruct procedure, and of the final 
index, will depend on the chosen input index A. This is 
why, for ease of presentation, we will start by presenting 
in this section an immediate construction of an approxi-
mate co-deterministic rightmost index to be used as 
input for McConstruct , CSA- all . Later, in Sect.  3, 
we will present a more optimized version of CSA- all , 
CSA- filtered . By using this optimized index as input 
for McConstruct we will obtain our final index McDag . 
We summarize all proposed indices and sketch their con-
struction steps in Fig. 3.

Fig. 3  Computational paths for constructing MCS indices. Names in bold indicate deterministic MCS indices, while underlined names denote 
co-deterministic rightmost approximate indices. CSA- mixed is a deterministic leftmost approximate MCS index. The top row represents our 
method from Sect. 2, and the bottom row shows the optimized version from Sect. 3.1. All MCS indices can ultimately produce a unique minimal 
deterministic MCS index, referred to as MCS- minim ized
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Algorithm 1  CSA- all construction

CSA‑all: approximate co‑deterministic rightmost index
We show how to build an index A = (VA,EA, ℓA) with 
source sA , so that A is rightmost. We can obtain an 
instance of A, which we call CSA- all , as a vanilla ver-
sion of the Common Subsequence Automaton [5] as 
follows (see also Algorithm  1). Since we want it to be 
co-deterministic, we read each string Zi from right to 
left, and start building A from its sink tA backwards. 
Consider the generic step for a node u, initially u = tA 
with m(tA)i = |Zi| + 1 , for all i. We need to link u to 
its in-neighbors, possibly creating some of the lat-
ter ones, which are at most |�| + 1 , one per character c 
and one for the source. Hence, for c we find the largest 
match mc < m(u) such that c = Z[mc] : if a node v with 
m(v) = mc does not exist, we create v with m(v) = mc 
and ℓA(v) = c ; in any case, we add edges (v, u) and (sA,u).

The following lemma proves the correctness of the 
described procedure:

Lemma 1  The resulting CSA- all A, output of Algo-
rithm 1, is a co-deterministic rightmost approximate MCS 
index.

Proof  By construction, an edge (u, v) is added to A only 
if m(u) < m(v) , so A is acyclic by the antisymmetry of 
<. This also implies that all strings encoded in an st-path 
sA,u1, . . . ,uh, tA are common subsequences of Z , as there 
exists a matching m(u1), . . . ,m(uh) . Moreover, for all 
i ∈ [1..k] , m(u)i is defined as the rightmost occurrence 
of ℓA(u) in Zi[1] . . .Zi[m(v)i − 1] before m(v)i , so A is 
rightmost.

Each node u is visited at most once (it is added to the 
queue when it is added to the graph), and at most one 
node per character is added as in-neighbor, so A is co-
deterministic. Node sA is the unique source, as all nodes 
except sA are visited and are assigned at least one in-
neighbor, namely sA . Node tA is the only sink, as there 
cannot exist any match m such that m(tA) < m , so it 
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cannot be added as an in-neighbor of any other node. 
Properties 1 and 2 are trivially granted by construction.

Now we show by contraposition that index A contains 
all common subsequences of Z . Consider a string W that 
is not spelled by any path of A; let P = wh, . . . ,w|W |, tA 
be the longest path that spells out a suffix of W. By co-
determinism, P is unique, and since A is also right-
most, for each j ∈ [h..|W |] and each i ∈ [1..k] , the i-th 
entry of match m(wj) defines the shortest suffix of Zi 
that contains W [j] . . .W [|W |] . Since W is not con-
tained in A, then there exists a string Zi such that 
W [h− 1] �∈ {Zi[1], . . . ,Zi[m(wh)i − 1]} . But this means 
that W is not a subsequence of Zi , so it is not a common 
subsequence of Z . Since all MCS are common subse-
quences, we have property 5 and we are done. 	�  �

Complexity.  Apart from its source and sink, A has 
as many nodes as the matches involved in its construc-
tion. Let n = maxi |Zi| ; in the following, we assume wlog 
n ≥ |�| . Since there cannot be two distinct nodes u and 
v of A with the same match m(u) = m(v) , we derive 

that |VA| ≤ nk + 2 and |EA| ≤ (|�| + 1)(nk + 1) as the 
maximum in-degree is |�| + 1 . Its construction time is 
O(nk |�|k) , and its space is O(nk |�|).

The McConstruct Algorithm
We now present our procedure for extracting maximal 
subsequences from any input approximate co-determin-
istic rightmost index: it is called McConstruct and is 
a key component of McDag . Let A = (VA,EA, ℓA) with 
source sA be such an index; we apply Algorithm 2 to obtain 
a graph G = (V ,E, ℓ) with source s and sink t, that only 
indexes MCS. During the construction we associate each 
node u ∈ V  with a set F(u) of nodes from VA , all having the 
same label as u’s (initially F(s) = {sA} with label #). At each 
step we expand a node u  = t with its out-neighbors, filter-
ing out the nodes of A whose matches are to the right of 
some match mc > m(u) , as they cannot lead to an MCS: 
mc is a witness to defy their maximality. After that, we cre-
ate new nodes in G for the filtered set of nodes with the 
same label coming from A, and their edges in G. We end 
up having a single sink t, corresponding to $ , only occur-
ring at the end of both strings.

Algorithm 2  McConstruct
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The proof of correctness of procedure McConstruct 
in Algorithm  2 is non-trivial, as we have to show that 
we retain all and only the strings in MCS(Z) along 
all the st-paths in G, and as such will be detailed in 
Sect. 2.3.

As for complexity, we can see from the pseudocode of 
Algorithm 2 that McConstruct performs one iteration 
per node v of McDag , and, crucially, inside each itera-
tion it performs computations for a time that is pro-
portional to the sum of the out-degrees of each node 
in F(v). All such out-neighbors are then filtered and 
grouped by their label in the sets Nc , which define new 
nodes w of McDag , by setting F(w) = Nc . Thus, if we 
could reduce the number of nodes and the out-degrees 
of the approximate index, we would both reduce 
the number of nodes of the final index, as well as the 
amount of work done in each iteration. This observa-
tion is what motivates the improved approximate index 
CSA- filtered , which we present in Sect.  3.1. Moreo-
ver, it can be shown that if A is a co-deterministic 
rightmost MCS index, which can be seen as a non-
deterministic finite automaton, then McConstruct 
produces a deterministic finite automaton for the same 
language. Thus, in some cases, McConstruct corre-
sponds to the determinization algorithm based on the 
well-known powerset construction, which, in the worst 
case, causes an exponential blow-up in the number 
of nodes. Other famous algorithms such as Brzozo-
wski’s minimization algorithm for deterministic finite 
automata [26] are based on such construction but are 
reported to perform surprisingly well in practice [27]. 
As Sect.  4 shows, for the case of two strings, we are 
in a similar situation: McConstruct algorithm scales 
polynomially with respect to the length of the strings 
(hence also with respect to the input approximate MCS 
index). Interestingly, we shall observe that such behav-
ior does not seem to hold for the general case of k > 2 
strings.

In Fig. 4 we report an example of a deterministic min-
imal MCS index computed over two input strings Z1 = 
ATXGTCXC and Z2 = TTAXCG.

Remarkably, letter X only allows matches (3,  4) and 
(7, 4). But in order to represent all MCSs of such strings 
in a deterministic index, at least two distinct occur-
rences of match (3,  4) are needed, or else some path 
would represent a non-maximal common subsequence.

Remark 1  In a deterministic MCS index, we cannot 
associate each match with at most one node.

This tells us that we cannot simply bound the num-
ber of nodes with the O(nk) distinct matches in a 
deterministic MCS index; this is in line with the space 

complexity reported by Conte et  al. for the case of 
k = 2 strings [8].

Correctness of McConstruct

This section is devoted to proving the correctness of algo-
rithm McConstruct . The algorithm takes as input the 
output A of the first phase, which is an approximate co-
deterministic rightmost index, and outputs a determinis-
tic MCS index G as described in Sect. 2.2. First, we show 
a number of necessary properties that are satisfied by the 
output index. Then, to show that st-paths correspond to 
MCSs, we conclude the proof through a characterization 
of the shape of non-maximal common subsequences in 
similar data structures, showing that they do not occur in 
the index output by McConstruct.

For a set of matches µ = {m1, . . . ,mh} corresponding 
to the same character c ∈ � we define their minimum 
as the match given by the minimum over all compo-
nents: min(µ) = (min1≤j≤h m

j
i)
k
i=1 . For a set of nodes 

ν = {v1, . . . , vh} , we define their corresponding set of 
matches as m(ν) = {m(v1), . . . ,m(vh)}.

Theorem 1  During the algorithm, we retain the follow-
ing properties for graph G = (V ,E, ℓ) : 

1.	 G is deterministic;
2.	 Each node v ∈ V  is labeled with a symbol ℓ(v) from 

� ∪ {#, $} , and is associated with a set of nodes F(v) of 
A, all labeled with ℓ(v) . Furthermore, it is associated 
with match m(v) = min(m(F(v))) for character ℓ(v).

3.	 G is a labeled DAG with a single source s, having 
F(s) = {sA} , m(s) = (0, . . . , 0) and ℓ(s) = #;

4.	 If (u, v) ∈ E , then m(u) < m(v).
5.	 Each path P = s, v1, . . . , vh in G is associated with 

unique string str(P) = ℓ(v1), . . . , ℓ(vh) , which is a 
common subsequence of Z occurring at the matches of 
(increasing) positions m(v1), . . . ,m(vh).

Proof  Conditions (1) and (2) are immediate by con-
struction. As for (3), at the beginning node s is added 
to G with m(s) = (0, . . . , 0) and ℓ(s) = # . We only add 
out-neighbors to existing nodes, and thus we never add 
new sources. Furthermore, the absence of cycles follows 
immediately from the same property in A.

Let us now recall what happens when node u 
is selected to be processed. We define the sets 
of possible neighbors with respect to each char-
acter for all the corresponding nodes F(u) in A: 
Nc = {y ∈ N+(x) | x ∈ F(u) and ℓA(y) = c} . We then 
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filter these nodes, removing the ones with correspond-
ing matches that come after some min(m(Nd)) , yield-
ing the final set Nc . For each non-empty Nc , we consider 
node wc of G (or add it if it does not exist) such that 
F(wc) = Nc , m(wc) = min(m(Nc)) , ℓ(wc) = c , and add 
edge (u,wc) to G. Let us consider a newly added edge, 
(u,wc) ∈ E , for some wc as defined above, and let us show 
that m(u) < m(wc) (property (4)). It is clear that the edge 
corresponds to at least one (x, y) ∈ EA with x ∈ F(u) 
and y ∈ F(wc) , by definition of Nc . Consider match 
m(wc) = min(m(F(wc))) . By definition of minimum, for 
each position j ∈ [1..k] , there exists a node yj ∈ F(wc) 
such that m(yj)j = m(wc)j . By construction, for each yj 
there exists one xj ∈ F(u) such that (xj , yj) ∈ EA . Since 
A is an approximate MCS index, by property 4 we have 
that m(xj) < m(yj) and in particular m(xj)j < m(yj)j . 
By definition of minimum, we have that for all j and yj , 
m(u)j = min(m(F(u)))j ≤ m(xj)j < m(yj)j = m(wc)j . 
This lets us conclude that m(u) < m(wc).

Lastly, property (5) follows from the corresponding 
property 3 of approximate MCS index A: since we are 
never adding edges that have no corresponding ones in 
A, any path from s in G surely spells a subsequence of 
an st-path spelled by A, which is still a common subse-
quence. 	� �

Note that by construction, Algorithm  2 adds out-
neighbors to all nodes u that have label ℓ(u)  = $ , hence 
all sinks of G have label $ . Moreover, since A has a 
unique sink, G must also have a unique sink, as for all 
nodes |N$| ≤ 1.

Theorem  1 together with the above observation 
implies that the graph output by McConstruct satisfies 
conditions 1-4 of an approximate MCS index. Thus, the 
only things missing for G to be an index for MCS(Z) 
are that MCSs correspond to st-paths and that st-paths 

correspond to MCSs. We first show that all MCSs are 
retained as st-paths of G (condition 5 of an MCS index):

Lemma 2  Each W ∈ MCS(Z) has a corresponding st-
path in the resulting graph G = (V ,E, ℓ) at the end of the 
McConstruct procedure.

Proof  First, recall that each MCS occurred once as 
an st-path of A. During the construction of G, we have 
a correspondence between edges (u, v) ∈ E of G, and 
edges (x, y) ∈ EA with x ∈ F(u) and y ∈ F(v) , which share 
the same respective labels. Since indeed they spell the 
same string, we say that an st-path sA = x1, . . . , xh = tA 
of A corresponds to an st-path s = v1, . . . , vh = t of G if 
xi ∈ F(vi) for all i.

When building the neighbors of some node u ∈ V  
during McConstruct , we may discard (x, y) ∈ EA with 
x ∈ F(u) , in the sense that y  ∈ F(v) for any (u, v) ∈ E . 
This happens, by construction, if and only if y is removed 
when filtering set Nc , that is, if and only if there exists 
a match m = min(m(Nd)) for some d ∈ � such that 
m < m(y) . By property (4), we further have m(u) < m . 
Therefore, we have a set of matching characters given 
by m which occur strictly between the matches given by 
m(u), and the ones given by m(y).

Let us now assume by contradiction that this hap-
pens for an edge (x,  y) which is traversed by an MCS: 
let P = sA, x1, . . . , xh, tA be such that str(P) ∈ MCS(Z) , 
and let us assume that j is the minimum index such that 
there is a path S = s, v1, . . . , vj in G corresponding to pre-
fix sA, x1, . . . , xj of P and xj+1 �∈ F(w) for all (vj ,w) ∈ E . 
By the reasoning above, there exists a match m such that 
m(vj) < m < m(xj+1) . Let us now consider the following 
matching: m(v1), . . . ,m(vj),m,m(xj+1), . . . ,m(xh) . These 
matches are all strictly increasing (by (5) of Theorem  1 
for the prefix, and by property 4 of approximate MCS 
index A for the suffix), and the consequent spelled sub-
sequence has str(P) as a proper subsequence, a contradic-
tion. 	�  �

We now have that G is a deterministic approximate 
MCS index. To conclude the proof of correctness, the 
only thing left to show is that no st-path corresponds to 
a common subsequence that is not maximal. To this end, 
we give a characterization of the non-maximal common 
subsequences given by st-paths in approximate MCS 
indices. We introduce the key notion of subsequence 
bubbles for this purpose, and we show that we eliminate 
these bubbles during McConstruct . Hence non-maxi-
mal common subsequences cannot survive.

Fig. 4  The resulting index McDag over two input strings Z1 = 
ATXGTCXC and Z2 = TTAXCG. Even though it can be proven 
that this is the minimal deterministic MCS index, we need more 
nodes with label X than the possible matches of that character
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Definition 5  (Subsequence Bubble) Consider a DAG D 
where each node is labeled with a symbol of � ∪ {#, $} , 
and let b, e1, e2, e be four distinct nodes of D.

•	 A closed subsequence bubble is a pair of disjoint b e- 
paths S, L such that str(S) is a proper subsequence of 
str(L).

•	 An open subsequence bubble is a pair of disjoint 
paths, where S is b e1-path, and L is b e2-path, such 
that str(S) is a proper subsequence of str(L).

In both cases, S is called the short side of the bubble, and 
L the long side.

Subsequence bubbles are useful for giving a characteri-
zation of which st-paths correspond to common subse-
quences that are not maximal, under certain hypotheses:

Lemma 3  Let D be an approximate MCS index, and let 
P be an st-path of D. Then, str(P) is a non-maximal com-
mon subsequence if and only if there exists a closed subse-
quence bubble B such that P traverses the short side S of B.

Proof  If an st-path P traverses S, then str(P) cannot be 
maximal: let the endpoints of B be b,  e; the path given 
by the prefix of P up to b, then L, and then the suffix of 
P from e to t defines a common subsequence which has 
str(P) as a proper subsequence.

Vice versa, let str(P) be a common subsequence that is 
not maximal. Then, there exists an st-path Q such that 
str(P) is a proper subsequence of str(Q), since every MCS 
is represented in the index. Let b ∈ V  be the first node 
after which str(P) and str(Q) differ; it is well-defined since 
the first node of both paths is s. Symmetrically, it is well-
defined the first node after b which belongs to both paths, 
which we call e, since both paths end at the same node t. 
Then, the subpaths P′ of P and Q′ of Q between nodes b 
and e form a subsequence bubble, with P traversing the 
short side: P′ �= Q′ since they differ at the node after b, 
and str(P′) is a proper subsequence of str(Q′) since they 
start and end at the same nodes, and thus positions in the 
strings, with at least one more symbol appearing in Q′ . 	
� �

As mentioned before, G is an approximate MCS 
index and thus satisfies the hypotheses of Lemma 3. To 
conclude the proof of correctness of the construction 
procedure McConstruct , it is sufficient to show that 
whenever we have an open bubble, we never add a node 
and edges which “close it”.

The first step towards this is the subsequence map-
ping � between the short side and the long side of 

a subsequence bubble, to couple nodes that corre-
spond to the same characters in the subsequences. 
Given a subsequence bubble (open or closed), let 
S = b → v1 → v2 → · · · → vh be its short side and 
L = b → w1 → · · · → wk be its long side. We will 
use the order vi < vi+1 and wj < wj+1 , which is well-
defined by the corresponding relationship between the 
associated matches, by (4) of Theorem  1. We thereby 
define the injective mapping � : S → L such that 
�(vi) = min{w ∈ L | ℓ(w) = ℓ(vi) and �(vi−1) < w}, 
where �(v0) is improperly considered equal to b. In 
other words, it is a correspondence between the char-
acters of the short string and the ones of the longer 
string, indicating the subsequence relationship.

We say that two matches m1,m2 are crossing if neither 
m1 ≤ m2 nor m2 ≤ m1 . The subsequence mapping has 
the following properties:

Lemma 4  Let v be a node along the short side S of a sub-
sequence bubble of the output graph of McConstruct G. 
Then, if v  = �(v) , ∀ms ∈ m(F(v)) and ∀ml ∈ m(F(�(v))) , 
it holds that ml  = ms , and that either ms ≤ ml or ms and 
ml are crossing. In particular, note that the first condition 
is equivalent to F(v) ∩ F(�(v)) = ∅.

Proof  Let the short side be S = b, v1, . . . , vh , and the 
long side L = b,w1, . . . ,wg . We split the proof according 
to whether v is the first node of the bubble, or not.

First, consider v = v1 . By definition, v and �(v) 
are labeled with the same symbol. By determin-
ism of G, �(v)  = w1 . Therefore, for each z ∈ F(�(v)) 
there are nodes q ∈ F(b), y ∈ F(w1) such that 
m(q) < m(y) < m(z) =: ml . By construction z is filtered, 
that is z  ∈ F(u) , for all nodes u out-neighbors of b, and in 
particular z  ∈ F(v) . Thus, ml is different from any match 
in F(v). Let now x ∈ F(v) , and ms = m(x) . If we had 
ml ≤ ms , then we would have m(q) < m(y) < ms , which 
again is impossible by construction. Therefore, either ms 
crosses ml , or ms ≤ ml.

Let us now prove the inductive case. Assume that the 
thesis holds for all 1 ≤ j < i , and let v = vi . Suppose by 
contradiction that there exist x ∈ F(vi) and z ∈ F(�(vi)) 
such that ml := m(z) ≤ m(x) =: ms . Since there are 
paths from vi−1 to vi , and from �(vi−1) to �(vi) , we have 
that there exist x′ ∈ F(vi−1), z

′ ∈ F(�(vi−1)) such that 
m(x′) < m(x) = ms and m(z′) < m(z) = ml . By con-
tradiction hypothesis, m(z′) < ml ≤ ms , and thus we 
have m(x′),m(z′) < ms . This contradicts the right-
most property of A: indeed, consider the match given 
by the maximum of the coordinates of m(x′),m(z′) , 
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m′′ = (max(m(x′)i,m(z′)i))
k
i=1 . This match is different 

from m(x′) by induction hypothesis, as it does not hold 
that m(z′) ≤ m(x′) . Thus, m(x′) ≤ m′′ < ms , so x′ , which 
is the in-neighbor of x for character ℓA(x′) , is not associ-
ated with the rightmost match, a contradiction. 	�  �

Theorem  2  The graph G = (V ,E, ℓ) obtained by 
McConstruct does not contain any closed bubbles.

Proof  By contradiction, let S = b, v1, . . . , vh, e and 
L = b,w1, . . . ,wg , e be respectively the short and long 
sides of a subsequence bubble in G. We show that the 
edge (vh, e) could not have been added to G during con-
struction. By contradiction, assume that it happens. 

Let �(vh) = wi and let y ∈ F(e) and me := m(y) the 
match for y. Since we have edge (vh, e) in G, by con-
struction we have x ∈ F(vh) such that (x, y) ∈ EA . We 
have no occurrences of ℓA(x) between m(x) and me . 
Furthermore, we have m(vh) ≤ m(x) by definition. 
Now, consider node �(vh) = wi , which has the same 
associated label ℓA(x) . Since there is a path from wi to 
e, we can choose node x′ ∈ F(wi) such that we have 
a path from x′ to y in A. In particular, this implies that 
m(x′) < m(y) = me . By Lemma 4, we have x′ �= x , and we 
further have either m(x′) ≥ m(x) , or m(x′) crossing m(x). 
Both lead to a contradiction: for some j ∈ [1..k] , there 
would be an occurrence of character ℓA(x) = ℓA(x

′) in 
Zj[m(x)j + 1] . . .Zj[m

e
j − 1] . 	�  �

Algorithm 3  CSA- mixed construction
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The McDag index
In this section, we describe how to create a smaller and 
improved version of CSA- all , called CSA- filtered , 
which filters out some non-maximal subsequences 
while retaining all maximal ones. As we observed 
in Sect.  2.2, using the smaller approximate index 
CSA- filtered as input of the McConstruct algorithm 
could potentially save significant computation time. 
This refined index is built in two steps, going through 
a further intermediate index CSA- mixed , as described 
in Sect.  3.1. Our final index McDag is defined as the 
output of McConstruct (Algorithm  2) with input 
CSA- filtered . Its correctness immediately follows 
from the correctness of CSA- filtered (Sect. 3.2) and of 
McConstruct (Sect. 2.3).

CSA‑filtered
The rationale behind CSA- filtered is that every approx-
imate index must contain all MCSs; thus, if several are 
available, we can identify portions that are not present 
in one reference approximate MCS index, and skip them 
in the construction of CSA- filtered . As a further opti-
mization, we can also identify and avoid edges that are 
not traversed by any path corresponding to an MCS. 
To build CSA- filtered we act in two phases: we first 
build a deterministic leftmost approximate MCS index 
called CSA- mixed , which we then use to filter out many 
of the contained non-maximal common subsequences 
in CSA- all . Both in the deterministic and in the co-
deterministic version of the approximate index, we retain 
a property for which all nodes have distinct matches: if 
m(u) = m(v) then u = v.

To build CSA- mixed , we apply a slight modification of 
Algorithm 1 on input strings Z , and we obtain a labeled 
graph D = (VD,ED, ℓD) : strings Zi are read left-to-right, 
and D is constructed starting from its source sD . Each 
node, except for the sink tD , is visited once and its out-
neighbors are added during the visit. As in the construc-
tion of CSA- all , when visiting node u, for each character 
c ∈ � we find the closest match mc such that m(u) < mc , 
Z[mc] = c , and no occurrence of c appears in the sub-
string Zi[m(u)i + 1]..Zi[m

c
i − 1] , for all i. At this point, if 

there exists another match m′ such that m(u) < m′ < mc , 
we discard mc . Otherwise, we create v with m(v) = mc 
and ℓD(v) = c (unless such a v already existed), and we 
add the edge (u, v). If no outgoing edge was added to u 
during its visit, we add edge (u, tD).

The pseudocode can be found in Algorithm 3. The idea 
behind the filter is that, if m(u) < m′ < mc , we are guar-
anteed that any path that jumps directly from u to a node 
associated with mc cannot be maximal, as witnessed by 
match m′ , so we do not add such edge. By disregarding mc 

we are thus reducing the number of unnecessary edges in 
the index, as well as possibly a few nodes.

Complexity.  We have that |VD| ≤ nk + 2 and 
|ED| ≤ |�|(nk + 1) as the maximum in-degree is |�| . Due 
to the filtering operation over matches, the construction 
time is O(nk |�|2k) , which is slightly higher than the one 
of CSA- all . The space complexity is O(nk |�|).

We now discuss the second phase, shown in Algo-
rithm 4, which takes as input DAG D that corresponds 
to CSA- mixed and outputs a co-deterministic right-
most approximate MCS index A = (VA,EA, ℓA) , corre-
sponding to CSA- filtered . As in the previous case, we 
begin by inserting the source sA and the sink tA . In this 
case, we read the strings Zi right-to-left, we build the 
graph from the sink backward, and we associate to each 
node u of A a set of nodes of D, namely F(u). Intuitively, 
the procedure constructs A from scratch by using D as 
a guide, using the following observation: for any node 
x to be in F(u) there must exist an x tD-path and a u tA- 
path that spell out the same strings. This means that a 
node u is associated with a set of rightmost suffixes of 
common subsequences, given by the equivalent paths. 
Equivalently, each in-neighbor of the nodes in F(u) is 
associated with a set of rightmost prefixes, that can 
concatenate to any suffix of u to create a string of the 
language of D. So, if we find a match m between any 
such in-neighbor x and u (i.e. m(x) < m < m(u) ), then 
all concatenations of the prefixes of x and the suffixes 
of u are not maximal. Hence, we can discard x from the 
set of nodes that are modeled by the in-neighbors of 
u. This can potentially remove all the nodes of a given 
label from the in-neighbors of F(u), thus reducing the 
number of edges that we add to A.

We set F(sA) = {sD} , F(tA) = {tD} , m(sA) = m(sD) and 
m(tA) = m(tD) . For the construction, we introduce rela-
tion ≺ between matches, which is used to define a pri-
ority queue.

Definition 6  Let m and m′ be two matches. We say 
m ≺ m′ if and only if maxi mi < maxj m

′
j.

We use the priority queue in Algorithm 4 so to ensure 
that each node u is visited only after all other nodes v 
with associated matches m(u) ≺ m(v) have already been 
visited. In other words, we visit the nodes in an inverse 
topological order, even when not all nodes have been 
created. This property is important because all out-
neighbors of u contribute to the definition of F(u), and 
we want F(u) to be completely defined before visiting 
u. Since we are building an approximate MCS index, 
property 4 must hold, so for all nodes w that have 
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matches m(w) ≺ m(u) , we have that m(u) �< m(w) , so w 
cannot be an out-neighbor of u.

We visit all nodes exactly once, except for sA , start-
ing from tA . During the visit to the generic node u, we 
define a set containing the labels of some of the in-
neighbors of the nodes of D that are in set F(u). Spe-
cifically, we choose nodes x such that there is a y ∈ F(u) 
and (x, y) ∈ ED , and for which there exists no match m 
such that m(x) < m < m(u) . Finally, we build one right-
most match mc for each one of the selected labels c, 
and, if there is no node v ∈ VA with associated match 
m(v) = mc , we create it and set ℓA(v) = c ; in all cases, 
we add (v, u) to the list of edges EA . Instead, if no label 

is selected and u is not assigned any in-neighbors, we 
add edge (sA,u) to EA.

Complexity.  Again, A has as many nodes as the 
matches involved in its construction, plus sA and tA . We 
have that |VA| ≤ nk + 2 and |EA| ≤ |�|(nk + 1) as the 
maximum in-degree is |�|.

Before proving the correctness of the construction of 
CSA- filtered , we describe a further optimization that 
we can perform when the number of strings is k = 2.

Algorithm 4  CSA- filtered construction
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Optimization for k = 2 strings We can apply an opti-
mization to lower the time complexity of Algorithm  3 
and Algorithm  4. Both algorithms make comparisons 
between matches to filter out the dominated ones. Spe-
cifically, for a node u and a set of candidate matches M, 
when we are building a leftmost MCS approximate index 
(Algorithm  3), we say m ∈ M is dominated by m′ ∈ M 
if m(u) < m′ < m . Symmetrically, when building a 
rightmost MCS index (Algorithm  4), m′ dominates m if 
m < m′ < m(u).

For the general case of more than two strings, we apply 
the baseline algorithm of checking all distinct pairs of 
matches from M, as presented in the pseudocodes; this 
takes O(k|M|2) time. In the case of k = 2 we can do this 
faster: first, we sort lexicographically the set of matches 
M: we use increasing order for the case of the leftmost 
MCS index and decreasing order for the rightmost case. 
For a given match m′ , all matches m of M that come after 
m′ in the order cannot dominate m′ , as the first coordi-
nate of m surely is not between the first the coordinate of 
m′ and the first one of m(u). Using this property, in the 
leftmost case we can record the minimum value of the 
second coordinate found so far: if a later match m has 
the second coordinate that is greater than this minimum, 
then the match m′ that defined such minimum value 
dominates m, i.e. m(u) < m′ < m . Symmetrically, for the 
rightmost case, we can record the maximum value of the 
second coordinate, and discard matches that have the 
second coordinate lower than the maximum.

Complexity.  Depending on the sorting algorithm used, 
this procedure may take O(|M| + n) or O(|M| log |M|) 
time, which guarantees an improvement over the base-
line O(|M|2).

Correctness of CSA‑filtered

Lemma 5  The resulting CSA- mixed D, output of Algo-
rithm  3, is a deterministic leftmost approximate MCS 
index.

Proof  By construction, each edge (u,  v) is in graph D 
only if m(u) < m(v) , so D is acyclic by the antisymmetry 
of <. This also implies that all strings encoded in an st-
path sD,u1, . . . ,uh, tD are common subsequences of Z , 
as there exists a matching m(u1), . . . ,m(uh) . Properties 
1 and 2 are trivially granted by construction: in particu-
lar, all nodes except for tD are visited, so they are assigned 
some out-neighbors (they are not source), and whenever 
a node different from sD and tD is added, it is assigned an 
in-neighbor (that node is not a sink). Since D is acyclic 
and not empty, at some point there must exist a node 
with no out-neighbors, which is immediately assigned 
as an in-neighbor of tD . This lets us conclude that sD and 

tD are the only source and sink. By construction if there 
is an edge (u, v) in D, then for all i ∈ [1..k] , m(v)i is cho-
sen as the first occurrence of ℓD(v) in Zi after m(u)i , 
so D is leftmost. Also, each node is visited once and at 
most one out-neighbor per character is added, so D is 
deterministic.

Finally, we must show that all MCSs are encoded in D. 
Suppose by contradiction there is a string W ∈ MCS(Z) 
for which there is no path in D that spells it. Let 
P = sD,u1, . . . ,uj the path that spells the longest pre-
fix of W; by determinism P is unique. Let m′ be the left-
most match for character W [j + 1] to the right of m(uj) . 
m′ must exist because W is a common subsequence 
and, since D is leftmost, for each i, m(uj)i defines the 
shortest prefix of Zi that contains W [1] . . .W [j] . Since 
there is no out-neighbor of uj with associated match m′ , 
there must exist a match m such that m(uj) < m < m′ . 
Consider the rightmost matching (mi)

|W |
i=1 of W, i.e. 

the one where each mi is chosen to contain the right-
most occurrences of character W[i] before match mi+1 . 
For W to be a common subsequence it must hold that 
m′ ≤ mj+1 . But if this is true, then we can build string 
Z[m(u1)] . . .Z[m(uj)]Z[m]Z[mj+1] . . .Z[m|W |] , a 
supersequence of W. This contradicts the maximality of 
W, so we are done. 	�  �

Lemma 6  The resulting CSA- filtered A, output of 
Algorithm 4, is a co-deterministic rightmost approximate 
MCS index.

Proof  By construction, for every edge (u,  v) in A, 
we have that m(u) < m(v) , so A must be acyclic by the 
antisymmetry of the < operator. Again by construction, 
properties 1 and 2 of approximate MCS indices must 
hold: every time a node u  ∈ {sA, tA} is added to A, it is 
associated with match m(u) and label ℓA(u) = Z[m(u)] . 
Moreover, since an edge (u,  v) is immediately added 
to EA , for some other node v, it means that u is not a 
sink. Nodes sA and tA are added at the beginning, and 
have matches m(sA)i = 0 and m(tA)i = |Zi| + 1 for 
all i ∈ [1..k] , and ℓA(sA) = # and ℓA(tA) = $ . Incom-
ing edges are only added to a node when it is extracted 
from the queue and visited. As node sA is the only node 
that is never explicitly visited ( ℓA(sA)  ∈ � ), it does not 
have any incoming edge and thus it is the unique source. 
Moreover, ℓA(tA)  ∈ � , so node t cannot be added as an 
in-neighbor of any other node. Since A is acyclic and all 
other nodes except sA are visited once, at least one of 
them must not have any in-neighbors, so it is added as an 
out-neighbor of sA , meaning tA is the only sink.
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Each node has at most one in-neighbor per char-
acter, so A is co-deterministic, and no two dis-
tinct st-paths can spell out the same string. Con-
sider path P = sA,u1, . . . ,uh, tA in A, and let 
str(P) = ℓA(u1), . . . , ℓA(uh) be the unique string associ-
ated with P. By construction we have that if A contains 
edge (u,  v), with u  = sA and v  = tA , then m(u)i < m(v)i 
for each i ∈ [1..k] , so m(u1) < · · · < m(uh) . This is 
enough to prove that str(P) is a common subsequence of 
Z with associated matching (m1, . . . ,mh) . Moreover, we 
have that m(u)i is chosen to be the maximum position 
smaller than m(v)i such that Zi[m(u)i] = ℓA(u) , hence A 
is rightmost.

Suppose by contradiction there is a string W ∈ MCS(Z) 
that is not spelled out by any st-path. Let vj ∈ VA be the 
node that corresponds to the longest suffix of W pre-
sent in A. By co-determinism, we have a unique path 
P = vj , . . . , v|W |, t such that str(P) = W [j] . . .W [|W |] , 
and there is no node u with label ℓA(u) = W [j − 1] such 
that (u, vj) ∈ EA.

Consider the leftmost matching (mi)
|W |
i=1 of W, i.e. 

the one where each mi+1 is composed of the leftmost 
occurrences of character W [i + 1] after match mi ; also, 
consider the rightmost match m′ of character W [j − 1] 
before m(vj) . For W to be a common subsequence it 
must hold that mj−1 ≤ m′ . By maximality of W there 
cannot be any match m′′ such that m′ < m′′ < m(vj) , 
or there would exist another common subsequence 
W ′ = Z[m1] . . .Z[mj−1]Z[m′′]str(P) , a supersequence 
of W. This means that during construction, match m′ has 
not been discarded from set M. The only way not to add 
edge (u, vj) , with m(u) = m′ , is for Z[m′] not to be in the 
set allowed_�.

By construction, F(v) is the set of nodes of D that 
have the same label of v and are in-neighbors of a node 
in F(w), for some (v,w) ∈ EA . By setting F(tA) = {tD} 
as a base case, we have that F(v) is the set of nodes of 
D from which starts a path that spells out the same 
string as one of the paths that start from v in A. To not 
have Z[m′] in the set allowed_� , it means that for all 
nodes y ∈ F(vj) there is no node x such that (x, y) ∈ ED , 
ℓD(x) = Z[m′] and for all matches m in M, m(x) �< m . 
But since D is a deterministic approximate MCS index, 
there must be a unique path sD, x1, . . . , x|W |, tD that 
spells out W, so xj ∈ F(vj) , ℓD(xj−1) = Z[m′] and there 
must exist a match m′′ ∈ M such that m(xj−1) < m′′ . But 
this contradicts the maximality of W, as we can build 
ℓA(x1) . . . ℓA(xj−1)Z[m′′]str(P) , a supersequence of W. 	
� �

Experimental analysis
In this section, we report experiments conducted to 
empirically assess the complexity of the proposed algo-
rithms. We begin by describing the experimental setup 
and datasets used. The analysis is organized into two 
parts: the first part focuses on the case of k = 2 strings, 
which is of particular interest in the literature [8, 15]. 
Here, we provide a comprehensive analysis of index sizes 
and construction times. The second part addresses the 
generalization to k ≥ 2 strings, investigating how the 
index size scales for various values of k for both the mini-
mum deterministic MCS index ( MCS- minim ized ) and 
McDag , relative to the nk curve.

Experimental setup
Our algorithms are implemented in C++ using 
g++ 11.4.0 and compiled with the -O3 and –
march=native flags. All tests were conducted on a DELL 
PowerEdge R750 machine in a non-exclusive mode. This 
platform features 24 cores with 2 Intel(R) Xeon(R) Gold 
5318Y CPUs at 2.10 GHz and 989 GB of RAM. The operat-
ing system is Ubuntu 22.04.2 LTS.

Datasets. To evaluate the effectiveness of our methods, 
we selected two datasets:

•	 random : Random sequences of variable alphabet size 
generated using the uniform distribution from the 
standard C++ library. The generated strings in our 
experiments have length 3000.

•	 hiv-1 : 43 complete HIV-1 genomes, referenced in the 
literature [28]. The average length of such sequences 
is 9267 base pairs.

Other real-world and synthetic datasets were used in 
preliminary experiments, but the results resembled the 
ones we discuss in this section; for the sake of simplicity, 
we report results mainly from the hiv−1 dataset.

Index data structures. We implemented the follow-
ing indexing data structures in C++ and evaluated them 
based on the number of nodes, edges, and construction 
time:

•	 M- Dag : The DAG storing MCSs presented in [8].
•	 CSA- all : The Common Subsequence Automaton 

[5] storing all common sequences, both non-max-
imal and maximal, and implemented as a labeled 
DAG (built by Algorithm 1).

•	 CSA- maximal : The MCS index built upon CSA- all 
using McConstruct.

•	 CSA- filtered : An optimized version of CSA- all , 
which filters out many non-maximal common sub-
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sequences during construction, as presented in 
Sect. 3.1 (Algorithm 4).

•	 McDag : Our proposed MCS index, built upon 
CSA- filtered using McConstruct.

•	 MCS- minim ized : The minimized version of M- Dag , 
CSA- maximal , and McDag that we can compute 
starting from any such MCS index using Revuz’s algo-
rithm [29]. Note that, as these three DAGs encode 
the same language, when minimized they converge to 
the unique optimal index MCS- minim ized.

In the experiments that follow, we focus on evaluating 
the size of index McDag , which, by definition of minimal 
automaton, is always larger than MCS- minim ized . For 
practical applications, MCS- minim ized is clearly a bet-
ter index, but the time and space needed to compute it 
strongly depend on which MCS index we start from.2 In 

Sect. 4.2.2 we will take a closer look at the computational 
paths that allow us to reach the minimal index.

Results on k = 2 strings
Index size
We analyzed the computational cost of the index 
data structures M- Dag , CSA- maximal , McDag , and 
MCS- minim ized in terms of the number of nodes, edges, 
and construction time. Figure  5 shows two plots: the 
left plot displays the number of nodes and the right plot 
shows the number of edges for M- Dag , CSA- maximal , 
McDag , and MCS- minim ized as the sequence length 
n increases. The x-axis reports the sequence length n, 
while the y-axis reports the corresponding number of 
nodes/edges. For the following figures, we used two 
sequences from the hiv−1 dataset, namely AF005496 
and K03454.

Fig. 5  Number of nodes and edges in the DAGs on the dataset hiv−1

Fig. 6  Number of nodes and edges for McDag and MCS- minim ized , in comparison with n2 , computed on the hiv−1 dataset

2  For example, we can obtain MCS- minim ized starting from a determinis-
tic MCS index modeled by a trie, but this could take exponential space in 
practice.
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M- Dag consistently has more nodes/edges than 
CSA- maximal , which in turn has more than McDag . 
The computation for the former two was interrupted 
after a timeout of 8000 s (giving a truncated plot, respec-
tively, for n = 2300 and n = 5700 ), while McDag com-
pleted in less than 600  s. This performance gap, when 
comparing CSA- maximal and McDag , is due to the 
smaller size of CSA- filtered (the input approximate 
index for constructing McDag ) with respect to CSA- all.

All plotted curves are below n2 , empirically estab-
lished for all of our datasets. We plot the data for McDag 
and MCS- minim ized , along with the curve for n2 to 
ease the comparison in Fig.  6. McDag is the closest to 
MCS- minim ized , with nodes/edges only 4-7% more than 
MCS- minim ized (compared to M- Dag’s 26-31% and 
CSA- maximal’s 19-27%).

It remains an open problem to prove that the num-
ber of nodes and edges in McDag is always < n2/c for 
some constant c > 0 , regardless of the sequence alpha-
bet. Synthetic sequences Z1 and Z2 of length n can be 
defined to yield �(n2) nodes and edges in McDag , but 

we found no real-world or synthetic sequences exceed-
ing n2 nodes or edges for k = 2.

To consider different alphabet sizes, in Fig.  7, we fix 
n = 3000 on random data, and report the number of 
nodes and edges for McDag and MCS- minim ized for 
varying |�| compared to n2 = 9 · 106.

Construction time
We analyze the time performance of the computation 
paths that allow us to reach different MCS indices. In the 
plots of Fig. 8, we compare two approaches:

•	 The blue path is the one in Sect.  2: we start from 
CSA- all , obtain CSA- maximal , and then, 
using Revuz’s algorithm, minimize to obtain 
MCS- minim ized.

•	 The green path is its optimized version: we start 
from approximate index CSA- mixed (which is sym-
metrical to CSA- all and takes the same time), 
obtain CSA- filtered , get McDag , and then 
MCS- minim ized using Revuz’s algorithm, as in the 
blue path.

Fig. 7  Number of nodes and edges in random for increasing alphabet size |�| , vs n2 = 9 · 106

Fig. 8  Filtering out and construction time on the hiv−1 dataset
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The x-axis reports, in logarithmic scale, the time 
expressed in seconds, and the y-axis reports the num-
ber of nodes in the left plot, and the number of edges 
in the right plot, both in linear scale. The plotted data 
is obtained from the two aforementioned genomes of 
dataset hiv−1 truncated to 3000 characters. We can see 
how the blue path to obtain McDag scales better in both 
time and space and can be used to build MCS- minim ized 
more efficiently.

Fig.  9 shows the running times for constructing the 
DAGs. All methods were implemented as fairly as possi-
ble. McDag scales well compared to the plot of n2/50000 , 
which is significant given that McDag also computes 
LCS(Z1,Z2) , which has a quadratic conditional lower 
bound for computation [3, 4].

On the other hand, the previous figures show that the 
optimizations employed to build CSA- filtered deliver 
significant improvements to the construction time: 
this finds justifications in the lower amount of edges 
that CSA- filtered has with respect to CSA- all , as 

well as the actual size of the final data structure, after 
McConstruct . Indeed, we repeated the experiment 
for 100 random pairs of elements in the hiv−1 dataset 
(truncated to length 3000). We report the mean values 
obtained (± standard deviation): over all such experi-
ments, we obtained an average of 1.83 million nodes (± 
17k) and 9.12 million edges (± 86k) for CSA- all , and 
of 1.48 million nodes (± 17k) and 2.37 million edges (± 
25k) for CSA- filtered . This showcases the aforemen-
tioned expected significant decrease in the number of 
edges (as well as a decrease in the number of nodes) 
as a result of the filtering procedure. For the two final 
indices, we obtain an apparently less drastic difference: 
the number of nodes and edges of CSA- maximal are 
respectively 2.77 million (± 32k) and 4.52 million (± 
55k) on average, while for McDag we obtain an average 
of 2.34 million nodes (± 29k) and 3.79 million edges 
(± 48k). The real difference here is instead reflected by 
the total size of the grouped nodes, given by the quan-
tity 

∑
v∈V |F(v)| : indeed, as we observed in Sect.  2.2, 

the cumulative size of the sets F(v) is the main contrib-
utor of the complexity of the McConstruct procedure. 
For this figure, we obtain a cumulative size of 18.21 
million (± 355k) for CSA- maximal , and of 7.21 million 
(± 125k) for McDag , explaining the substantial differ-
ence in the runtime of procedure McConstruct with 
respect to the different input indices.

Finally, Fig.  10 illustrates the time required to 
complete each step in the computational paths of 
CSA- maximal and McDag.

Remarkably, in the left plot, the McConstruct pro-
cedure consumes the vast majority of computation 
time, far surpassing the time needed to construct 
CSA- all . In contrast, in the right plot, each step of the 
computation is balanced, with no significant bottle-
necks, and the total computation times (on the y-axis) 

Fig. 9  Construction time on the hiv−1 dataset

Fig. 10  Stacked plots of the running time for the computational paths of CSA- maximal (left) and McDag (right) over k = 2 strings 
from the hiv−1 dataset



Page 19 of 21Buzzega et al. Algorithms for Molecular Biology            (2025) 20:6 	

are orders of magnitude smaller than those needed for 
CSA- maximal . This demonstrates that the optimiza-
tions introduced in Sect.  3.1 to build a smaller initial 
approximate MCS index have highly effective practical 
consequences.

Index size for k ≥ 2

In this section, we examine how the size of McDag scales 
with multiple input strings. Since finding the longest path 
in McDag allows us to quickly compute the LCS across 
multiple strings—a problem known to be NP-hard [2]—
we can only construct indices over shorter input strings 
for fixed k > 2 . To illustrate the behavior of McDag and 
MCS- minim ized with multiple input strings, we present 
several plots for different values of k, using input strings 
from the hiv−1 dataset. Specifically, we used the first k 
strings of this list: AF004885, AF005494, AF005496, 
AF061641, AF061642, AF067155.

Figure  11 shows the index sizes for k = 2 and k = 3 . 
The y-axis displays the number of nodes in logarith-
mic scale, while the x-axis shows the length of the input 
strings in linear scale. As expected, the left plot shows 
that for two strings, both McDag and MCS- minim ized 

produce a curve that follows the n2 trend, confirming our 
observations from previous sections.

Surprisingly, when we increase the value of k, the 
behavior changes. For k = 3 , we observe a distinct 
growth trend on the right of Fig.  11: the shapes of the 
MCS index curves appear flatter than the theoretical n3 
curve. Notably, for values of n near 500, the McDag curve 
almost meets the n3 curve, and the MCS- minim ized 
curve follows closely.

This flattening effect in the curves becomes even more 
pronounced for k = 4 on the left of Fig. 12. Due to scala-
bility limitations, we could not compute results for larger 
values of n, but it seems reasonable to assume that, as 
with k = 3 and sufficiently long input strings, the number 
of nodes for any deterministic MCS index would likely 
exceed nk.

To better understand the reason for this unexpected 
growth in the number of nodes, the plot on the right 
of Fig.  12 introduces (in blue) the number of nodes in 
CSA- filtered . As can be seen, this curve follows the 
n4 trend (in red), consistent with the size complexity 
of CSA- filtered as discussed in Sect.  3.1. Comparing 
this with the curves for McDag and MCS- minim ized 

Fig. 11  Number of nodes in hiv−1 for k = 2 sequences and k = 3 sequences

Fig. 12  Number of nodes in hiv−1 for k = 4 sequences, compared with the size of CSA- filtered in the plot on the right
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highlights their different behaviors: the latter curves 
clearly grow more rapidly than CSA- filtered.

From the plots examined so far, we observe that the 
reason for the growth in the number of nodes in McDag 
and MCS- minim ized is due to the elimination of non-
maximal common subsequences, which causes the 
creation of extra nodes and paths in the indices. This 
observation becomes even clearer for k = 5 and k = 6 , 
as shown in Fig. 13, where the growth of the MCS indi-
ces appears linear in log scale whereas CSA- filtered (in 
blue) follows the nk trend (in red).

In log scale plots like those presented in this section, 
a straight line represents a function that grows exponen-
tially with the value on the x-axis. This suggests that for a 
fixed, sufficiently large k, the observed curves approach a 
function where n appears in some form in the exponent. 
Interestingly, this exponential-like behavior affects both 
McDag and MCS- minim ized , suggesting that any deter-
ministic MCS index would grow exponentially with n 
when k > 2 is fixed, even using alternative algorithms to 
our McConstruct.

Conclusions
In this paper, we presented a novel method for building 
a compact index of all maximal common subsequences 
(MCS) of multiple strings, called McDag , and designed 
to be both understandable and straightforward to imple-
ment. We empirically evaluated McDag on synthetic data 
and DNA sequences from public datasets, demonstrating 
its effectiveness and efficiency. For two strings, McDag 
provides a practical solution for applications in bioin-
formatics, text processing, and other fields that require 
efficient sequence analysis. By focusing on a co-deter-
ministic approach and employing filtering techniques, we 
have shown that McDag is a compact, precise index that 
handles substantial datasets, utilizing only 4-7% more 
than the minimum required nodes. It remains an open 
problem to prove whether McDag always contains fewer 

than n2 nodes and edges for two strings, independently of 
the alphabet size |�|.

For the general case of multiple strings, we observed 
that McDag is the first method that allows for index-
ing all MCSs in a set of more than two strings. However, 
McDag and even the smallest deterministic MCS index 
appear to grow exponentially in size with three or more 
strings. We leave open the question of whether it is pos-
sible to construct an MCS index for the general case of k 
strings that, for fixed k > 2 , has a number of nodes that is 
polynomial in n.

Finally, we plan to expand the scalability of our 
approach for two strings by extending the sequence 
length n through advanced space-saving techniques, par-
allelism, and SIMD (Single Instruction, Multiple Data) 
instructions. Ultimately, our goal is to provide a robust 
and versatile tool for MCS indexing that balances accu-
racy, efficiency, and practicality, advancing sequence 
analysis methodologies and their applications.
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