
Cunha et al. Algorithms for Molecular Biology (2024) 19:24
https://doi.org/10.1186/s13015-024-00269-z

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or
parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by-​nc-​nd/4.​0/.

Algorithms for
Molecular Biology

On the parameterized complexity
of the median and closest problems under some
permutation metrics
Luís Cunha1*, Ignasi Sau2† and Uéverton Souza1,3† 

Abstract 

Genome rearrangements are events where large blocks of DNA exchange places during evolution. The analysis
of these events is a promising tool for understanding evolutionary genomics, providing data for phylogenetic
reconstruction based on genome rearrangement measures. Many pairwise rearrangement distances have been
proposed, based on finding the minimum number of rearrangement events to transform one genome into the other,
using some predefined operation. When more than two genomes are considered, we have the more challenging
problem of rearrangement-based phylogeny reconstruction. Given a set of genomes and a distance notion, there
are at least two natural ways to define the “target” genome. On the one hand, finding a genome that minimizes
the sum of the distances from this to any other, called the median genome. On the other hand, finding a genome
that minimizes the maximum distance to any other, called the closest genome. Considering genomes as permutations
of distinct integers, some distance metrics have been extensively studied. We investigate the median and closest
problems on permutations over the following metrics: breakpoint distance, swap distance, block-interchange distance,
short-block-move distance, and transposition distance. In biological applications some values are usually very small,
such as the solution value d or the number k of input permutations. For each of these metrics and parameters d
or k, we analyze the closest and the median problems from the viewpoint of parameterized complexity. We obtain
the following results: NP-hardness for finding the median/closest permutation regarding some metrics of distance,
even for only k = 3 permutations; Polynomial kernels for the problems of finding the median permutation of all
studied metrics, considering the target distance d as parameter; NP-hardness result for finding the closest permuta-
tion by short-block-moves; FPT algorithms and infeasibility of polynomial kernels for finding the closest permutation
for some metrics when parameterized by the target distance d.

Keywords  Median problem, Closest problem, Genome rearrangements, Parameterized complexity

Introduction
Ancestral reconstruction is a classic task in compara-
tive genomics, which is based on consensus word analy-
sis, with a vast applicability [1–3]. In this field, genome
rearrangement problems study large-scale mutations on
a set of DNAs in living organisms, and have been stud-
ied extensively in computational biology and computer
science for decades. From a mathematical point of view,
a genome is represented by a permutation (a sequence
of distinct integers). Based on that, as proposed by

†Ignasi Sau and Uéverton Souza contributed equally to this work.

*Correspondence:
Luís Cunha
lfignacio@ic.uff.br
1 Instituto de Computação, Universidade Federal Fluminense, Niterói,
Brazil
2 IMPA, Instituto de Matemática Pura e Aplicada, Rio de Janeiro, Brazil
3 LIRMM, Université de Montpellier, CNRS, Montpellier, France

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-024-00269-z&domain=pdf

Page 2 of 18Cunha et al. Algorithms for Molecular Biology (2024) 19:24

Watterson et al. [4], a genome rearrangement problem
is interpreted as transforming one permutation into
another by a minimum number of operations depend-
ing on the possible allowed rearrangements, i.e., the
chosen metric. In this model we consider the follow-
ing assumptions: the order of genes in each genome is
known; all genomes we compare share the same gene
set; all genomes contain a single copy of each gene; and
all genomes consist of a single chromosome. So, genomes
can be modeled as permutations, once each gene is
encoded as an integer.

Finding the minimum number of operations is equiva-
lent to sorting the permutation with a given rearrange-
ment. Many metrics received attention in recent years,
and among the studied distances or sorting problems
the following are the most natural ones. The breakpoint
distance is the number of consecutive elements in one
permutation that are not consecutive in another one.
Note that on the breakpoint distance we do not apply any
operation to transform a permutation into another one.
The reversal operation transforms one permutation into
another one by reversing the elements of a block of one
permutation (a block is an interval of consecutive ele-
ments). The block-interchange operation exchanges two
disjoint blocks, and generalizes the transposition, where
the blocks are restricted to be consecutive. A swap is a
block-interchange where each block has a unique ele-
ment. A short-block-move is a transposition whose blocks
have at most three elements. Concerning the computa-
tional complexity with respect to these metrics, the cor-
responding problems for breakpoint distance, sorting by
block-interchanges, and sorting by swap can be solved
in polynomial time [2, 5], sorting by transpositions and
sorting by reversals are NP-complete [6, 7], and the com-
plexity of sorting by short-block-moves is still unknown.
Some restrictions or generalizations of the presented
metrics have been considered and algorithmic aspects
have been developed [8, 9].

When an input has more than two genomes, there are
many approaches for finding ancestral genomes. The
main application is to infer common ancestor configu-
rations and eventually phylogenies, which are trees that
show the relationships between organisms or between
species [10–15]. A relevant approach is the Median
problem, where, for a fixed metric M, the goal is to find a
solution genome that minimizes the sum of the distances
between the solution and all the input genomes.

Metric M Median

Instance: A set S of genomes.

Goal: A genome that minimizes the sum of the distances,
according to metric M, between the solution genome
and all other genomes of S.

The Breakpoint Median problem is NP-hard [15] for
a general input. The Reversal Median and Transposi-
tion Median problems have been known for some years
to be NP-hard even when the input consists of three per-
mutations [10, 11], while the Swap Median problem has
recently been settled as NP-hard [16]. Prior to this work,
the complexity of Block-interchange Median was
not known. The same applies to the Median problem
regarding short-block-move operations.

Haghighi and Sankoff [14] observed that, with respect
to the breakpoint metric, a tendency for medians is to
fall on or to be close to one of the input genomes, which
contain no useful information for the phylogeny recon-
struction. They also conjectured the same behavior con-
cerning other metrics. Hence, an alternative approach is
to consider the Closest problem for a fixed metric M,
which aims to find a genome that minimizes the maxi-
mum distance to any genome in the input, which can be
seen as finding a genome in the center of all others, i.e., a
genome minimizing the radius of the ball containing all
the genomes of the input set.

Metric M Closest

Instance: A set S of genomes.

Goal: A genome that minimizes the maximum distance, accord-
ing to metric M, between the solution genome and any
other genome in S.

Lanctot et al. [17] studied the Closest problem over
strings with respect to the Hamming distance, and set-
tled that this problem is NP-hard even for binary strings.
Popov [18] studied the Closest problem over permuta-
tions with respect to the swap operation distance, and
showed that it is NP-hard. Cunha et al. [12] showed that
the Closest problem is NP-hard for several well-known
genome rearrangement distances, such as the breakpoint
and the block-interchange ones.

The parameterized complexity of the Median and
Closest problems has been studied mostly regarding
strings on an alphabet � with respect to the Hamming
distance. These problems, and some variations, have been
considered with respect to parameters that are combina-
tions of k, d, |�| , and n, where d is the solution value, k is
the number of input permutations, and n is the length of
the strings. Gramm et al. [19, 20] investigated the Clos-
est String problem on binary strings considering some
parameters, and showed how to solve it in linear time
for fixed d (the exponential growth in d is bounded by
O(dd) ), and when k is fixed and d is arbitrary. Fu et al.
[21] developed a polynomial kernelization parameterized
by d and k, of size O(k2d log k) . Basavaraju et al. [22] pre-
sented a comprehensive study of Closest String and
some related problems from the kernelization complexity

Page 3 of 18Cunha et al. Algorithms for Molecular Biology (2024) 19:24 	

perspective, and showed that Closest String param-
eterized by d and the length of the strings n does not
admit a polynomial kernel under a standard complexity
assumption. Furthermore, recently parameterized results
regarding Median and Closest problems with respect
to edit distance were developed [23].

Considering the input genomes as permutations, some
few results are known, such as the fact that the Swap
Closest problem is FPT when parameterized by the
number of input permutations and the solution radius
[18]. On the other hand, the Transposition Median
problem parameterized by the number of input permu-
tations is para-NP-hard, since Bader proved that it is
NP-hard even if the input consists of three permutations
[10]. To the best of our knowledge, a multivariate inves-
tigation of the parameterized complexity of computing
the median/closest genome by the considered metrics
on permutations has not been thoroughly studied in
the literature. Therefore, our goal is to map sources of
computational tractability for both consensus problems
(Median and Closest) defined above, and consequently
identify features that make it tractable through the lenses
of metrics over permutations and the parameterized
complexity.

Our contribution In this article we obtain the following
results:

•	 In Sect. 4, we develop polynomial kernels for finding
median permutations considering swap, breakpoint,
block-interchange, transposition, and short-block-
move operations, all of them parameterized by the
target distance d. This result is in sharp contrast with
the fact that, as we have also managed to prove, for
most of the above metrics the problem of finding the
closest permutation does not admit a polynomial
kernel parameterized by d.

•	 In Sect. 4, we prove the NP-hardness of Block-
interchange Median, even for only k = 3 per-
mutations. Based on that, in Sect. 5 we are able to
reduce Block-interchange Median to Block-
interchange Closest, as well to Transposition
Closest, even for only k = 3 permutations.

•	 In Sect. 5, we prove the NP-hardness of Short-
block-moves Closest. Since it is still an open
question to decide whether the sorting problem by
short-block-moves can be solved in polynomial time,
it is natural to consider the “closest” version of the
problem that, somehow surprisingly, had not been
considered in related previous work [12].

•	 In Sect. 5, we also provide FPT algorithms for the
Closest problem parameterized by the target dis-
tance d, for some of the above metrics. Our approach
is inspired from FPT algorithms for Closest String
(see [24]).

The above results provide an accurate picture of the
parameterized complexity of the considered problems
with respect to the parameters d and k (in particular,
for k = 3 ). Note that in biological applications some of
these values are very small [19, 22, 23].

Table 1 summarizes our results, considering d and k
as the parameters, and the open questions.

Organization In Sect. 2 we provide a detailed expla-
nation on rearrangement operations, associated graphs,
and bounds on the distances we deal with. In Sect. 3 we
provide the basic definitions on parameterized com-
plexity, which can also be found in [24]. In Sect. 4 (resp.
Sect. 5) we present our results for the Median (resp.
Closest) problems. In Sect. 6 we conclude the paper
with final remarks and further work.

Table 1  Problems parameterized by d: Some results obtained in this paper comparing Median (Theorem 4.2) and Closest (Corollary 5.3
and Theorem 5.3)

Problems parameterized by k: Consequence of known results and some others obtained in this paper. Open questions are denoted by ‘??’

Swap Block-interchange Short-Block-Moves Transposition Breakpoint

Median Par. d Poly kernel Poly kernel Poly kernel Poly kernel poly kernel

Median Par. k Para-NP-hard (NP-hard
k = 3 [16])

Para-NP-hard (NP-hard k = 3 ,
Theorem 4.1)

?? Para-NP-hard
(NP-hard k = 3
[10])

Para-NP-hard
(NP-hard k = 3 [15])

Closest Par. d FPT
No poly kernel

FPT
No poly kernel

FPT
No poly kernel

??
No poly kernel

??
no poly kernel

Closest Par. k Para-NP-hard (NP-hard
k = 3 [16])

Para-NP-hard (NP-hard k = 3 ,
Corollary 5.1)

?? Para-NP-hard
(NP-hard k = 3 ,
Corollary 5.2)

??

Page 4 of 18Cunha et al. Algorithms for Molecular Biology (2024) 19:24

Preliminaries on genome rearrangements
Genome rearrangements are events where large blocks of
DNA exchange places during evolution. For models, we
may consider genomes as strings or permutations. An
alphabet � is a nonempty set of letters, and a string over
� is a finite sequence of letters of � . The Hamming dis-
tance of two strings s and s′ of the same length, denoted by
dH (s, s

′) , is the number of mismatched positions between
s and s′ . The Hamming distance of a string s of length n,
denoted by dH (s) , is the Hamming distance of s and the
string 0 . . . 0 , where 0 ∈ �.

A permutation of length n is a bijec-
tion from the set {1, 2, . . . , n} onto itself
π = [π(0)π(1) π(2) . . . π(n)π(n+ 1)] , such that
π(0) = 0 and π(n+ 1) = n+ 1 . For simplicity
π =[π(0)π(1) π(2) . . . π(n)π(n+ 1)]

= [π0 π1 π2 . . . πnπn+1]  . The operations
will never act on π0 or πn+1 , but these are used to define
graphs useful for determining bounds on some distances,
as discussed later. When not needed, π = [π1 π2 . . . πn] .
Similarly to the above, given a metric M and two permu-
tations π and σ of the same length, we define dM(π , σ)
as their distance with respect to metric M, and the dis-
tance of a permutation π of length n, denoted by dM(π) ,
is the distance between π and the identity permutation
ι = [0 1 2 . . . n n + 1].

Sorting by rearrangement operations
Note that the distance between two permutations can
also be seen as the sorting of a permutation. Indeed,
once permutations π and σ are given, one can relabel σ
to be equal to σσ−1 = ι , and then the distance between
π and σ is the same as sorting πσ−1 , i.e., the distance
between πσ−1 and ι . Hence, throughout this paper
we may use interchangeably distance or sorting prob-
lem. Block-interchange generalizes a transposition and
generalizes also a swap operation. Nevertheless, with
respect to the distance problem, if we are dealing with
an operation M that generalizes another M′ , if com-
puting the distance by the metric M is in ¶, it does not
imply that with respect to the metric M′ , the distance
problem is also in ¶. For instance, concerning the block-
interchange distance, it can be computed in polynomial
time [5], whereas computing the transposition distance

is NP-hard [6], and computing the swap distance is
in ¶, as discussed later. On the other hand, if a distance
problem is NP-hard, then the Median/Closest prob-
lems for the same operation are also NP-hard. Indeed,
this follows by considering an input set of permutations
consisting of two permutations π , ι such that π = ι , and
asking for a permutation with distance at most d from
each, for a metric M. Then, we can consider the prob-
lem of computing the distance as a particular case of
the Closest problem.

The breakpoint distance An adjacency of a permuta-
tion π with respect to permutation σ is a pair (πi,πi+1)
of consecutive elements in π such that this pair is also
consecutive in σ , i.e., πi = σj and πi+1 = σj+1 . If a pair
of consecutive elements is not an adjacency, then it
is called a breakpoint, and we denote by dBP(π , σ)
the number of breakpoints of π with respect to σ .
The set Adj(π) is the set of adjacencies of π , given by
Adj(π) = {{πi,πi+1} | i = 1, . . . , n− 1} . Thus, in other
words, the breakpoint distance between π and σ is
dBP(π , σ) = |Adj(π)− Adj(σ)|.

The block-interchange and the transposition distances
Bafna and Pevzner [25] proposed a useful graph, called
the reality and desire diagram, which allowed to obtain
non-trivial bounds on the transposition distance [25],
and also provided, as established by Christie [5], the
exact block-interchange distance. Nevertheless, when
considering the transposition distance, the reality and
desire diagram is a tool to only deal with lower and
upper bounds for a permutation, as discussed below.

Given a permutation π of length n, the reality and
desire diagram G(π , ι) (or just G(π) when conveni-
ent) from π to ι , is a multigraph G(π) = (V ,R ∪ D) ,
where V = {0,−1,+1,−2,+2, . . . ,−n,+n,−(n+ 1)} ,
each element of π corresponds to two vertices and we
also include the vertices labeled by 0 and −(n+ 1) ,
and the edges are partitioned into two sets: the reality
edges R and the desire edges D. The reality edges rep-
resent the adjacency between the elements on π , that
is R = {(+πi , −πi+1) | i = 1, . . . , n− 1} ∪ {(0, −π1), (+πn , −(n+ 1))} ; and the
desire edges represent the adjacency between the ele-
ments on ι , that is D = {(+i, −(i + 1)) | i = 0, . . . , n} .
Figure 1 illustrates the reality and desire diagram of a
permutation. A general definition considers G(π , σ)
where the reality (resp. desire) edges represent the

Fig. 1  The reality and desire diagram between permutation [0 2 1 4 3 5 6 9 8 7 10] and ι , where green edges are the reality edges and red edges are
the desire edges

Page 5 of 18Cunha et al. Algorithms for Molecular Biology (2024) 19:24 	

adjacency between elements of π (resp. σ ), and then
D = {(+σi, −σi+1) | i = 0, . . . , n}.

As a direct consequence of the construction of this
graph, the sets of reality edges and desire edges define
two perfect matchings (that is, a set of edges that con-
tains all vertices of the graph and each of them appears
exactly once), denoted by M(π) and M(ι) , respectively.
Each of these perfect matchings is called a permutation
matching.

Since every vertex in G(π) has degree two, G(π) can
be partitioned into disjoint cycles. We say that a cycle
in π has length k, or that it is a k-cycle, if it has exactly
k reality edges (or, equivalently, k desire edges). Hence,
the identity permutation of length n has n+ 1 cycles
of length one. We denote by c(G(π , ι)) (or just c(G(π))
for convenience) the number of cycles in G(π) . After
applying a block-interchange bℓ in a permutation π , the
number of cycles c(G(π)) changes in such a way that
c(G(πbℓ)) = c(G(π))+ x , for some x ∈ {−2, 0, 2} (see
[5]). The block-interchange bℓ is thus classified as an
x-move for π . Analogously, after applying a transposition
t in a permutation π , the number of odd cycles, denoted
by codd(G(π)) , changes by an x-move, x ∈ {−2, 0, 2} ,
for π (see [25]). Christie [5] proved, for the block-inter-
change operation, the existence of a 2-move for any per-
mutation, which says that the number of cycles yields the
exact block-interchange distance:

Theorem 2.1  (Christie [5]) The block-inter-
change distance of a permutation π of length n is
dBI(π) =

(n+1)−c(G(π))
2 .

On the other hand, by allowing only the particular case
of the transposition operation, it is not always possible to
use a 2-move. We say that a transposition affects a cycle
if the extremities of the two blocks of the transposition
eliminate a reality edge of a cycle and create another
edge. This new edge may increase, decrease, or preserve
the number of cycles.

A transposition t(i, j, k), where 1 ≤ i < j < k ≤ n+ 1 ,
is a permutation that exchanges the contiguous blocks

i i+1 . . . j−1 and j j+1 . . . k−1 ; when composed with
a permutation π , it yields the following permutation:
π · t(i, j, k) = [π1 π2 . . . πi−1 πj . . . πk−1 πi . . . πj−1 πk . . . πn]   .
Bafna and Pevzner [25] showed conditions of a cycle for a
transposition to be an x-move. If a transposition t is a −2

-move, then t affects three distinct cycles. However, if a
transposition t is a 0-move or a 2-move, then t affects at
least two elements of the same cycle [25].

Figure 2 illustrates a sorting scenario of a permutation
and how the transpositions affect a cycle.

Theorem 2.2  (Bafna and Pevzner [25]) The transpo-
sition distance of a permutation π of length n satisfies
dT(π) ≥

(n+1)−codd(G(π))
2 .

Permutations whose transposition distances are equal
to the lower bound of Theorem 2.2 are called hurdle-
free permutations [5, 10]. Cunha et al. [26, 27] presented
upper bounds on the distance of any permutation by
using permutation trees data structure (cf. [27]), and
based on that, an 1.375-approximation algorithm for
Sorting by Transpositions was developed, improving
the time complexity to O(n log n) . An interesting trans-
formation on permutations is the reduction operation,
since the permutation obtained after its reduction pre-
serves both the block-interchange and the transposition
distances. The reduced permutation of π , denoted by
gl(π) (also called as a glued operation), is the permuta-
tion whose reality and desire diagram G(gl(π)) is equal
to G(π) without the cycles of length one (recall that
the length of a cycle is its number of reality edges), and
has its vertices relabeled accordingly. For instance, the
reduced permutation corresponding to the permutation
in Fig. 1 is [0 2 1 4 3 5 8 7 6 9].

Theorem 2.3  (Christie [5]) The block-interchange dis-
tances of a permutation π and its reduced permutation
gl(π) satisfy dBI(π) = dBI(gl(π)).

Swap distance Permutations can also be represented
by each element followed by its image. For example,

Fig. 2  Sorting sequence of [4 3 2 1 5] . The first transposition is a 0-move, while the others are 2-moves

Page 6 of 18Cunha et al. Algorithms for Molecular Biology (2024) 19:24

given a set {1, 2, 3} , the sequence (1 2 3) maps 1 into
2, 2 into 3, and 3 into 1, corresponding to the permu-
tation [2 3 1] . This representation is not unique; for
instance, (2 3 1) and (3 1 2) are equivalent. Permutations
are composed of one or more algebraic cycles, where
each algebraic cycle of a permutation π is formed by an
element i, followed by its image π(i) , followed by the
image of π(i) , i.e., π(π(i)) , and so on. We continue this
process until we reach a repeated element. This proce-
dure uniquely defines the permutation. We denote by
c(π) the number of algebraic cycles of π . For example,
given π = [8 5 1 3 2 7 6 4] = (1 8 4 3)(2 5)(6 7) , we have
c(π) = 3 . An exchange of elements involving elements
a and b such that a and b are in the same cycle is an
exchange that breaks the cycle into two, whereas if a
and b belong to different cycles, the exchange of these
elements unites the two cycles [2]. Thus, when consid-
ering the swap metric, the swap distance of a permu-
tation π is determined as follows: dswap(π) = n− c(π) ,
where c(π) is the number of algebraic cycles of π and n
is the length of π.

Short-block-move distance A p-bounded block-
move is a transposition t(i, j, k) such that k − i ≤ p ,
and a 3-bounded block-move is called a short-block-
move. Hence, a short-block-move is either a transpo-
sition t(i, i + 1, i + 2) , called a skip, a transposition
t(i, i + 1, i + 3) , or a transposition t(i, i + 2, i + 3) , the
two latter ones called hops. If the transpositions are
restricted only to p-bounded block-moves, then one
obtains the p-bounded block-move distance, denoted by
dpbbm(π) . When p = 3 , this defines the short-block-move
distance, denoted by dsbm(π) . Previous works investi-
gated variants of block-move distances where bounds
are imposed on the lengths of at least one of the moved
blocks [28, 29]. The problem of sorting permutations
using 2-bounded block-moves, i.e., adjacent swaps, is eas-
ily solved by the Bubble-Sort algorithm [30]. In general,
the complexity of sorting a permutation by p-bounded
block-moves is unknown for fixed p > 2 , whereas the
analogous problem of limiting k − i ≤ f (n) , is NP-hard
[28], since Sorting by Transpositions is NP-hard.

To estimate the short-block-move distance, Heath
and Vergara [28, 29] used the permutation graph
PG(π) = (V

p
π ,E

p
π) , where V

p
π = {1, 2, . . . , n} and

E
p
π = {(i, j) | πi > πj , i < j} ; each edge of PG is called an

inversion in π . Heath and Vergara proved that on a
shortest sequence of operations for π , every short-
block-move decreases the number of inversions by at
least one unit, and by at most two units, therefore:
⌈

|E
p
π |
2

⌉

≤ dsbm(π) ≤ |E
p
π | . Given a permutation, our aim

is to minimize the number of operations that decrease
only one inversion in PG. Examples of permutations

that are tight with respect to the above lower and upper
bounds are [2 4 3 5 1] and [2 1 4 3 6 5] , respectively.

A short-block-move is a correcting move if it is a skip
that eliminates one inversion, or a hop that eliminates
two inversions in π . Otherwise, the block-move is called
non-correcting. Figure 3 illustrates the permutation graph
of a permutation.

Heath and Vergara [29] proved that each sorting
sequence can be performed by using just correcting
moves. Table 2 shows replacements from non-correct-
ing moves to correcting moves in an optimal sorting
sequence, which we will use later in Theorem 5.2.

Relationship between sorting and median/closest
problems
Median problems Caprara [11] proved that the Reversal
Median problem ( RM ) is NP-complete. It begins with
the Eulerian Cycle Decomposition problem ( ECD ),
which consists in, given an Eulerian graph, find a partition
of its edges into the maximum number of cycles. The
ECD problem was proved to be NP-complete by Holyer
[31]. First, Caprara reduced ECD to Alternating
Cycle Decomposition ( ACD ), which is the problem of
finding a maximum cycle decomposition of a reality and
desire diagram (defined in Sect. 2.1). Then, he reduced
ACD to Cycle Median ( CM ), which is the problem of
finding a permutation that maximizes the sum of the
number of cycles in the reality and desire diagram of a
given set of three permutations. Finally, Caprara reduced
CM to Reversal Median. Summarizing, he proved
ECD ≤p ACD ≤p CM ≤p RM.

Fig. 3  The permutation graph of [2 4 3 5 1] , where each edge
is an inversion and the short-block-move distance is equal

to the lower bound of ⌈ |E
p
π |
2
⌉ = 3 . The hop t(3, 5, 6) is a correcting

move obtaining the permutation [2 4 1 3 5]

Table 2  How to replace a non-correcting move βi with a
correcting move β ′

i
 [29]; in all cases, e < f  , and x is arbitrary

Case 1 is an exception in this discussion, since it is the case where βi is a skip, so
that it suffices to simply omit βi instead of replacing it with some βi

Case π π ′ = πβi π ′′ = πβ ′
i

1 . . . ef fe ef . . .

2 . . . exf xfe xef . . .

3 . . . exf fex efx . . .

4 . . . xef fxe exf . . .

5 . . . efx fxe exf . . .

Page 7 of 18Cunha et al. Algorithms for Molecular Biology (2024) 19:24 	

In 2011, just before it was proved that Sorting by
Transpositions is NP-hard [6], Bader [10] proved the
NP-completeness of the Transposition Median prob-
lem ( TM for short). It was based on the following defi-
nition: given three input permutations π1,π2,π3 , find
a permutation σ such that

∑3
i=1 dT(σ ,π

i) is minimized,
where dT(σ ,π i) is the transposition distance between σ
and π i.

Bader [10] proved the hardness as an adapta-
tion of Caprara’s reductions considering rever-
sals. This adaptation was done by reducing 3SAT3
≤p MDECD ≤p OCM ≤p TM , where MDECD is the
Marked Directed Eulerian Cycle Decomposition
problem, proved NP-hard by Bader [10] and defined as
follows. Let k be an integer, let G = (V ,E) be a directed
graph, and let Ek ⊆ E be a subset of its edges with
|Ek | = k . The edges in Ek are called the marked edges
of G. (G,Ek) ∈ MDECD if and only if E(G) can be parti-
tioned into edge-disjoint cycles such that each marked
edge is in a different cycle. OCM denotes the Odd Cycle
Median problem defined as follows. Let π1,π2,π3 be
permutations of {1, . . . , n} and let k be an integer. Then,
(π1,π2,π3, k) ∈ OCM if and only if there is a permuta-
tion σ with

∑3
i=1 codd(G(σ ,π i)) ≥ k (because it is known

that dT(π) ≥ (n+1)−codd(G(π))
2  , where codd(G(π)) is the

number of odd cycles in the reality and desire diagram of
π , see Theorem 2.2). Solving an OCM instance is equiva-
lent to finding a permutation matching M(σ) such that
∑3

i=1 codd(G(σ ,π i)) is maximized. This sum is also called
the solution value of M(σ) . TM was proved to be NP-
hard by a transformation from any instance σ ′ that maxi-
mizes

∑3
i=1 codd(G(σ ′,π i)) to an instance that minimizes

∑3
i=1 dT(σ

′,π i) . This could be done by ensuring that
the distance between σ ′ and each π i achieves the lower
bound of Theorem 2.2.

In order to examine TM , the multiple reality and desire
diagram1 was used in [10, 11]. Given the permutations
π1, . . . ,πq each one with length n, the multiple real-
ity and desire diagram MG(π1, . . . ,πq) = (V ,E) is a
multigraph with V = {0,−1,+1, . . . ,−n,+n,−(n+ 1)}
and E = M(π1) ∪ . . . ∪M(πq) , i.e., the edge set is
formed by the union of all permutation matchings of the
permutations.
MDECD is NP-hard even when the degree of all nodes

is bounded by four. Furthermore, this result still holds
for graphs G = (V ,E) that |V | + |E| − k is odd, where
k is the number of marked edges. Based on that, Bader
described a polynomial transformation from G being an

instance of MDECD to an MG. Hence, it is necessary to
guarantee conditions on graphs to be a multiple reality
and desire diagram MG. To this end, we have the follow-
ing properties.

Lemma 2.1  (Caprara [11]) Let V t and Vh be two dis-
joint node sets, and let G′ = (V t ∪ Vh,M1 ∪ . . . ∪Mq) be
a graph, where each Mi is a perfect matching, each edge in
Mi has color i, and each edge connects a node in V t with a
node in Vh. Furthermore, let H be a perfect matching such
that each edge in H connects a node in V t with a node
in Vh, and H ∪Mi defines a Hamiltonian cycle of G′ for
1 ≤ i ≤ q. Then, there exist permutations π1, . . . ,πq such
that G′ is isomorphic to MG(π1, . . . ,πq).

A matching H as described in Lemma 2.1 is called a
base matching of the graph. An important operation over
MG was introduced in [11]. Given a perfect matching
M on a node set V and an edge e = (u, v) , the operation
M/e is defined as follows. If e ∈ M , then M/e = M\{e} . If
e /∈ M , and (a, u), (b, v) are the two edges in M incident to
u and v, then M/e = M\{(a,u), (b, v)} ∪ {(a, b)}.

Lemma 2.2  (Caprara [11]) Given two perfect matchings
M, L of a given graph G and an edge e = (u, v) ∈ M with
e /∈ L , M ∪ L defines a Hamiltonian cycle of G if and only
if (M/e) ∪ (L/e) defines a Hamiltonian cycle of G − {u, v}.

Given an MG graph G = (V ,M(π1) ∪ . . . ∪M(πq)) ,
the contraction of an edge e = (u, v) yields the graph
G/e = (V \{u, v},M(π1)/e ∪ . . . ∪M(πq)/e) . By induc-
tion on the node size and contracting merging cycles, as a
consequence of Lemma 2.1 we have the following result.

Lemma 2.3  (Bader [10]) Let V t and Vh be two disjoint
sets, and let G = (V t ∪ Vh,M1 ∪M2) be a graph where
M1 and M2 are disjoint perfect matchings where each
edge connects a node in V t with a node in Vh. If M1 ∪M2
defines an even number of even cycles on V, then G has a
base matching H.

Closest problems We start with the following result.

Theorem 2.4  (Basavaraju et al. [22]) Closest String
parameterized by d and n does not admit a polynomial
kernel unless NP ⊆ coNP/poly.

Considering Closest problems, Popov [18] proved
the NP-completeness of the Swap Closest problem,
and Cunha et al. [12] developed an NP-completeness
framework of closest permutation regarding some
rearrangements, such as breakpoint and block-
interchange. The proposed reduction was the following:

1  Also called multiple breakpoint graph in [10], but not called in this way
here so as not to create confusion with breakpoint distances we also deal
with.

Page 8 of 18Cunha et al. Algorithms for Molecular Biology (2024) 19:24

by considering any set of k strings of length n, obtain a
particular set of k permutations of length f(n), which is
f (n) = 4n for the breakpoint case, while f (n) = 2n for
the block-interchange case. Based on that transformation,
Cunha et al. [12] showed a polynomial transformation
where a solution for Closest string yields a solution
for Closest permutation, as follows.

Lemma 2.4  (Cunha et al. [12]) Given a set of k permu-
tations obtained by the transformed set of binary strings,
there is a breakpoint closest permutation with maximum
distance equal to 2d if and only if there is a Hamming
closest string with maximum distance equal to d.

Lemma 2.5  (Cunha et al. [12]) Given a set of k permu-
tations obtained by the transformed set of binary strings,
there is a block-interchange closest permutation with
maximum distance at most d if and only if there is a
Hamming closest string with maximum distance equal to
d.

Hence, the developed technique is a polynomial
parameter transformation (PPT, as defined in Sect. 3)
from Closest String to Breakpoint Closest Per-
mutation and to Block-interchange Closest
Permutation.

Preliminaries on parameterized complexity
A parameterized problem is a decision problem whose
instances are pairs (x, k) ∈ �∗ × N , where k is called the
parameter. A parameterized problem is fixed-parameter
tractable (FPT) if there exists an algorithm A , a com-
putable function f, and a constant c such that given an
instance I = (x, k) , A (called an FPT algorithm) correctly
decides whether I ∈ L in time bounded by f (k) · |I |c.

A parameterized problem is slice-wise polynomial
(XP) if there exists an algorithm A and two computable
functions f, g such that given an instance I = (x, k) , A
(called an XP algorithm) correctly decides whether I ∈ L
in time bounded by f (k) · |I |g(k) . Within parameterized
problems, the class W[1] may be seen as the parameter-
ized equivalent to the class NP of classical optimization
problems. Without entering into details (see [24, 32] for
the formal definitions), a parameterized problem being
W[1]-hard can be seen as a strong evidence that this
problem is not FPT. The canonical example of W[1]-
hard problem is Clique parameterized by the size of the
solution.

A parameterized problem is para-NP-hard if it is NP-
hard for some fixed value of the parameter, such as the
k-Coloring problem parameterized by the number of
colors for every fixed k ≥ 3.

Definition 3.1  (Bodlaender et al. [33]) Let
P,Q ⊆ �∗ × N be parameterized problems. We say that a
polynomial computable function f : �∗ × N → �∗ × N
is a polynomial parameter transformation (PPT) from
P to Q if for all (x, k) ∈ �∗ × N the following holds:
(x, k) ∈ P if and only if (x′, k ′) = f (x, k) ∈ Q and
k ′ ≤ kO(1).

Definition 3.2  (Bodlaender et al. [33]) A kerneliza-
tion algorithm, or in short, a kernel for a parameter-
ized problem L ⊆ �∗ × N is an algorithm that given
(x, k) ∈ �∗ × N , outputs in p(|x| + k) time a pair
(x′, k ′) ∈ �∗ × N such that

•	 (x, k) ∈ L ⇔ (x′, k ′) ∈ L , and
•	 |x′|, k ′ ≤ f (k),

where f is some computable function and p is a polyno-
mial. Any function f as above is referred to as the size of
the kernel.

If we have a kernel for L, then for any (x, k) ∈ � × N ,
we can obtain in polynomial time an equivalent
instance with respect to L whose size is bounded by
a function of the parameter. Of particular interest are
polynomial kernels, which are kernels whose size is
bounded by a polynomial function.

Theorem 3.1  (Bodlaender et al. [33]) Let P and Q be
parameterized problems and P′ and Q′ be, respectively,
the unparameterized versions of P and Q. Suppose that P′
is NP-hard and Q′ is in NP. Assume that there is a poly-
nomial parameter transformation from P to Q. Then if Q
admits a polynomial kernel, so does P. Equivalently, if P
admits no polynomial kernel under some assumption then
neither does Q.

Results for the Median problems
Given a set of k permutations, each of length n, we can
store these permutations as a k × n matrix. The col-
umns of this matrix are called the columns of the set
of permutations, which are the elements in a same
position over the k permutations. For convenience, we
denote by S the input matrix and by s ∈ S a permuta-
tion of the instance.

First, we show that the decision version of Block-
interchange Median ( BIM for short) is NP-complete
even if the input consists of only three permutations.
The proof follows a similar approach considered by
Caprara [11] for the reversal rearrangement.

Page 9 of 18Cunha et al. Algorithms for Molecular Biology (2024) 19:24 	

Theorem 4.1  The Block-interchange Median prob-
lem is NP-complete even when the input consists of three
permutations.

Proof  Let π1,π2,π3 be permutations of {1, . . . , n} ,
and let k be an integer. Then, (π1,π2,π3, k) ∈ CM
if and only if there is a permutation σ satisfying
∑3

i=1 c(G(σ ,π i)) ≥ k . Since solving an CM instance
is equivalent to finding a permutation matching M(σ)
such that

∑3
i=1 c(G(σ ,π i)) is maximized and the block-

interchange distance between any two permutations
dBI(σ ,π

i) =
n+1−c(G(σ ,π i))

2  , then CM ≤p BIM . 	� �

From Theorem 4.1, one can conclude that BIM is para-
NP-hard when parameterized by the number of input
permutations. Transposition Median and Break-
point Median are also known to be para-NP-hard when
parameterized by the number of input permutations [10,
15].

Lemma 4.1, Lemma 4.2, and Lemma 4.3 present useful
conditions to reduce the size of the input permutations in
order to obtain polynomial kernels (Theorem 4.2).

Lemma 4.1  If an adjacency occurs in all of the input
permutations, it occurs also in a solution of the Block-
interchange Median and the Transposition Median
problems.

Proof  Assume ab is an adjacency that occurs in all k
input permutations. Let σ be a solution median permuta-
tion satisfying a and b are not adjacent. Suppose, w.l.o.g.
σ = [σ1, . . . , σi−1,a, σi+1, . . . , σj−1,b, σj+1, . . . , σn] . Thus,
we obtain the permutation σ ′ from σ by setting adjacen-
cies ab , bσi+1 and σj−1σj+1 , removing aσi+1 , σj−1b and
bσj+1 , and keeping all other adjacencies of σ , i.e.,
σ ′ = [σ1, . . . , σi−1,a,b, σi+1, . . . , σj−1, σj+1, . . . , σn]   .
Now, considering any optimum sequence of block-inter-
changes (or transpositions) from σ to π i , we present a
simulation sequence from σ ′ to π i . Any operation applied
on a sequence from σ to π i that does not change adjacen-
cies aσi+1 , σj−1b and bσj+1 can be simulated properly
from σ ′ to π i without any loss, once any impact on the
decreasing number of breakpoints is the same, and so the
number of cycles on the reality and desire diagram. If an
operation applied on a sequence from σ to π i affects i)
aσi+1 , ii) σj−1b , or iii) bσj+1 , then we simulate it on a
sequence from σ to π i as follows: i) instead of cut a block
just after a , it is cut after the two elements ab ; ii) instead
of cut a block just before b , it is cut just after σj−1 ; iii)
instead of cut a block just after b it is cut just before σj+1
as well. Since all input permutations have the adjacency
ab , no extra operation must be applied from σ ′ to π i .

Thus, we conclude that
k
∑

i=1

dBI(σ
′,π i) ≤

k
∑

i=1

dBI(σ ,π
i) (or

k
∑

i=1

dT(σ
′,π i) ≤

k
∑

i=1

dT(σ ,π
i) ). 	� �

The argument of Lemma 4.1 does not hold when
dealing with short-block-moves, because a simulation
operation (i.e., an operation that must be applied in non-
reduced permutations analogous to the reduced ones)
may be affected when it exceeds the size of a block. Nev-
ertheless, an analogous result is proved in Lemma 4.2.
We define the d-M Median problem as the Median
problem for a metric M parameterized by the sum d of
the distances between the solution and all the input
instances, i.e., the median solution.

Lemma 4.2  For d-Short-Block-Move Median, let I
be an interval with 6d + 1 consecutive columns where in
each column of I all elements are equal, and let the mid-
dle column be with element c, i.e., the (3d + 1)th column
of I has only element c (illustrated in Fig. 4a). Then there
is a median solution s⋆ that satisfies following properties:

1.	 Element c occurs in s⋆ in the same position as in the
input permutations, i.e., c occurs in the (3d + 1) th
column of s⋆ , which is the same column of I.

2.	 For any element e that occurs before I in the input, e
does not occur after the (3d + 1) th column of I in s⋆.

3.	 All elements of the input that occur in I and take place
before (resp. after) the (3d + 1) th column of I also
occur in s⋆ before (resp. after) the (3d + 1) th column.

Proof  For the first statement, assume that ℓ is the col-
umn that contains c in the input. Let s be a median solu-
tion in which the position ℓ contains a and the element
c is in a position j. Since I contains 6d + 1 columns,
with respect to the input permutations, a must also be
in I, otherwise at least 3d/2 > d moves would have to
be applied, and so we could safely conclude that we are
dealing with a no-instance (see Fig. 4b). For each input
permutation π i , assume a is at a position pai  . Hence,
the short-block-move distance between s and each π i
must use at least |pai − ℓ|/2 operations to move a to col-
umn ℓ , plus |ℓ− j|/2 operations to move c to column j
(see Fig. 4c). In any case, ℓ < j < pai  , p

a
i < ℓ < j , or

j < ℓ < pai  . Based on that, we can transform s into s⋆ by
keeping c in position ℓ and a in position j, applying the
same number of short-block-moves as before, once it is
necessary to apply at least |j − pai |/2 operations.

For the second statement, note that if there is a per-
mutation where the element e comes after I, then it is

Page 10 of 18Cunha et al. Algorithms for Molecular Biology (2024) 19:24

necessary to apply at least (6d + 1)/2 > d operations,
which contradicts the existence of a median solution for
d-Short-Block-Move Median (see Fig. 4d).

Now, let us consider the third statement. Let A be the
interval inside I before the column of c’s, i.e., before the
(3d + 1) th column, and B the interval inside I after the
column of c’s. As proved in the previous statement, a
median solution does not have an element e that occurs
in the input before I and in the solution it is after I. Let
us consider that in s⋆ an element of x ∈ A occurs in B. By
the pigeonhole principle, one of the elements of B must
occur outside of B. Let us consider the following cases:

Case 1: An element of B occurs after B in s⋆ . In this
case, let us consider that x moves from A to B and it takes
place where y ∈ B was. Hence, y moves to another place
and, also by the pigeonhole principle, some element of B
takes place after B in s⋆ . Since there are 3d elements in
B, more than d operations were necessary in total, simi-
lar to the previous second statement, which contradicts

a median solution for d-Short-Block-Move Median
(see Fig. 5a);

Case 2: An element of B occurs inside A in s⋆ . In this
case, with respect to an element of A (resp. of B) of the
input that occurs in B (resp. in A) in s⋆ , by the pigeon-
hole principle, there must be a cycle C according to the
moves necessary to be applied between the positions that
the elements change their positions among to s⋆ and the
input permutations. Thus, we can transform s⋆ into s′ by
keeping all elements of A (resp. of B) in A (resp. in B),
since in s⋆ there must be moves following C to correct the
elements according to the input columns (see Fig. 5b).

	� �

The complexity of the Swap Median problem was
open for more than 20 years, but it was recently set-
tled to be NP-hard even if the number of input strings
is three [16]. Bryant [34] proved that some variations of
the Breakpoint Median problem are NP-hard having

Fig. 4  a Hypothesis of the instances of Lemma 4.2. b Case that is not possible for a yes-instance, since more than d operations are necessary
to place a in the same position as one of the input permutations. c Case where c is not in a position ℓ for a median solution. Note that this
permutation could be changed to the permutation s∗ applying the same number of operations. d Case that is not possible for a yes-instance,
since more than d operations are necessary to place e in the same position as one of the input permutations

Page 11 of 18Cunha et al. Algorithms for Molecular Biology (2024) 19:24 	

three input permutations, by dealing with the cases of
linear, circular, signed, or unsigned permutations. One
condition of a breakpoint median solution for given
three input permutations is that if there are adjacencies
common to the three input permutations, then these
adjacencies can be assumed to be in a median genome
[34]. This result can be directly generalized, analogous
to Lemma 4.1, as follows.

Lemma 4.3  If an adjacency occurs in all of the input
permutations, then it occurs also in a solution of the
Breakpoint Median problem.

Proof  Suppose that x = [x1, x2, . . . , xn] is a breakpoint
median for the input π1,π2, . . . ,πk , and {xi, xj} is a pair
in (Adj(π1) ∩ . . . ∩ Adj(πk))\Adj(x) . We obtain a set Y
being Y = Adj(x) ∪ {{xi, xj}} . Hence, we modify Y in such
a way to generate a set of adjacencies which forms a
median solution. Given a pair of adjacency {u, v} ∈ Y  , let
w(u, v) = |{π ∈ {π1, . . . ,πk} {u, v} ∈ Adj(π)}| , i.e.,
w(u, v) is the number of input permutations that have the
adjacency {u, v} . If w(xi−1, xi) ≤ w(xi, xi+1) we remove
{xi−1, xi} from Y, otherwise we remove {xi, xi+1} . In the
same way, if w(xj−1, xj) ≤ w(xj , xj+1) we remove {xj−1, xj}
from Y, otherwise we remove {xj , xj+1} . Note that in each
one of the four possible cases, in the resulting set Y,
{xi, xj} happens exactly once, the same as the others ele-
ments. Since w(xi, xj) = k ,
k
∑

i=1

dBP(π
i,Y) <

k
∑

i=1

dBP(π
i, x) , which is a contradiction. 	

� �

Next, we consider the parameterized complexity of
some median problems parameterized by the distance
d. The previous lemmas allow us to develop reduction
rules in order to obtain Theorem 4.2.

Theorem 4.2  The following problems admit a polyno-
mial kernel parameterized by the value d of the desired
median solution: d-Swap Median, d-Breakpoint
Median, d-Block-interchange Median, d-Transpo-
sition Median, and d-Short-Block-Move Median.

Proof  First, we consider a polynomial kernelization for
the d-Swap Median problem based on the following
reduction rules:

1.	 If there is a column with more than d + 1 elements,
then return no.

2.	 If there is a column with at least two elements occur-
ring at least d + 1 times, then return no.

3.	 If an element occurs more than d times in at least
two columns, then return no.

4.	 If a row has at least d copies in the matrix, then either
the solution is a copy of such a row, or the answer is
no. We say that a column i is a heavy column for an
element x if x occurs more than d times in it; other-
wise, i is said light for x. We say that a row s is a light
if it has an element x in position i such that column i
is light for x; otherwise it is heavy.

5.	 For each element x, if the sum of occurrences of x in
its light columns is more than 2d, then return no.

6.	 If the previous rules were not applied, remove the
columns whose all elements are the same, and reduce
the universe accordingly.

Since the goal is to determine whether there is a per-
mutation s⋆ whose sum of the distances by swaps
between s⋆ and all permutations of S is at most d, Rules
1–4 are clearly safe. Now, we discuss Rule 5. If S is a
yes-instance then an element x having a heavy column
i (by Rule 2, there is at most one heavy column) must

Fig. 5  Cases of the third statement of Lemma 4.2. In red are elements before their moves to other positions and in blue elements in s⋆ (after
the moves). a Case 1, where element x of A takes place in B and element y′ of B takes place after B. b It represents whenever an element of A takes
place in B. Arrows follow a cycle C representing new positions of the elements. Element x moves to the position where there was y, element y
moves to the position where there was y′ , and so on

Page 12 of 18Cunha et al. Algorithms for Molecular Biology (2024) 19:24

have x in the position i of any optimum solution s⋆ .
Thus, the number of rows that contains x in positions
different than i is at most d. Also, if x has no heavy col-
umn, then such a s⋆ contains x in some position i whose
column has at most d occurrences of x, while the num-
ber of rows having x in other positions is also at most
d (hence, 2d occurrences in total). Thus, Rule 5 is safe.

Regarding Rule 6, as each s ∈ S is a permutation, it
holds that if a column i of S contains only one element x,
then all permutations of S have x in position i, implying
that any optimal solution for the problem should contain
x in position i. Thus, it is safe to ignore that column i and
element x from the input. (Recall that s⋆ having x in posi-
tion i implies that for any s ∈ S , there is an algebraic cycle
of length one between s⋆ and s, which is the best possi-
ble because the swap metric can be seen as the minimum
number of swaps to get only algebraic cycles of size one.)

At this point, we may suppose that Rules 1–5 were
not applied and that S′ is the resulting instance after
the application of Rule 6. To complete the kernelization
algorithm for d-Swap Median, we need the following
lemma.

Lemma 4.4  If S′ is a yes-instance of the d-Swap
Median problem, then S′ has at most 2d columns and
4d2 + d rows.

Proof  For a column i having more than one element,
the distance between the optimum solution s⋆ and some
permutation of S needs to count a swap move involving
column i. In addition, each swap affects only two col-
umns, implying that d moves can affect at most 2d col-
umns. However, by Rule 6, any column of S′ has more
than one element. Therefore, if S′ is a yes-instance of
the d-Swap Median problem, it must have at most 2d
columns.

Now, let us argue about the number of rows of S′ . By
Rule 5, the number of rows that contain an element x in a
light column for it is at most 2d. Since, S′ has at most 2d
columns it also has at most 2d elements. Therefore, the
number of light rows is at most 4d2 . Finally, by definition,
heavy rows have only elements in positions for which
they are heavy. By Rule 3, each element is heavy for only
one column, which implies that heavy columns are cop-
ies. By Rule 4, we conclude that we have at most d heavy
rows in S′ . Hence, S′ has at most 4d2 + d rows. 	� �

Therefore, either the size of S′ certifies a no-answer,
or S′ is returned as a kernel for the d-Swap Median
problem.

Next, we discuss a kernelization algorithm for the
d-Breakpoint Median problem. Recall that in the
breakpoint metric, one does not care about occurrences
of elements in columns but adjacencies of elements
instead (regardless of their position in the rows). Thus,
we should adapt the previous arguments accordingly.

A kernel for the d-Breakpoint Median problem can
be found as follows:

1.	 If there is an element having with more than d + 1
distinct successor elements (distinct adjacencies) in
the matrix, then return no.

2.	 If there is an element x with at least two elements
occurring at least d + 1 times as successor of x in the
matrix, then return no.

3.	 If an element occurs more than d times as succes-
sor of at least two other elements in the matrix, then
return no.

4.	 If a row has at least d copies in the matrix, then either
the solution is a copy of such a row, or the answer is
no. We say that an element y is a heavy successor for
an element x if xy occurs more than d times in the
matrix; a successor of x that is not heavy is said to
be a light successor for x. We say that a row s is a light
row if it has an adjacency xy such that y is a light suc-
cessor for x; otherwise it is a heavy row.

5.	 For each element x, if the sum of occurrences of x
with light successors is more than 2d, then return no.

6.	 Assuming that the previous rules were not applied, if
there is an adjacency between x and y (i.e., xy) occur-
ring in all of the input permutations, then consider xy
as a single element and reduce the universe accord-
ingly. Repeat this until there is no such adjacencies.

The safety of Rules 1–4 is straightforward, for Rule 5 the
argument is similar to the swap case replacing columns
by successors, and for Rule 6 the safety proof follows
from Lemma 4.3. Again, we suppose that Rules 1–5 were
not applied and S′ is the resulting instance after the appli-
cation of Rule 6.

Similarly as above, to complete the kernelization algo-
rithm for d-Breakpoint Median, we need the following
lemma.

Lemma 4.5  If S′ is a y-instance of thees d-Breakpoint
Median problem, then S′ has at most 2d columns and
4d2 + d rows.

Proof  For an element x having more than one element
as successor or more than one element as predecessor in
the matrix, the distance between the optimum solution
s⋆ and some permutation of S needs to count a break-
point involving element x. In addition, each breakpoint

Page 13 of 18Cunha et al. Algorithms for Molecular Biology (2024) 19:24 	

involves only two elements, implying that d breakpoints
can involve at most 2d elements. However, by Rule 6,
any element of S′ is involved in at least one breakpoint.
Therefore, if S′ is a yes-instance of the d-Breakpoint
Median problem, then, since we are dealing with permu-
tations, it must have at most 2d elements and at most 2d
columns.

Now, let us argue about the number of rows of S′ . By
Rule 5, for each element x, the number of rows that con-
tain an adjacency xy where y is a light successor of x is at
most 2d. Since S′ has at most 2d elements, the number
of light rows is at most 4d2 . Finally, by definition, heavy
rows have only heavy successors. By Rule 3, each element
is heavy for only one predecessor in the matrix, implying
that heavy rows are copies. By Rule 4, there are at most d
heavy rows in S′ . Hence, S′ has at most 4d2 + d rows. 	
� �

Therefore, as above, either the size of S′ certifies a no-
answer, or S′ is returned as a kernel for the d-Break-
point Median problem.

Next, we discuss a kernelization for the d-Block-
interchange Median problem and the d-Trans-
position Median problem. Recall that for both met-
rics, whenever there is a breakpoint there is a move to
be “played” to obtain the identity. Thus, a large set of
breakpoints being one per row is enough to certify a no-
answer for both problems as well. As Rules 1-5 of the
previous kernelization deal only with these kind of sets
of breakpoints, they also hold as reduction rules for these
two problems.

On the other hand, an analogous of Rule 6 may depend
on the kind of move to be used. However, Lemma 4.1
shows that a similar reduction rule can also be applied
for the d-Block-interchange Median problem and
the d-Transposition Median problem. Regarding an
analogous of Lemma 4.5, it is enough to observe that
any block-interchange involves the adjacency of at most
eight elements (at most four adjacencies involved), and
then one can conclude that S′ has at most 8d elements/
columns and 16d2 + d rows. Similarly, concerning trans-
positions, each move involves the adjacency of at most
six elements (at most three adjacencies involved), and
then one can conclude that S′ has at most 6d elements/
columns and 12d2 + d rows.

Finally, we discuss a kernelization for the d-Short-
Block-Move Median problem. As previously
discussed, Rules 1-5 described for the breakpoint
distance can be also applied to any metric where the

existence of a breakpoint certifies the existence of a move
to be “played” in order to obtain the identity. Thus, they
work for the short-block-move distance as well. However,
unlike with the d-Block-interchange Median
problem and the d-Transposition Median problem,
an immediate analogue of Rule 6 does not apply to the
short-block-move distance, because it may be necessary
to traverse some positions to get an element from one
point to another, temporarily breaking some “good”
adjacencies. To get around this problem, we introduce
the notion of homogeneous columns.

A column of an input matrix/set S is homogeneous if
it contains only one element, and heterogeneous other-
wise. Note that the existence of a heterogeneous column
implies the existence of a move involving such a column.
Since we are looking for a permutation s⋆ whose sum of
distances from the input permutations is at most d, it fol-
lows that S contains at most 3d heterogeneous columns.
So, either we have already a kernel or too many homoge-
neous columns where many of them are not involved in
moves needed for the calculation of the distance between
s⋆ and any s ∈ S . Then, an analogous of Rule 6 for this
problem must identify these homogeneous columns,
remove them, and reduce the universe properly. Due to
Lemma 4.2, we can safely apply the following reduction
rule.

⋆	� If there is an interval I with 6d + 2 consecutive
homogeneous columns, then remove the middle col-
umns of I and reduce the universe size accordingly.
Repeat this until there is no such interval.

After applying the above rule, we claim that the number
of columns of a yes-instance is at most 18d2 + 9d + 1 ,
because it has at most 3d heterogeneous columns and
a sequence of at most 6d + 1 homogeneous columns
before/after a heterogeneous one. This remark together
with the reduction rules applied implies that the number
of rows is at most 36d3 + 18d2 + 3d . This concludes the
existence of a polynomial kernel for the d-Short-Block-
Move Median problem. 	� �

Results for the Closest problems
First, we present a framework transformation from the
median to the closest problem. Since BIM is NP-hard
even for three input permutations, we show that Block-
Interchange Closest ( BIC ) is NP-hard even for three
input permutations. This is a stronger result compared
to the NP-hardness presented by Cunha et al. [12] for
the case where there is an arbitrary number of input
permutations.

Page 14 of 18Cunha et al. Algorithms for Molecular Biology (2024) 19:24

Reducing median to closest
The polynomial reduction presented in Theorem 4.1
allows us to show that not only the Block-Inter-
change Closest problem is NP-hard for three input
permutations, but also a closest problem where the cor-
responding median with a constant number of input per-
mutations is NP-hard. Next we show that it is the case for
the block-interchange rearrangement.

Definition 5.1  Given π1 with p elements and π2
with q elements, the union of π1 and π2 is a permu-
tation π1 ⊎ π2 with p+ q + 1 elements such that
π1

� π2
= [π1

1 ,π
1
2 , . . . ,π

1
p , (p+ 1),

(π2
1 + p+ 1), (π2

2 + p+ 1), . . . , (π2
q + p+ 1)] . For sim-

plicity, π1 ⊎ π2 is denoted by π1,2 . Permutations π1 and
π2 are called parts of the union.

Lemma 5.1  Given permutations π1 and π2, we have
that dBI(π1,2) = dBI(π

1)+ dBI(π
2).

Proof  Assuming that π1 has p elements and π2 has
q elements, since p+ 1 is greater than all elements of
π1 and smaller than all elements of π2 , the reality and
desire diagram G(π1 ⊎ π2) is obtained by gluing G(π1)
and G(π2) , i.e., the reality and the desire edges do not
change when the union operation is applied to permuta-
tions. As a direct consequence of Theorem 2.1, we have
dBI(π

1,2) =
p+q+2−c(G(π1))−c(G(π2))

2 = dBI(π
1)+ dBI(π

2) . 	
� �

Theorem 5.1  Given three permutations π1,π2 and π3 ,

σ is a solution of BIM if and only if
6
⊎

i=1

σ is a solution of

BIC for the permutations π1,2,3,1,2,3,π2,1,1,3,3,2, and
π3,3,2,2,1,1.

Proof  Since permutations π1,2,3,1,2,3,π2,1,1,3,3,2 , and
π3,3,2,2,1,1 are composed by six parts of unions and, con-
sidering BIC , each part corresponds to columns yielding
π1 , π2 , and π3 . Moreover, by Lemma 5.1 each part can be
treated separately without loss of optimality. Hence, there
is a solution of BIC where all parts have the same solution
δ . Therefore, there is a permutation
x ∈ {π1,2,3,1,2,3,π2,1,1,3,3,2,π3,3,2,2,1,1} such that

dBI(
6
⊎

i=1

δ, x) = 2(dBI(δ,π
1)+ dBI(δ,π

2)+ dBI(δ,π
3))   .

Since we want δ such that dBI(
6
⊎

i=1

δ, x) is minimized, we

want δ such that dBI(δ,π1)+ dBI(δ,π
2)+ dBI(δ,π

3) is
minimized. Hence, this happens if and only if δ = σ ,
where σ is solution of BIM . 	� �

Since Block-Interchange Median is NP-complete
(Theorem 4.1), as a consequence of Theorem 5.1, we have
Corollary 5.1.

Corollary 5.1  The Block-Interchange Closest
problem is NP-hard even when the input consists of three
permutations.

When dealing with transpositions, sorting each part of
a union separately does not yield an optimum sequence
in order to sort a permutation in general, as proved by
Cunha et al. [1]. Hence, an analogous strategy of the one
in Theorem 5.1 does not apply to reduce the median to
the closest problems regarding transpositions rearrange-
ment, given that Lemma 5.1 does not hold for sorting
by transpositions. However, if each part of a union is
hurdle-free i.e., a permutation in which the transposi-
tion distance is equal to the lower bound on the trans-
position distance dT(π) ≥ (n+1)−codd(G(π))

2  , it follows that
dT(π

1,2) = dT(π
1)+ dT(π

2) in the same matter as Theo-
rem 5.1. Therefore, we have Corollary 5.2.

Corollary 5.2  Transposition Closest is NP-hard
even when the input consists of three permutations which
are unions of hurdle-free permutations.

Proof  Transposition Median is NP-hard when k = 3
even for hurdle-free permutations [10], i.e., permutations
in which the transposition distances are equal to the
lower bound of Theorem 2.2. Since the distance of unions
of hurdle-free permutations can be obtained by the sum
of the distances of each part of the union, Theorem 5.1
holds in the same way. 	� �

Fig. 6  Permutation graphs of [2 3 1 6 4 5] and [2 3 4 1 6 5] by applying the merging move t(3, 5, 6)

Page 15 of 18Cunha et al. Algorithms for Molecular Biology (2024) 19:24 	

The Short‑block‑move Closest problem
Sufficient condition to sort by short-block-moves We
refer to block-moves that introduce elements in con-
nected components of the permutation graph PG(π) of
π (defined in Sect. 2) as merging moves. Figure 6 illus-
trates a merging move applied on a permutation.

Lemma 5.2  For every permutation π, sorting each con-
nected component of PG(π) separately is optimal.

Proof  We allow ourselves to use merging moves, which
can be replaced by correcting moves as in Table 2. The
modified sequence is not longer than the original, and we
observe that these new moves never merge components.

A merging move must act on contiguous components
of π . Let us assume that the leftmost component the
move acts on ends with elements a and b, and that the
rightmost component starts with elements c and d, as
represented below:

It follows that a < c, a < d, b < c , and b < d . We now
replace any merging move involving those component’s

extremities with correcting moves. There are five cases to
consider:

•	 a b c d → b c a d : this move satisfies the condi-
tions of Case 2 in Table 2, so we replace it with
a b c d → b a c d.

•	 a b c d → c a b d : this move satisfies the condi-
tions of Case 4 in Table 2, so we replace it with
a b c d → b a c d.

•	 a b c d → a c b d : this move satisfies the conditions
of Case 1 in Table 2, and in this case we just remove
that block-move from the sorting sequence.

•	 a b c d → a c d b : this move satisfies the condi-
tions of Case 5 in Table 2, so we replace it with
a b c d → a b d c.

•	 a b c d → a d b c : this move satisfies the condi-
tions of Case 3 in Table 2, so we replace it with
a b c d → a b d c.

None of the correcting moves that we use to replace the
non-correcting moves in those five cases is a merging
move, and no such a replacement increases the length
of our sorting sequence. Given any sorting sequence, we
repeatedly apply the above transformation to the merg-
ing move with the smallest index until no such move
remains; in particular, the transformation applies to opti-
mal sequences as well, and the proof is complete. 	� �

There exist cases where allowing merging moves
still yields an optimal solution. This is the case for
[2 1 4 3] , which can be sorted optimally as follows:
[2 1 4 3] → [2 3 1 4] → ι , where ι = [1 2 . . . n] . It is
natural to wonder whether Lemma 5.2 generalizes to
p-bounded block-moves, for p > 3 . However, the fol-
lowing counterexample shows that it is not the case,
even when a block-move is bounded by four (i.e., a
4-bounded block move): sorting each component of
[3 2 1 6 5 4] separately yields a sequence of length four,
but one can do better by merging components as follows:
[3 2 1 6 5 4] → [3 2 5 4 1 6] → [3 4 1 2 5 6] → ι.

Short-block-move Closest problem is NP-hard
First, we apply Algorithm 1 to transform any string s of

length m into a particular permutation �s of length 2m.

Algorithm 1  PermutBI(s)

Page 16 of 18Cunha et al. Algorithms for Molecular Biology (2024) 19:24

Since from Lemma 5.2 each connected component can
be sorted separately, and each bit set to 1 in s corresponds
to an inversion in �s from Algorithm 1, it implies Lemma
5.3, which is an equality between the Hamming distance
of an input string s and the short-block-move distance of
its output permutation �s.

Lemma 5.3  Given a string of length m and a permuta-
tion �s of length 2m obtained by Algorithm 1, the short-
block-move distance of �s is dsbm(�s) = dH (s).

Lemma 5.4  Given a set of k permutations obtained by
Algorithm 1, there is a short-block-move closest permuta-
tion with maximum distance at most d if and only if there
is a Hamming closest string with maximum distance at
most d.

Proof  Let �′ be a short-block-move closest permu-
tation. If �′ can be built by Algorithm 1 for some input
string s′ , then, by Lemma 5.3, s′ is a closest string. Other-
wise, we search from left to right along the permutation
to find the first position where the corresponding ele-
ment is different from the one intended to be by the algo-
rithm, which is a position x ∈ {2i − 1, 2i} . In this case,
all elements from position x until the position where the
first element y ∈ {2i − 1, 2i} appear form inversions with
respect to each input permutation, implying the short-
block-move distance between the solution [Ax B yC]
and any input greater than the distance between the new
permutation [Ay x BC] and any input permutation, such
that A, B, and C are blocks of elements. By repeating this
process, a string agreeing with the algorithm output can
be found and, by Lemma 5.3, a string with maximum
distance at most d can be constructed. Given a solution
string s, we obtain the associated permutation �s given
by Algorithm 1. By Lemma 5.3 we have the solution s
regarding the closest string corresponding to the per-
mutation �s with the same value of maximum distance d,
concluding the proof of the lemma. 	� �

Since Hamming Closest String is NP-complete
[17], Lemma 5.4 implies Theorem 5.2.

Theorem 5.2  Short-block-move Closest Permuta-
tion is NP-hard.

Theorem 2.4, proved by Basavaraju et al. [22], states
that Closest String does not admit a polynomial ker-
nel, unless NP ⊆ coNP/poly . Since the results presented
in Lemma 2.4, Lemma 2.5, Lemma 5.4, Theorem 5.2,
Corollary 5.2, as well as the results from Popov [18], are
PPT reductions from Closest String, we have the fol-
lowing corollary.

Corollary 5.3  Breakpoint Closest, Block-inter-
change Closest, Transposition Closest, Swap
Closest and Short-block-move Closest do not admit
polynomial a kernel unless NP ⊆ coNP/poly.

FPTalgorithms
Popov [18] solved the Swap Closest problem in time
O(kn+ g(k , d)) parameterized by the number of per-
mutations k (each of them of size n) and the distance
d, where g is a function which depends only on k and
d. Now, we propose FPTalgorithms for finding clos-
est permutations of a given set of permutations, param-
eterized just by the distance d (the function O∗(f (n))
means that there exists an algorithm which runs in time
O(f (n)) · poly(n) , where poly(n) is a polynomial function
in n). Our approach is inspired by the algorithm for the
Closest String problem [19, 24], considering the three
metrics below.

Theorem 5.3  d-Swap Closest, d-Short-Block-
Move Closest, and d-Block-interchange Closest
can be solved in time O∗(dO(d)).

Proof  First, we consider d-Swap Closest. The other
problems follow in a similar way, as we discuss below.
Let π1, . . . ,πk be the input permutations. Recursively,
we solve these problems using a bounded search tree
technique as follows: First, set z = π1 as a candidate per-
mutation solution. If dswap(y, z) ≤ d for each permuta-
tion y of the input, then return yes. Otherwise, if d = 0
then return no. In the remaining case, d > 0 and there
exists a permutation π i with dswap(π i, z) > d . From the
triangular inequality, dswap(π i, z) ≤ 2d for each input
permutation π i ; otherwise, the answer is no. Since each
swap operation corrects at most two positions, there are
at most 4d positions on which π i and z differ. Let P be a
set of 4d positions on which π i and z differ. Hence, we
branch into |P| = 4d subcases: for every p ∈ P , we define
zp to be equal to z except for the swap putting the ele-
ment π i

p in the position p of zp , and we recursively solve
the problem for the pair (zp, d − 1).

We build a search tree of depth at most d, and every
node has at most 4d children. Thus, the size of the search
tree does not exceed O((4d)d).

For d-Short-Block-Move Closest, it is known that
each operation involves at most two edges on the associ-
ated permutation graph. Since the current solution must
be at distance at most 2d from any input permutation, it
holds that the associated permutation graph between a
current solution z and any π i has at most 4d edges and at

Page 17 of 18Cunha et al. Algorithms for Molecular Biology (2024) 19:24 	

most 8d vertices incident to some edge of the associated
permutation graph; otherwise the answer is no. There-
fore, either we are already dealing with an instance with
universe of small size, or there are many isolated vertices
in the associated permutation graph. By the definition of
permutation graphs of strings, these isolated vertices rep-
resent positions that coincide in both permutations, and
we may assume that they are not involved in any move to
obtain one from the other. Since we do not need to con-
sider moves involving these isolated vertices of the asso-
ciated permutation graph, we can consider only moves
involving O(d) many vertices. Thus, we can perform
a similar bounded search tree algorithm as previously
described.

For d-Block-Interchange Closest, it is known that
each operation changes the number of cycles in the real-
ity and desire diagram by −2 , 0, or +2 (see [5]). Moreo-
ver, from Theorem 2.1, there exists an optimum sequence
of block-interchanges that only applies 2-moves, i.e., each
operation increases the number of cycles by two. This
implies that there is no optimum sequence that uses −2
or 0 moves. Recall that we obtain a sorted permutation
when we achieve only cycles of size one ( n+ 1 cycles in
total); so, sorting is equivalent to maximizing the num-
ber of cycles in the reality and desire diagram. Thus, our
focus is only analyzing possible 2-moves to approximate
one permutation to another one in our bounded search
tree algorithm. It is known that there is no 2-move that
affects a 1-cycle (cycle of length one in the diagram),
because a 2-move can only be performed into a unique
cycle (cf. [1, 5]). Thus, there is no 2-move that affects an
adjacency (a pair is an adjacency if and only if it yields a
1-cycle in the reality and desire diagram [5, 25]).

At this point, we have that we can safely reduce the
permutation, since all optimum block-interchange
sequences do not affect adjacencies (this is a stronger
result than Theorem 2.3). Hence, as each block-inter-
change affects at most four breakpoints, the permutation
must have at most 8d breakpoints (i.e., 8d + 1 elements
in the reduced permutation). Therefore, we can consider
only moves involving O(d) many breakpoints. Thus, we
can perform a similar bounded search tree algorithm as
previously described. 	� �

Conclusion
In this paper, we studied the computational complex-
ity of several median and closest problems, which are
two well-known consensus problems in the genome rear-
rangement field, with respect to distinct distance metrics

among permutations. Furthermore, given the interest
and hardness of these problems, we particularly focused
on the parameterized complexity with respect to the
parameters k (number of input permutations) and d (tar-
get value).

Regarding the FPT algorithms obtained on the clos-
est problems, one can note that Breakpoint Clos-
est does not admit a bounded search tree analogous
to those used in Theorem 5.3, since this metric has no
sequence of operations to transform one permutation
into another one, so it is unclear how to branch. Simi-
larly, for the Transposition Closest problem, it is
known that there may exist optimum sequences of trans-
positions that apply 0-moves and 2-moves, and it is an
old open problem whether there are optimum sequences
using −2-moves [1, 25]; so, it seems that is not safe to
use the reduced permutation in that case, because there
may exist an optimum sequence of transpositions that
uses moves not preserved in the reduced instance, and
those moves could be good for our branch step. There-
fore, we leave both cases as open questions. In addition,
the techniques developed in this paper on parameterized
complexity for both median and closest problems may
be adapted for several other rearrangements, including
DCJs and some restrictions, as σk measures [35, 36].

Author contributions
All althors wrote the manuscript, contributed equally to this work and
reviewed the manuscript.
An extended abstract of this work, with incomplete proofs, was recently
presented in [37]

Funding
Luís Cunha: FAPERJ-JCNE (E-26/201.372/2022), CNPq-Universal (406173/2021-
4); Ignasi Sau: project ELIT (ANR-20-CE48-0008-01), CAPES/PRINT Pro-
grama Institucional de Internacionalização, edital no 41/2017, grant
88887.717401/2022-00; Uéverton Souza: FAPERJ-JCNE (E-26/201.344/2021),
CNPq (309832/2020-9).

Data availibility
No datasets were generated or analysed during the current study.

Declarations

Competing interests
The authors declare no competing interest.

Received: 23 September 2024 Accepted: 11 December 2024

References
	1.	 Cunha LFI, Kowada LAB, Hausen AR, Figueiredo CM. Advancing the

transposition distance and diameter through lonely permutations. SIAM J
Discrete Math. 2013;27(4):1682–709.

	2.	 Fertin G, Labarre A, Rusu I, Vialette S, Tannier E. Combinatorics of Genome
Rearrangements. Cambridge: MIT Press; 2009.

Page 18 of 18Cunha et al. Algorithms for Molecular Biology (2024) 19:24

	3.	 Pevzner P. Computational molecular biology: an algorithmic approach.
Cambridge: MIT Press; 2000.

	4.	 Watterson GA, Ewens WJ, Hall TE, Morgan A. The chromosome inversion
problem. J Theor Biol. 1982;99(1):1–7.

	5.	 Christie DA. Genome rearrangement problems. PhD thesis, University of
Glasgow (United Kingdom) 1998.

	6.	 Bulteau L, Fertin G, Rusu I. Sorting by transpositions is difficult. SIAM J
Discrete Math. 2012;26(3):1148–80.

	7.	 Caprara A. Sorting by reversals is difficult. In: Proceedings of the First
Annual International Conference on Computational Molecular Biology.
1997:75–83.

	8.	 Labarre A. Sorting by prefix block-interchanges. In: Cao Y, Cheng S-W, Li
M, editors. 31st International Symposium on Algorithms and Computa-
tion ISAAC 2020, 2020;181:55–15515.

	9.	 Radcliffe AJ, Scott AD, Wilmer EL. Reversals and transpositions over finite
alphabets. SIAM J Discrete Math. 2005;19(1):224–44.

	10.	 Bader M. The transposition median problem is NP-complete. Theor Com-
put Sci. 2011;412(12–14):1099–110.

	11.	 Caprara A. The reversal median problem. INFORMS J Comput.
2003;15(1):93–113.

	12.	 Cunha LFI, Feijão P, Santos VF, Kowada LAB, Figueiredo CM. On the com-
putational complexity of closest genome problems. Discret Appl Math.
2020;274:26–34.

	13.	 Cunha LFI, Protti F. Genome rearrangements on multigenomic
models: applications of graph convexity problems. J Comput Biol.
2019;26(11):1214–22.

	14.	 Haghighi M, Sankoff D. Medians seek the corners, and other conjectures.
BMC Bioinformat. 2012;13:1–7.

	15.	 Pe’er I, Shamir R. The median problems for breakpoints are NP-complete.
Elec Colloq Comput Complex. 1998.

	16.	 Cunha L, Lopes T, Mary A. Complexity and algorithms for Swap median
and relation to other consensus problems 2024. https://​arxiv.​org/​abs/​
2409.​09734.

	17.	 Lanctot JK, Li M, Ma B, Wang S, Zhang L. Distinguishing string selection
problems. Inf Comput. 2003;185(1):41–55.

	18.	 Popov VY. Multiple genome rearrangement by swaps and by element
duplications. Theor Comput Sci. 2007;385(1–3):115–26.

	19.	 Gramm Niedermeier. Rossmanith: fixed-parameter algorithms for closest
string and related problems. Algorithmica. 2003;37:25–42.

	20.	 Gramm J, Niedermeier R, Rossmanith P. Exact solutions for closest string
and related problems. In: ISAAC 2001; Springer, pp. 441–453.

	21.	 Fu Z, Chen X, Vacic V, Nan P, Zhong Y, Jiang T. Msoar: a high-throughput
ortholog assignment system based on genome rearrangement. J Com-
put Biol. 2007;14(9):1160–75.

	22.	 Basavaraju M, Panolan F, Rai A, Ramanujan M, Saurabh S. On the kerneliza-
tion complexity of string problems. Theor Comput Sci. 2018;730:21–31.

	23.	 Hoppenworth G, Bentley JW, Gibney D, V Thankachan S. The fine-grained
complexity of median and center string problems under edit distance. In:
28th Annual European Symposium on Algorithms, ESA 2020 2020.

	24.	 Cygan M, Fomin FV, Kowalik Ł, Lokshtanov D, Marx D, Pilipczuk M, Pilipc-
zuk M, Saurabh S. Parameterized algorithms. Berlin: Springer; 2015.

	25.	 Bafna V, Pevzner PA. Sorting by transpositions. SIAM J Discrete Math.
1998;11(2):224–40.

	26.	 Cunha LFI, Kowada LAB, A. Hausen R, Figueiredo CM. A faster
1.375-approximation algorithm for sorting by transpositions. In: WABI
2014, 2014:26–37 . Springer, Berlin.

	27.	 Cunha LFI, Kowada LAB, Hausen RDA, De Figueiredo CM. A faster
1.375-approximation algorithm for sorting by transpositions. J Comput
Biol. 2015;22(11):1044–56.

	28.	 Heath LS, Vergara JPC. Sorting by bounded block-moves. Discrete Appl
Math. 1998;88:181–206.

	29.	 Heath LS, Vergara JPC. Sorting by short block-moves. Algorithmica.
2000;28:323–52.

	30.	 Knuth D. The art of computer programming: sorting and searching.
1998;3.

	31.	 Holyer I. The NP-completeness of some edge-partition problems. SIAM J
Comput. 1981;10(4):713–7.

	32.	 Downey RG, Fellows MR. Parameterized complexity. Berlin: Springer;
2012.

	33.	 Bodlaender HL, Thomassé S, Yeo A. Kernel bounds for disjoint cycles and
disjoint paths. Theor Comput Sci. 2011;412(35):4570–8.

	34.	 Bryant D. The complexity of the breakpoint median problem. Technical
Repert: Centre de recherches mathematiques; 1998.

	35.	 Silva H, Rubert D, Araujo E, Steffen E, Doerr D, Martinez F. Algorithms
for the genome median under a restricted measure of rearrangement.
RAIRO-Oper Res. 2023;57(3):1045–58.

	36.	 Braga MD, Brockmann LR, Klerx K, Stoye J. Investigating the complexity of
the double distance problems. Algo Mol Biol. 2024;19(1):1.

	37.	 Cunha L, Sau I, Souza U. On the complexity of the median and closest
permutation problems. In: 24th International Workshop on Algorithms in
Bioinformatics (WABI 2024). LIPIcs, 2024;312:2–1223.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://arxiv.org/abs/2409.09734
https://arxiv.org/abs/2409.09734

	On the parameterized complexity of the median and closest problems under some permutation metrics
	Abstract
	Introduction
	Preliminaries on genome rearrangements
	Sorting by rearrangement operations
	Relationship between sorting and medianclosest problems

	Preliminaries on parameterized complexity
	Results for the Median problems
	Results for the Closest problems
	Reducing median to closest
	The Short-block-move Closest problem
	FPTalgorithms

	Conclusion
	References

