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Abstract 

Genome rearrangements are events where large blocks of DNA exchange places during evolution. The analysis 
of these events is a promising tool for understanding evolutionary genomics, providing data for phylogenetic 
reconstruction based on genome rearrangement measures. Many pairwise rearrangement distances have been 
proposed, based on finding the minimum number of rearrangement events to transform one genome into the other, 
using some predefined operation. When more than two genomes are considered, we have the more challenging 
problem of rearrangement-based phylogeny reconstruction. Given a set of genomes and a distance notion, there 
are at least two natural ways to define the “target” genome. On the one hand, finding a genome that minimizes 
the sum of the distances from this to any other, called the median genome. On the other hand, finding a genome 
that minimizes the maximum distance to any other, called the closest genome. Considering genomes as permutations 
of distinct integers, some distance metrics have been extensively studied. We investigate the median and closest 
problems on permutations over the following metrics: breakpoint distance, swap distance, block-interchange distance, 
short-block-move distance, and transposition distance. In biological applications some values are usually very small, 
such as the solution value d or the number k of input permutations. For each of these metrics and parameters d 
or k, we analyze the closest and the median problems from the viewpoint of parameterized complexity. We obtain 
the following results: NP-hardness for finding the median/closest permutation regarding some metrics of distance, 
even for only k = 3 permutations; Polynomial kernels for the problems of finding the median permutation of all 
studied metrics, considering the target distance d as parameter; NP-hardness result for finding the closest permuta-
tion by short-block-moves; FPT algorithms and infeasibility of polynomial kernels for finding the closest permutation 
for some metrics when parameterized by the target distance d.

Keywords  Median problem, Closest problem, Genome rearrangements, Parameterized complexity

Introduction
Ancestral reconstruction is a classic task in compara-
tive genomics, which is based on consensus word analy-
sis, with a vast applicability [1–3]. In this field, genome 
rearrangement problems study large-scale mutations on 
a set of DNAs in living organisms, and have been stud-
ied extensively in computational biology and computer 
science for decades. From a mathematical point of view, 
a genome is represented by a permutation (a sequence 
of distinct integers). Based on that, as proposed by 
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Watterson et  al. [4], a genome rearrangement problem 
is interpreted as transforming one permutation into 
another by a minimum number of operations depend-
ing on the possible allowed rearrangements, i.e., the 
chosen metric. In this model we consider the follow-
ing assumptions: the order of genes in each genome is 
known; all genomes we compare share the same gene 
set; all genomes contain a single copy of each gene; and 
all genomes consist of a single chromosome. So, genomes 
can be modeled as permutations, once each gene is 
encoded as an integer.

Finding the minimum number of operations is equiva-
lent to sorting the permutation with a given rearrange-
ment. Many metrics received attention in recent years, 
and among the studied distances or sorting problems 
the following are the most natural ones. The breakpoint 
distance is the number of consecutive elements in one 
permutation that are not consecutive in another one. 
Note that on the breakpoint distance we do not apply any 
operation to transform a permutation into another one. 
The reversal operation transforms one permutation into 
another one by reversing the elements of a block of one 
permutation (a block is an interval of consecutive ele-
ments). The block-interchange operation exchanges two 
disjoint blocks, and generalizes the transposition, where 
the blocks are restricted to be consecutive. A swap is a 
block-interchange where each block has a unique ele-
ment. A short-block-move is a transposition whose blocks 
have at most three elements. Concerning the computa-
tional complexity with respect to these metrics, the cor-
responding problems for breakpoint distance, sorting by 
block-interchanges, and sorting by swap can be solved 
in polynomial time [2, 5], sorting by transpositions and 
sorting by reversals are NP-complete [6, 7], and the com-
plexity of sorting by short-block-moves is still unknown. 
Some restrictions or generalizations of the presented 
metrics have been considered and algorithmic aspects 
have been developed [8, 9].

When an input has more than two genomes, there are 
many approaches for finding ancestral genomes. The 
main application is to infer common ancestor configu-
rations and eventually phylogenies, which are trees that 
show the relationships between organisms or between 
species [10–15]. A relevant approach is the Median 
problem, where, for a fixed metric M, the goal is to find a 
solution genome that minimizes the sum of the distances 
between the solution and all the input genomes.

Metric M Median

Instance: A set S of genomes.

Goal: A genome that minimizes the sum of the distances, 
according to metric M, between the solution genome 
and all other genomes of S.

The Breakpoint Median problem is NP-hard [15] for 
a general input. The Reversal Median and Transposi-
tion Median problems have been known for some years 
to be NP-hard even when the input consists of three per-
mutations [10, 11], while the Swap Median problem has 
recently been settled as NP-hard [16]. Prior to this work, 
the complexity of Block-interchange Median was 
not known. The same applies to the Median problem 
regarding short-block-move operations.

Haghighi and Sankoff [14] observed that, with respect 
to the breakpoint metric, a tendency for medians is to 
fall on or to be close to one of the input genomes, which 
contain no useful information for the phylogeny recon-
struction. They also conjectured the same behavior con-
cerning other metrics. Hence, an alternative approach is 
to consider the Closest problem for a fixed metric M, 
which aims to find a genome that minimizes the maxi-
mum distance to any genome in the input, which can be 
seen as finding a genome in the center of all others, i.e., a 
genome minimizing the radius of the ball containing all 
the genomes of the input set.

Metric M Closest

Instance: A set S of genomes.

Goal: A genome that minimizes the maximum distance, accord-
ing to metric M, between the solution genome and any 
other genome in S.

Lanctot et  al. [17] studied the Closest problem over 
strings with respect to the Hamming distance, and set-
tled that this problem is NP-hard even for binary strings. 
Popov [18] studied the Closest problem over permuta-
tions with respect to the swap operation distance, and 
showed that it is NP-hard. Cunha et al. [12] showed that 
the Closest problem is NP-hard for several well-known 
genome rearrangement distances, such as the breakpoint 
and the block-interchange ones.

The parameterized complexity of the Median and 
Closest problems has been studied mostly regarding 
strings on an alphabet � with respect to the Hamming 
distance. These problems, and some variations, have been 
considered with respect to parameters that are combina-
tions of k, d, |�| , and n, where d is the solution value, k is 
the number of input permutations, and n is the length of 
the strings. Gramm et al. [19, 20] investigated the Clos-
est String problem on binary strings considering some 
parameters, and showed how to solve it in linear time 
for fixed d (the exponential growth in d is bounded by 
O(dd) ), and when k is fixed and d is arbitrary. Fu et  al. 
[21] developed a polynomial kernelization parameterized 
by d and k, of size O(k2d log k) . Basavaraju et al. [22] pre-
sented a comprehensive study of Closest String and 
some related problems from the kernelization complexity 
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perspective, and showed that Closest String param-
eterized by d and the length of the strings n does not 
admit a polynomial kernel under a standard complexity 
assumption. Furthermore, recently parameterized results 
regarding Median and Closest problems with respect 
to edit distance were developed [23].

Considering the input genomes as permutations, some 
few results are known, such as the fact that the Swap 
Closest problem is FPT when parameterized by the 
number of input permutations and the solution radius 
[18]. On the other hand, the Transposition Median 
problem parameterized by the number of input permu-
tations is para-NP-hard, since Bader proved that it is 
NP-hard even if the input consists of three permutations 
[10]. To the best of our knowledge, a multivariate inves-
tigation of the parameterized complexity of computing 
the median/closest genome by the considered metrics 
on permutations has not been thoroughly studied in 
the literature. Therefore, our goal is to map sources of 
computational tractability for both consensus problems 
(Median and Closest) defined above, and consequently 
identify features that make it tractable through the lenses 
of metrics over permutations and the parameterized 
complexity.

Our contribution In this article we obtain the following 
results:

•	 In Sect. 4, we develop polynomial kernels for finding 
median permutations considering swap, breakpoint, 
block-interchange, transposition, and short-block-
move operations, all of them parameterized by the 
target distance d. This result is in sharp contrast with 
the fact that, as we have also managed to prove, for 
most of the above metrics the problem of finding the 
closest permutation does not admit a polynomial 
kernel parameterized by d.

•	 In Sect.  4, we prove the NP-hardness of Block-
interchange Median, even for only k = 3 per-
mutations. Based on that, in Sect.  5 we are able to 
reduce Block-interchange Median to Block-
interchange Closest, as well to Transposition 
Closest, even for only k = 3 permutations.

•	 In Sect.  5, we prove the NP-hardness of Short-
block-moves Closest. Since it is still an open 
question to decide whether the sorting problem by 
short-block-moves can be solved in polynomial time, 
it is natural to consider the “closest” version of the 
problem that, somehow surprisingly, had not been 
considered in related previous work [12].

•	 In Sect.  5, we also provide FPT algorithms for the 
Closest problem parameterized by the target dis-
tance d, for some of the above metrics. Our approach 
is inspired from FPT algorithms for Closest String 
(see [24]).

The above results provide an accurate picture of the 
parameterized complexity of the considered problems 
with respect to the parameters d and k (in particular, 
for k = 3 ). Note that in biological applications some of 
these values are very small [19, 22, 23].

Table 1 summarizes our results, considering d and k 
as the parameters, and the open questions.

Organization In Sect. 2 we provide a detailed expla-
nation on rearrangement operations, associated graphs, 
and bounds on the distances we deal with. In Sect. 3 we 
provide the basic definitions on parameterized com-
plexity, which can also be found in [24]. In Sect. 4 (resp. 
Sect.  5) we present our results for the Median (resp. 
Closest) problems. In Sect.  6 we conclude the paper 
with final remarks and further work.

Table 1  Problems parameterized by d: Some results obtained in this paper comparing Median (Theorem 4.2) and Closest (Corollary 5.3 
and Theorem 5.3)

Problems parameterized by k: Consequence of known results and some others obtained in this paper. Open questions are denoted by ‘??’

Swap Block-interchange Short-Block-Moves Transposition Breakpoint

Median Par. d Poly kernel Poly kernel Poly kernel Poly kernel poly kernel

Median Par. k Para-NP-hard (NP-hard 
k = 3 [16])

Para-NP-hard (NP-hard k = 3 , 
Theorem 4.1)

?? Para-NP-hard 
(NP-hard k = 3 
[10])

Para-NP-hard  
(NP-hard k = 3 [15])

Closest Par. d FPT
No poly kernel

FPT
No poly kernel

FPT
No poly kernel

??
No poly kernel

??
no poly kernel

Closest Par. k Para-NP-hard (NP-hard 
k = 3 [16])

Para-NP-hard (NP-hard k = 3 ,  
Corollary 5.1)

?? Para-NP-hard 
(NP-hard k = 3 , 
Corollary 5.2)

??
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Preliminaries on genome rearrangements
Genome rearrangements are events where large blocks of 
DNA exchange places during evolution. For models, we 
may consider genomes as strings or permutations. An 
alphabet � is a nonempty set of letters, and a string over 
� is a finite sequence of letters of � . The Hamming dis-
tance of two strings s and s′ of the same length, denoted by 
dH (s, s

′) , is the number of mismatched positions between 
s and s′ . The Hamming distance of a string s of length n, 
denoted by dH (s) , is the Hamming distance of s and the 
string 0 . . . 0 , where 0 ∈ �.

A permutation of length n is a bijec-
tion from the set {1, 2, . . . , n} onto itself 
π = [π(0)π(1) π(2) . . . π(n)π(n+ 1)] , such that 
π(0) = 0 and π(n+ 1) = n+ 1 . For simplicity 
π =[π(0)π(1) π(2) . . . π(n)π(n+ 1)]

= [π0 π1 π2 . . . πnπn+1]  . The operations 
will never act on π0 or πn+1 , but these are used to define 
graphs useful for determining bounds on some distances, 
as discussed later. When not needed, π = [π1 π2 . . . πn] . 
Similarly to the above, given a metric M and two permu-
tations π and σ of the same length, we define dM(π , σ) 
as their distance with respect to metric M, and the dis-
tance of a permutation π of length n, denoted by dM(π) , 
is the distance between π and the identity permutation 
ι = [0 1 2 . . . n n + 1].

Sorting by rearrangement operations
Note that the distance between two permutations can 
also be seen as the sorting of a permutation. Indeed, 
once permutations π and σ are given, one can relabel σ 
to be equal to σσ−1 = ι , and then the distance between 
π and σ is the same as sorting πσ−1 , i.e., the distance 
between πσ−1 and ι . Hence, throughout this paper 
we may use interchangeably distance or sorting prob-
lem. Block-interchange generalizes a transposition and 
generalizes also a swap operation. Nevertheless, with 
respect to the distance problem, if we are dealing with 
an operation M that generalizes another M′ , if com-
puting the distance by the metric M is in ¶, it does not 
imply that with respect to the metric M′ , the distance 
problem is also in ¶. For instance, concerning the block-
interchange distance, it can be computed in polynomial 
time [5], whereas computing the transposition distance 

is NP-hard [6], and computing the swap distance is 
in ¶, as discussed later. On the other hand, if a distance 
problem is NP-hard, then the Median/Closest prob-
lems for the same operation are also NP-hard. Indeed, 
this follows by considering an input set of permutations 
consisting of two permutations π , ι such that π  = ι , and 
asking for a permutation with distance at most d from 
each, for a metric M. Then, we can consider the prob-
lem of computing the distance as a particular case of 
the Closest problem.

The breakpoint distance An adjacency of a permuta-
tion π with respect to permutation σ is a pair (πi,πi+1) 
of consecutive elements in π such that this pair is also 
consecutive in σ , i.e., πi = σj and πi+1 = σj+1 . If a pair 
of consecutive elements is not an adjacency, then it 
is called a breakpoint, and we denote by dBP(π , σ) 
the number of breakpoints of  π with respect to  σ . 
The set Adj(π) is the set of adjacencies of π , given by 
Adj(π) = {{πi,πi+1} | i = 1, . . . , n− 1} . Thus, in other 
words, the breakpoint distance between π and σ is 
dBP(π , σ) = |Adj(π)− Adj(σ )|.

The block-interchange and the transposition distances 
Bafna and Pevzner [25] proposed a useful graph, called 
the reality and desire diagram, which allowed to obtain 
non-trivial bounds on the transposition distance [25], 
and also provided, as established by Christie [5], the 
exact block-interchange distance. Nevertheless, when 
considering the transposition distance, the reality and 
desire diagram is a tool to only deal with lower and 
upper bounds for a permutation, as discussed below.

Given a permutation π of length n, the reality and 
desire diagram G(π , ι) (or just G(π) when conveni-
ent) from π to ι , is a multigraph G(π) = (V ,R ∪ D) , 
where V = {0,−1,+1,−2,+2, . . . ,−n,+n,−(n+ 1)} , 
each element of π corresponds to two vertices and we 
also include the vertices labeled by 0 and −(n+ 1) , 
and the edges are partitioned into two sets: the reality 
edges R and the desire edges D. The reality edges rep-
resent the adjacency between the elements on π , that 
is R = {(+πi , −πi+1) | i = 1, . . . , n− 1} ∪ {(0, −π1), (+πn , −(n+ 1))} ; and the 
desire edges represent the adjacency between the ele-
ments on ι , that is D = {(+i, −(i + 1)) | i = 0, . . . , n} . 
Figure  1 illustrates the reality and desire diagram of a 
permutation. A general definition considers G(π , σ) 
where the reality (resp. desire) edges represent the 

Fig. 1  The reality and desire diagram between permutation [0 2 1 4 3 5 6 9 8 7 10] and ι , where green edges are the reality edges and red edges are 
the desire edges
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adjacency between elements of π (resp. σ ), and then 
D = {(+σi, −σi+1) | i = 0, . . . , n}.

As a direct consequence of the construction of this 
graph, the sets of reality edges and desire edges define 
two perfect matchings (that is, a set of edges that con-
tains all vertices of the graph and each of them appears 
exactly once), denoted by M(π) and M(ι) , respectively. 
Each of these perfect matchings is called a permutation 
matching.

Since every vertex in G(π) has degree two, G(π) can 
be partitioned into disjoint cycles. We say that a cycle 
in π has length k, or that it is a k-cycle, if it has exactly 
k reality edges (or, equivalently, k desire edges). Hence, 
the identity permutation of length n has n+ 1 cycles 
of length one. We denote by c(G(π , ι)) (or just c(G(π)) 
for convenience) the number of cycles in G(π) . After 
applying a block-interchange bℓ in a permutation π , the 
number of cycles c(G(π)) changes in such a way that 
c(G(πbℓ)) = c(G(π))+ x , for some x ∈ {−2, 0, 2} (see 
[5]). The block-interchange bℓ is thus classified as an 
x-move for π . Analogously, after applying a transposition 
t in a permutation π , the number of odd cycles, denoted 
by codd(G(π)) , changes by an x-move, x ∈ {−2, 0, 2} , 
for π  (see [25]). Christie [5] proved, for the block-inter-
change operation, the existence of a 2-move for any per-
mutation, which says that the number of cycles yields the 
exact block-interchange distance:

Theorem  2.1  (Christie [5]) The block-inter-
change distance of a permutation π of length  n is 
dBI(π) =

(n+1)−c(G(π))
2 .

On the other hand, by allowing only the particular case 
of the transposition operation, it is not always possible to 
use a 2-move. We say that a transposition affects a cycle 
if the extremities of the two blocks of the transposition 
eliminate a reality edge of a cycle and create another 
edge. This new edge may increase, decrease, or preserve 
the number of cycles.

A transposition t(i,  j,  k), where 1 ≤ i < j < k ≤ n+ 1 , 
is a permutation that exchanges the contiguous blocks 

i i+1 . . . j−1 and j j+1 . . . k−1 ; when composed with 
a permutation π , it yields the following permutation: 
π · t(i, j, k) = [π1 π2 . . . πi−1 πj . . . πk−1 πi . . . πj−1 πk . . . πn]   . 
Bafna and Pevzner [25] showed conditions of a cycle for a 
transposition to be an x-move. If a transposition t is a −2

-move, then t affects three distinct cycles. However, if a 
transposition t is a 0-move or a 2-move, then t affects at 
least two elements of the same cycle [25].

Figure 2 illustrates a sorting scenario of a permutation 
and how the transpositions affect a cycle.

Theorem  2.2  (Bafna and Pevzner [25]) The transpo-
sition distance of a permutation π of length  n satisfies 
dT(π) ≥

(n+1)−codd(G(π))
2 .

Permutations whose transposition distances are equal 
to the lower bound of Theorem  2.2 are called hurdle-
free permutations [5, 10]. Cunha et al. [26, 27] presented 
upper bounds on the distance of any permutation by 
using permutation trees data structure (cf. [27]), and 
based on that, an 1.375-approximation algorithm for 
Sorting by Transpositions was developed, improving 
the time complexity to O(n log n) . An interesting trans-
formation on permutations is the reduction operation, 
since the permutation obtained after its reduction pre-
serves both the block-interchange and the transposition 
distances. The reduced permutation of π , denoted by 
gl(π) (also called as a glued operation), is the permuta-
tion whose reality and desire diagram G(gl(π)) is equal 
to G(π) without the cycles of length one (recall that 
the length of a cycle is its number of reality edges), and 
has its vertices relabeled accordingly. For instance, the 
reduced permutation corresponding to the permutation 
in Fig. 1 is [0 2 1 4 3 5 8 7 6 9].

Theorem  2.3  (Christie [5]) The block-interchange dis-
tances of a permutation π and its reduced permutation 
gl(π) satisfy dBI(π) = dBI(gl(π)).

Swap distance Permutations can also be represented 
by each element followed by its image. For example, 

Fig. 2  Sorting sequence of [4 3 2 1 5] . The first transposition is a 0-move, while the others are 2-moves
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given a set {1, 2, 3} , the sequence (1 2 3) maps 1 into 
2, 2 into 3, and 3 into 1, corresponding to the permu-
tation [2 3 1] . This representation is not unique; for 
instance, (2 3 1) and (3 1 2) are equivalent. Permutations 
are composed of one or more algebraic cycles, where 
each algebraic cycle of a permutation π is formed by an 
element i, followed by its image π(i) , followed by the 
image of π(i) , i.e., π(π(i)) , and so on. We continue this 
process until we reach a repeated element. This proce-
dure uniquely defines the permutation. We denote by 
c(π) the number of algebraic cycles of π . For example, 
given π = [8 5 1 3 2 7 6 4] = (1 8 4 3)(2 5)(6 7) , we have 
c(π) = 3 . An exchange of elements involving elements 
a and b such that a and b are in the same cycle is an 
exchange that breaks the cycle into two, whereas if a 
and b belong to different cycles, the exchange of these 
elements unites the two cycles [2]. Thus, when consid-
ering the swap metric, the swap distance of a permu-
tation π is determined as follows: dswap(π) = n− c(π) , 
where c(π) is the number of algebraic cycles of π and n 
is the length of π.

Short-block-move distance A p-bounded block-
move is a transposition t(i,  j,  k) such that k − i ≤ p , 
and a 3-bounded block-move is called a short-block-
move. Hence, a short-block-move is either a transpo-
sition t(i, i + 1, i + 2) , called a skip, a transposition 
t(i, i + 1, i + 3) , or a transposition t(i, i + 2, i + 3) , the 
two latter ones called hops. If the transpositions are 
restricted only to p-bounded block-moves, then one 
obtains the p-bounded block-move distance, denoted by 
dpbbm(π) . When p = 3 , this defines the short-block-move 
distance, denoted by dsbm(π) . Previous works investi-
gated variants of block-move distances where bounds 
are imposed on the lengths of at least one of the moved 
blocks [28, 29]. The problem of sorting permutations 
using 2-bounded block-moves, i.e., adjacent swaps, is eas-
ily solved by the Bubble-Sort algorithm [30]. In general, 
the complexity of sorting a permutation by p-bounded 
block-moves is unknown for fixed p > 2 , whereas the 
analogous problem of limiting k − i ≤ f (n) , is NP-hard 
[28], since Sorting by Transpositions is NP-hard.

To estimate the short-block-move distance, Heath 
and Vergara [28, 29] used the permutation graph 
PG(π) = (V

p
π ,E

p
π ) , where V

p
π = {1, 2, . . . , n} and 

E
p
π = {(i, j) | πi > πj , i < j} ; each edge of PG is called an 

inversion in π . Heath and Vergara proved that on a 
shortest sequence of operations for π , every short-
block-move decreases the number of inversions by at 
least one unit, and by at most two units, therefore: 
⌈

|E
p
π |
2

⌉

≤ dsbm(π) ≤ |E
p
π | . Given a permutation, our aim 

is to minimize the number of operations that decrease 
only one inversion in PG. Examples of permutations 

that are tight with respect to the above lower and upper 
bounds are [2 4 3 5 1] and [2 1 4 3 6 5] , respectively.

A short-block-move is a correcting move if it is a skip 
that eliminates one inversion, or a hop that eliminates 
two inversions in π . Otherwise, the block-move is called 
non-correcting. Figure 3 illustrates the permutation graph 
of a permutation.

Heath and Vergara [29] proved that each sorting 
sequence can be performed by using just correcting 
moves. Table  2 shows replacements from non-correct-
ing moves to correcting moves in an optimal sorting 
sequence, which we will use later in Theorem 5.2.

Relationship between sorting and median/closest 
problems
Median problems Caprara [11] proved that the Reversal 
Median problem ( RM ) is NP-complete. It begins with 
the Eulerian Cycle Decomposition problem ( ECD ), 
which consists in, given an Eulerian graph, find a partition 
of its edges into the maximum number of cycles. The 
ECD problem was proved to be NP-complete by Holyer 
[31]. First, Caprara reduced ECD to Alternating 
Cycle Decomposition ( ACD ), which is the problem of 
finding a maximum cycle decomposition of a reality and 
desire diagram (defined in  Sect. 2.1). Then, he reduced 
ACD to Cycle Median ( CM ), which is the problem of 
finding a permutation that maximizes the sum of the 
number of cycles in the reality and desire diagram of a 
given set of three permutations. Finally, Caprara reduced 
CM to Reversal Median. Summarizing, he proved 
ECD ≤p ACD ≤p CM ≤p RM.

Fig. 3  The permutation graph of [2 4 3 5 1] , where each edge 
is an inversion and the short-block-move distance is equal 

to the lower bound of ⌈ |E
p
π |
2
⌉ = 3 . The hop t(3, 5, 6) is a correcting 

move obtaining the permutation [2 4 1 3 5]

Table 2  How to replace a non-correcting move βi with a 
correcting move β ′

i
 [29]; in all cases, e < f  , and x is arbitrary

Case 1 is an exception in this discussion, since it is the case where βi is a skip, so 
that it suffices to simply omit βi instead of replacing it with some βi

Case π π ′ = πβi π ′′ = πβ ′
i

1 . . . ef . . . . . . fe . . . . . . ef . . .

2 . . . exf . . . . . . xfe . . . . . . xef . . .

3 . . . exf . . . . . . fex . . . . . . efx . . .

4 . . . xef . . . . . . fxe . . . . . . exf . . .

5 . . . efx . . . . . . fxe . . . . . . exf . . .
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In 2011, just before it was proved that Sorting by 
Transpositions is NP-hard [6], Bader [10] proved the 
NP-completeness of the Transposition Median prob-
lem ( TM for short). It was based on the following defi-
nition: given three input permutations π1,π2,π3 , find 
a permutation σ such that 

∑3
i=1 dT(σ ,π

i) is minimized, 
where dT(σ ,π i) is the transposition distance between σ 
and π i.

Bader [10] proved the hardness as an adapta-
tion of Caprara’s reductions considering rever-
sals. This adaptation was done by reducing 3SAT3 
≤p MDECD ≤p OCM ≤p TM , where MDECD is the 
Marked Directed Eulerian Cycle Decomposition 
problem, proved NP-hard by Bader [10] and defined as 
follows. Let k be an integer, let G = (V ,E) be a directed 
graph, and let Ek ⊆ E be a subset of its edges with 
|Ek | = k . The edges in Ek are called the marked edges 
of G. (G,Ek) ∈ MDECD if and only if E(G) can be parti-
tioned into edge-disjoint cycles such that each marked 
edge is in a different cycle. OCM denotes the Odd Cycle 
Median problem defined as follows. Let π1,π2,π3 be 
permutations of {1, . . . , n} and let k be an integer. Then, 
(π1,π2,π3, k) ∈ OCM if and only if there is a permuta-
tion σ with 

∑3
i=1 codd(G(σ ,π i)) ≥ k (because it is known 

that dT(π) ≥ (n+1)−codd(G(π))
2  , where codd(G(π)) is the 

number of odd cycles in the reality and desire diagram of 
π , see Theorem 2.2). Solving an OCM instance is equiva-
lent to finding a permutation matching M(σ ) such that 
∑3

i=1 codd(G(σ ,π i)) is maximized. This sum is also called 
the solution value of M(σ ) . TM was proved to be NP-
hard by a transformation from any instance σ ′ that maxi-
mizes 

∑3
i=1 codd(G(σ ′,π i)) to an instance that minimizes 

∑3
i=1 dT(σ

′,π i) . This could be done by ensuring that 
the distance between σ ′ and each π i achieves the lower 
bound of Theorem 2.2.

In order to examine TM , the multiple reality and desire 
diagram1 was used in [10, 11]. Given the permutations 
π1, . . . ,πq each one with length  n, the multiple real-
ity and desire diagram MG(π1, . . . ,πq) = (V ,E) is a 
multigraph with V = {0,−1,+1, . . . ,−n,+n,−(n+ 1)} 
and E = M(π1) ∪ . . . ∪M(πq) , i.e., the edge set is 
formed by the union of all permutation matchings of the 
permutations.
MDECD is NP-hard even when the degree of all nodes 

is bounded by four. Furthermore, this result still holds 
for graphs G = (V ,E) that |V | + |E| − k is odd, where 
k is the number of marked edges. Based on that, Bader 
described a polynomial transformation from G being an 

instance of MDECD to an MG. Hence, it is necessary to 
guarantee conditions on graphs to be a multiple reality 
and desire diagram MG. To this end, we have the follow-
ing properties.

Lemma 2.1  (Caprara [11]) Let V t and Vh be two dis-
joint node sets, and let G′ = (V t ∪ Vh,M1 ∪ . . . ∪Mq) be 
a graph, where each Mi is a perfect matching, each edge in 
Mi has color i, and each edge connects a node in V t with a 
node in Vh. Furthermore, let H be a perfect matching such 
that each edge in H connects a node in V t with a node 
in Vh, and H ∪Mi defines a Hamiltonian cycle of G′ for 
1 ≤ i ≤ q. Then, there exist permutations π1, . . . ,πq such 
that G′ is isomorphic to MG(π1, . . . ,πq).

A matching H as described in Lemma 2.1 is called a 
base matching of the graph. An important operation over 
MG was introduced in [11]. Given a perfect matching 
M on a node set V and an edge e = (u, v) , the operation 
M/e is defined as follows. If e ∈ M , then M/e = M\{e} . If 
e /∈ M , and (a, u), (b, v) are the two edges in M incident to 
u and v, then M/e = M\{(a,u), (b, v)} ∪ {(a, b)}.

Lemma 2.2  (Caprara [11]) Given two perfect matchings 
M, L of a given graph G and an edge e = (u, v) ∈ M with 
e /∈ L , M ∪ L defines a Hamiltonian cycle of G if and only 
if (M/e) ∪ (L/e) defines a Hamiltonian cycle of G − {u, v}.

Given an MG graph G = (V ,M(π1) ∪ . . . ∪M(πq)) , 
the contraction of an edge e = (u, v) yields the graph 
G/e = (V \{u, v},M(π1)/e ∪ . . . ∪M(πq)/e) . By induc-
tion on the node size and contracting merging cycles, as a 
consequence of Lemma 2.1 we have the following result.

Lemma 2.3  (Bader [10]) Let V t and Vh be two disjoint 
sets, and let G = (V t ∪ Vh,M1 ∪M2) be a graph where 
M1 and M2 are disjoint perfect matchings where each 
edge connects a node in V t with a node in Vh. If M1 ∪M2 
defines an even number of even cycles on V, then G has a 
base matching H.

Closest problems We start with the following result.

Theorem 2.4  (Basavaraju et al. [22]) Closest String 
parameterized by d and n does not admit a polynomial 
kernel unless NP ⊆ coNP/poly.

Considering Closest problems, Popov [18] proved 
the NP-completeness of the Swap Closest problem, 
and Cunha et  al. [12] developed an NP-completeness 
framework of closest permutation regarding some 
rearrangements, such as breakpoint and block-
interchange. The proposed reduction was the following: 

1  Also called multiple breakpoint graph in [10], but not called in this way 
here so as not to create confusion with breakpoint distances we also deal 
with.
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by considering any set of k strings of length n, obtain a 
particular set of k permutations of length f(n), which is 
f (n) = 4n for the breakpoint case, while f (n) = 2n for 
the block-interchange case. Based on that transformation, 
Cunha et  al. [12] showed a polynomial transformation 
where a solution for Closest string yields a solution 
for Closest permutation, as follows.

Lemma 2.4  (Cunha et al. [12]) Given a set of k permu-
tations obtained by the transformed set of binary strings, 
there is a breakpoint closest permutation with maximum 
distance equal to 2d if and only if there is a Hamming 
closest string with maximum distance equal to d.

Lemma 2.5  (Cunha et al. [12]) Given a set of k permu-
tations obtained by the transformed set of binary strings, 
there is a block-interchange closest permutation with 
maximum distance at most d if and only if there is a 
Hamming closest string with maximum distance equal to 
d.

Hence, the developed technique is a polynomial 
parameter transformation (PPT, as defined in   Sect.  3) 
from Closest String to Breakpoint Closest Per-
mutation and to Block-interchange Closest 
Permutation.

Preliminaries on parameterized complexity
A parameterized problem is a decision problem whose 
instances are pairs (x, k) ∈ �∗ × N , where k is called the 
parameter. A parameterized problem is fixed-parameter 
tractable (FPT) if there exists an algorithm A , a com-
putable function f, and a constant c such that given an 
instance I = (x, k) , A (called an FPT algorithm) correctly 
decides whether I ∈ L in time bounded by f (k) · |I |c.

A parameterized problem is slice-wise polynomial 
(XP) if there exists an algorithm A and two computable 
functions f,  g such that given an instance I = (x, k) , A 
(called an XP algorithm) correctly decides whether I ∈ L 
in time bounded by f (k) · |I |g(k) . Within parameterized 
problems, the class W[1] may be seen as the parameter-
ized equivalent to the class NP of classical optimization 
problems. Without entering into details (see [24, 32] for 
the formal definitions), a parameterized problem being 
W[1]-hard can be seen as a strong evidence that this 
problem is not FPT. The canonical example of W[1]-
hard problem is Clique parameterized by the size of the 
solution.

A parameterized problem is para-NP-hard if it is NP-
hard for some fixed value of the parameter, such as the 
k-Coloring problem parameterized by the number of 
colors for every fixed k ≥ 3.

Definition 3.1  (Bodlaender et  al. [33]) Let 
P,Q ⊆ �∗ × N be parameterized problems. We say that a 
polynomial computable function f : �∗ × N → �∗ × N 
is a polynomial parameter transformation (PPT) from 
P to Q if for all (x, k) ∈ �∗ × N the following holds: 
(x, k) ∈ P if and only if (x′, k ′) = f (x, k) ∈ Q and 
k ′ ≤ kO(1).

Definition 3.2  (Bodlaender et  al. [33]) A kerneliza-
tion algorithm, or in short, a kernel for a parameter-
ized problem L ⊆ �∗ × N is an algorithm that given 
(x, k) ∈ �∗ × N , outputs in p(|x| + k) time a pair 
(x′, k ′) ∈ �∗ × N such that

•	 (x, k) ∈ L ⇔ (x′, k ′) ∈ L , and
•	 |x′|, k ′ ≤ f (k),

where f is some computable function and p is a polyno-
mial. Any function f as above is referred to as the size of 
the kernel.

If we have a kernel for L, then for any (x, k) ∈ � × N , 
we can obtain in polynomial time an equivalent 
instance with respect to L whose size is bounded by 
a function of the parameter. Of particular interest are 
polynomial kernels, which are kernels whose size is 
bounded by a polynomial function.

Theorem  3.1  (Bodlaender et  al. [33]) Let P and Q be 
parameterized problems and P′ and Q′ be, respectively, 
the unparameterized versions of P and Q. Suppose that P′ 
is NP-hard and Q′ is in NP. Assume that there is a poly-
nomial parameter transformation from P to Q. Then if Q 
admits a polynomial kernel, so does P. Equivalently, if P 
admits no polynomial kernel under some assumption then 
neither does Q.

Results for the Median problems
Given a set of k permutations, each of length n, we can 
store these permutations as a k × n matrix. The col-
umns of this matrix are called the columns of the set 
of permutations, which are the elements in a same 
position over the k permutations. For convenience, we 
denote by S the input matrix and by s ∈ S a permuta-
tion of the instance.

First, we show that the decision version of Block-
interchange Median ( BIM for short) is NP-complete 
even if the input consists of only three permutations. 
The proof follows a similar approach considered by 
Caprara [11] for the reversal rearrangement.
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Theorem 4.1  The Block-interchange Median prob-
lem is NP-complete even when the input consists of three 
permutations.

Proof  Let π1,π2,π3 be permutations of {1, . . . , n} , 
and let k be an integer. Then, (π1,π2,π3, k) ∈ CM 
if and only if there is a permutation σ satisfying 
∑3

i=1 c(G(σ ,π i)) ≥ k . Since solving an CM instance 
is equivalent to finding a permutation matching M(σ ) 
such that 

∑3
i=1 c(G(σ ,π i)) is maximized and the block-

interchange distance between any two permutations 
dBI(σ ,π

i) =
n+1−c(G(σ ,π i))

2  , then CM ≤p BIM . 	�  �

From Theorem 4.1, one can conclude that BIM is para-
NP-hard when parameterized by the number of input 
permutations. Transposition Median and Break-
point Median are also known to be para-NP-hard when 
parameterized by the number of input permutations [10, 
15].

Lemma 4.1, Lemma 4.2, and Lemma 4.3 present useful 
conditions to reduce the size of the input permutations in 
order to obtain polynomial kernels (Theorem 4.2).

Lemma 4.1  If an adjacency occurs in all of the input 
permutations, it occurs also in a solution of the Block-
interchange Median and the Transposition Median 
problems.

Proof  Assume ab is an adjacency that occurs in all k 
input permutations. Let σ be a solution median permuta-
tion satisfying a and b are not adjacent. Suppose, w.l.o.g. 
σ = [σ1, . . . , σi−1,a, σi+1, . . . , σj−1,b, σj+1, . . . , σn] . Thus, 
we obtain the permutation σ ′ from σ by setting adjacen-
cies ab , bσi+1 and σj−1σj+1 , removing aσi+1 , σj−1b and 
bσj+1 , and keeping all other adjacencies of σ , i.e., 
σ ′ = [σ1, . . . , σi−1,a,b, σi+1, . . . , σj−1, σj+1, . . . , σn]   . 
Now, considering any optimum sequence of block-inter-
changes (or transpositions) from σ to π i , we present a 
simulation sequence from σ ′ to π i . Any operation applied 
on a sequence from σ to π i that does not change adjacen-
cies aσi+1 , σj−1b and bσj+1 can be simulated properly 
from σ ′ to π i without any loss, once any impact on the 
decreasing number of breakpoints is the same, and so the 
number of cycles on the reality and desire diagram. If an 
operation applied on a sequence from σ to π i affects i) 
aσi+1 , ii) σj−1b , or iii) bσj+1 , then we simulate it on a 
sequence from σ to π i as follows: i) instead of cut a block 
just after a , it is cut after the two elements ab ; ii) instead 
of cut a block just before b , it is cut just after σj−1 ; iii) 
instead of cut a block just after b it is cut just before σj+1 
as well. Since all input permutations have the adjacency 
ab , no extra operation must be applied from σ ′ to π i . 

Thus, we conclude that 
k
∑

i=1

dBI(σ
′,π i) ≤

k
∑

i=1

dBI(σ ,π
i) (or 

k
∑

i=1

dT(σ
′,π i) ≤

k
∑

i=1

dT(σ ,π
i) ). 	�  �

The argument of Lemma 4.1 does not hold when 
dealing with short-block-moves, because a simulation 
operation (i.e., an operation that must be applied in non-
reduced permutations analogous to the reduced ones) 
may be affected when it exceeds the size of a block. Nev-
ertheless, an analogous result is proved in Lemma 4.2. 
We define the d-M Median problem as the Median 
problem for a metric M parameterized by the sum d of 
the distances between the solution and all the input 
instances, i.e., the median solution.

Lemma 4.2  For d-Short-Block-Move Median, let I 
be an interval with 6d + 1 consecutive columns where in 
each column of I all elements are equal, and let the mid-
dle column be with element c, i.e., the (3d + 1)th column 
of I has only element c (illustrated in Fig. 4a). Then there 
is a median solution s⋆ that satisfies following properties: 

1.	 Element c occurs in s⋆ in the same position as in the 
input permutations, i.e., c occurs in the (3d + 1) th 
column of s⋆ , which is the same column of I.

2.	 For any element e that occurs before I in the input, e 
does not occur after the (3d + 1) th column of I in s⋆.

3.	 All elements of the input that occur in I and take place 
before (resp. after) the (3d + 1) th column of I also 
occur in s⋆ before (resp. after) the (3d + 1) th column.

Proof  For the first statement, assume that ℓ is the col-
umn that contains c in the input. Let s be a median solu-
tion in which the position ℓ contains a and the element 
c is in a position j. Since I contains 6d + 1 columns, 
with respect to the input permutations, a must also be 
in I, otherwise at least 3d/2 > d moves would have to 
be applied, and so we could safely conclude that we are 
dealing with a no-instance (see Fig.  4b). For each input 
permutation π i , assume a is at a position pai  . Hence, 
the short-block-move distance between s and each π i 
must use at least |pai − ℓ|/2 operations to move a to col-
umn ℓ , plus |ℓ− j|/2 operations to move c to column  j 
(see Fig.  4c). In any case, ℓ < j < pai  , p

a
i < ℓ < j , or 

j < ℓ < pai  . Based on that, we can transform s into s⋆ by 
keeping c in position ℓ and a in position  j, applying the 
same number of short-block-moves as before, once it is 
necessary to apply at least |j − pai |/2 operations.

For the second statement, note that if there is a per-
mutation where the element e comes after I, then it is 
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necessary to apply at least (6d + 1)/2 > d operations, 
which contradicts the existence of a median solution for 
d-Short-Block-Move Median (see Fig. 4d).

Now, let us consider the third statement. Let A be the 
interval inside I before the column of c’s, i.e., before the 
(3d + 1) th column, and B the interval inside I after the 
column of c’s. As proved in the previous statement, a 
median solution does not have an element e that occurs 
in the input before I and in the solution it is after I. Let 
us consider that in s⋆ an element of x ∈ A occurs in B. By 
the pigeonhole principle, one of the elements of B must 
occur outside of B. Let us consider the following cases:

Case 1: An element of B occurs after B in s⋆ . In this 
case, let us consider that x moves from A to B and it takes 
place where y ∈ B was. Hence, y moves to another place 
and, also by the pigeonhole principle, some element of B 
takes place after B in s⋆ . Since there are 3d elements in 
B, more than d operations were necessary in total, simi-
lar to the previous second statement, which contradicts 

a median solution for d-Short-Block-Move Median 
(see Fig. 5a);

Case 2: An element of B occurs inside A in s⋆ . In this 
case, with respect to an element of A  (resp. of B) of the 
input that occurs in B  (resp. in  A) in s⋆ , by the pigeon-
hole principle, there must be a cycle C according to the 
moves necessary to be applied between the positions that 
the elements change their positions among to s⋆ and the 
input permutations. Thus, we can transform s⋆ into s′ by 
keeping all elements of A (resp. of B) in A (resp. in B), 
since in s⋆ there must be moves following C to correct the 
elements according to the input columns (see Fig. 5b).

	�  �

The complexity of the Swap Median problem was 
open for more than 20 years, but it was recently set-
tled to be NP-hard even if the number of input strings 
is three [16]. Bryant [34] proved that some variations of 
the Breakpoint Median problem are NP-hard having 

Fig. 4  a Hypothesis of the instances of Lemma 4.2. b Case that is not possible for a yes-instance, since more than d operations are necessary 
to place a in the same position as one of the input permutations. c Case where c is not in a position ℓ for a median solution. Note that this 
permutation could be changed to the permutation s∗ applying the same number of operations. d Case that is not possible for a yes-instance, 
since more than d operations are necessary to place e in the same position as one of the input permutations
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three input permutations, by dealing with the cases of 
linear, circular, signed, or unsigned permutations. One 
condition of a breakpoint median solution for given 
three input permutations is that if there are adjacencies 
common to the three input permutations, then these 
adjacencies can be assumed to be in a median genome 
[34]. This result can be directly generalized, analogous 
to Lemma 4.1, as follows.

Lemma 4.3  If an adjacency occurs in all of the input 
permutations, then it occurs also in a solution of the 
Breakpoint Median problem.

Proof  Suppose that x = [x1, x2, . . . , xn] is a breakpoint 
median for the input π1,π2, . . . ,πk , and {xi, xj} is a pair 
in (Adj(π1) ∩ . . . ∩ Adj(πk))\Adj(x) . We obtain a set Y 
being Y = Adj(x) ∪ {{xi, xj}} . Hence, we modify Y in such 
a way to generate a set of adjacencies which forms a 
median solution. Given a pair of adjacency {u, v} ∈ Y  , let 
w(u, v) = |{π ∈ {π1, . . . ,πk} {u, v} ∈ Adj(π)}| , i.e., 
w(u, v) is the number of input permutations that have the 
adjacency {u, v} . If w(xi−1, xi) ≤ w(xi, xi+1) we remove 
{xi−1, xi} from Y, otherwise we remove {xi, xi+1} . In the 
same way, if w(xj−1, xj) ≤ w(xj , xj+1) we remove {xj−1, xj} 
from Y, otherwise we remove {xj , xj+1} . Note that in each 
one of the four possible cases, in the resulting set Y, 
{xi, xj} happens exactly once, the same as the others ele-
ments. Since w(xi, xj) = k , 
k
∑

i=1

dBP(π
i,Y ) <

k
∑

i=1

dBP(π
i, x) , which is a contradiction. 	

� �

Next, we consider the parameterized complexity of 
some median problems parameterized by the distance 
d. The previous lemmas allow us to develop reduction 
rules in order to obtain Theorem 4.2.

Theorem  4.2  The following problems admit a polyno-
mial kernel parameterized by the value d of the desired 
median solution: d-Swap Median, d-Breakpoint 
Median, d-Block-interchange Median, d-Transpo-
sition Median, and d-Short-Block-Move Median.

Proof  First, we consider a polynomial kernelization for 
the d-Swap Median problem based on the following 
reduction rules: 

1.	 If there is a column with more than d + 1 elements, 
then return no.

2.	 If there is a column with at least two elements occur-
ring at least d + 1 times, then return no.

3.	 If an element occurs more than d times in at least 
two columns, then return no.

4.	 If a row has at least d copies in the matrix, then either 
the solution is a copy of such a row, or the answer is 
no. We say that a column i is a heavy column for an 
element x if x occurs more than d times in it; other-
wise, i is said light for x. We say that a row s is a light 
if it has an element x in position i such that column i 
is light for x; otherwise it is heavy.

5.	 For each element x, if the sum of occurrences of x in 
its light columns is more than 2d, then return no.

6.	 If the previous rules were not applied, remove the 
columns whose all elements are the same, and reduce 
the universe accordingly.

Since the goal is to determine whether there is a per-
mutation s⋆ whose sum of the distances by swaps 
between s⋆ and all permutations of S is at most d, Rules 
1–4 are clearly safe. Now, we discuss Rule 5. If S is a 
yes-instance then an element x having a heavy column 
i (by Rule 2, there is at most one heavy column) must 

Fig. 5  Cases of the third statement of Lemma 4.2. In red are elements before their moves to other positions and in blue elements in s⋆ (after 
the moves). a Case 1, where element x of A takes place in B and element y′ of B takes place after B. b It represents whenever an element of A takes 
place in B. Arrows follow a cycle C representing new positions of the elements. Element x moves to the position where there was y, element y 
moves to the position where there was y′ , and so on
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have x in the position i of any optimum solution s⋆ . 
Thus, the number of rows that contains x in positions 
different than i is at most d. Also, if x has no heavy col-
umn, then such a s⋆ contains x in some position i whose 
column has at most d occurrences of x, while the num-
ber of rows having x in other positions is also at most 
d (hence, 2d occurrences in total). Thus, Rule 5 is safe.

Regarding Rule 6, as each s ∈ S is a permutation, it 
holds that if a column i of S contains only one element x, 
then all permutations of S have x in position i, implying 
that any optimal solution for the problem should contain 
x in position i. Thus, it is safe to ignore that column i and 
element x from the input. (Recall that s⋆ having x in posi-
tion i implies that for any s ∈ S , there is an algebraic cycle 
of length one between s⋆ and s, which is the best possi-
ble because the swap metric can be seen as the minimum 
number of swaps to get only algebraic cycles of size one.)

At this point, we may suppose that Rules 1–5 were 
not applied and that S′ is the resulting instance after 
the application of Rule 6. To complete the kernelization 
algorithm for d-Swap Median, we need the following 
lemma.

Lemma 4.4  If S′ is a yes-instance of the d-Swap 
Median problem, then S′ has at most 2d columns and 
4d2 + d rows.

Proof  For a column i having more than one element, 
the distance between the optimum solution s⋆ and some 
permutation of S needs to count a swap move involving 
column i. In addition, each swap affects only two col-
umns, implying that d moves can affect at most 2d col-
umns. However, by Rule 6, any column of S′ has more 
than one element. Therefore, if S′ is a yes-instance of 
the d-Swap Median problem, it must have at most 2d 
columns.

Now, let us argue about the number of rows of S′ . By 
Rule 5, the number of rows that contain an element x in a 
light column for it is at most 2d. Since, S′ has at most 2d 
columns it also has at most 2d elements. Therefore, the 
number of light rows is at most 4d2 . Finally, by definition, 
heavy rows have only elements in positions for which 
they are heavy. By Rule 3, each element is heavy for only 
one column, which implies that heavy columns are cop-
ies. By Rule 4, we conclude that we have at most d heavy 
rows in S′ . Hence, S′ has at most 4d2 + d rows. 	�  �

Therefore, either the size of S′ certifies a no-answer, 
or S′ is returned as a kernel for the d-Swap Median 
problem.

Next, we discuss a kernelization algorithm for the 
d-Breakpoint Median problem. Recall that in the 
breakpoint metric, one does not care about occurrences 
of elements in columns but adjacencies of elements 
instead (regardless of their position in the rows). Thus, 
we should adapt the previous arguments accordingly.

A kernel for the d-Breakpoint Median problem can 
be found as follows: 

1.	 If there is an element having with more than d + 1 
distinct successor elements (distinct adjacencies) in 
the matrix, then return no.

2.	 If there is an element x with at least two elements 
occurring at least d + 1 times as successor of x in the 
matrix, then return no.

3.	 If an element occurs more than d times as succes-
sor of at least two other elements in the matrix, then 
return no.

4.	 If a row has at least d copies in the matrix, then either 
the solution is a copy of such a row, or the answer is 
no. We say that an element y is a heavy successor for 
an element x if xy occurs more than d times in the 
matrix; a successor of x that is not heavy is said to 
be a light successor for x. We say that a row s is a light 
row if it has an adjacency xy such that y is a light suc-
cessor for x; otherwise it is a heavy row.

5.	 For each element x, if the sum of occurrences of x 
with light successors is more than 2d, then return no.

6.	 Assuming that the previous rules were not applied, if 
there is an adjacency between x and y (i.e., xy) occur-
ring in all of the input permutations, then consider xy 
as a single element and reduce the universe accord-
ingly. Repeat this until there is no such adjacencies.

The safety of Rules 1–4 is straightforward, for Rule 5 the 
argument is similar to the swap case replacing columns 
by successors, and for Rule  6 the safety proof follows 
from Lemma 4.3. Again, we suppose that Rules 1–5 were 
not applied and S′ is the resulting instance after the appli-
cation of Rule 6.

Similarly as above, to complete the kernelization algo-
rithm for d-Breakpoint Median, we need the following 
lemma.

Lemma 4.5  If S′ is a y-instance of thees d-Breakpoint 
Median problem, then S′ has at most 2d columns and 
4d2 + d rows.

Proof  For an element x having more than one element 
as successor or more than one element as predecessor in 
the matrix, the distance between the optimum solution 
s⋆ and some permutation of S needs to count a break-
point involving element x. In addition, each breakpoint 
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involves only two elements, implying that d breakpoints 
can involve at most 2d elements. However, by Rule 6, 
any element of S′ is involved in at least one breakpoint. 
Therefore, if S′ is a yes-instance of the d-Breakpoint 
Median problem, then, since we are dealing with permu-
tations, it must have at most 2d elements and at most 2d 
columns.

Now, let us argue about the number of rows of S′ . By 
Rule 5, for each element x, the number of rows that con-
tain an adjacency xy where y is a light successor of x is at 
most 2d. Since S′ has at most 2d elements, the number 
of light rows is at most 4d2 . Finally, by definition, heavy 
rows have only heavy successors. By Rule 3, each element 
is heavy for only one predecessor in the matrix, implying 
that heavy rows are copies. By Rule 4, there are at most d 
heavy rows in S′ . Hence, S′ has at most 4d2 + d rows. 	
� �

Therefore, as above, either the size of S′ certifies a no-
answer, or S′ is returned as a kernel for the d-Break-
point Median problem.

Next, we discuss a kernelization for the d-Block-
interchange Median problem and the d-Trans-
position Median problem. Recall that for both met-
rics, whenever there is a breakpoint there is a move to 
be “played” to obtain the identity. Thus, a large set of 
breakpoints being one per row is enough to certify a no-
answer for both problems as well. As Rules 1-5 of the 
previous kernelization deal only with these kind of sets 
of breakpoints, they also hold as reduction rules for these 
two problems.

On the other hand, an analogous of Rule 6 may depend 
on the kind of move to be used. However, Lemma 4.1 
shows that a similar reduction rule can also be applied 
for the d-Block-interchange Median problem and 
the d-Transposition Median problem. Regarding an 
analogous of Lemma 4.5, it is enough to observe that 
any block-interchange involves the adjacency of at most 
eight elements (at most four adjacencies involved), and 
then one can conclude that S′ has at most 8d elements/
columns and 16d2 + d rows. Similarly, concerning trans-
positions, each move involves the adjacency of at most 
six elements (at most three adjacencies involved), and 
then one can conclude that S′ has at most 6d elements/
columns and 12d2 + d rows.

Finally, we discuss a kernelization for the d-Short-
Block-Move Median problem. As previously 
discussed, Rules 1-5 described for the breakpoint 
distance can be also applied to any metric where the 

existence of a breakpoint certifies the existence of a move 
to be “played” in order to obtain the identity. Thus, they 
work for the short-block-move distance as well. However, 
unlike with the d-Block-interchange Median 
problem and the d-Transposition Median problem, 
an immediate analogue of Rule 6 does not apply to the 
short-block-move distance, because it may be necessary 
to traverse some positions to get an element from one 
point to another, temporarily breaking some “good” 
adjacencies. To get around this problem, we introduce 
the notion of homogeneous columns.

A column of an input matrix/set S is homogeneous if 
it contains only one element, and heterogeneous other-
wise. Note that the existence of a heterogeneous column 
implies the existence of a move involving such a column. 
Since we are looking for a permutation s⋆ whose sum of 
distances from the input permutations is at most d, it fol-
lows that S contains at most 3d heterogeneous columns. 
So, either we have already a kernel or too many homoge-
neous columns where many of them are not involved in 
moves needed for the calculation of the distance between 
s⋆ and any s ∈ S . Then, an analogous of Rule 6 for this 
problem must identify these homogeneous columns, 
remove them, and reduce the universe properly. Due to 
Lemma 4.2, we can safely apply the following reduction 
rule. 

⋆	� If there is an interval I with 6d + 2 consecutive 
homogeneous columns, then remove the middle col-
umns of I and reduce the universe size accordingly. 
Repeat this until there is no such interval.

After applying the above rule, we claim that the number 
of columns of a yes-instance is at most 18d2 + 9d + 1 , 
because it has at most 3d heterogeneous columns and 
a sequence of at most 6d + 1 homogeneous columns 
before/after a heterogeneous one. This remark together 
with the reduction rules applied implies that the number 
of rows is at most 36d3 + 18d2 + 3d . This concludes the 
existence of a polynomial kernel for the d-Short-Block-
Move Median problem. 	� �

Results for the Closest problems
First, we present a framework transformation from the 
median to the closest problem. Since BIM is NP-hard 
even for three input permutations, we show that Block-
Interchange Closest ( BIC ) is NP-hard even for three 
input permutations. This is a stronger result compared 
to the NP-hardness presented by Cunha et  al. [12] for 
the case where there is an arbitrary number of input 
permutations.
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Reducing median to closest
The polynomial reduction presented in Theorem  4.1 
allows us to show that not only the Block-Inter-
change Closest problem is NP-hard for three input 
permutations, but also a closest problem where the cor-
responding median with a constant number of input per-
mutations is NP-hard. Next we show that it is the case for 
the block-interchange rearrangement.

Definition 5.1  Given π1 with p elements and π2 
with q elements, the union of π1 and π2 is a permu-
tation π1 ⊎ π2 with p+ q + 1 elements such that 
π1

� π2
= [π1

1 ,π
1
2 , . . . ,π

1
p , (p+ 1),

(π2
1 + p+ 1), (π2

2 + p+ 1), . . . , (π2
q + p+ 1)] . For sim-

plicity, π1 ⊎ π2 is denoted by π1,2 . Permutations π1 and 
π2 are called parts of the union.

Lemma 5.1  Given permutations π1 and π2, we have 
that dBI(π1,2) = dBI(π

1)+ dBI(π
2).

Proof  Assuming that π1 has p elements and π2 has 
q elements, since p+ 1 is greater than all elements of 
π1 and smaller than all elements of π2 , the reality and 
desire diagram G(π1 ⊎ π2) is obtained by gluing G(π1) 
and G(π2) , i.e., the reality and the desire edges do not 
change when the union operation is applied to permuta-
tions. As a direct consequence of Theorem 2.1, we have 
dBI(π

1,2) =
p+q+2−c(G(π1))−c(G(π2))

2 = dBI(π
1)+ dBI(π

2) . 	
� �

Theorem 5.1  Given three permutations π1,π2 and π3 , 

σ is a solution of BIM if and only if 
6
⊎

i=1

σ is a solution of 

BIC for the permutations π1,2,3,1,2,3,π2,1,1,3,3,2, and 
π3,3,2,2,1,1.

Proof  Since permutations π1,2,3,1,2,3,π2,1,1,3,3,2 , and 
π3,3,2,2,1,1 are composed by six parts of unions and, con-
sidering BIC , each part corresponds to columns yielding 
π1 , π2 , and π3 . Moreover, by Lemma 5.1 each part can be 
treated separately without loss of optimality. Hence, there 
is a solution of BIC where all parts have the same solution 
δ . Therefore, there is a permutation 
x ∈ {π1,2,3,1,2,3,π2,1,1,3,3,2,π3,3,2,2,1,1} such that 

dBI(
6
⊎

i=1

δ, x) = 2(dBI(δ,π
1)+ dBI(δ,π

2)+ dBI(δ,π
3))   . 

Since we want δ such that dBI(
6
⊎

i=1

δ, x) is minimized, we 

want δ such that dBI(δ,π1)+ dBI(δ,π
2)+ dBI(δ,π

3) is 
minimized. Hence, this happens if and only if δ = σ , 
where σ is solution of BIM . 	�  �

Since Block-Interchange Median is NP-complete 
(Theorem 4.1), as a consequence of Theorem 5.1, we have 
Corollary 5.1.

Corollary 5.1  The Block-Interchange Closest 
problem is NP-hard even when the input consists of three 
permutations.

When dealing with transpositions, sorting each part of 
a union separately does not yield an optimum sequence 
in order to sort a permutation in general, as proved by 
Cunha et al. [1]. Hence, an analogous strategy of the one 
in Theorem 5.1 does not apply to reduce the median to 
the closest problems regarding transpositions rearrange-
ment, given that Lemma 5.1 does not hold for sorting 
by transpositions. However, if each part of a union is 
hurdle-free i.e., a permutation in which the transposi-
tion distance is equal to the lower bound on the trans-
position distance dT(π) ≥ (n+1)−codd(G(π))

2  , it follows that 
dT(π

1,2) = dT(π
1)+ dT(π

2) in the same matter as Theo-
rem 5.1. Therefore, we have Corollary 5.2.

Corollary 5.2  Transposition Closest is NP-hard 
even when the input consists of three permutations which 
are unions of hurdle-free permutations.

Proof  Transposition Median is NP-hard when k = 3 
even for hurdle-free permutations [10], i.e., permutations 
in which the transposition distances are equal to the 
lower bound of Theorem 2.2. Since the distance of unions 
of hurdle-free permutations can be obtained by the sum 
of the distances of each part of the union, Theorem  5.1 
holds in the same way. 	�  �

Fig. 6  Permutation graphs of [2 3 1 6 4 5] and [2 3 4 1 6 5] by applying the merging move t(3, 5, 6)
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The Short‑block‑move Closest problem
Sufficient condition to sort by short-block-moves We 
refer to block-moves that introduce elements in con-
nected components of the permutation graph PG(π) of 
π (defined in Sect. 2) as merging moves. Figure 6 illus-
trates a merging move applied on a permutation.

Lemma 5.2  For every permutation π, sorting each con-
nected component of PG(π) separately is optimal.

Proof  We allow ourselves to use merging moves, which 
can be replaced by correcting moves as in Table  2. The 
modified sequence is not longer than the original, and we 
observe that these new moves never merge components.

A merging move must act on contiguous components 
of π . Let us assume that the leftmost component the 
move acts on ends with elements a and b, and that the 
rightmost component starts with elements c and d, as 
represented below:

It follows that a < c, a < d, b < c , and b < d . We now 
replace any merging move involving those component’s 

extremities with correcting moves. There are five cases to 
consider:

•	 a b c d → b c a d : this move satisfies the condi-
tions of Case 2 in Table  2, so we replace it with 
a b c d → b a c d.

•	 a b c d → c a b d : this move satisfies the condi-
tions of Case 4 in Table  2, so we replace it with 
a b c d → b a c d.

•	 a b c d → a c b d : this move satisfies the conditions 
of Case 1 in Table 2, and in this case we just remove 
that block-move from the sorting sequence.

•	 a b c d → a c d b : this move satisfies the condi-
tions of Case 5 in Table  2, so we replace it with 
a b c d → a b d c.

•	 a b c d → a d b c : this move satisfies the condi-
tions of Case 3 in Table  2, so we replace it with 
a b c d → a b d c.

None of the correcting moves that we use to replace the 
non-correcting moves in those five cases is a merging 
move, and no such a replacement increases the length 
of our sorting sequence. Given any sorting sequence, we 
repeatedly apply the above transformation to the merg-
ing move with the smallest index until no such move 
remains; in particular, the transformation applies to opti-
mal sequences as well, and the proof is complete. 	�  �

There exist cases where allowing merging moves 
still yields an optimal solution. This is the case for 
[2 1 4 3] , which can be sorted optimally as follows: 
[2 1 4 3] → [2 3 1 4] → ι , where ι = [1 2 . . . n] . It is 
natural to wonder whether Lemma 5.2 generalizes to 
p-bounded block-moves, for p > 3 . However, the fol-
lowing counterexample shows that it is not the case, 
even when a block-move is bounded by four (i.e., a 
4-bounded block move): sorting each component of 
[3 2 1 6 5 4] separately yields a sequence of length four, 
but one can do better by merging components as follows: 
[3 2 1 6 5 4] → [3 2 5 4 1 6] → [3 4 1 2 5 6] → ι.

Short-block-move Closest problem is NP-hard
First, we apply Algorithm 1 to transform any string s of 

length m into a particular permutation �s of length 2m.

Algorithm 1  PermutBI(s)
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Since from Lemma 5.2 each connected component can 
be sorted separately, and each bit set to 1 in s corresponds 
to an inversion in �s from Algorithm 1, it implies Lemma 
5.3, which is an equality between the Hamming distance 
of an input string s and the short-block-move distance of 
its output permutation �s.

Lemma 5.3  Given a string of length m and a permuta-
tion �s of length 2m obtained by Algorithm  1, the short-
block-move distance of �s is dsbm(�s) = dH (s).

Lemma 5.4  Given a set of k permutations obtained by 
Algorithm 1, there is a short-block-move closest permuta-
tion with maximum distance at most d if and only if there 
is a Hamming closest string with maximum distance at 
most d.

Proof  Let �′ be a short-block-move closest permu-
tation. If �′ can be built by Algorithm  1 for some input 
string s′ , then, by Lemma 5.3, s′ is a closest string. Other-
wise, we search from left to right along the permutation 
to find the first position where the corresponding ele-
ment is different from the one intended to be by the algo-
rithm, which is a position x ∈ {2i − 1, 2i} . In this case, 
all elements from position x until the position where the 
first element y ∈ {2i − 1, 2i} appear form inversions with 
respect to each input permutation, implying the short-
block-move distance between the solution [Ax B yC] 
and any input greater than the distance between the new 
permutation [Ay x BC] and any input permutation, such 
that A, B, and C are blocks of elements. By repeating this 
process, a string agreeing with the algorithm output can 
be found and, by Lemma 5.3, a string with maximum 
distance at most d can be constructed. Given a solution 
string s, we obtain the associated permutation �s given 
by Algorithm  1. By Lemma 5.3 we have the solution s 
regarding the closest string corresponding to the per-
mutation �s with the same value of maximum distance d, 
concluding the proof of the lemma. 	�  �

Since Hamming Closest String is NP-complete 
[17], Lemma 5.4 implies Theorem 5.2.

Theorem 5.2  Short-block-move Closest Permuta-
tion is NP-hard.

Theorem  2.4, proved by Basavaraju et  al. [22], states 
that Closest String does not admit a polynomial ker-
nel, unless NP ⊆ coNP/poly . Since the results presented 
in Lemma 2.4, Lemma 2.5, Lemma 5.4, Theorem  5.2, 
Corollary 5.2, as well as the results from Popov [18], are 
PPT reductions from Closest String, we have the fol-
lowing corollary.

Corollary 5.3  Breakpoint Closest, Block-inter-
change Closest, Transposition Closest, Swap 
Closest and Short-block-move Closest do not admit 
polynomial a kernel unless NP ⊆ coNP/poly.

FPTalgorithms
Popov [18] solved the Swap Closest problem in time 
O(kn+ g(k , d)) parameterized by the number of per-
mutations k (each of them of size n) and the distance 
d, where g is a function which depends only on k and 
d. Now, we propose FPTalgorithms for finding clos-
est permutations of a given set of permutations, param-
eterized just by the distance d (the function O∗(f (n)) 
means that there exists an algorithm which runs in time 
O(f (n)) · poly(n) , where poly(n) is a polynomial function 
in n). Our approach is inspired by the algorithm for the 
Closest String problem [19, 24], considering the three 
metrics below.

Theorem  5.3  d-Swap Closest, d-Short-Block-
Move Closest, and d-Block-interchange Closest 
can be solved in time O∗(dO(d)).

Proof  First, we consider d-Swap Closest. The other 
problems follow in a similar way, as we discuss below. 
Let π1, . . . ,πk be the input permutations. Recursively, 
we solve these problems using a bounded search tree 
technique as follows: First, set z = π1 as a candidate per-
mutation solution. If dswap(y, z) ≤ d for each permuta-
tion y of the input, then return yes. Otherwise, if d = 0 
then return no. In the remaining case, d > 0 and there 
exists a permutation π i with dswap(π i, z) > d . From the 
triangular inequality, dswap(π i, z) ≤ 2d for each input 
permutation π i ; otherwise, the answer is no. Since each 
swap operation corrects at most two positions, there are 
at most 4d positions on which π i and z differ. Let P be a 
set of 4d positions on which π i and z differ. Hence, we 
branch into |P| = 4d subcases: for every p ∈ P , we define 
zp to be equal to z except for the swap putting the ele-
ment π i

p in the position p of zp , and we recursively solve 
the problem for the pair (zp, d − 1).

We build a search tree of depth at most d, and every 
node has at most 4d children. Thus, the size of the search 
tree does not exceed O((4d)d).

For d-Short-Block-Move Closest, it is known that 
each operation involves at most two edges on the associ-
ated permutation graph. Since the current solution must 
be at distance at most 2d from any input permutation, it 
holds that the associated permutation graph between a 
current solution z and any π i has at most 4d edges and at 
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most 8d vertices incident to some edge of the associated 
permutation graph; otherwise the answer is no. There-
fore, either we are already dealing with an instance with 
universe of small size, or there are many isolated vertices 
in the associated permutation graph. By the definition of 
permutation graphs of strings, these isolated vertices rep-
resent positions that coincide in both permutations, and 
we may assume that they are not involved in any move to 
obtain one from the other. Since we do not need to con-
sider moves involving these isolated vertices of the asso-
ciated permutation graph, we can consider only moves 
involving O(d) many vertices. Thus, we can perform 
a similar bounded search tree algorithm as previously 
described.

For d-Block-Interchange Closest, it is known that 
each operation changes the number of cycles in the real-
ity and desire diagram by −2 , 0, or +2 (see [5]). Moreo-
ver, from Theorem 2.1, there exists an optimum sequence 
of block-interchanges that only applies 2-moves, i.e., each 
operation increases the number of cycles by two. This 
implies that there is no optimum sequence that uses −2 
or 0 moves. Recall that we obtain a sorted permutation 
when we achieve only cycles of size one ( n+ 1 cycles in 
total); so, sorting is equivalent to maximizing the num-
ber of cycles in the reality and desire diagram. Thus, our 
focus is only analyzing possible 2-moves to approximate 
one permutation to another one in our bounded search 
tree algorithm. It is known that there is no 2-move that 
affects a 1-cycle (cycle of length one in the diagram), 
because a 2-move can only be performed into a unique 
cycle (cf. [1, 5]). Thus, there is no 2-move that affects an 
adjacency (a pair is an adjacency if and only if it yields a 
1-cycle in the reality and desire diagram [5, 25]).

At this point, we have that we can safely reduce the 
permutation, since all optimum block-interchange 
sequences do not affect adjacencies (this is a stronger 
result than Theorem  2.3). Hence, as each block-inter-
change affects at most four breakpoints, the permutation 
must have at most 8d breakpoints (i.e., 8d + 1 elements 
in the reduced permutation). Therefore, we can consider 
only moves involving O(d) many breakpoints. Thus, we 
can perform a similar bounded search tree algorithm as 
previously described. 	�  �

Conclusion
In this paper, we studied the computational complex-
ity of several median and closest problems, which are 
two well-known consensus problems in the genome rear-
rangement field, with respect to distinct distance metrics 

among permutations. Furthermore, given the interest 
and hardness of these problems, we particularly focused 
on the parameterized complexity with respect to the 
parameters k (number of input permutations) and d (tar-
get value).

Regarding the FPT algorithms obtained on the clos-
est problems, one can note that Breakpoint Clos-
est does not admit a bounded search tree analogous 
to those used in Theorem  5.3, since this metric has no 
sequence of operations to transform one permutation 
into another one, so it is unclear how to branch. Simi-
larly, for the Transposition Closest problem, it is 
known that there may exist optimum sequences of trans-
positions that apply 0-moves and 2-moves, and it is an 
old open problem whether there are optimum sequences 
using −2-moves [1, 25]; so, it seems that is not safe to 
use the reduced permutation in that case, because there 
may exist an optimum sequence of transpositions that 
uses moves not preserved in the reduced instance, and 
those moves could be good for our branch step. There-
fore, we leave both cases as open questions. In addition, 
the techniques developed in this paper on parameterized 
complexity for both median and closest problems may 
be adapted for several other rearrangements, including 
DCJs and some restrictions, as σk measures [35, 36].
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