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Abstract 

Pangenome reference graphs are useful in genomics because they compactly represent the genetic diversity 
within a species, a capability that linear references lack. However, efficiently aligning sequences to these graphs 
with complex topology and cycles can be challenging. The seed-chain-extend based alignment algorithms use 
co-linear chaining as a standard technique to identify a good cluster of exact seed matches that can be combined 
to form an alignment. Recent works show how the co-linear chaining problem can be efficiently solved for acyclic 
pangenome graphs by exploiting their small width and how incorporating gap cost in the scoring function improves 
alignment accuracy. However, it remains open on how to effectively generalize these techniques for general pange-
nome graphs which contain cycles. Here we present the first practical formulation and an exact algorithm for co-
linear chaining on cyclic pangenome graphs. We rigorously prove the correctness and computational complexity 
of the proposed algorithm. We evaluate the empirical performance of our algorithm by aligning simulated long reads 
from the human genome to a cyclic pangenome graph constructed from 95 publicly available haplotype-resolved 
human genome assemblies. While the existing heuristic-based algorithms are faster, the proposed algorithm provides 
a significant advantage in terms of accuracy. 

Implementation (https://​github.​com/​at-​cg/​PanAl​igner).
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Introduction
Graph-based representation of genome sequences has 
emerged as a prominent data structure in genomics, 
offering a powerful means to represent the genetic varia-
tion within a species across multiple individuals [1–7]. A 
pangenome graph can be represented as a directed graph 
G(V,  E) such that vertices are labeled by characters (or 
strings) from the alphabet {A,C,G,T}. The topology of the 
graph is determined by the count and the type of variants 
included in the graph. For example, inversions, duplica-
tions, or copy number variation are best represented as 
cycles in a pangenome graph [4, 5, 8–10]. As a result, the 

draft pangenome graphs published by the Human Pange-
nome Reference Consortium [4] and the Chinese Pange-
nome Consortium [11] are also cyclic. Aligning reads or 
assembly contigs to a directed labeled graph is a funda-
mental problem in computational pangenomics [12, 13]. 
Aligning reads to graphs is also useful for other bioinfor-
matics tasks such as long-read de novo assembly [14–16] 
and long-read error correction [17, 18].

Formally, the sequence-to-graph alignment prob-
lem seeks a walk in the graph that spells a sequence 
with minimum edit distance from the input sequence. 
O(|Q||E|) time alignment algorithms for this problem are 
already known, where Q is the query sequence [19, 20]. 
The known conditional lower bound [21] implies that 
an exact algorithm significantly faster than O(|Q||E|) is 
unlikely. This lower bound also holds for de Bruijn graphs 
[22]. Therefore, fast heuristics are used to process high-
throughput sequencing data.
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Seed-chain-extend is a common heuristic used by 
modern alignment tools [23–25]. This is a three-step 
process. First, the seeding stage involves computing 
exact seed matches, such as k-mer matches, between 
a query sequence and a reference. These matches 
are referred to as anchors. The presence of repetitive 
sequences in genomes often leads to a large number of 
false positive anchors. Subsequently, the chaining stage 
is employed to link the subsets of anchors in a coherent 
manner while optimizing specific criteria (Fig. 1). This 
procedure also eliminates the false positive anchors. 
Finally, the extend stage returns a base-to-base align-
ment along the selected anchors. Efficient generali-
zation of the three stages to pangenome graphs is an 
active research topic [13]. Many sequence-to-graph 
aligners already exist that differ in terms of implement-
ing these stages [5, 26–30]. This paper addresses the 
generalization of the chaining stage to cyclic pange-
nome graphs (Figs. 2, 3).

Related work
Co-linear chaining is a mathematically rigorous method 
to filter anchors after the seeding stage. It has been well-
studied for the sequence-to-sequence alignment case 
[31–37]. The input to the chaining problem is a set of N 
weighted anchors. An anchor can be denoted as a pair 
of intervals in the two sequences corresponding to the 
exact seed match. A chain is an ordered subset of anchors 
whose intervals must appear in increasing order in both 
sequences. The co-linear chaining problem seeks the 
chain with the highest score, where the score of a chain 
is calculated by summing the weights of the anchors in 
the chain and subtracting the penalty for gaps between 
adjacent anchors. The problem is solvable in O(N logN ) 
time [31].

The first effort to generalize the co-linear chain-
ing problem to graphs was made by Makinen et  al. 
[38]. They addressed the co-linear chaining problem 
on directed acyclic graphs (DAGs). The authors intro-
duced a sparse dynamic programming algorithm whose 

Fig. 1  An illustration of co-linear chaining for sequence-to-graph alignment. Assume that the vertices of the graph are labeled with nucleotide 
sequences. In panel a, short exact matches, i.e., anchors, are illustrated using red blocks joined by dotted lines. In panel b, the anchors 
corresponding to the best-scoring chain are retained, and the rest are removed. The retained anchors are combined to produce an alignment 
of the query sequence to the graph (illustrated using a green curved line)

Fig. 2  An example illustrating a graph, a query sequence, and multiple anchors as input for co-linear chaining. The sequence of anchors 
(M[1], M[2], M[4], M[5], M[7], M[8]) forms a valid chain that visits vertex v4 twice due to a cycle in the graph. The coordinates associated with anchor 
M[8] are also highlighted as an example
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runtime complexity is parameterized in terms of the 
width of the DAG. The width of a DAG is defined as the 
minimum number of paths in the DAG such that each 
vertex is included in at least one path. Parameterizing 
the complexity in terms of the width is helpful because 
pangenome graphs typically have small width in prac-
tice [26, 29, 38]. An optimized version of their algorithm 
requires O(KN logKN ) time for chaining, where K is the 
width of the DAG [29]. This formulation has been further 
extended to incorporate gap cost in the scoring function 
[26], and for solving the longest common subsequence 
problem between a DAG and a sequence [39].

There is limited work on formulating and solving 
the co-linear chaining problem for general pangenome 
graphs which might contain cycles. One way to address 
this was discussed in [29, Appendix section], but the 
proposed formulation is oblivious to the coordinates 
of anchors that lie in a strongly connected component 
of the graph. Their algorithm works by shrinking every 
strongly connected component into a single vertex and 
applying the same algorithm developed for DAGs. With 
this approach, the high-scoring anchor chains in cyclic 
regions of the graph may result in low-quality alignments.

Contributions
In this paper, we build on top of the algorithmic tech-
niques developed for DAGs [26, 29, 38] and propose 
novel formulations for cyclic pangenome graphs. Our 
proposed algorithm exploits the small width of pange-
nome graphs similar to [38]. Our approach for defining 
the gap cost between a pair of anchors is inspired by the 
corresponding function defined on DAGs [26].

We address the following three challenges that arise on 
cyclic pangenome graphs. First, the dynamic program-
ming-based chaining algorithms developed for DAGs 
exploit the topological ordering of vertices [26, 29, 38], 
but such an ordering is not available in cyclic graphs. 
Second, computing the width and a minimum path cover 
can be solved in polynomial time for DAGs but is NP-
hard for general directed graphs [40]. Third, the walk cor-
responding to the optimal sequence-to-graph alignment 

can traverse a vertex multiple times if there are cycles. 
Accordingly, a chain of anchors should be allowed to loop 
through vertices. Our proposed problem formulation and 
the proposed algorithm address the above challenges.

Our approach involves computing a path cover 
P of the input graph during preprocessing, fol-
lowed by chaining of anchors using iterative algo-
rithms. Let Ŵc,Ŵl ,Ŵd be the parameters that specify 
the count of iterations used in our algorithms (for-
mally defined later). Our chaining algorithm solves the 
stated objective in O(Ŵc|P|N logN + |P|N log |P|N ) 
time after a one-time preprocessing of the graph in 
O((Ŵl + Ŵd + log |V |)|P||E|) time. We will show that 
parameters Ŵc,Ŵl ,Ŵd are small in practice to justify the 
practicality of this approach. The runtime complexity also 
depends on |P| , which is determined by our path cover 
finding heuristic. We show that the number of paths in 
our path cover is small and near-optimal in practice.

We implemented the proposed chaining algorithm 
as an open-source software PanAligner. We designed 
PanAligner as an end-to-end sequence-to-graph aligner 
using seeding and alignment code from Minigraph [28]. 
We evaluated the scalability and alignment accuracy of 
PanAligner by using a cyclic human pangenome graph 
constructed from 94 high-quality haplotype-resolved 
assemblies [4] and CHM13 human genome assembly 
[41]. We achieve the highest long-read mapping accu-
racy 98.7% using PanAligner when compared to exist-
ing methods Minigraph [28] ( 98.1% ) and GraphAligner 
[30] ( 97.0% ). PanAligner also supports a hybrid method 
which identifies a subset of reads that are relatively “easy-
to-align” and utilizes fast Minigraph heuristics [28] for 
aligning them. This option significantly improves the 
speed of the algorithm.

Notations and problem formulations
Pangenome graph G(V ,E, σ) is a string labeled graph 
such that function σ : V → �+ labels each vertex v 
with string σ(v) over alphabet � = {A,C ,G,T } . Let Q 
be a query sequence over � . Let M[1..N] be an array of 
anchor tuples (v, [x..y], [c..d]) with the interpretation that 

Fig. 3  An illustration of the proposed heuristic used to convert a cyclic graph into a DAG. Red-dotted edges represent the removed back edges 
in each strongly connected component (SCC)
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substring σ(v)[x..y] from the graph matches substring 
Q[c..d] in the query sequence. Throughout this paper, 
all indices start at 1. We will assume that |E| ≥ |V | − 1 . 
Function weight assigns a user-specified weight to each 
anchor. For example, the weight of an anchor could be 
proportional to the length of the matching substring.

A path cover is a set P = {P1,P2, . . . ,P|P|} of paths 
in graph G such that every vertex in V is included in 
at least one of the |P| paths. We define paths(v) as 
{i : Pi includes v} . If i ∈ paths(v) , then let index(v, i) spec-
ify the position of vertex v on path Pi . Suppose R−(v) is 
the set of vertices in V that can reach vertex v through 
any walk in graph G. We will assume that the set R−(v) 
always includes the vertex v. The value last2reach(v,  i) 
for v ∈ V , i ∈ [1, |P|] represents the last vertex on path Pi 
that belongs to set R−(v) . Note that last2reach(v, i) does 
not exist if there is no vertex on path Pi that belongs to 
R−(v) . Let N+(v) and N−(v) be the set of outgoing and 
incoming neighbor vertices of vertex v, respectively.

We need to calculate character distances between pairs 
of anchors in the graph while solving the co-linear chain-
ing problem. Assume that edge (v,u) ∈ E has length 
|σ(v)| > 0 . Let D(v1, v2) denote the length of the short-
est path from vertex v1 to v2 in G. We set D(v1, v2) = ∞ 
if there is no path from v1 to v2 , whereas D(v1, v2) = 0 if 
v1 = v2 . We use D◦(v) to specify the length of the shortest 
proper cycle containing v. D◦(v) = ∞ if v is not part of any 
proper cycle. If Pi includes v, let dist2begin(v, i) denote the 
length of the sub-path of path Pi from the start of Pi to v.

Our algorithm will use a balanced binary search tree 
data structure for executing range queries efficiently. It 
has the following properties.

Lemma 1  (ref. [42]) Let n be the number of leaves in a 
tree, each storing a (key, value) pair. The following opera-
tions can be supported in O(log n) time:

•	 update (k,  val): For the leaf w with key = k , 
value(w) ←− max(value(w), val).

•	 RMQ(l,  r): Return max{value(w) | l < key(w) < r} 
such that w is a leaf. This is the range maximum 
query.

Given n (key, value) pairs, the tree can be constructed in 
O(n log n) time and O(n) space.

Next, we define a precedence relation between a pair 
of anchors, which is a partial order among the input 
anchors [29].

Definition 1  (Precedence) Given two anchors M[i] 
and M[j], we define M[i] precedes (≺) M[j] as fol-
lows. If M[i].v �= M[j].v , then M[i] ≺ M[j] if and 
only if M[i].d < M[j].c and M[i].v reaches M[j].v. 
If M[i].v = M[j].v , then M[i] ≺ M[j] if and only if 
M[i].d < M[j].c , and M[i].y < M[j].x or the graph has a 
proper cycle containing M[i].v.

Definition 2  (Chain) Given the set of anchors 
{M[1],M[2], . . . ,M[N ]} , a chain is an ordered subset of 
anchors S = s1s2 · · · sq of M, such that sj precedes sj+1 for 
all 1 ≤ j < q.

Our co-linear chaining problem formulation seeks a chain 
S = s1s2 · · · sq that maximizes the chain score defined as 
∑q

j=1
weight(sj)−

(
∑q−1

j=1
gapQ(sj , sj+1)+

∑q−1

j=1
gapG

(sj , sj+1)
)

 . Functions gapQ and gapG specify the gap cost 
incurred in the query sequence and the graph, respectively. 
Although we specifically focus on problem formulations 
where the gap cost is calculated as the sum of gapG 
and gapQ , our approach can be extended to other gap 
definitions such as |gapG − gapQ| , min(gapG , gapQ) , or 
max(gapG , gapQ) , similar to [26]. We define gapQ(sj , sj+1) 
as sj+1.c − sj .d − 1 , which can be interpreted as the count 
of characters in the query sequence between the endpoints 
of the two anchors. Next, we will define two versions of the 
co-linear chaining problem that differ in their definition 
of gapG . In both versions, gapG(sj , sj+1) is calculated by 
looking at the count of characters spelled along a walk in 
the graph from sj to sj+1 . In the first version of the problem 
formulation, we use the shortest path from vertex sj .v to 
sj+1.v to calculate gapG(sj , sj+1).

Problem 1  Given a query sequence Q, graph G(V ,E, σ) 
and anchors M[1..N], determine the optimal chaining 
score by using the following definition of gapG:

gapG(sj , sj+1) =







sj+1.x − sj .y− 1+ D(sj .v, sj+1.v) sj+1.v �= sj .v
sj+1.x − sj .y− 1 sj .v = sj+1.v and sj .y < sj+1.x
sj+1.x − sj .y− 1+ D◦(sj .v) sj .v = sj+1.v and sj .y ≥ sj+1.x,
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where (sj , sj+1) is a pair of anchors from M such that sj 
precedes sj+1.

Lemma 2  Problem  1 can be solved in 
�(|V ||E| + |V |2 log |V | + N 2) time.

Proof  Compute the shortest distance D(vi, vj) between 
all pairs of vertices vi, vj ∈ V  in O(|V ||E| + |V |2 log |V |) 
time by using Dijkstra’s algorithm from every vertex. 
Next, compute D◦(v) as minu∈N+(v) |σ(v)| + D(u, v) 
in �(|E|) time for all v ∈ V  . These computations 
need to be done only once for a graph. To solve the 
chaining problem for a given query sequence, sort 
the input anchor array M[1..N] in non-decreas-
ing order by the component M[·].c . Let C[1..N] be a 

one-dimensional table in which C[j] will be the optimal 
score of a chain ending at anchor M[j]. Initialize C[j] 
as weight(M[j]) for all j ∈ [1,N ] . Subsequently, com-
pute C in the left-to-right order by using the recursion 
C[j] = maxM[i]≺M[j]{C[j],weight(M[j])− gapQ(M[i],

M[j])− gapG(M[i],M[j])} . Computing C[j] takes �(N ) 
time because precedence condition can be checked in 
constant time. Report maxj C[j] as the optimal chaining 
score. �

The above algorithm is unlikely to scale to large 
whole-genome sequencing datasets because it requires 
�(N 2) time for the dynamic programming recursion. 
Motivated by [26], we will define an alternative defini-
tion of gapG . We will approximate the distance between 
a pair of vertices by using a path cover of the graph. We 
will later propose an efficient algorithm for the revised 
problem formulation.

Suppose P = {P1,P2, . . . ,P|P|} is a path cover of 
graph G. Consider a pair of vertices v1, v2 ∈ V  such 
that v1 reaches v2 . For each path i ∈ paths(v1) , consider 
the walk starting from v1 along the edges of path Pi till 
vertex αi , where vertex αi = v2 if v2 also lies on path Pi 
anywhere after v1 , i.e., index(v2, i) ≥ index(v1, i) , and 
αi = last2reach(v2, i) otherwise. If αi  = v2 , the rest of 
the walk till v2 is completed by using the shortest path 
from vertex αi to v2 . Denote DP(v1, v2) as the length 
of the shortest walk among such |paths(v1)| possible 
walks from v1 to v2 . Formally, we can write DP(v1, v2) as 
following.

DP(v1, v2) is well defined if v2 is reachable from v1 . We 
set DP(v1, v2) = ∞ if v2 is not reachable from v1 . Finally, 
if vertex v is part of a proper cycle in G, we define D◦

P
(v) 

as the length of a specific walk that starts and ends at v, 
i.e., D◦

P
(v) as minu∈N+(v) |σ(v)| + DP(u, v) for all v ∈ V  . 

D◦
P
(v) = ∞ if v is not part of any proper cycle.

Problem 2  Given a query sequence Q, graph G(V ,E, σ) 
and anchors M[1..N], determine a path cover P of the 
graph, and the optimal chaining score by using the fol-
lowing definition of gapG:

where (sj , sj+1) is a pair of anchors from M such that sj 
precedes sj+1.

Proposed algorithms
A single experiment typically requires aligning mil-
lions of reads to a graph. Therefore, we will do a 
one-time preprocessing of the graph that will help to 
reduce the runtime of our chaining algorithm for solv-
ing Problem 2.

Algorithms for preprocessing the graph
We compute the following quantities during the pre-
processing stage:

•	 A path cover P of G(V ,E, σ). We require the path 
cover to be small (in the number of paths). How-
ever, determining the minimum path cover in a 
graph with cycles is an NP-hard problem. We will 
discuss an efficient heuristic for determining a 
small path cover. Later, we will empirically show 
that |P| is very close to optimal by comparing it to 
a lower bound on the size of the minimum path 
cover.

•	 A bijective function rank : V → [1, |V |] that 
specifies a linear ordering of vertices. The order-
ing should satisfy the following property: If vertex 
v2 occurs anywhere after v1 in a path in P , then 
rank(v2) > rank(v1) for all v1, v2 ∈ V  . Such an 

(1)
DP(v1, v2) = min

i∈paths(v1)
dist2begin(αi, i)

− dist2begin(v1, i)+ D(αi, v2)

gapG(sj , sj+1) =







sj+1.x − sj .y− 1+ DP(sj .v, sj+1.v) sj+1.v �= sj .v
sj+1.x − sj .y− 1 sj .v = sj+1.v and sj .y < sj+1.x
sj+1.x − sj .y− 1+ D◦

P
(sj .v) sj .v = sj+1.v and sj .y ≥ sj+1.x,
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ordering may not exist for an arbitrary path cover 
but it will exist for the path cover chosen by us.

•	 last2reach(v, i), D(last2reach(v, i), v), dist2begin(v, i) 
and D◦

P
(v) for all v ∈ V  and i ∈ [1, |P|] . These val-

ues will be frequently used by our chaining algo-
rithm to compute gap costs.

We propose the following heuristic for computing a 
small path cover of graph G(V ,E, σ) . We derive a DAG 
G′(V ,E′, σ) from G by removing a small number of 
edges. Next, we determine the minimum path cover P of 
G′ in O(|P||E| log |V |) time by using a known algorithm 
[38]. Our intuition is that removing as few edges as pos-
sible will provide a close to optimal path cover of G. One 
way to compute G′ is to use standard heuristic-based 
solvers for minimum feedback arc set (FAS) problem, 
e.g., [43], but we empirically observed that this approach 
could sometimes disconnect a weak component of a 
graph, leading to a large path cover. Therefore, instead 
of using FAS heuristics, we use a simple idea where we 
identify all strongly connected components in G and 
perform a depth-first search within each strong compo-
nent to remove back edges [44]. This approach provides 
a DAG that has the same number of weak components 
as G while removing a small number of edges in practice.

It is important to verify that the above heuristic actu-
ally results in a path cover whose size is close to opti-
mal because the runtime complexity of our algorithms 
depends on |P| . Computing the minimum path cover is 
difficult due to NP-hardness of the problem. Instead, we 
compute a lower bound on the size of the minimum path 
cover using a flow-based method. This method is inspired 
from a known relationship between minimum path cover 
problem and minimum flow problem in DAGs [38, 45].

In the minimum flow problem, the input is a directed 
graph with a single source, a single sink, and a demand 
value ∈ Z for every edge. The task is to find a flow of 

minimum value that satisfies all demands. The value of a 
flow is the sum of the flow on the edges exiting the source. 
We compute a new graph G∗ from G by (i) replacing each 
vertex v with two vertices (v−, v+) , (ii) joining all in-neigh-
bors of v to v− , and (iii) joining out-neighbors of v from v+ . 
We add a global source with an out-going edge to every 
vertex and a global sink with an in-coming edge from every 
vertex. The demand on all edges of type (v−, v+) is set to 
one in G∗ . The demand on all the remaining edges is set to 
zero. Observe that any path cover P of G can be converted 
into a feasible flow of value |P| in G∗ . As a result, the value 
of minimum flow in G∗ must be less than or equal to the 
size of the minimum path cover in G. Thus, we can solve 
the minimum flow problem to know a lower bound on the 
size of the minimum path cover. In our experiments, we 
compute and use the lower bounds to establish the effec-
tiveness of our path cover finding heuristic.

Next, we compute a function rank for all vertices ∈ V  
by topological sorting of vertices in DAG G′ . If there is no 
cycle in G, then last2reach(v, i) and D(last2reach(v, i), v) 
can be computed in O(|P||E|) time by using dynamic 
programming algorithms that process vertices in topo-
logical order [26, 38]. We extend these ideas to cyclic 
graphs by designing iterative algorithms. We will for-
mally prove that as the iterations proceed, the output 
gets closer to the desired solution. Our approach to 
computing last2reach(v,  i) is outlined in Algorithm  1. 
If last2reach(v,  i) exists, the algorithm determines it 
in terms of its rank. We maintain an array L2R to save 
intermediate results. L2R(v,  i) is initialised to rank(v) 
if v lies on path Pi . In each iteration, we revise L2R(v,  i) 
by probing L2R(u,  i) for all u ∈ N−(v) . In Lemma 3, we 
prove the correctness of this algorithm by arguing that 
all |P||V | values in array L2R converge to their optimal 
values through label propagation in ≤ |V | iterations. Let 
Ŵl denote the count of iterations used by the algorithm. 
L2R(v, i) remains 0 if last2reach(v, i) does not exist.

Algorithm 1  O(Ŵl |P||E|) time algorithm to compute last2reach(v, i) for all v ∈ V  and i ∈ [1, |P|]

1: Initialize L2R(v, i) to rank(v) if i ∈ paths(v) and 0 otherwise for all v ∈ V and
i ∈ [1, |P|]

2: Initialize L2Rprev(v, i) to 0 for all v ∈ V and i ∈ [1, |P|] � L2R and L2Rprev will
hold the values of current and previous iteration respectively

3: while ∃v ∈ V, ∃i ∈ [1, |P|], L2R(v, i) �= L2Rprev(v, i) do
4: for i ∈ [1, |P|] do
5: for v ∈ V in the increasing order of rank(v) do
6: L2Rprev(v, i) ← L2R(v, i)
7: L2R(v, i) ← maxu∈N−(v)∪{v} L2R(u, i)
8: end for
9: end for

10: end while
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Lemma 3  In Algorithm 1, L2R(v, i) converges to the rank 
of last2reach(v,  i) in at most |V| iterations for all v ∈ V  
and i ∈ [1, |P|].

Proof  A vertex v2 ∈ V  is said to be reachable within k 
hops from vertex v1 ∈ V  if there exists a path with ≤ k 
edges from v1 to v2 . We will prove by induction that Algo-
rithm  1 satisfies the following invariant: After j itera-
tions, L2R(v,  i) has converged to rank(last2reach(v,  i)) if 
last2reach(v,  i) exists and vertex v is reachable within j 
hops from last2reach(v, i) in G. This argument will prove 
the lemma because vertex v2 ∈ V  must be reachable 
within |V | − 1 hops from v1 ∈ V  if v2 is reachable from v1.
Base case (j = 0) holds due to initialisation of L2R(v,  i) 
in Line  1. If v lies 0-hop from last2reach(v,  i), i.e., 
v = last2reach(v, i) , then v must lie on path Pi and 
rank(last2reach(v, i)) = rank(v) . Next, assume that 
the invariant is true for j = n . Now consider the situ-
ation after n+ 1 iterations. Suppose v ∈ V  is reach-
able within n+ 1 hops from last2reach(v,  i). Then, 

at least one neighbor u ∈ N−(v) of vertex v exists 
which is reachable within n hops from last2reach(v,  i) 
and last2reach(u, i) = last2reach(v, i) . Based on 
our assumption, L2R(u,  i) must have already con-
verged to rank(last2reach(u,  i)) before (n+ 1)th itera-
tion. Therefore, Line  7 in Algorithm  1 ensures that 
L2R(v, i) ← rank(last2reach(v, i)) after (n+ 1)th itera-
tion. �

It is possible to design an adversarial example where 
the algorithm uses �(|V |) iterations. However, in prac-
tice, we expect the algorithm to converge quickly. Each 
iteration of Algorithm 1 requires O(|P||E|) time. There-
fore, the total worst-case time of Algorithm 1 is bounded 
by O(Ŵl |P||E|) . A similar approach is applicable to com-
pute D(last2reach(v,  i),  v) for all v ∈ V  and i ∈ [1, |P|] 
(Algorithm  2). We use Ŵd to denote the count of itera-
tions needed in Algorithm 2. Similar to parameter Ŵl in 
Algorithm  1, Ŵd is also upper bounded by |V|. We will 
later show empirically that Ŵl ≪ |V | and Ŵd ≪ |V | in 
practice.

Algorithm 2  O(Ŵd |P||E|) time algorithm to compute D(last2reach(v, i), v) for all v ∈ V  and i ∈ [1, |P|]

1: Initialize D(last2reach(v, i), v) to 0 if last2reach(v, i) = v and ∞ otherwise
2: Initialize Dprev(last2reach(v, i), v) to ∞ � Arrays D and Dprev will hold the

values of the current and previous iteration, respectively
3: while ∃v ∈ V, ∃i ∈ [1, |P|], D(last2reach(v, i), v) �= Dprev(last2reach(v, i), v) do
4: for i ∈ [1, |P|] do
5: for v ∈ V in the increasing order of rank(v) do
6: Dprev(last2reach(v, i), v) ← D(last2reach(v, i), v)
7: if last2reach(v, i) exists and last2reach(v, i) �= v then
8: D(last2reach(v, i), v) ← minu:u∈N−(v),last2reach(u,i)=last2reach(v,i)
9: D(last2reach(u, i), u) + |σ(u)|

10: end if
11: end for
12: end for
13: end while
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Array dist2begin is trivially precomputed in O(|P||V |) 
time. D◦

P
(v) is computed as minu∈N+(v) |σ(v)| + DP(u, v) 

based on its definition. DP(u, v) can be calculated by 
using Eq. 1 for any u, v ∈ V  in O(|P|) time. Accordingly, 
computation of D◦

P
(v) for all v ∈ V  is done in O(|P||E|) 

time. The following lemma summarises the worst-case 
time complexity of all the preprocessing steps.

Lemma 4  Preprocessing of graph G(V ,E, σ) requires 
O((Ŵl + Ŵd + log |V |)|P||E|) time.

Co‑linear chaining algorithm
We propose an iterative chaining algorithm to address Prob-
lem 2. The proposed algorithm builds on top of the known 
algorithms for DAGs [26, 38]. Similar to [38], we main-
tain one search tree Ti for each path Pi ∈ P . Given anchors 

M[1..N], our algorithm will return array C[1..N] such that 
C[j] corresponds to the optimal score of a chain that ends at 
anchor M[j].

If there are no cycles in G, then one iteration of Algo-
rithm  3 suffices to compute the optimal chaining scores. 
For a DAG, a single iteration of Algorithm 3 works equiva-
lently to the known algorithm for DAGs in [26]. In this case, 
Algorithm 3 would essentially visit the vertices of graph G in 
topological order while ensuring that C[j] is optimally solved 
after M[j].v is visited. To solve the chaining problem on cyclic 
graphs, we design an iterative solution where chaining scores 
C[1..N] get closer to optimal values in each iteration. We will 
use Ŵc to specify the total count of iterations.

Algorithm 3  O(ŴcN|P| logN + N|P| logN|P|) time chaining algorithm

Require: Array of weighted anchors M [1..N ], preprocessed G(V,E, σ)
Ensure: Output array C[1..N ] such that C[j] equals score of an optimal chain that

ends at anchor M [j]
1: Initialize search tree Ti, for all i ∈ [1, |P|] using keys {M [j].d | 1 ≤ j ≤ N} and

values −∞
2: Initialize C[j] as weight(M [j]) and Cprev[j] ← 0, for all j ∈ [1, N ]
3: /* Create array Z that stores tuples of the form (v, pos, task, anchor, path) where

v ∈ V , pos ∈ N, task ∈ {1, 2, 3}, anchor ∈ [1, N ] and path ∈ [1, |P|] */
4: for j ← 1 to N do
5: for i ← 1 to |P| do
6: if i ∈ paths(M [j].v) then
7: Z.push(M [j].v,M [j].x, 1, j, i)
8: Z.push(M [j].v,M [j].y, 2, j, i)
9: end if

10: if last2reach(M [j].v, i) exists and last2reach(M [j].v, i) �= M [j].v then
11: v ← last2reach(M [j].v, i)
12: Z.push(v, |σ(v)|+ 1, 1, j, i)
13: end if
14: if M [j].v is contained in a proper cycle in G and i ∈ paths(M [j].v) then
15: Z.push(v, |σ(M [j].v)|+ 1, 3, j, i)
16: end if
17: end for
18: end for
19: while ∃j ∈ [1, N ], Cprev[j] �= C[j] do
20: Cprev[j] ← C[j], for all j ∈ [1, N ]
21: for z ∈ Z in lexicographically ascending order based on the key

(rank(v), pos, task) do
22: j ←− z.anchor, i ←− z.path, v ←− z.v, wt ←− weight(M [j])
23: if z.task = 1 then
24: val ←− (M [j].x+Dist2begin(v, i) +D(v,M [j].v) +M [j].c− 2)
25: C[j] ←− max(C[j], wt+ Ti.RMQ(0,M [j].c)− val)
26: end if
27: if z.task = 2 then
28: Ti.update(M [j].d, C[j] +M [j].y +Dist2begin(v, i) +M [j].d)
29: end if
30: if z.task = 3 then
31: val ←− (M [j].x+Dist2begin(v, i) +D◦

P(v) +M [j].c− 2)
32: C[j] ←− max(C[j], wt+ Ti.RMQ(0,M [j].c)− val)
33: Ti.update(M [j].d, C[j] +M [j].y +Dist2begin(v, i) +M [j].d)
34: end if
35: end for
36: Reset all values in search tree Ti to −∞, for all i ∈ [1, |P|]
37: end while
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An overview of Algorithm  3 is as follows. At the 
beginning of each iteration, all search trees Ti s are 
filled with keys {M[j].d | 1 ≤ j ≤ N } and values −∞ . The 
value of key M[j].d will be updated based on the score 
C[j] and some other parameters. The range search trees 
will be used to efficiently identify the optimal preceding 
anchor for each anchor [26, 29, 38].

Each iteration of our algorithm processes v ∈ V  in the 
increasing order of rank(v). While processing v, Algo-
rithm 3 performs three types of tasks: 

1.	 The first type of task is to revise chaining scores 
{C[j] : M[j].v = v} corresponding to the anchors that 
lie on vertex v. We also revise scores corresponding 
to those anchors that are located on vertex u  = v 
such that v is the last vertex on a path ∈ P to reach 
u. This is achieved by querying search trees Ti for 
all i ∈ paths(v) . In all these tasks, we use DP(v1, v2) 
to calculate distance from vertex v1 ∈ V  to vertex 
v2 ∈ V .

2.	 Suppose score C[j] is revised by using the first cat-
egory tasks. The second type of task is to update 
the value of key M[j].d in search trees Ti for all 
i ∈ paths(v) . The value gets updated if the new 
value is greater than the previously stored value 
(Lemma 1).

3.	 The third type of task is to again update scores 
{C[j] : M[j].v = v} and search trees if v is part of a 
proper cycle in G. Here we use D◦

P
(v) to calculate the 

distance of vertex v to itself while determining gap 
costs.

Lines 4–18 in Algorithm 3 build array Z that contains 
up to 4N |P| tuples corresponding to all the above type 
of tasks. Array Z is sorted in O(N |P| logN |P|) time to 
ensure that all tasks are executed in the proper order 
(Line  21). Next, we start the iterative procedure. 
Lines  19–33 form a single iteration of the algorithm. 
These tasks lead to updates on score array C and the 
search trees. We update the priority of an anchor M[j] 
in the relevant search trees using its score C[j] and 
the coordinates (Lines  28, 33). To update the score of 
an anchor M[j] based on the scores of its preceding 
anchors, we use the (i) highest priority value obtained 
from the search trees, (ii) the coordinates of anchor 
M[j], and (iii) the precomputed arrays D, dist2begin, D◦

P
 

(Lines  24, 25, 31, 32). The score calculations are con-
sistent with the gap cost definition in Sect.  Notations 
and problem formulations.

Each iteration requires O(N |P| logN ) time because 
each task corresponds to either update or RMQ opera-
tion on a search tree of size ≤ N  . In Lemma 5, we prove 
that array C[1..N] converges to optimality in at most N 

iterations. In Lemma  6, we prove that �(N ) iterations 
are required for convergence in the worst case.

Lemma 5  In Algorithm  3, co-linear chaining scores 
C[1..N] converge to optimality in ≤ N  iterations.

Proof  C[j] always specifies the score of a chain of size 
≥ 1 that ends at anchor M[j] throughout the execution 
of the algorithm. Let fi(j) denote the optimal chaining 
score ending at anchor M[j] over all chains of size ≤ i . We 
will prove by induction that before ith iteration begins, 
C[j] ≥ fi(j) for all j ∈ [1,N ] . It suffices to prove this state-
ment because the size of a chain must be ≤ N  . Base case 
( i = 1 ) holds due to the initialization step in Line 2. Next, 
assume that before xth iteration begins, C[j] ≥ fx(j) holds 
for all j ∈ [1,N ] . We will prove that the invariant holds 
for iteration x + 1.
Let Cx[j] and Cx+1[j] denote the intermediate values of C[j] 
at the start of xth and (x + 1)th iteration, respectively. From 
Lines 25 and 32, we know Cx[j] ≤ Cx+1[j] . If fx+1(j) = fx(j) , 
then Cx+1[j] ≥ Cx[j] ≥ fx(j) = fx+1(j) . Next consider the 
other case when fx+1(j) > fx(j) . Suppose the optimal chain 
corresponding to fx+1(j) is M[β1],M[β2], . . . ,M[βx],M[j] 
where βi ∈ [1,N ] for all i ∈ [1, x] . Accordingly, 
fx+1(j) = weight(M[j])+ fx(βx)− gapQ(M[βx],M[j])

−gapG(M[βx],M[j]) . Based on our induction hypoth-
esis, C[βx] ≥ fx(βx) at the start of the xth iteration. Each 
iteration of Algorithm 3 processes v ∈ V  by increasing the 
order of rank(v). To prove that Cx+1[j] ≥ fx+1(j) , we have 
the following four cases to consider:

•	 Case 1: rank(M[βx].v) < rank(M[j].v) . The algorithm 
processes vertex M[βx].v before vertex M[j].v. When 
M[βx].v is processed during the xth iteration, the value 
of key M[βx].d gets updated in search trees (Line 28). 
C[j] gets updated later. At the end of the xth iteration, 
C[j] ≥ weight(M[j])+ fx(βx)− gapQ(M[βx],M[j])

−gapG(M[βx],M[j]) . Therefore, Cx+1[j] ≥ fx+1(j).
•	 Case 2: rank(M[βx].v) > rank(M[j].v) . In this 

case, C[j] may not meet the desired threshold 
after M[j].v is processed because M[βx].v is pro-
cessed later than M[j].v. However, M[j].v must 
be reachable from M[βx].v using walks through 
{last2reach(M[j].v, i) : i ∈ paths(M[βx].v)} . There-
fore, C[j] gets updated again due to tuples created in 
Line 12. This will ensure that Cx+1[j] ≥ fx+1(j).

•	 Case 3: rank(M[βx].v) = rank(M[j].v) and 
M[βx].y < M[j].x . rank(M[βx].v) = rank(M[j].v) 
implies M[βx].v = M[j].v . The ordering of tuples based 
on pos in Line 21 ensures that the value of key M[βx].d 
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gets updated in search trees, and C[j] gets updated after-
ward.

•	 Case 4: rank(M[βx].v) = rank(M[j].v) and 
M[βx].y ≥ M[j].x . The tuples created in Line  15 
ensure that C[j] is updated again after finishing the 

processing of vertex M[j].v. In this case, the gap 
between anchors M[βx] and M[j] is computed by 
considering the distance of vertex M[j].v to itself, i.e., 
D◦

P
(M[j].v).

Fig. 4  A worst-case example for Algorithm 3 where it requires �(N) iterations to converge (Lemma 6). We show a step-by-step progress 
of the algorithm with each iteration. The table shows the values in array C after each iteration
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�

Accordingly, the time complexity of Algorithm  3 is 
O(ŴcN |P| logN + N |P| logN |P|) . In our experiments, 
we will highlight that parameters Ŵc and |P| are small 
in practice. The space complexity of the algorithm is 
O(N |P| + |V ||P|) due to construction of array Z, the in-
place sorting operation on array Z, |P| search trees and 
the precomputed data structures. Next, we show that 
O(N) upper bound on the number of iterations is tight.

Lemma 6  The count of iterations required by Algo-
rithm 3 is �(N ) in the worst-case.

Proof  An example where Algorithm 3 requires �(N ) iter-
ations is shown in Fig. 4. The graph has two vertices forming 
a cycle. Assume that weight of all N input anchors is equal 
and sufficiently high to outweigh the gap cost between any 
pair of anchors. As M[1] ≺ M[2] ≺ M[3] . . . ≺ M[N ] , 
the sequence of anchors in the optimal chain is 
(M[1],M[2],M[3], . . . ,M[N − 1],M[N ]) . Simi-
larly, the optimal chain ending at anchor M[i] is 
(M[1],M[2],M[3], . . . ,M[i]).
Suppose our path cover comprises single path v1 → v2 . 
Each anchor is assigned a weight of one unit (a unit 
represents a multiplicative constant). In this example, 
each iteration of the chaining algorithm can be con-
ceptually divided into two stages. Stage 1 corresponds 

to the first round of updates to array C in the order 
C[1],C[3],C[5], . . . ,C[N − 1],C[2], . . . ,C[N − 2],C[N ] . 
These updates are caused due to tuples in Lines  7-8 of 
Algorithm  3. Stage 2 corresponds to the second round 
of updates to C[1],C[3],C[5], . . . ,C[N − 3],C[N − 1] 
caused by tuples in Line  12. After the first iteration of 
the algorithm, the maximum score in array C is N2 + 1 . In 
each subsequent iteration, the maximum score increases 
by 1. The scores converge at iteration N2 + 1 . �

Implementation
We have implemented the proposed algorithm in C++ 
(https://​github.​com/​at-​cg/​PanAl​igner). We call our soft-
ware as PanAligner. PanAligner is developed as an end-
to-end long-read aligner for cyclic pangenome graphs. 
We borrow open-source code from Minichain [26], 
Minigraph [28], and GraphChainer [29] for other neces-
sary components besides co-linear chaining. While using 
PanAligner, a user needs to provide a graph (GFA format) 
and a set of reads or contigs (fasta or fastq format) 
as input. We use the standard data structure to store the 
pangenome graph while accounting for double stranded 
nature of DNA sequences. For each vertex v ∈ V  , we also 
add another vertex v̄ whose string label is the reverse 
complement of string σ(v) . For each edge u → v ∈ E , 
we add the complementary edge v̄ → ū . This enables 
read alignment irrespective of which strand the read was 
sequenced from.

For the benchmark, we built pangenome graphs by 
using Minigraph v0.20 [28]. Minigraph augments large 
insertion, deletion, and inversion variants into the graph 
while incrementally aligning each input assembly. Inver-
sion variants can introduce cycles in the graph because 
Minigraph augments them by linking the vertices from 
opposite strands. The graph contains multiple weakly 
connected components because the components cor-
responding to different chromosomes are never linked 

Table 1  Properties of four cyclic pangenome graphs used for 
evaluation

Graph |V | |E| No. of weak 
components

No. of 
structural 
variants

N50 length 
of vertex 
labels (kb)

10H 283,296 406,292 30 61,523 225

40H 679,846 978,122 28 149,163 127

80H 1,106,286 1,594,980 26 244,372 85

95H 1,224,853 1,765,222 26 270,888 79

Table 2  All four graphs have multiple weakly connected components

Therefore, the size of the identified path cover of each graph is presented as a range. The other columns show the count of iterations used by our iterative algorithms 
for graph preprocessing and co-linear chaining (Algorithms 1, 2, 3). The iteration count statistics were gathered while aligning simulated long reads to cyclic 
pangenome graphs

Graph Size of path cover (min–
max)

Number of anchors Number of iterations

Array last2reach Array D Chaining

Mean/Max Mean/Max Mean/Max Mean/Max

10H 1–20 10.9 k/309.6 k 2.0/4 2.0/5 2.3/77

40H 1–36 10.9 k/309.6 k 2.0/4 2.0/5 2.4/72

80H 1–49 10.8 k/309.4 k 3.0/4 3.0/5 2.4/61

95H 1–59 10.8 k/309.4 k 3.0/4 3.0/5 2.4/64

https://github.com/at-cg/PanAligner
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during graph construction. Similar to [26, 29], we con-
sider each weak component independently during both 
the preprocessing and co-linear chaining stages to enable 
efficient multithreading and memory optimization.

We defined our problem formulation to produce an 
optimal chain, but we actually compute multiple best 
chains, similar to [24, 26, 28]. This is because there can be 
multiple high-scoring alignments of a read on the graph. 
PanAligner also outputs a mapping quality score between 
0 to 60 to indicate the confidence score for each align-
ment [46]. We used seeding and extension code from 
Minigraph [28]. Seeding is done by identifying minimizer 
matches [47] between vertex labels of the graph and the 
read. The extension code produces the final base-to-base 
alignment by joining the chained anchors [48]. We used 
code from GraphChainer [29] to compute the minimum 
path cover of a DAG and range queries.

Co-linear chaining for sequence-to-graph alignment is 
generally slower than chaining between two sequences. If 
the optimal alignment of a read is unlikely to span more than 

one vertex, then it may be more efficient to use sequence-
to-sequence chaining algorithm for that read. Following 
this intuition, we have also implemented a hybrid method 
that identifies a subset of reads which are ‘easy to align’ by 
first aligning all reads using Minigraph. Only those reads are 
aligned using PanAligner for which either Minigraph out-
puts an alignment spanning more than one vertex or Mini-
graph outputs a split-read alignment.

Experiments
Benchmark datasets
We constructed four cyclic pangenome graphs by using 
subsets of publicly available 95 haplotype-resolved human 
genome assemblies [4, 49]. These graphs were generated 
using Minigraph v0.20 [28]. We used CHM13 human 
genome assembly [49] as the starting sequence during 
graph construction in all four graphs. We refer to these 
graphs as 10H, 40H, 80H, and 95H, where the prefix inte-
ger represents the count of haplotypes in each graph. The 
properties of these graphs are provided in Table 1.

Fig. 5  A comparison of the size of the computed path cover and the lower bound on the size of the minimum path cover for each component 
of graphs (a) 10H and (b) 95H. Graph 10H has 30 weakly connected components. Graph 95H has 26 weakly connected components (Table 1)

Table 3  A comparison of the performance of long-read aligners using the 10H graph

Best numbers are highlighted in bold

MQ stands for mapping quality

PanAligner Hybrid method Minigraph GraphAligner

Indexing time (sec) 96 136 66 238

Alignment time (sec) 2924 605 50 4928

Memory usage (GB) 23.14 24.68 23.18 23.10
Unaligned reads 1.18% 1.18% 2.17% 0%
Incorrectly Aligned reads 0.79% 0.76% 1.19% 1.47%

Unaligned reads (MQ≥10) 3.51% 3.51% 5.85% 0.78%
Incorrectly Aligned reads (MQ≥10) 0.20% 0.17% 0.32% 0.91%
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Evaluation methodology
We simulated long reads using PBSIM2 v2.0.1 [50] from 
CHM13 assembly with N50 length 10 kb, 0.5× sequenc-
ing coverage and 5% error-rate to approximately mimic 
the properties of long-reads. We labeled the IDs of the 
simulated reads with their true interval coordinates in 
the CHM13 assembly for correctness evaluation. To con-
firm the correctness of a read alignment, we used similar 
criteria from prior studies [24, 26, 28]. We require that 
the reported walk corresponding to a correct align-
ment should only use the vertices corresponding to the 
CHM13 assembly in the graph, and it should overlap 
with the true walk. We used paftools [24] to automate 
this evaluation. By default, it requires the overlapping 
portion to be at least 10% of the union of the true and the 
reported walk length. We executed all experiments on a 
computer with AMD EPYC 7763 64-core processor and 
512 GB RAM. We ran each aligner using 32 threads to 
leverage the multi-threading capabilities of the tested 
aligners. All aligners process reads in parallel. We used 
the /usr/bin/time -v command to measure wall 
clock time and peak memory usage.

Size of path cover and count of iterations
Finding a suitable path cover P of the input graph such 
that |P| ≪ |V | is a crucial step in our proposed frame-
work because the scalability of our algorithms depends on 
this parameter. We discussed a heuristic to compute path 
cover in Sect.  because determining minimum path cover 
in general graphs is NP-hard. Table  2 shows the sizes of 
path covers computed by our heuristic in all four graphs. 
Recall that our algorithms process the weakly connected 
components of a graph independently. In each graph, we 
indicate the size of the path cover as a range because path 
covers vary per component. For each component, we show 
a comparison of the size of the computed path cover with 
the lower bound on the minimum path cover size (Fig. 5). 
The results show that our heuristic is effective in finding a 
path cover whose size is close to optimal.

The number of anchors N that were provided as input 
to the co-linear chaining algorithm varies per read. 
We report the mean and maximum value in Table  2. 
Observe that N does not change much with increasing 
haplotype count. Next, we evaluate the count of itera-
tions Ŵl ,Ŵd used by our graph preprocessing algorithms 

Table 4  A comparison of the performance of long-read aligners using the 95H graph

Best numbers are highlighted in bold

MQ stands for mapping quality

PanAligner Hybrid method Minigraph GraphAligner

Indexing time (sec) 83 176 77 272

Alignment time (sec) 9276 1899 60 5170

Memory usage (GB) 43.6 43.25 24.74 26.1

Unaligned reads 1.60% 1.60% 2.24% 0%
Incorrectly Aligned reads 1.28% 1.21% 1.93% 2.98%

Unaligned reads (MQ≥10) 4.20% 4.21% 6.21% 0.84%
Incorrectly Aligned reads (MQ≥10) 0.57% 0.49% 0.85% 2.33%

Fig. 6  The plots in panels (a), (b) and (c) show the fraction of aligned reads and the accuracy obtained by using all the aligners on graphs 10H, 40H, 
and 95H, respectively. These plots were generated by varying mapping quality cutoffs from 0 to 60. X-axis in these plots uses a logarithmic scale 
to indicate the percentage of incorrectly aligned reads
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(Algorithms  1–2) and also report them as a range for 
each graph. These algorithms compute last2reach and D 
arrays. Observe that the iteration count is significantly 
smaller in practice than the proven upper limit of |V| 
(Lemma 3). This is because the worst-case situation is not 
observed in practice. Accordingly, there is minimal time 
overhead during the preprocessing phase.

The count of iterations Ŵc required by our chaining 
algorithm (Algorithm 3) varies per component as well as 
per read. We collect the iteration count statistics as fol-
lows. For a single read, we define the iteration count as the 
maximum number of iterations used over all components. 
Based on this definition, we report the average and the 
maximum count over all reads in Table 2. Observe that the 
average count is < 2.5 using all four graphs. The maximum 
count is < 100 . These numbers are again significantly bet-
ter compared to the upper bound from Lemma 5.

Alignment of simulated reads to cyclic graphs
We assessed the performance of PanAligner and the 
Minigraph-PanAligner hybrid method against two 
existing sequence-to-graph aligners, Minigraph v2.20 
[28] and GraphAligner v1.0.17b [30], that can handle 
cycles. Unlike PanAligner, Minigraph and GraphAligner 
use heuristics to join anchors. Minichain [26, 51] and 
GraphChainer [29] were excluded from this comparison 
because they do not support cyclic graphs.

We highlight the accuracy, runtime, and memory 
usage of different aligners using graphs 10H and 95H in 
Tables  3 and  4, respectively. Observe that PanAligner 
outperformed Minigraph and GraphAligner in terms of 
accuracy, i.e., the fraction of correctly aligned reads. This 
advantage is even more apparent if low-confidence align-
ments with mapping quality < 10 are ignored. Next, the 
hybrid method offers slightly better accuracy than PanA-
ligner because the hybrid method uses Minigraph heu-
ristics to align the reads which are sampled from a single 
vertex. Minigraph is built on top of Minimap2 [24], which 
is a highly optimized sequence-to-sequence aligner. We 
show the comparison plots in Fig. 6.

PanAligner, Minigraph and the Minigraph-PanAligner 
hybrid method left a small fraction of reads unaligned. 
This may be because (i) PanAligner and Minigraph drop 
high-frequency minimizer matches during the seeding 
step, and (ii) they do not consider low-scoring chains for 
the extension stage. In contrast, GraphAligner achieved 
higher recall by aligning all reads, but this came at the 
expense of lower accuracy.

Table  2 shows that the size of the path cover com-
puted by our heuristic increases by roughly a factor of 
three from 10H to 95H. We can see how this parameter 
proportionally affects PanAligner’s runtime in Tables  3 
and  4. PanAligner’s runtime is significantly higher than 
Minigraph for both 10H and 95H graphs because it 
uses an iterative algorithm. The runtimes of PanAligner 
and GraphAligner are in the same order of magnitude. 
The Minigraph-PanAligner hybrid method is about 5× 
faster than using PanAligner alone. This is because, for 
95H graph, PanAligner was used to align only 12% of the 
total reads; the alignments for rest of the ‘easy to align’ 
reads were obtained using Minigraph. Overall, the hybrid 
method produces the best alignment accuracy among 
the four methods, and its runtime is practical for large 
whole-genome sequencing data.

We observe a consistent drop in alignment accuracy 
of all four alignment methods with increasing haplotype 
count (Fig. 6). This is likely because the number of com-
binatorial paths to which a read can align grows expo-
nentially with respect to the haplotype count.

Alignment of simulated reads to acyclic graphs
We also tested PanAligner for acyclic pangenome graphs. 
We followed the same procedure as [26] to generate a 
DAG from 95 haplotype-phased assemblies and refer 
to this graph as 95H-DAG. This graph was generated by 
disabling inversion variants during graph construction in 
Minigraph [28]. 95H-DAG has 1.2M vertices and 1.8M 
edges. We also include Minichain v1.0 [26] and Graph-
Chainer  v1.0.2 [29] in this comparison. GraphChainer 
uses a co-linear chaining algorithm for DAGs without 

Table 5  A comparison of the performance of long-read aligners using the 95H-DAG graph

Best numbers are highlighted in bold

MQ stands for mapping quality

 PanAligner Minichain Minigraph GraphAligner GraphChainer

Indexing time(sec) 78 77 62 276 575

Alignment time(sec) 2406 2515 50 5136 23710

Memory usage (GB) 30.04 25.61 24.79 26.12 185.83

Unaligned reads 1.62% 1.62% 2.23% 0% 0%
Incorrectly Aligned reads 1.28% 1.29% 1.92% 3.06% 4.93%

Unaligned reads (MQ≥10) 4.75% 4.75% 6.26% 0.85% 0%
Incorrectly Aligned reads (MQ≥10) 0.53% 0.54% 0.84% 2.41% 4.93%
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penalizing gaps. For DAG inputs, the problem formula-
tion in PanAligner becomes equivalent to the one used in 
Minichain [26]. A single iteration of our algorithms suf-
fices for DAGs. Therefore, we simply check if the input 
graph is a DAG at the preprocessing stage, and run a 
single iteration of Algorithms  1–3. PanAligner achieves 
similar performance as Minichain in terms of speed and 
accuracy for DAGs (Table  5). It compares favorably to 
other methods in terms of accuracy.

Discussion
Co-linear chaining is a fundamental technique for scal-
able sequence alignment. Several classes of structural 
variants, such as duplications, tandem repeat polymor-
phism, and inversions, are best represented as cycles in 
pangenome graphs [4, 10]. Existing alignment software 
designed for cyclic graphs are based on heuristics to join 
anchors [28, 30]. We proposed the first practical prob-
lem formulation and an efficient algorithm for co-linear 
chaining on pangenome graphs with cycles. We gave a 
rigorous analysis of the algorithm’s time complexity. The 
proposed algorithm serves as a useful generalization of 
the previously known ideas for DAGs [26, 29, 38, 52].

We implemented the proposed algorithm as an open-
source software PanAligner. We demonstrated that 
PanAligner scales to large pangenome graphs built by 
using haplotype-phased human genome assemblies. It 
offers superior alignment accuracy compared to existing 
methods.Although PanAligner is slower than heuristic 
methods, one can use PanAligner for only those fraction 
of reads that are predicted to have optimal alignments 
spanning more than one vertex.

In our formulation, we did not allow anchors to over-
lap with each other. We also did not allow an anchor to 
span two or more vertices in a graph for simplicity; but 
the proposed ideas can be generalized. PanAligner soft-
ware borrows seeding logic from Minigraph [28], which 
also restricts anchors within a single vertex. This simplifi-
cation is appropriate if the graph only includes structural 
variants ( > 50 bp). The current version of PanAligner 
software may not be suitable for graphs which include 
substitution and indel variants.

Future work will be directed in the following directions. 
First, we will test the performance of PanAligner on 
pangenome graphs that are constructed by using alter-
native methods, e.g., [4, 53, 54]. Second, we will explore 
formulations for haplotype-constrained co-linear chain-
ing to control the exponential growth of combinatorial 
search space with the increasing number of haplotypes 
[51, 55, 56]. Third, we will generalize the proposed tech-
niques for aligning reads to long-read genome assembly 
graphs which also contain cycles. It will be interesting 

to understand whether the small width assumption is 
appropriate for assembly graphs.

Acknowledgements
The authors thank Manuel Cáceres, Shravan Mehra, Sunil Chandran and Rob 
Patro for useful suggestions. Daanish Mahajan and Sudhanva Shyam Kamath 
helped with the software implementation.

Author contributions
All authors contributed to the conception and analysis of the ideas presented 
in this study, as well as the drafting and finalising of this document.

Funding
This research is supported in part by funding from the National Supercomput-
ing Mission, India, under DST/NSM/ R&D_HPC_Applications and the Science 
and Engineering Research Board (SERB) under SRG/2021/000044. We used 
computing resources provided by the National Energy Research Scientific 
Computing Center (NERSC), USA.

Availability of data and materials
Not applicable.

Declarations

Competing interests
The authors declare no competing interests.

Received: 21 November 2023   Accepted: 2 January 2024
Published: 27 January 2024

References
	1.	 Eggertsson HP, Jonsson H, Kristmundsdottir S, et al. Graphtyper enables 

population-scale genotyping using pangenome graphs. Nat Genet. 
2017;49(11):1654–60.

	2.	 Ekim B, Berger B, Chikhi R. Minimizer-space de bruijn graphs: whole-
genome assembly of long reads in minutes on a personal computer. Cell 
Syst. 2021;12(10):958–68.

	3.	 Garrison E, Sirén J, Novak AM, Hickey G, Eizenga JM, Dawson ET, Jones 
W, Garg S, Markello C, Lin MF, et al. Variation graph toolkit improves read 
mapping by representing genetic variation in the reference. Nat Biotech-
nol. 2018;36(9):875–9. https://​doi.​org/​10.​1038/​nbt.​4227.

	4.	 Liao W-W, Asri M, Ebler J, Doerr D, Haukness M, Hickey G, Lu S, Lucas JK, 
Monlong J, Abel HJ, et al. A draft human pangenome reference. Nature. 
2023;617(7960):312–24.

	5.	 Sirén J, Monlong J, Chang X, et al. Pangenomics enables genotyp-
ing of known structural variants in 5202 diverse genomes. Science. 
2021;374(6574):8871.

	6.	 Wang T, Antonacci-Fulton L, Howe K, et al. The human pange-
nome project: a global resource to map genomic diversity. Nature. 
2022;604(7906):437–46.

	7.	 Zhou Y, Zhang Z, Bao Z, Li H, Lyu Y, Zan Y, Wu Y, Cheng L, Fang Y, Wu K, 
et al. Graph pangenome captures missing heritability and empowers 
tomato breeding. Nature. 2022;606(7914):527–34.

	8.	 Dolzhenko E, Deshpande V, Schlesinger F, Krusche P, Petrovski R, Chen 
S, Emig-Agius D, Gross A, Narzisi G, Bowman B, et al. Expansionhunter: a 
sequence-graph-based tool to analyze variation in short tandem repeat 
regions. Bioinformatics. 2019;35(22):4754–6.

	9.	 Lu TY, et al. Profiling variable-number tandem repeat variation 
across populations using repeat-pangenome graphs. Nat Commun. 
2021;12(1):4250.

	10.	 Paten B, Novak AM, Eizenga JM, Garrison E. Genome graphs and the 
evolution of genome inference. Genome Res. 2017;27(5):665–76.

	11.	 Gao Y, Yang X, Chen H, Tan X, Yang Z, Deng L, Wang B, Kong S, Li S, Cui 
Y, et al. A pangenome reference of 36 Chinese populations. Nature 
2023;1–10.

https://doi.org/10.1038/nbt.4227


Page 16 of 16Rajput et al. Algorithms for Molecular Biology  (2024) 19:4

	12.	 Baaijens JA, Bonizzoni P, Boucher C, Della Vedova G, Pirola Y, Rizzi R, Sirén 
J. Computational graph pangenomics: a tutorial on data structures and 
their applications. Nat Comput. 2022;1–28.

	13.	 Computational Pan-Genomics Consortium. Computational pan-genom-
ics: status, promises and challenges. Brief Bioinform. 2018;19(1):118–35.

	14.	 Cheng H, Asri M, Lucas J, Koren S, Li H. Scalable telomere-to-telomere 
assembly for diploid and polyploid genomes with double graph. arXiv 
preprint arXiv:​2306.​03399. 2023.

	15.	 Garg S, Rautiainen M, Novak AM, et al. A graph-based approach to diploid 
genome assembly. Bioinformatics. 2018;34(13):105–14.

	16.	 Rautiainen M, Nurk S, Walenz BP, Logsdon GA, Porubsky D, Rhie A, Eichler 
EE, Phillippy AM, Koren S. Telomere-to-telomere assembly of diploid 
chromosomes with verkko. Nat Biotechnol. 2023;1–9.

	17.	 Luo X, Kang X, Schönhuth A. Vechat: correcting errors in long reads using 
variation graphs. Nat Commun. 2022;13(1):6657.

	18.	 Salmela L, Rivals E. Lordec: accurate and efficient long read error correc-
tion. Bioinformatics. 2014;30(24):3506–14.

	19.	 Jain C, Zhang H, Gao Y, Aluru S. On the complexity of sequence-to-graph 
alignment. J Comput Biol. 2020;27(4):640–54. https://​doi.​org/​10.​1089/​
cmb.​2019.​0066.

	20.	 Navarro G. Improved approximate pattern matching on hypertext. Theo-
ret Comput Sci. 2000;237(1–2):455–63.

	21.	 Backurs A, Indyk P. Edit distance cannot be computed in strongly sub-
quadratic time (unless SETH is false). In: Proceedings of the Forty-seventh 
Annual ACM Symposium on Theory of Computing, 2015;pp. 51–58.

	22.	 Gibney D, Thankachan SV, Aluru S. The complexity of approximate 
pattern matching on de Bruijn graphs. In: Research in Computational 
Molecular Biology: 26th Annual International Conference, RECOMB 2022, 
San Diego, CA, USA, May 22–25, 2022, Proceedings, 2022;pp. 263–278. 
Springer.

	23.	 Jain C, Rhie A, Hansen NF, Koren S, Phillippy AM. Long-read mapping 
to repetitive reference sequences using winnowmap2. Nat Methods. 
2022;1–6.

	24.	 Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinfor-
matics. 2018;34(18):3094–100. https://​doi.​org/​10.​1093/​bioin​forma​tics/​
bty191.

	25.	 Sahlin K, Baudeau T, Cazaux B, Marchet C. A survey of mapping algo-
rithms in the long-reads era. bioRxiv. 2022.

	26.	 Chandra G, Jain C. Sequence to graph alignment using gap-sensitive 
co-linear chaining. In: Research in Computational Molecular Biology: 27th 
Annual International Conference, RECOMB 2023, Istanbul, Turkey, April 
16–19, 2023, Proceedings, 2023;pp. 58–73. Springer.

	27.	 Dvorkina T, Antipov D, Korobeynikov A, Nurk S. Spaligner: alignment of 
long diverged molecular sequences to assembly graphs. BMC Bioinfor-
matics. 2020;21(12):1–14.

	28.	 Li H, Feng X, Chu C. The design and construction of reference pange-
nome graphs with minigraph. Genome Biol. 2020;21(1).

	29.	 Ma J, Cáceres M, Salmela L, Mäkinen V, Tomescu AI. Chaining for accurate 
alignment of erroneous long reads to acyclic variation graphs. Bioinfor-
matics. 2023;39(8):460.

	30.	 Rautiainen M, Marschall T. Graphaligner: rapid and versatile sequence-to-
graph alignment. Genome Biol. 2020;21(1):253.

	31.	 Abouelhoda M, Ohlebusch E. Chaining algorithms for multiple genome 
comparison. J Discrete Algorithms. 2005;3(2–4):321–41.

	32.	 Eppstein D, Galil Z, Giancarlo R, Italiano GF. Sparse dynamic programming 
i: linear cost functions. J ACM. 1992;39(3):519–45.

	33.	 Eppstein D, Galil Z, Giancarlo R, Italiano GF. Sparse dynamic programming 
ii: convex and concave cost functions. J ACM. 1992;39(3):546–67.

	34.	 Jain C, Gibney D, Thankachan SV. Algorithms for colinear chaining with 
overlaps and gap costs. J Comput Biol. 2022;29(11):1237–51.

	35.	 Mäkinen V, Sahlin K. Chaining with overlaps revisited. In: 31st Annual 
Symposium on Combinatorial Pattern Matching (CPM 2020). 2020. 
Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

	36.	 Myers G, Miller W. Chaining multiple-alignment fragments in sub-quad-
ratic time. In: SODA, 1995;vol. 95, pp. 38–47.

	37.	 Otto C, Hoffmann S, Gorodkin J, Stadler PF. Fast local fragment chaining 
using sum-of-pair gap costs. Algorithms Mol Biol. 2011;6(1):4.

	38.	 Mäkinen V, Tomescu AI, Kuosmanen A, Paavilainen T, Gagie T, Chikhi R. 
Sparse dynamic programming on DAGs with small width. ACM Trans 
Algorithms (TALG). 2019;15(2):1–21.

	39.	 Rizzo N, Cáceres M, Mäkinen V. Chaining of maximal exact matches in 
graphs. In: String Processing and Information Retrieval: 30th International 
Symposium. SPIRE 2023, Pisa, Italy, September 26–28, 2023, Proceedings. 
Berlin, Heidelberg: Springer; 2023. p. 353–66.

	40.	 Cáceres M, Cairo M, Mumey B, Rizzi R, Tomescu AI. Sparsifying, shrinking 
and splicing for minimum path cover in parameterized linear time. In: 
Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete 
Algorithms (SODA), 2022;pp. 359–376. SIAM.

	41.	 Nurk S, Koren S, Rhie A, Rautiainen M, et al. The complete sequence of a 
human genome. Science. 2022;376(6588):44–53. https://​doi.​org/​10.​1126/​
scien​ce.​abj69​87.

	42.	 Mäkinen V, Belazzougui D, Cunial F, Tomescu AI. Genome-scale Algorithm 
Design. Cambridge University Press, 2015.

	43.	 Eades P, Lin X, Smyth WF. A fast and effective heuristic for the feedback 
arc set problem. Inf Process Lett. 1993;47(6):319–23.

	44.	 Tarjan R. Depth-first search and linear graph algorithms. SIAM J Comput. 
1972;1(2):146–60.

	45.	 Ntafos SC, Hakimi SL. On path cover problems in digraphs and applica-
tions to program testing. IEEE Trans Software Eng. 1979;5:520–9.

	46.	 Li H, Ruan J, Durbin R. Mapping short DNA sequencing reads and calling 
variants using mapping quality scores. Genome Res. 2008;18(11):1851–8.

	47.	 Roberts M, Hayes W, Hunt BR, Mount SM, Yorke JA. Reducing storage 
requirements for biological sequence comparison. Bioinformatics. 
2004;20(18):3363–9.

	48.	 Zhang H, Wu S, Aluru S, Li H. Fast sequence to graph alignment using the 
graph wavefront algorithm. arXiv preprint arXiv:​2206.​13574. 2022.

	49.	 Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, Vollger 
MR, Altemose N, Uralsky L, Gershman A, et al. The complete sequence of 
a human genome. Science. 2022;376(6588):44–53.

	50.	 Ono Y, Asai K, Hamada M. Pbsim2: a simulator for long-read sequenc-
ers with a novel generative model of quality scores. Bioinformatics. 
2021;37(5):589–95.

	51.	 Chandra G, Jain C. Haplotype-aware sequence-to-graph alignment. 
bioRxiv. 2023. https://​doi.​org/​10.​1101/​2023.​11.​15.​566493.

	52.	 Ma J. Co-linear chaining on graphs with cycles. Master’s thesis, University 
of Helsinki, Faculty of Science. 2021. http://​hdl.​handle.​net/​10138/​330781.

	53.	 Garrison E, Guarracino A, Heumos S, Villani F, Bao Z, Tattini L, Hagmann J, 
Vorbrugg S, Marco-Sola S, Kubica C, et al. Building pangenome graphs. 
bioRxiv, 2023–04. 2023.

	54.	 Hickey G, Monlong J, Ebler J, Novak AM, Eizenga JM, Gao Y, Marschall T, 
Li H, Paten B. Pangenome graph construction from genome alignments 
with minigraph-cactus. Nat Biotechnol. 2023;1–11.

	55.	 Mokveld T, Linthorst J, Al-Ars Z, Holstege H, Reinders M. Chop: haplotype-
aware path indexing in population graphs. Genome Biol. 2020;21:1–16.

	56.	 Sirén J, Garrison E, Novak AM, Paten B, Durbin R. Haplotype-aware graph 
indexes. Bioinformatics. 2020;36(2):400–7.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://arxiv.org/abs/2306.03399
https://doi.org/10.1089/cmb.2019.0066
https://doi.org/10.1089/cmb.2019.0066
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1126/science.abj6987
https://doi.org/10.1126/science.abj6987
http://arxiv.org/abs/2206.13574
https://doi.org/10.1101/2023.11.15.566493
http://hdl.handle.net/10138/330781

	Co-linear chaining on pangenome graphs
	Abstract 
	Introduction
	Related work
	Contributions

	Notations and problem formulations
	Proposed algorithms
	Algorithms for preprocessing the graph
	Co-linear chaining algorithm

	Implementation
	Experiments
	Benchmark datasets
	Evaluation methodology
	Size of path cover and count of iterations
	Alignment of simulated reads to cyclic graphs
	Alignment of simulated reads to acyclic graphs

	Discussion
	Acknowledgements
	References


