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Abstract 

The exponential increase in publicly available sequencing data and genomic resources necessitates the development 
of highly efficient methods for data processing and analysis. Locality-sensitive hashing techniques have successfully 
transformed large datasets into smaller, more manageable sketches while maintaining comparability using metrics 
such as Jaccard and containment indices. However, fixed-size sketches encounter difficulties when applied to diver-
gent datasets. Scalable sketching methods, such as sourmash, provide valuable solutions but still lack resource-effi-
cient, tailored indexing. Our objective is to create lighter sketches with comparable results while enhancing efficiency. 
We introduce the concept of Fractional Hitting Sets, a generalization of Universal Hitting Sets, which cover a speci-
fied fraction of the k-mer space. In theory and practice, we demonstrate the feasibility of achieving such coverage 
with simple but highly efficient schemes. By encoding the covered k-mers as super-k-mers, we provide a space-effi-
cient exact representation that also enables optimized comparisons. Our novel tool, supersampler, implements 
this scheme, and experimental results with real bacterial collections closely match our theoretical findings. In com-
parison to sourmash, supersampler achieves similar outcomes while utilizing an order of magnitude less space 
and memory and operating several times faster. This highlights the potential of our approach in addressing the chal-
lenges presented by the ever-expanding landscape of genomic data. supersampler is an open-source software 
and can be accessed at https://​github.​com/​TimRo​uze/​super​sampl​er. The data required to reproduce the results 
presented in this manuscript is available at https://​github.​com/​TimRo​uze/​super​sampl​er/​exper​iments.
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Introduction
The field of genomics has exploded in recent years, 
driven by the availability of cheap and easy sequenc-
ing data generation. The Sequence Read Archive (SRA) 
is a vast and to some extent under-exploited goldmine 
of genomic data, containing an enormous amount of 
genetic information. However, one of the biggest chal-
lenges in utilizing this data is the lack of efficient indexing 
and querying tools. The GenBank database, for example, 

already contains 1.2 million bacterial genomes, totaling 
over 5 Terabases of data. In the face of such vast genetic 
information, a crucial need is to promptly and precisely 
determine the most similar (or contained) known entry 
for a given query document (assembled or unassembled 
reads). Specifically, in this work we focus on the metagen-
omic assessment problem, which entails characterizing 
microbial communities in a specific environment using 
DNA sequencing data and potentially large amounts of 
reference entries. The complexity and diversity of the 
data, which contains sequences from multiple genomes, 
presents significant challenges.

In the metagenomic context, traditional alignment-
based methods such as BLAST are increasingly com-
putationally prohibitive due to the sheer number of 
potential targets for metagenome mapping. A spectrum 
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of alignment-free techniques based on k-mer content 
have emerged as a viable alternative, with different trade-
offs. On one side of the spectrum, exact k-mer indexing 
offers linear query time [1–3], but may be too memory-
intensive for large-scale applications. Probabilistic struc-
tures, when applied to large queries (on the order of 
kilobases), enable more scalable indexing at the expense 
of a random false positive rate [4, 5].

Using large enough query data allows for handling false 
positive noise since it remains significantly lower than 
the required matching signal (e.g., 70% of queried k-mers 
present in the document). It means false positives are not 
a real issue if query size is adequate. For extensive queries 
at the Megabase level, the signal strength is sufficiently 
robust, eliminating the need to consider all k-mers and 
enabling sublinear query time. On the other side of the 
spectrum, fixed-size sketches like Minhash [6], Hyper-
loglog [7], and Hyperminhash [8] have been effectively 
used for large-scale collection comparison [9–13]. 
However, they are ill-suited for divergent documents in 
terms of content or size, a critical limitation considering 
metagenomic samples typically comprise many organ-
isms with amount of distinct k-mers varying by orders of 
magnitude.

Scaled sketches, whose size scales linearly with input 
size, have demonstrated better resilience to such issues. 
sourmash [14], which implements scaledminhash [14] 
and Fracminhash [15], efficiently approximates contain-
ment and Jaccard indexes even for documents with size 
disparities spanning several orders of magnitude. sour-
mash’s simplicity is one of its key strengths: it stores each 
uniformly selected fingerprint as a 32-bit integer and 
compares them using a dictionary. An observation is that 
this technique is generic and can be applied to any type 
of data. Therefore, computational and memory require-
ments could benefit from customized selection tech-
niques and index structures.

To this end, we propose capitalizing on the ability to 
represent overlapping k-mers with a low number of bits 
per k-mer using a Spectrum Preserving String Set [16]. 
The challenge we face is optimizing the overlap of cho-
sen k-mers to achieve maximum space efficiency. To 
address this, we build upon the concept of super-k-mers 
[17], which are sequences of k-mers sharing a common 
selected m-mer called minimizer [18]. Universal Hit-
ting Sets (UHS [19]) methods aim to design optimized 
m-mer selection schemes that covers all k-mers while 
minimizing the density of selected positions. However, 
our application does not require complete coverage of 
the k-mer space. Therefore, we introduce Fractional 
Hitting Sets that encompass a near-uniform selected 
fraction of the k-mer space. We conduct a study on the 
achievable density in relation to the selected fraction and 

present a straightforward minimizer selection scheme 
that closely approaches optimal bounds. We implement 
this scheme in a tool called supersampler. The stor-
age of enhanced super-k-mer sequences, partitioned by 
minimizers, facilitates space and time-efficient k-mer set 
comparisons. Our evaluation reveals that supersam-
pler significantly reduces resource usage compared to 
sourmash while maintaining similar results. Overall, 
this work presents a promising approach to making large-
scale genomic data more accessible and manageable.

Preliminaries
This paper presents results on finite strings on the DNA 
alphabet � = {A,C ,G,T } , we use σ to denote the size of 
the alphabet. We consider two input multisets of strings 
longer or equal to k, SA and SB . These multisets can in 
practice be read sets from sequencing experiments or 
genome sequences. We call k-mers strings of size k over 
strings of the input sets. A = {x0, x1, . . . , xn−1} is the set 
of distinct k-mers from SA and B = {y0, y1, . . . , yn−1} is 
defined similarly for SB.

The metrics to estimate the similarity between two sets 
are later defined in Set comparisons onwards.

We first state important definitions that will be used 
to introduce a first contribution of the paper: in sec-
tion Fractional hitting sets we present the advantages of 
a sampling process that depends on minimizers instead 
of k-mers hashed values. Then in section Sketching tech-
nique in supersampler we describe our second contribu-
tion, a method for indexing the sampled elements and 
comparing them in an efficient manner for set and multi-
set similarity estimation.

Minimizers and super-k-mers

Definition 1  (minimizer) Given m < k , a total order O 
on �m and a k-mer u, the minimizer of u is the smallest 
m-mer of u according to O.

The way minimizers are selected is referred to as a 
minimizer scheme. From now on, O is defined on inte-
gers by hashing m-mers using a random hash function 
h and minimizers are selected by choosing the smallest 
hash value. We assume that the hash function is chosen 
such that the hashes are independent and uniformly dis-
tributed. We use w = k −m+ 1 to denote the number of 
m-mers inside a k-mer.

Definition 2  (super-k-mer) A super-k-mer is a maxi-
mal substring of a string s ( |s| ≥ k ) in which each consec-
utive k-mers have the same minimizer.

Spectrum Preserving String Sets [16] are an efficient 
k-mer encoding made of a collection of strings whose 
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property is to spell exactly the initial set of k-mers, usu-
ally exploiting the fact that k-mers share overlaps.

Super-k-mers are an interesting Spectrum Preserving 
String Set because a super-k-mer containing x k-mers 
is composed of k + x − 1 bases which incur a cost of 
2(k+x−1)

x  bits per k-mer. Therefore longer super-k-mers 
provide lighter representation as opposed to classic 
k-mer representation by simply avoiding to repeat an 
increasing number of nucleotide while super-k-mer size 
increases.

By omitting repeated minimizers inside k-mers, the 
first k-mer of the longest possible super-k-mers have 
their minimizers as a suffix. Equally, the last k-mers of 
these super-k-mers have their minimizers as a prefix.

Definition 3  (maximal super-k-mer) Let s ( |s| ≥ k ) be 
a string and v a super-k-mer of s. Let im be the first posi-
tion of the minimizer on s. v is a maximal super-k-mer iff 
v starts at position im +m− k in s and v ends at position 
im + k − 1 in s. It follows that v has a length of 2k −m 
and contains w = k −m+ 1 k-mers.

Examples of regular and maximal super-k-mers are 
shown in Fig.  1. Since maximal super-k-mer are the 
most space-efficient, our approach aims to rely on long 
super-k-mers (ideally maximal) in order to have a com-
pact encoding of the k-mer sketch. As mentioned in [20] 
(see the proof of theorem 3), the proportion of maximal 
super-k-mers approaches 14 for a large k.

Density and universal hitting sets Since every mini-
mizer corresponds to one super-k-mer, the proportion of 
m-mers chosen as minimizers is exactly the inverse of the 
average length of super-k-mers. This proportion, which 
quantifies the sparsity of a minimizer scheme, is referred 
to as the density.

Definition 4  (density of a minimizer scheme) The 
density of a minimizer scheme is the expected number 
of selected minimizers divided by the total number of 

m-mers. The density factor is equal to the density multi-
plied by w + 1.

The density of a minimizer scheme is lower bounded 
by 1/w since each k-mer contains w m-mers and one 
of them must be selected as a minimizer. It is known 
that the expected density of a minimizer scheme based 
on a random ordering is 2/(w + 1) , and that minimizer 
schemes cannot have a density below 1.5/(w + 1) [21]. 
More generally, m-mers selection scheme able to cover 
every k-mer are called universal hitting sets.

Definition 5  (universal hitting set or UHS) A set 
U ⊆ �m is defined as a Universal Hitting Set (UHS) if 
every sequence of w consecutive m-mers has an element 
contained in F .

Note in particular that the set of all minimizers of �k 
forms a UHS. Recent publications introduced differ-
ent methods based on UHS to bring the density below 
2/(w + 1) and closer to the 1.5/(w + 1) barrier [22, 23]. 
Thus, a question that naturally arises is: can we cross 
this barrier by relaxing some constraints on the selec-
tion scheme?

Fractional hitting sets
In this section, we introduce the concept of fractional 
hitting sets, which are a relaxation of universal hitting 
sets. These sets are designed to cover a fraction f of the 
k-mer space on expectation.

Definition 6  (fractional hitting set or FHS) Given 
f ≤ 1 , a set F ⊆ �m is a Fractional Hitting Set (FHS) 
if a fraction at least f of the sequences of w consecutive 
m-mers have an element contained in F .

To avoid selection bias in practice, we aim to ensure 
that m-mers are selected randomly and have an equal 
chance of being chosen by using a random hash func-
tion that uniformly distributes the m-mers over �1, σm�.

We introduce a simple probabilistic method to build 
such fractional hitting sets by selecting minimizers with 
a hash smaller than a certain threshold. We call such 
selected minimizers small minimizers. Note that any 
method selecting a fraction of the minimizers hashes 
would be suitable here.

Definition 7  (small m-mer) Given a fixed thresh-
old t ∈ �1, σm� , we say that a m-mer is small if its hash 
is below t. We denote by S the set of small m-mers, and 
p = t

σm the probability that a m-mer is small.

Fig. 1  Super-k-mers extracted from a sequence for k = 6,m = 3 . 
Minimizers are shown in pink, here we use the lexicographic 
order instead of hashing minimizers for the sake 
of the simplicity. Super-k-mers 1 and 4 are maximal (they 
contain respectively k-mers {CTGAAA, TGAAAT ,GAAATG, AAATGC} 
and {TGCACA,GCACAT , CACATT , ACATTT } , while 2 and 3 are not (and 
contain respectively k-mers {AATGCA} and {ATGCAC}
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From p we can derive the proportion of covered 
k-mers.

Property 1  Given t ∈ �1, σm� and p = t
σm , the expected 

fraction of k-mers with distinct m-mers containing a small 
m-mer is

where w = k −m+ 1 and p is the probability that a m-
mer is small.

Proof  Given a k-mer with w distinct m-mers x1, . . . , xw,

because the hashes of distinct m-mers are independent, 
so

	�  �

Note that this property is valid for k-mers with dis-
tinct m-mers; k-mers with duplicated m-mers (i.e. 
k-mers containing repetitions) have a lower coverage 
since they have less candidates for small minimizers. 
Fortunately, as shown in [22] (see lemma  9), the pro-
portion of k-mers with duplicated m-mers is negligible 
for a sufficiently large m ( > (3+ ε) logσ w ). Thus, our 
selection method is uniform for k-mers with distinct 
m-mers, and almost uniform in the entire k-mer space.

Conversely, if we want a given fraction f of the k-mers 
to be covered, the threshold should be chosen as

Related to this, let us define the subsampling rate as 
s = 1

f  . For instance, a desired subsampling rate of 1000 
will give f = 1

1000.
Density of small minimizers We showed that select-

ing k-mers with a small minimizer induces an FHS. By 
considering the usual definition of density (from Defi-
nition  4) for this scheme (which covers a fraction f of 
all k-mers), we obtain the following bound (proven in 
supplementary materials):

Theorem 1  Given f ≤ 1 and t =
[
1− (1− f )1/w

]
· σm , 

assuming m > (3+ ε) logσ w , the expected density of 
small minimizers in a random sequence is upper bounded 
by

f = 1− (1− p)w

P(∀i ∈ �1,w�, h(xi) > t) =

w∏

i=1

P(h(xi) > t) = (1− p)w

f = P

(
min

i∈�1,w�
h(xi) ≤ t

)
= 1− (1− p)w

(1)t =
[
1− (1− f )1/w

]
· σm

At first glance, the results may be surprising, as the 
density is smaller than the lower bound of 1/w for 
f < 1/2 and can approach zero. This is because some 
k-mers may not contain any small minimizers and are 
therefore not covered, and the proportion of such k-mers 
increases as f approaches 0. However, it is worth noting 
that this bound does match the 2/(w + 1) density when 
f = 1 (i.e., when every k-mer is covered).

To obtain a more meaningful metric, we can compute 
the density on the fraction of the sequence that is cov-
ered, instead of the entire sequence. With this approach, 
we obtain the following theorem, which has been proven 
in the supplementary materials:

Theorem  2  (restricted density) If we restrict to 
sequences in which every k-mer contains a small mini-
mizer, then given f ≤ 1 and t =

[
1− (1− f )1/w

]
· σm , 

assuming m > (3+ ε) logσ w , the expected density of 
small minimizers is upper bounded by

Although less intuitive than the previous one, this 
result provides valuable insights into the density within 
the covered portion of the sequence. As shown in Fig. 6 
(see supplementary materials), the associated density fac-
tor ranges from 2 when f = 1 (consistent with existing 
results) to 1 when f = 0 . Therefore, as f approaches 0, we 
can approach the optimal density.

Proportion of maximal super-k-mers
Although measuring the density provides an overview 

of the average length of super-k-mers, it does not indicate 
how many of them are maximal (i.e., of length 2k −m ). 
The following result (proven in the supplementary mate-
rials) answers this question:

Theorem 3  Given f ≤ 1 and t =
[
1− (1− f )1/w

]
· σm , 

the average proportion of maximal super-k-mers (with 
respect to all super-k-mers) built from small minimizers 
in a random sequence is given by

Note that this result generalizes theorem  2 from [20], 
which corresponds to f = 1 . As shown in Figure  15b 
(see supplementary materials), the proportion increases 
towards 100% as f approaches 0.

Improving the density of fractional hitting sets using 
UHS This effect is more pronounced for smaller values 

2f

w + 1
+ o(1/w)

2 ·
f + (1− f ) ln(1− f )

f 2(w + 1)
+ o(1/w)

[(
1−

1

w

)
f

1+ f

]2
+

1− f (1− 2/w)

1+ f
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of f. This observation raises a natural question: what is 
the lowest achievable density for a given f? Since univer-
sal hitting sets (UHS) with a density lower than 2 have 
been proposed for f = 1 , it is possible that they may 
also improve the density for smaller f values by consid-
ering only the m-mers selected by the UHS as potential 
minimizers.

Theorem 4  Given a UHS U with density dU , f ≤ 1 and 
t =

[
1− (1− f )1/w

]
· σm , assuming m > (3+ ε) logσ w , 

the expected density of small minimizers selected from U 
(that is, S ∩ U ) in a random sequence is upper bounded 
by

The proof is given in supplementary materials. Note 
that this result generalizes theorem  1 since the UHS of 
minimizers selected using a random ordering has a den-
sity of 2/(w + 1) [21].

Sketching technique in supersampler
Supersampler’s sketch construction

Definition 8  (supersampler’s sketch) Given a 
sequence S, each super-k-mer whose minimizer’s hash is 
lower or equal to a threshold t is selected, and all its sur-
rounding k-mers are kept in the sketch as a super-k-mer. 
A supersampler sketch can therefore be represented 
as a super-k-mer set.

In sourmash, k-mers are represented as integer fin-
gerprints through hashing (using a default of 32-bit). 
This approach reduces space requirements compared to 
employing 2k bits per k-mer, but it also introduces the 
potential for false positives due to hash collisions. How-
ever, the false positive rate is exponentially low, depend-
ing on the fingerprint size, which allows for efficient 
control.

f · dU + o(1/w)

In contrast, supersampler explicitly stores k-mers 
as super-k-mers, offering two significant advantages over 
the conventional method: First, the fingerprints are rep-
resented exactly, eliminating false matches and enabling 
the output of shared k-mers when they are of interest 
to users. Second, this technique enables a more space-
efficient representation of k-mers, typically requiring 
less than the 32-bit per k-mer space cost of sourmash. 
Figure 2 illustrates an example of sketch construction in 
supersampler. In the following sections, we propose 
a model to evaluate the space efficiency of a supersam-
pler sketch.

In the regular case with hashed minimizer with a 
density factor of 2 we can expect (k −m+ 1)/2 k-mers 
per super-k-mers [20]. This results in a mean super-
k-mer length of (3k −m− 1)/2 bases. We can give a 
lower bound of the cost in bit per k-mer to encode such 
super-k-mers:

However we need to encode the length of each super-
k-mer to avoid considering artefactual k-mers cre-
ated by two successive super-k-mers so we can add 
log2(k −m+ 1) bits per super-k-mer (encoding the 
number of k-mers). This leads to a bits per k-mer ratio of

In practice we use the formula (1) to select a k-mer frac-
tion chosen by the user. As a side effect, since we used 
an FHS, selected super-k-mers are longer than those 
selected by regular hashed minimizer scheme as our hit-
ting set provides a lower density. Importantly for low 
selected fraction a very large proportion of super-k-mers 
are maximal. This property is of prime interest because 
maximal super-k-mers can be efficiently encoded for two 
reasons. First they are all of the same size so we do not 

2(3k −m− 1)

k −m+ 1

2 ·
3k −m− 1+ log2(k −m+ 1)

k −m+ 1

Fig. 2  supersampler’s sketching strategy. In order to build sketches, supersampler computes super-k-mers over the input sequence. 
Fingerprints are associated with each super-k-mer by hashing their minimizers to an integer, hence an integer per super-k-mer. Super-k-mers 
associated to sufficiently low integers are kept in the sketch. Super-k-mers are put into partitions according to their minimizer
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need to encode their respective length or any kind of sep-
arator. Second, they represent 2k −m bases encoding for 
k −m+ 1 k-mers, they provide a lower bits per k-mers 
ratio

Partitioned sketches
Minimizers naturally splits the super-k-mer space into 
O(4m) partitions. Since only a subset of the minimizer 
space is selected, a smaller number of partitions are actu-
ally considered. supersampler relies on the fact that 
super-k-mers are centered around a shared minimizer 
to build a partitioned sketch. In practice, we examine all 
non-empty selected partitions, each storing a minimizer 
with their corresponding super-k-mers independently. 
This strategy offers several crucial advantages. First, when 
encoding maximal super-k-mers, we know the position 
of the minimizer within each super-k-mer. By storing the 
minimizer sequence once in the partition, we can omit it in 
all maximal super-k-mers. This results in an even lower bit 
per k-mer ratio:

2(2k −m)

k −m+ 1

4(k −m)

k −m+ 1

Fig.  3 shows the space cost of the different encoding: 
super-k-mer, maximal super-k-mer and partitioned 
super-k-mer according the the minimizer size along with 
the actual performances of supersampler.

This mechanism, by enhancing space efficiency, implies 
that storing larger k-mers as maximal super-k-mers helps 
reducing memory usage. When comparing document 
sketches, matching k-mers between documents are nec-
essarily found in the same partition, so only a given parti-
tion is needed in memory at a time. For sufficiently large 
m, such partitions should be orders of magnitude smaller 
than the total amount of fingerprints, as the expected 
partition size decreases exponentially with m. This par-
titioning technique also allows for substantial speed-ups, 
notably in sketch comparison time, which are discussed 
later on.

Abundance Filtering When working with raw read sets, 
a practical feature is the ability to filter out low-abun-
dance k-mers, which are likely attributable to sequenc-
ing errors. Notably, sourmash lacks this feature and 
requires users to handle such filtering independently. 
Our approach is both user-friendly and efficient, as we 
store only fingerprints abundances, a process considera-
bly less resource-intensive than standard k-mer counting.

However, a potential issue arises when applying abun-
dance filtering: certain k-mer within a chosen super-
k-mer might be excluded, effectively “breaking” them. 
To address this, we initiate an “assembly” phase for all 

Fig. 3  Theoretical space cost of different encodings in bits per k-mer according to the k-mer size along with practical space usage of super-sampler 
sketches on random sequences
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k-mers not already part of a maximal super-k-mer. The 
goal is to produce as many maximal super-k-mers as pos-
sible, while minimizing non-maximal super-k-mers. We 
commence with k-mers having minimizers as suffixes 
and attempt to extend them, using a greedy method, until 
a maximal super-k-mer is obtained. When no more max-
imal super-k-mers can be constructed, we aim to build 
the largest possible sequences in a greedy fashion to min-
imize the total base number similarly to simplitigs [24].

Set comparisons
Jaccard and containment indexes For two finite, non 
empty sets of k-mers A and B, the Jaccard index [6] gives 
a measure of the similarity A and B by comparing the rel-
ative size of the A ∩ B intersection over the A ∪ B union,

The containment index C of the previously defined sets 
A and B measures the relative size of A ∩ B intersection 
over the size of A, i.e., the proportion of distinct k-mers 
of A that are present in B.

0 ≤ JA,B =
|A ∩ B|

|A ∪ B|
≤ 1

0 ≤ CA,B =
|A ∩ B|

|A|
≤ 1

supersampler’s sketch comparison, in line with pre-
vious works, produces an estimator for both Jaccard and 
containment indexes.

Speed up sketch comparisons Unlike sourmash that 
treats sketches in their entirety (algorithm 1), super-
sampler focuses on small related partitions. One par-
tition corresponding to every super-k-mers sharing a 
common minimizer. This allows for two distinct com-
putational improvements. First, a partition that is spe-
cific to a file can be skipped as we know that no k-mer 
present in such partition will be found in another file so 
no matching k-mer exists for this partition, e.g. a mini-
mizer not seen anywhere else. Second, the size of the 
partitions stored in memory being small, we expect few 
cache-misses when comparing partitions unlike sour-
mash for which a cache-miss for each queried finger-
print can be expected. See algorithm  2 for the sketch 
comparison for supersampler. In other words, as 
illustrated in Fig.  4, supersampler concentrates 
exclusively on small, relevant partitions and processes 
each of them only once. The efficiency benefits of this 
approach are magnified when comparing one or mul-
tiple documents against a large collection, as super-
sampler processes only a specific partition of the 
relevant documents at a given time. This targeted pro-
cessing reduces the computational load and enhances 
the overall performance of the comparison.

Fig. 4  How supersampler and sourmash perform their respective sketch comparison. Colored rectangles represent k-mers. Those sharing 
the same color are sharing a common minimizer. In supersampler sketches, k-mers sharing their minimizers are stored in the same partition. 
In this example, we discuss the comparison of one document against a collection, although other use cases can be inferred. supersampler 
is capable of skipping certain partitions that are not relevant to the query. By focusing on smaller sub-parts of the collection one at a time, 
supersampler effectively improves practical performance and reduces memory usage
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Algorithm 1  Sketch comparison in sourmash 

Algorithm 2  Sketch comparison in supersampler 

Multiset comparisons
Angular similarity

When considering the multiplicities of k-mers, the sim-
ilarity between two k-mers multisets can be determined 
using cosine similarity, which is derived from the Euclid-
ean dot product formula. This metric has already been 
used in sourmash and simka. Simka’s authors showed 
this distance was strongly correlated to taxonomic dis-
tance ( [25] page 15-17). it then felt logical to add it in 
supersampler to offer the same range of computa-
tions as sourmash.

The cosine similarity between vectors A = {A1, . . . ,An} 
and B = {B1, . . . ,Bn} is described by:

Let Q be a list of query files Q0..Qi..Qs−1
Let T be a list of target files T0..Ti..Tp−1
HQ is an array of s sets of fingerprints, one for each query file
HT is built similarly for each target
M is a matrix of size s× p filled with 0
for all i ∈ HQ do

for all j ∈ HT do
M [i][j] = |HQ[i] ∩HT [j]| � time linear in the size of the smallest set

end for
end for

Let Q be a list of Query files Q0..Qi..Qs−1
HQ is a hashtable of hashtables
HQ maps any minimizer in a file Qi from Q to a hashtable
The second hashtable maps fingerprints from a given minimizer to a list of indexes
of source files in 0..s− 1
Similarly, a hashtable of hashtables HT is built for each target dataset T0..Tp−1
M is a matrix of size s× p filled with 0s
for all minimizer m = key in HQ do

if m ∈ HT then
for all fingerprint f = key in HQ[m] do

if f ∈ HT [m] then � Partition HT [m] is loaded only if necessary
for all index dq ∈ HQ[m][f ] do

for all index dt ∈ HT [m][f ] do
M [dq][dt]+ = 1

end for
end for

end if
end for

end if
end for

Often, the term “cosine distance” is introduced:

However, it is noteworthy that the cosine distance is not a 
true distance metric because it does not adhere to the tri-
angle inequality. To acquire the triangle inequality prop-
erty, one can use the angular distance:

(2)CSA,B = cos(θ) =
A · B

|A||B|
=

∑n
i=1 AiBi√∑n

i=1 A
2
i

∑n
i=1 B

2
i

(3)CDA,B = 1− CSA,B

(4)ADA,B =
arccos

(
CSA,B

)

π
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Thus, angular similarity becomes:

In supersampler, we’ve introduced a specific mode to 
compute angular similarity. A distinguishing feature of 
this mode is that it counts the abundances of fingerprints 
using a memory-efficient hashmap based on robinhood 
hashing https://​github.​com/​marti​nus/​unord​ered_​dense. 
Because each k-mer in the sketch is associated with its 
abundance, it results in a greater disk space usage as 
reported in Table  5. During the comparison stage, this 
information allows for the computation and display of 
Jaccard, Containment, and Angular similarities

Reducing space overhead Storing an integer for every k-
mer can be resource-intensive, especially for large sketch 
collections. To mitigate this, we introduce two heuristic 
methods designed to drastically reduce overhead, yet still 
offer a reasonable approximation of angular distance. 
Given that applications such as metagenomics and RNA-
seq can exhibit abundance variations spanning several 
orders of magnitude, precise abundance values are not 
always crucial. Instead, logarithmic abundances are more 
commonly examined. Consequently, we offer a mode 
that stores log abundances, which substantially decreases 
disk usage by compressing minuscule values. Log abun-
dances are computed by simply applying a log scaling of 
the abundance counts for each k-mer. Another strategy is 
to retain just one abundance value for each super-k-mer, 
representing the average abundance of its constituent 
k-mers. This technique slashes the number of integers 
stored by a significant factor as showed in Table 5.

(5)ASA,B = 1− ADA,B

Comparisons have been made using a 100X simulated 
sequencing with a 1% substitution rate of C. elegans 
with a subsampling rate of 1000. The table compares the 
size of storing the whole dataset raw and zipped versus 
the dataset subsampled with several heuristics detailed 
earlier. It shows that sourmash’s sketch stored with 
abundance uses 16Mbytes in memory when supersam-
pler’s equivalent uses around 1Mbyte. It then shows the 
evolution of memory consumption with different man-
ners of storing k-mers and super-k-mers abundances 
with several k-mer abundance filters.

Results
All scalability and performance experiments were per-
formed on a single cluster node running with Intel(R) 
Xeon(R) Gold 6130 CPU @ 2.10GHz and 2 64GiB DIMM 
DDR4 Synchronous 2666 MHz ram. Experiments about 
disk consumption and error for Angular similarity were 
performed on a HP elitebook running with Intel(R) core 
i7 12th generation with 32Gb RAM.

In the first section, we evaluate supersampler 
sketches space usage. In the second section, we evalu-
ate the precision and performance of supersampler 
in comparison to sourmash, the current state-of-the-
art solution. Finally, in the last section, we demonstrate 
supersampler’s scalability when indexing extensive 
collections.

Fig. 5  Comparison of different sketch heuristics and base storage of a 100X simulated C. elegans reads. Sourmash and Supersampler represent 
regular k-mer abundance encodings, while ‘Log’ represents a logarithmic k-mer abundance encoding. ‘Super’ is used to denote super k-mer 
abundance encoding, ‘Super log’ denotes super k-mer logarithmic abundance encoding, and ‘Jaccard’ indicates the absence of abundance 
encoding

https://github.com/martinus/unordered_dense
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Space efficiency of supersampler
As previously discussed, the lower bound of memory cost 
for storing k-mers as super-k-mers is given by

bits per k-mer, assuming we store the size of each super-
k-mer in the index. For m = 15 , this bound equates to 9.2 
bits/k-mer with k = 31 and 7.1 bits/k-mer with k = 63 . 
However, in practice, supersampler exhibits lower 
space usage. Figure  16 in the supplementary materials 

2 ·
3k −m− 1+ log2(k −m+ 1)

k −m+ 1

reveals that approximately 6.5 bits/k-mer and 5 bits/k-
mer are achieved for k = 31 and 63, respectively.

These results can be attributed to the low density 
permitted by supersampler’s minimizer selec-
tion scheme. As illustrated in Fig.  6, the density factor 
quickly diminishes as the subsampling rate increases, 
respectively as the fraction f diminishes. When the sub-
sampling rate is 2, the density factor falls below 1.5, the 
lower bound of the minimizer scheme, and continues to 
decline toward 1. In general, subsampling tools seldom 
apply rates below 100, with sourmash defaulting to a 

Fig. 6  Measured density factor compared to the model

Fig. 7  Space cost in bits per k-mer according to the subsampling rate with and without using decycling sets (yellow and red lines)
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rate of 1000 i.e. f = 1/1000 . Consequently, supersam-
pler consistently remains close to the lower bound for 
the density factor, since the density factor for a subsam-
pling rate of 100 is already below 1.04. This facilitates the 
indexing of longer super-k-mers, which are stored more 
efficiently as their length increases.

To further reduce memory costs, supersampler 
offers an option to use its selection scheme in conjunc-
tion with existing UHS-based minimizer schemes, spe-
cifically the modified double decycling sets introduced 
in [23]. As depicted in Fig.  7, this approach marginally 
improves the bit/k-mer cost, particularly for smaller val-
ues of k.

A high proportion of maximal super-k-mers in a 
sketch is advantageous for supersampler, as it low-
ers the bit/k-mer cost. Figure  8 demonstrates that the 
percentage of maximal super-k-mers increases rapidly 
with the subsampling rate, reaching 90%, 99%, and 
99.9% of indexed super-k-mers when the subsampling 
rate is around 10, 100, and 1000, respectively. This fea-
ture is particularly significant because it enables a rapid 
and considerable reduction in the bit/k-mer cost by 
efficiently encoding maximal super-k-mers. Therefore, 
with the subsampling rates commonly used in prac-
tice, which involve a very high proportion of maximal 

super-k-mers, the actual bound is determined by the 
following formula

Performance comparison
In our qualitative experiment, we compared the per-
formance of supersampler with sourmash, which 
implements FracMinHash. We evaluated both tools on 
two distinct datasets: 1024 Salmonella genomes from 
GenBank and 1024 bacterial genomes from RefSeq. 
These collections were chosen due to their differing con-
tainment indexes; Salmonella genomes are highly simi-
lar to each other, while the bacterial genomes in RefSeq 
exhibit much greater dissimilarity (Jaccard similarity 
close to 0).

We carried out an all-versus-all comparison of these 
collections using both tools and monitored RAM and 
disk usage, as well as computation time during the sketch 
comparisons. To assess the precision of the approximated 
scores, we calculated the exact Jaccard and containment 
similarity values using Simka [25], which performs effi-
cient k-mer counting operations on large collections. 

2(2k −m)

k −m+ 1

Fig. 8  Fraction of maximal super-k-mers according to the subsampling rate



Page 12 of 25Rouzé et al. Algorithms for Molecular Biology            (2025) 20:1 

With these scores as a reference, the precision of the 
approximation can be evaluated.

RAM and computation time were measured using 
the benchmark flag from Snakemake, with one run per 
command. Disk usage was determined by comparing 
the sketch sizes of sourmash (using the zip option for 
sourmash sketch) and supersampler, with the latter’s 
sketch sizes examined through a Python script. super-
sampler sketches were stored in a tar archive and com-
pressed using gzip -9.

RAM, time, and sketch size
Figures 9,17 and  demonstrate that, for k = 31 , super-
sampler generally consumes 5 times less RAM and 
requires generally 16 times less space than sourmash. 
Additionally, supersampler performs computations 
50 times faster than sourmash when comparing highly 
dissimilar genomes. However, when genomes are very 
similar, such as with Salmonella, comparison times are 
comparable since supersampler’s time optimiza-
tion does not apply on very similar documents. We also 

Fig. 9  Resource consumption results for 1024 bacterial genomes from RefSeq. For these results, k = 31 . For results on Salmonella genomes 
and k = 63 , see Figures 17, 18,19 and  in the appendix
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note that minimizer size has little to no impact on these 
metrics.

Figures  18 and 19 reveal that the improvement in 
sketch disk size is even more significant with larger val-
ues of k. supersampler uses in general 50 times less 
disk space than sourmash with k = 63 , while maintain-
ing similar differences in RAM and computation time.

Error
As depicted in Fig.  10, supersampler’s error per-
formance is on par with sourmash, though it does 
display a marginally lower accuracy. This slight dip in 
accuracy can be attributed to a clustering effect, which 
arises when supersampler selects overlapping 
k-mers around small minimizers. However, this effect is 
offset by supersampler’s proficiency in indexing and 
comparing a larger number of k-mers using equivalent 

Fig. 10  Error Jaccard similarity approximation for sourmash and supersampler against the compressed sketch sizes. This plot shows 
the results for 20 files of salmonellas simulated reads with k = 31 , m = 13 . Reads are 150bp long for a 100X coverage. Dashed lines represent 
the sizes of the sketches indexing all k-mers

Fig. 11  Error against Simka on Containment similarity approximation for sourmash (red line) and supersampler with different minimizer 
sizes. This plot is for 1024 Salmonellas genomes with k = 63 . Other results for RefSeq and Salmonellas are available at Figure 20. Jaccard similarity 
error is available at Figure 21 in the appendix
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memory and typically in a shorter computation time. In 
Fig.  11, we further assess the trade-off between accu-
racy and compressed sketch size by measuring the 
error relative to sketches compressed at gzip’s maxi-
mum compression level. Our findings indicate that, in 
terms of the precision-to-cost ratio, supersampler 
holds a favorable position against sourmash.

Additionally, supersampler stores k-mers in plain 
text without any loss of information, which means that 
k-mers of interest can actually be retrieved. While 
sourmash could rely on invertible hash functions 
and larger hashes to match this ability, doing so would 
effectively increase their space usage.

Fig. 12  Computational time for comparisons on different amounts of bacterial genomes from RefSeq. From 100 to 128,000 genomes with k = 63 , 
s = 1000 and m = 15 sourmash was run up to 32,000 genomes as it was taking too much time for the 2 last experiments

Fig. 13  Error on Angular similarity approximation for sourmash and the different supersampler strategies. This plot shows the results for 20 
files of salmonellas simulated reads with k = 31 , m = 13 . Reads are 150bp long for a 100X coverage. Dashed lines represent the sizes of the sketches 
indexing all k-mers
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Massive collection indexing
As a scalability experiment, supersampler and sour-
mash were monitored on their performances while ana-
lysing growing collection of RefSeq bacterial genomes. 
Result are displayed in Fig. 12. We can see that our tool 
is able to handle all versus all comparison very large scale 
collection comparison effectively. For the biggest amount 
of files, supersampler took 25 CPU hours. We observe 
that the gap between sourmash and supersampler 
is diminishing for larger collection as the output matrix 
itself become large and generate cache-miss for every 
update. The sketch creation step is essentially cheap as 
both tools only took a couple CPU hours the actual bot-
tleneck being IO.

Angular similarity
To benchmark our tool directly against the angular 
similarity estimator of sourmash, we simulated 20 
read sets, each 150bp in length, from 20 Salmonella 
genomes at a 100X coverage with a 0.1% error rate. We 
then evaluated each tool based on the deviation in their 
estimations from the original, unsubsampled sets. This 
provided insight into how each tool’s accuracy varied as 
the subsampling rate increased. It is worth noting that 
while SPSP can apply an abundance cutoff, we did not 
utilize this feature in our experiment to ensure a fair 
comparison with sourmash, which lacks this capabil-
ity. Thus, any k-mer could be selected in our tests, irre-
spective of its abundance.

We observe in Fig. 13 that whilst SPSP is still less pre-
cise than sourmash, the gain in disk, time and RAM 
is largely compensating for this loss of precision, even 
when taking abundances into account.

Conclusion
In this paper, we present both theoretical and practi-
cal results of an innovative subsampling scheme based 
on super-k-mers. We introduce the fractional hitting 
sets framework and propose a straightforward sketch-
ing method to highlight its benefits. This approach offers 
improved density compared to other schemes and tends 
to select k-mers that contribute to better space usage. 
Capitalizing on this scheme, we propose supersam-
pler, an open-source sketching method for metagen-
omic assessment.

Through comprehensive experimental evaluation, we 
demonstrate that supersampler enables efficient and 
lightweight analysis of extensive genomic data sets with 
fewer resource requirements compared to the state-
of-the-art tool sourmash. More generally our results 

confirm the validity of our methodology from both theo-
retical and experimental standpoints.

We recognize several potential enhancements for 
our study. First, concerning supersampler’s imple-
mentation, we aim to refine the tool for increased user-
friendliness and adaptability for routine analysis while 
augmenting its capabilities. Implementation of such 
improvements will lead to more thorough experiments 
with existing sampling methods [26] as well as new com-
parisons with sourmash using the same amount of 
disk memory in order to better show supersampler’s 
capacity with regard to both fixed-size and scalable 
sketches. Other, more distant methods and different met-
rics such as ANI are used to answer the same problems. 
Comparing supersampler to such metrics and meth-
ods is the next step to further support supersampler’s 
interest.

We plan to investigate alternative methods for sketch 
comparison, like sorted fingerprints, which could poten-
tially reduce the complexity of the comparison process. 
From a theoretical perspective, delving deeper into the 
properties of Fractional Hitting Sets and gaining a better 
understanding of density and restricted density bounds 
for various values of f may lead to even more efficient and 
robust sketching techniques.

Appendix 1
Useful lemmas
Lemma 1  Assuming p is non-increasing with respect to 
w , 1− (1− p)w+1 =

w→∞
f + o(1)

Proof  (1− p)w+1 = (1− p)w − p(1− p)w

•	 if p −→
w→∞

0 , p(1− p)w −→
w→∞

0

•	 otherwise p ≥ c for some c > 0 since it is non-
increasing, so p(1− p)w ≤ p(1− c)w −→

w→∞
0

Therefore, (1− p)w+1 = (1− p)w + o(1) 	�  �

We use Ŝ  to denote the set of k-mers containing a small 
m-mer.

Lemma 2  Given two consecutive k-mers W0 and W1 , 
P(W0,W1 ∈ Ŝ) =

w→∞
f + o(1)
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Proof 

	�  �

Lemma 3  p =
w→∞

− 1
w ln(1− f )+ o(1/w)

Proof  Because of property  1, we have 
p = 1− (1− f )1/w and

	�  �

Appendix 2
Proof of theorem 1
In order to upper bound the density, we follow the same 
approach as the one presented in [22] (for the proof of 
theorem 7). As stated in [22], the density is equivalent to 
the probability that a context c (that is, the string formed 
by two consecutive k-mers) is charged, i.e. the two k-mers 
of c have different minimizers.

Lemma 4  (lemma  9 from [22]) Assuming 
m > (3+ ε) logσ w,

If c has no duplicate m-mers, the small m-mers are all 
distinct and each of them has the same probability to be 
minimal since h is random. Therefore,

P(W0,W1 ∈ Ŝ) = 1− P(W0 /∈ Ŝ ∨W1 /∈ Ŝ)

= 1−
[
P(W0 /∈ Ŝ)+ P(W1 /∈ Ŝ)

−P(W0 /∈ Ŝ ∧W1 /∈ Ŝ)
]

= 1− 2(1− p)w + (1− p)w+1

= 1− (1− p)w + o(1) (Lemma 1)

= f + o(1)

(1− f )1/w = exp
[
1
w
ln(1− f )

]

= 1+
1
w
ln(1− f )+ o(1/w)

d = Pc,h(c is charged)
≤ Pc,h(c has duplicatem−mers)
+ Pc,h

(
c is charged | no duplicatem-mers

)

Pc,h(c has duplicatem− mers) = o(1/w)

Pc,h

(
c is charged | no duplicatem-mers

)

= Ec,h

[
Mboundary

Mtotal

]

where Mboundary denotes the number of boundary m-
mers that are small and Mtotal denotes the total number 
of small m-mers in c.

Let x0 denote the first m-mer of c and xw denote the last 
one,

Assuming x0 is small, we have Mtotal = 1+ X with 
X ∼ B(w, p) , since each other m-mer of c has a probabil-
ity p to be small.

Lemma 5 
∑w

i=0
1

1+i

(
w
i

)
pi(1− p)w−i =

1−(1−p)w+1

(w+1)p

Finally, since P(x0 ∈ S) = p , 
d ≤ 2 ·

1−(1−p)w+1

w+1
+ o(1/w) =

2f
w+1

+ o(1/w) (Lemma 1)

Appendix 3
Proof of theorem 2
In this section, we assume that every k-mer we work 
with contains a small m-mer.

Just as for the proof of theorem 1, we still have
d ≤ Pc,h(c has duplicatem−mers)+ Pc,h

(
c is charged | no duplicatem-mers

)

d ≤Pc,h(c has duplicatem−mers)

+ Pc,h

(
c is charged | no duplicatem-mers

) and

Lemma 6  Assuming m > (3+ ε) logσ w , 
Pc,h(c has duplicatem-mers) = o(1/w)

Proof  This proof is similar to the proof of lemma  9 
from [22]. Let i, j ∈ �0,w� with i < j , δ = j − i.

If δ < m , P(xi = xj) =
σδ

σm+δ = 1
σm = o(1/w3)

If δ ≥ m,

Ec,h
[Mboundary

Mtotal

]
= Ec,h

[ 1x0∈S + 1xw∈S
Mtotal

]
= 2 · Ec,h

[ 1x0∈S
Mtotal

]
symmetry

= 2 · Ec,h
[
1/Mtotal | x0 ∈ S

]
· P(x0 ∈ S)

Ec,h[1/Mtotal | x0 ∈ S] = Ec,h

[
1

1+ X

]
=

w∑

i=0

1
1+ i

(
w
i

)
pi(1− p)w−i

Pc,h
(
c is charged | no duplicatem-mers

)
= Ec,h

[Mboundary
Mtotal

]

= 2 · Ec,h
[
1/Mtotal | x0 ∈ S

]
· P(x0 ∈ S |W1 ∈ Ŝ)

P(xi = xj) = P(xi = xj | xi, xj ∈ S)P(xi, xj ∈ S)
+ P(xi = xj | xi, xj /∈ S)P(xi, xj /∈ S)

=
P(xi, xj ∈ S)

p · σm +
P(xi, xj /∈ S)
(1− p)σm
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Because of lemma  2, 
P(xi, xj ∈ S) =

p2

P(W0,W1∈Ŝ)
=

p2

f+o(1) ≤ p and

Therefore, P(xi = xj) ≤
p

p·σm +
(1−p)2

(1−p)σm ≤ 2
σm = o(1/w3)

T h u s 

Pc,h(c has duplicatem-mers) =

(
w

2

)
× o(1/w3) = o(1/w) 	

� �

Assuming x0 is small, the w next m-mers of c form a k-
mer, so we know that at least one of them is also small. 
Therefore,

What’s more, P(x0 ∈ S |W1 ∈ Ŝ) =
P(x0∈S)

P(W1∈Ŝ)
=

p
f  . Hence,

P(xi , xj /∈ S) ≤
(1− p)2

[
1− (1− p)w−1

]

P(W0,W1 ∈ Ŝ)

=

(1− p)2
[
1− (1− p)w−1

]

f + o(1)
≤ (1− p)2

Ec,h[1/Mtotal | x0 ∈ S]

= Ec,h

[
1

1+ X
| X ≥ 1

]

=
1

P(X ≥ 1)

w∑

i=1

1
1+ i

(
w
i

)
pi(1− p)w−i

=
1
f

[
1− (1− p)w+1

(w + 1)p
− (1− p)w

]

=
1
f

[
f + o(1)
(w + 1)p

− (1− f )
]

(Lemma 5and 1)

Appendix 4
Proof of theorem 3
In order to compute the proportion of maximal super-k-
mers, we adapt the proof of theorem 4 from [20] (Fig. 14).

First, we introduce a similar Markov chain representing 
the position X of the small minimizer in the k-mer, with an 
extra state ∅ when there is no small minimizer.

We reuse the following notations introduced in [20]:

•	 Plr is the proportion of left-right-max (i.e. maximal) 
super-k-mers

•	 Pl is the proportion of left-max super-k-mers
•	 Pr is the proportion of right-max super-k-mers
•	 Pn is the proportion of non-max super-k-mers

∀i ∈ �1,w − 1�,P(first X = i) = P(X = 1) ·
f
w

By symmetry, Pl = Pr , so 
1− P(X = 1) · f · (1− 1/w) = P(X = 1) · (1+ f /w)

Therefore, P(X = 1) = 1
1+f  and 

P(X = w) = 1−
f

1+f

(
1− 1

w

)
=

1+f /w
1+f

What’s more, 
1+ Plr = Plr + Pl + Plr + Pr + Pn = 2 · P(X = w)+ Pn 
so

d ≤
2p
f 2

[
f + o(1)
(w + 1)p

− (1− f )
]
+ o(1/w)

=
2

f (w + 1)
−

2(1− f )p
f 2

+ o(1/w)

=
2

f (w + 1)
+

2(1− f ) ln(1− f )
f 2w

+ o(1/w) (Lemma 3)

= 2 ·
f + (1− f ) ln(1− f )

f 2(w + 1)
+ o(1/w)

Plr + Pr = P(X = w) = P(first X = w)

= 1−
w−1∑

i=1
P(first X = i)

= 1− P(X = 1) · f · (1− 1/w)

Plr + Pl = P(last X = 1) = P(X = 1)
+ P(first X = 1) = P(X = 1) · (1+ f /w)

Plr = Pn + 2 · P(X = w)− 1 = Pn +
1− f (1− 2/w)

1+ f

and Pl = Pr = P(X = w)− Plr =
f (1− 1/w)

1+ f
− Pn

Fig. 14  The chain is in state i ∈ �1,w� if the small minimizer starts 
at position i  in the k-mer, and ∅ if there is no small minimizer. 
Different edge colors represent different probabilities
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Thus Pl = Pr =
[(

1− 1
w

)
f

1+f

][
1−

(
1− 1

w

)
f

1+f

]
 and 

Plr =
[(

1− 1
w

)
f

1+f

]2
+

1−f (1−−2/w)
1+f

Pn = P(first X �= w) · P(last X �= 1) = P(X = 1)

· f · (1− 1/w) · [1− P(X = 1) · (1+ f /w)]

=

(
1−

1
w

)
·

f
1+ f

·

[
1−

1+ f /w
1+ f

]

=

(
1−

1
w

)
·

f
1+ f

·
f (1− 1/w)

1+ f
=

[(
1−

1
w

)
f

1+ f

]2

Appendix 5
Proof of theorem 4
This proof generalizes the proof of theorem  1 when the 
minimizers are selected from a UHS U with density dU.

First, because of independence, we have 
P(x0 ∈ S ∩ U) = P(x0 ∈ S) · P(x0 ∈ U) and P(|S ∩ U ∩ c| = i)

=
∑

n≥i
P(|U ∩ c| = n)P(|S ∩ U ∩ c| = i | |U ∩ c| = n)

The main change of the proof lies in the bound on the 
expectation:

E
[

1
|S ∩ U ∩ c|

| x0 ∈ S ∩ U
]
=

w∑

i=0

1
i + 1

P
(
|S ∩ U ∩ c| = i + 1 | x0 ∈ S ∩ U

)

=

w∑

i=0

1
i + 1

w∑

n=i
P(|U ∩ c| = n+ 1 | x0 ∈ U)P(|S ∩ U ∩ c| = i + 1 | |U ∩ c| = n+ 1, x0 ∈ S ∩ U)

=

w∑

n=0
P(|U ∩ c| = n+ 1 | x0 ∈ U)

n∑

i=0

1
i + 1

P(|S ∩ U ∩ c| = i + 1 | |U ∩ c| = n+ 1, x0 ∈ S ∩ U)

=

w∑

n=0
P(|U ∩ c| = n+ 1 | x0 ∈ U)

n∑

i=0

1
i + 1

P(|S| = i + 1 | x0 ∈ S , |W | = n)

=

w∑

n=0
P(|U ∩ c| = n+ 1 | x0 ∈ U) ·

1− (1− p)n+1

(n+ 1)p
(Lemma 5)

≤

w∑

n=0
P(|U ∩ c| = n+ 1 | x0 ∈ U) ·

f + o(1)
(n+ 1)p

(Lemma 1)

Therefore, using the same arguments as in the proof of 
theorem 1, we obtain

dS∩U ≤ 2 · P(x0 ∈ S ∩ U) · E
[

1
|S ∩ U ∩ c|

| x0 ∈ S ∩ U
]
+ o(1/w)

≤ 2 · P(x0 ∈ U) · P(x0 ∈ S)
w∑

n=0
P(|U ∩ c| = n+ 1 | x0 ∈ U) ·

f
(n+ 1)p

+ o(1/w)

= f · 2 · P(x0 ∈ U)
w∑

n=0

1
n+ 1

P(|U ∩ c| = n+ 1 | x0 ∈ U)+ o(1/w)

= f · dU + o(1/w)

Appendix 6
Additional figures
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Fig. 15  Theoretical bounds on the density factor and the proportion of maximal super-k-mers depending on the fraction f of covered k-mers

Fig. 16  Space cost in bits per k-mer according to the subsampling rate
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Fig. 17  Salmonellas 1K k=31
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Fig. 18  Refseq 1K k=63
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Fig. 19  Salmonellas 1K k=63
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Fig. 20  Error for containment similarity approximation for sourmash (red line) and supersampler on different values for minimizer sizes
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Fig. 21  Error for Jaccard similarity approximation for sourmash (red line) and supersampler on different values for minimizer sizes
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