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Abstract 

The last decade of phylogenetics has seen the development of many methods that leverage constraints plus dynamic 
programming. The goal of this algorithmic technique is to produce a phylogeny that is optimal with respect to some 
objective function and that lies within a constrained version of tree space. The popular species tree estimation 
method ASTRAL, for example, returns a tree that (1) maximizes the quartet score computed with respect to the input 
gene trees and that (2) draws its branches (bipartitions) from the input constraint set. This technique has yet to 
be used for parsimony problems where the input are binary characters, sometimes with missing values. Here, we 
introduce the clade-constrained character parsimony problem and present an algorithm that solves this problem 
for the Dollo criterion score in O(|�|3.726(n+ k)+ |�|1.726nk) time, where n is the number of leaves, k is the number 
of characters, and � is the set of clades used as constraints. Dollo parsimony, which requires traits/mutations to be 
gained at most once but allows them to be lost any number of times, is widely used for tumor phylogenetics as well 
as species phylogenetics, for example analyses of low-homoplasy retroelement insertions across the vertebrate tree 
of life. This motivated us to implement our algorithm in a software package, called Dollo-CDP, and evaluate its utility 
for analyzing retroelement insertion presence / absence patterns for bats, birds, toothed whales as well as simulated 
data. Our results show that Dollo-CDP can improve upon heuristic search from a single starting tree, often recovering 
a better scoring tree. Moreover, Dollo-CDP scales to data sets with much larger numbers of taxa than branch-and-
bound while still having an optimality guarantee, albeit a more restricted one. Lastly, we show that our algorithm 
for Dollo parsimony can easily be adapted to Camin-Sokal parsimony but not Fitch parsimony.
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Introduction
The last decade of phylogenetics has seen the develop-
ment of many methods that leverage constraints plus 
dynamic programming (CDP). The goal of CDP is to pro-
duce a phylogeny that is optimal with respect to some 

objective function and that lies within a constrained ver-
sion of tree space. To our knowledge, the first method 
based on CDP was introduced in 2000 by Hallet and 
Lagergren [1] for gene tree parsimony, which seeks a spe-
cies tree that minimizes the number of events (e.g., dupli-
cations and losses) needed to explain the input gene trees 
(also see the related results presented at WABI 2017 [2, 
3]). Since its introduction, CDP has been leveraged for a 
variety of optimization problems, including minimizing 
deep coalescence [4], maximizing quartet support [5, 6] 
(see [7] for extensions to multi-copy genes), and maxi-
mizing bipartition support [8] (see [9] for extensions to 

*Correspondence:
Erin K. Molloy
ekmolloy@umd.edu
1 Department of Computer Science, University of Maryland, College Park, 
MD, USA
2 University of Maryland Institute for Advanced Computer Studies, 
College Park, MD, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-023-00249-9&domain=pdf


Page 2 of 17Dai et al. Algorithms for Molecular Biology            (2024) 19:2 

multi-copy genes). All of these optimization problems 
take gene trees as input and seek a species tree that mini-
mizes the dissimilarity between it and the input gene 
trees or alternatively maximizes the similarity (note that 
species trees depict the evolutionary history of species, 
whereas gene trees depict the evolutionary history of 
recombination-free, orthologous genomic regions).

That CDP is so widely utilized in phylogenetics is likely 
due to it being possible to build effective constraints in 
practice. The constraints are effective if (nearly) optimal 
solutions lie within the constrained search space and 
this space is small enough to enable efficient running 
times. As an example, the species tree estimation method 
ASTRAL  solves the bipartition-constrained maximum 
quartet support supertree problem [6]. The first version 
of ASTRAL  [6] formed the constrained solution space 
from the set of all bipartitions (i.e., branches) found in 
the input gene trees. The newer versions of ASTRAL [10, 
11] allow extra bipartitions to be included as constraints 
with the goal of improving accuracy. FASTRAL  [12], on 
the other hand, aggressively limits the number of biparti-
tions added with the goal of improving runtime. Overall, 
the popularity of the ASTRAL family of methods is likely 
due to their speed and accuracy on practical inputs.

Given the success of CDP thus far, we explore the use 
of this technique for traditional parsimony problems 
where the input are binary characters, sometimes with 
missing values. The remainder of this paper is organ-
ized as follows. After providing notation and prelimi-
naries, we introduce the clade-constrained character 
parsimony problem and present an algorithm that solves 
this problem in polynomial time for the Dollo criterion 
score. We then show how our algorithm can be adapted 
to Camin-Sokal parsimony but not Fitch parsimony. 
Dollo parsimony, in particular, is widely used for tumor 
phylogenetics [13–16] as well as species phylogenetics, 
for example analyses of the presence or absence of low-
homoplasy retroelement insertions across the vertebrate 
tree of life. Prior studies have leveraged Dollo parsimony 
to analyze higher-level clades of birds (e.g., Palaeog-
nathe [17]) and mammals (e.g., Laurasiatheria [18, 19]), 
in addition to clades at the family and genus levels (e.g., 
rorquals [20], mouse-eared bats [21, 22], and primates 
[23]).

This motivated us to implement our algorithm for the 
Dollo criterion score in Dollo-CDP, an open-source 
software package available on Github. We evaluate 
Dollo-CDP  on real and synthetic data sets of retro-
element insertion presence / absence in comparison to 
branch-and-bound and heuristic search. Our results 
reveal that Dollo-CDP  can improve upon heuristic 
search from a single starting tree, often recovering a 

better scoring tree. Moreover, Dollo-CDP scales to data 
sets with much larger numbers of taxa than branch-and-
bound while still having an optimality guarantee, albeit 
a more restricted one. We conclude with a discussion of 
limitations and opportunities for future research.

Background
Before introducing the clade-constrained Dollo parsi-
mony problem, we review some preliminaries on phylo-
genetic trees, characters, and parsimony approaches.

Phylogenetic trees
A phylogenetic tree T is an acyclic graph whose leaves 
(i.e., vertices with degree one) are bijectively labeled by 
a set S of species (note that in the context of tumor phy-
logenetics the leaves may be labeled by cells in a tumor). 
For convenience and simplicity of notation, we treat 
leaves and species as being interchangeable. We use L(T), 
V(T), and E(T) to denote the leaf set, vertex set, and edge 
set of T, respectively.

Phylogenetic trees can be either unrooted or rooted; for 
the former the graph is undirected and for the latter the 
graph is directed, with edges orientated away from the 
root (a special vertex with in-degree zero). For rooted 
trees, we say that vertex u is an ancestor of v (or that v 
is a descendant of u) if u is on a directed path from the 
root to v. The lowest common ancestor (LCA) for a set V 
of vertices is the vertex that is the ancestor of all vertices 
in V that is farthest away from the root.

Unless otherwise noted, we will assume that all trees 
are binary. An unrooted tree is binary if all non-leaf 
vertices (called internal vertices) have degree three, and 
a rooted tree is binary if all non-leaf vertices have out-
degree two (all non-root vertices have in-degree one). 
For rooted trees, we use v.parent to indicate the parent 
of vertex v; similarly, we use v.left and v.right to denote 
the left and right children of vertex v, respectively. Some-
times it will be useful to restrict a tree T to a subset 
X ⊆ S of leaves, meaning that each leaf in S\X is deleted 
from T and then all vertices with degree two are sup-
pressed. There are three additional concepts for phyloge-
netic trees that will prove useful later.

Definition 1  (Bipartition) Each edge e in an unrooted 
phylogenetic tree T induces a bipartition, which splits 
the leaf set of T into two disjoint subsets whose union is 
the complete leaf set S. The bipartition Bip(e) = X |Y  is 
formed by deleting edge e but not its endpoints from T 
and assigning the leaves in one of the resulting subtrees 
to X and the leaves in the other to Y.
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Definition 2  (Clade) Each vertex v in a rooted phyloge-
netic tree T induces a clade, denoted Clade(v), which is 
simply the set of leaves that are descendants of v. A clade 
is trivial if it contains only a single element (as it must be 
associated with a leaf vertex) or if it contains all leaves (as 
it must be associated with the root vertex).

Definition 3  (Subtree bipartition [24]) Each internal 
vertex v in a rooted binary phylogenetic tree T induces 
a subtree bipartition, which partitions the leaf set of the 
subtree into two disjoint subsets whose union is Clade(v). 
A subtree bipartition SubBip(v) = X |Y  is formed by set-
ting X to be the leaves that are descendants of v.left and Y 
to be the set of leaves that are descendants of v.right (or 
vice versa).

It is well established that an unrooted phyloge-
netic tree t is uniquely defined by its bipartition set 
Bip(t) = {Bip(e) : e ∈ E(t)} and that a rooted phy-
logenetic tree T is uniquely defined by its clade set 

Clade(T ) = {Clade(v) : v ∈ V (T )} (see Chapters  2 
and 3 in [25]). Similarly, we define the subtree biparti-
tion set of T as SubBip(T ) = {SubBip(v) : v ∈ V (T )} . 
Note that X |Y ∈ SubBip(T ) if and only if 
{X ,Y ,X ∪ Y } ⊆ Clade(T ) ; thus, we can go back and 
forth between clades and subtree bipartitions.

Characters and parsimony
A character c on species set S is a function mapping spe-
cies in S to a state set, which is {0,1} for binary charac-
ters. For biological data, the 0 and 1 might refer to some 
feature of the genomic data with all species assigned the 
same state having the same feature. If 0 indicates the 
ancestral state and 1 indicates the derived (i.e., mutated) 
state, we say the characters are ordered; otherwise, we 
say they are unordered. We later describe how biological 
data that are encoded as ordered binary characters. These 
character matrices also include a third state ? to indicate 

Fig. 1  Let v be the internal vertex associated with the subtree bipartition X|Y, where X = {A} and Y = {B} (note that these vertices are circled 
in the trees above). Subfigures A and B show two different trees on the same species set with Dollo-labelings for the same character. The state 
assignment at v only requires us to know the subtree bipartition associated with v (Corollary 1). Vertex v is assigned state 1 because there is a leaf 
in Y assigned state 1 and a leaf in S \ X ∪ Y assigned state 1. Subfigures C and D show two different trees with Camin-Sokal-labelings for the same 
character. The state assignment at v only requires us to know the clade associated with v (Corollary 3). Vertex v is assigned state 0 because there 
is a leaf in clade X ∪ Y assigned state 0. Lastly, subfigures E and F show two different trees with Fitch-labelings for the same character. In subfigure 
E, the assignment of state 0 or 1 to v results in a score of two or three, respectively (so 0 is better). In subfigure F, the assignment of state 0 or 1 
to v results in a score of three or two, respectively (so 1 is better). Thus, for the Fitch criterion score, the state assignment at v depends on more 
than the bipartition induced by the edge incident to v 
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the state assignment is ambiguous or missing; in other 
words, it could not be reliably called as 0 or 1.

For now, we assume that we are given a set C of binary 
characters with no missing values, and our goal is to 
find a phylogenetic tree T that best explains our data. To 
explain how character c evolves on a tree T on the same 
species set as c, we must assign states to the internal ver-
tices of T. The quality of our explanation is determined 
by the number of substitutions, where a substitu-
tion is implied by any edge e = (u, v) ∈ E(T ) such that 
c[u] �= c[v] (assuming neither c[u] nor c[v] are the ambig-
uous state ? ). This brings us to the small and large parsi-
mony problems.

Definition 4  (Small Fitch Parsimony Problem) Given 
an unrooted binary tree T and an unordered binary char-
acter c, both on species set S, the Fitch parsimony score, 
denoted Fitch(T, c), is the minimum number of substitu-
tions needed to explain the evolution of c on T. A Fitch-
labeling for (T, c) is a function ĉ mapping vertices in V(T) 
to states in {0, 1} so that ĉ[l] = c[l] for all l ∈ L(T ) and the 
number of substitutions equals Fitch(T, c).

Problem 1  (Large Fitch Parsimony Problem) The large 
Fitch parsimony problem takes as input a set C of unor-
dered binary characters, each on species set S; the out-
put is an unrooted binary tree T on S that minimizes ∑

c∈C Fitch(T , c).

Although the small Fitch parsimony problem can 
be solved in polynomial time [26], the large Fitch par-
simony problem is NP-hard [27]. We now consider 
ordered characters and rooted phylogenetic trees, 
which enables us to distinguish between the 0 → 1 
substitution (indicating a mutation is gained) and the 
1 → 0 substitution (indicating a mutation is lost).

Definition 5  (Dollo and Camin-Sokal Parsimony Score) 
Given a rooted binary tree T and an ordered binary char-
acter c, both on species set S, the Dollo parsimony score, 
denoted Dollo(T,  c), is the minimum number of losses 
needed to explain the evolution of c on T when at most 
one gain is allowed (note that sometimes the gains are 
also counted as part of the score). The Camin-Sokal par-
simony score, denoted CamSok(T,  c), is the minimum 
number of gains needed to explain the evolution of c on 
T when losses are prohibited.

Just as the Fitch parsimony score was used to define 
the Fitch-labeling and the large Fitch parsimony prob-
lem, we can define similar concepts for the Dollo and 
Camin-Sokal parsimony scores. The following result 

about Dollo-labelings is the basis of a linear-time algo-
rithm presented by Bouckaert et al. [28] for computing 
Dollo(T, c).

Theorem  1  (Theorem  1 in [28]) Let T be a rooted, 
binary tree and let c be an ordered, binary character with 
no missing values, both on the same species set. A Dollo-
labeling for (T,  c) must assign state 1 to every internal 
vertex on a path from the LCA of all leaves assigned state 
1 (including the LCA) to any leaf assigned state 1 and 
assign state 0 to all remaining vertices.

It follows that a Dollo-labeling for (T,  c) is unique 
and always exists, provided the root is allowed to 
be assigned state 1. In this case, the gain must have 
occurred above the root so no gains are allowed on T 
(see Fig. 1A for an example).

Lastly, the large Dollo and Camin-Sokal parsi-
mony problems are NP-hard [29]. The existing meth-
ods for these problems, including those implemented 
in PAUP*  [30] and Phylip  [31], are based on 
either heuristic searches of tree space (which have no 

Fig. 2  When there are ambiguous states, we can restrict a character c 
and tree T to the subset of labels assigned non-ambiguous states (i.e., 
R = {A, C ,G, J,Out} ) and then compute the Dollo score in the usual 
fashion (see proof of Theorem 2). To create the restricted tree T |R , we 
first identify all edges incident to maximally-sized subtrees with all 
leaves assigned the ambiguous state (shown in red shorter dashes). 
After deleting these edges, we have a tree T ′ on R (shown with solid 
lines) and a collection P of subtrees (shown in grey, with edges 
as longer dashes) whose leaves are all assigned the ambiguous state. 
We then suppress vertices with out-degree 1 (shown in red) in T ′ 
to get T |R . Lastly, we apply conditions 1–3 to find the Dollo-labeling 
for the internal vertices of T |R ; this gives us one loss on edge v  → A 
(and also one gain on edge q  → s ). This procedure for constructing 
T |R classifies vertices in T into three groups. The vertices in Group 1 
(r, q, s, v) are assigned the same labels as in T |R . The vertices in Group 
2 (x, z) are assigned the ambiguous state. The vertices in Group 3 
(t, u, w, y) need to be assigned states so as not to increase the Dollo 
score. In this example, there are two possible ways to assign a state 
to vertex w; the approach described in the proof of Theorem 2 
assigns state 0 to w 
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optimality guarantees) or branch-and-bound (which is 
guaranteed to find an optimal solution but is time con-
suming for large, complex data sets). We provide an 
overview of these approaches in presenting our experi-
mental study, referring the interested reader to [32, 33] 
for more information.

The clade‑constrained large Dollo parsimony 
problem and a polynomial‑time algorithm
We now introduce the clade-constrained large Dollo 
parsimony (CC-LDP) problem.

Problem  2  (Clade-constrained large Dollo parsimony 
problem) The CC-LDP problem is defined by the follow-
ing input and output.

Input: A set S of species, a set C of ordered binary char-
acters (each on species set S), and a set � of clades (sub-
sets of S)

Output: A rooted binary tree on species set S such that ∑
c∈C Dollo(T , c) is minimized and Clade(T ) ⊆ � , if such 

a tree exists

The CC-LDP problem has a solution provided there 
exists at least one binary tree T on S with Clade(T ) ⊆ � . 
In our experimental study, we present approaches for 
constructing � from C in such a way that a solution to 
CC-LDP always exists. The basis of our polynomial-time 
algorithm for CC-LDP is that for an arbitrary tree T, the 
Dollo-labeling for every character in C at an internal ver-
tex v of T is fully constrained by the subtree bipartition 
induced by v. Thus, the clade set � not only constrains 
the search space in terms of the allowed tree topologies 
but also the allowed state assignments at internal verti-
ces. This decouples the processing of individual char-
acters for the NP-hard large Dollo parsimony problem, 
similar to the small Dollo parsimony problem, which, as 
previously mentioned, can be solved in polynomial time 
(e.g. via the Sankoff-Rousseau [34] algorithm). We begin 
by giving a corollary of Theorem 1 in [28].

Corollary 1  Let c be an ordered binary character on 
species set S (with no missing values), let T be a rooted 
binary tree on S, and let ĉ be the unique Dollo-labeling for 
(T, c). Then for any internal vertex v ∈ V (T ) , ĉ[v] can be 
determined just by having knowledge of its subtree bipar-
tition SubBip(v); no other information about T is needed.

Proof  Consider an arbitrary internal vertex v ∈ V (T ) 
that induces subtree bipartition X|Y. Without loss of 

generality, let X contain the leaves that are descendants 
of v.left, let Y contain the leaves that are descendants of 
v.right, and let Z contain all other leaves so X|Y|Z is a 
partition of S. When c has no missing values, by Theo-
rem  1, there exists a unique Dollo-labeling ĉ for (T,  c), 
where ĉ[v] = 1 if at least one of the following two cases 
holds (otherwise ĉ[v] = 0).

•	 Case A: Vertex v is the LCA of two leaves assigned 
state 1.

•	 Case B: Vertex v is on the path from the LCA of two 
leaves assigned state 1 to one of those two leaves.

Looking at subtree bipartition SubBip(v) = X |Y  , case A 
holds if condition 1 below is true, and case B holds if at 
least one of conditions 2 and 3 below is true.

•	 Condition 1: There exists a leaf x ∈ X and a leaf 
y ∈ Y  such that c[x] = c[y] = 1.

•	 Condition 2: There exists a leaf x ∈ X and a leaf 
z ∈ Z such that c[x] = c[z] = 1.

•	 Condition 3: There exists a leaf y ∈ Y  and a leaf 
z ∈ Z such that c[y] = c[z] = 1.

Therefore, ĉ[v] = 1 if at least one of conditions 1–3 is 
true; otherwise ĉ[v] = 0 . Conditions 1–3 can be evalu-
ated so long as we know the subtree bipartition induced 
by v (given the character c and its complete leaf set S). �

Theorem 2  Let c be an ordered binary character on spe-
cies set S, and let T be a rooted binary tree on S. If c has 
missing values, the Dollo-labeling for (T,  c) may not be 
unique. However, we can define a unique Dollo-labeling 
ĉ∗ for (T, c) with the property that ĉ∗[v] can be determined 
for any internal vertex v ∈ V (T ) just by having knowledge 
of its subtree bipartition SubBip(v); no other knowledge of 
T is needed.

Proof  If c contains missing values or ambiguous 
states, we define R to be the subset of leaves assigned 
non-ambiguous states, letting T |R and c|R denote the 
restriction of T and c to R, respectively. We claim that 
Dollo(T,  c) must equal Dollo(T |R, c|R) . To prove this 
claim, we first show how to construct a labeling ĉ for 
(T, c) that yields score Dollo(T |R, c|R) given a Dollo-labe-
ling ĉ|R for (T |R, c|R) . We then show that ĉ is a Dollo-labe-
ling for (T, c).

To build ĉ , we classify the vertices of T into three groups 
based on the formation of T |R described next (see Fig. 2 
for an example). 
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1.	 First, we identify every edge incident to the root of 
a maximally-sized subtree of T whose leaves are 
all assigned state ?. That is, we identify every edge 
a  → b ∈ E(T ) such that all leaves in Clade(b) are 
assigned state ? and at least one leaf in Clade(a) is 
assigned a non-ambiguous state. Let E denote the set 
of edges with this property.

2.	 Second, we delete each edge in E but not its end-
points from T. This produces a tree T ′ with no leaves 
assigned state ? plus a collection P of subtrees of T 
whose leaves are all assigned state ?.

3.	 Lastly, we form T |R by suppressing all vertices in T ′ 
with out-degree one.

We now use the above procedure to classify the vertices 
of T into three groups by which we can build a labeling ĉ 
for (T, c) that yields score Dollo(T |R, c|R) as follows.

•	 Group 1 contains every vertex v ∈ V (T ) that maps to 
a vertex w ∈ V (T |R) . For each vertex v in this group, 
we assign ĉ[v] = ĉ|R[w] . The idea is to propagate the 
state assignments for T |R back to T. Now we need to 
assign states to the remaining vertices in T without 
changing the Dollo score.

•	 Group 2 contains every vertex v ∈ V (T ) that maps 
to a vertex w ∈ ∪t∈PV (t) , meaning that v is in a 
maximally-sized subtree of T whose leaves are all 
assigned state ?. For each vertex v in this group, we 
set ĉ[v] = ? . This state assignment does not change 
the Dollo score because substitutions are not counted 
on edges with at least one of their two endpoints 
assigned state ?.

•	 Group 3 contains every vertex v ∈ V (T ) that does 
not map to any vertex in V (T |R) ∪ ∪t∈PV (t) , 
meaning that the corresponding vertex must have 
been suppressed in step 3. Thus, v maps to an edge 
e ∈ E(T |R) , and exactly one of v’s children is the root 
of a maximally-sized subtree of T whose leaves are 
all assigned state ?. A state assignment that does not 
change the Dollo score can be achieved by assigning 
every vertex v in this group that maps back to the 
same edge e = s �→ t ∈ E(T |R) the same state: either 
the state assigned to s or the state assigned to t.

Importantly, there can be multiple ways to assign states 
to vertices in group 3; thus, a unique labeling for (T,  c) 
that yields score Dollo(T |R, c|R) does not always exist (see 
Fig. 2 for an example).
We have shown that given a Dollo-labeling ĉ|R for 
(T |R, c|R) , we can construct a labeling ĉ for (T,  c) that 
yields score Dollo(T |R, c|R) . It remains to show that ĉ is 
a Dollo-labeling for (T, c). For the sake of contradiction, 
assume that ĉ is not a Dollo-labeling for (T,  c). Thus, 

there exists some other labeling ĉ′ �= ĉ that yields score 
q < Dollo(T |R, c|R) . In this case, we can use c′ to form a 
labeling for T |R by propagating the state assignments for 
vertices of T in group 1 back to T |R . This new labeling of 
T |R has score at most q as follows. Recall that to form T |R 
from T, we first remove edges associated with maximally-
sized subtrees whose leaves are all assigned the ambigu-
ous state; this procedure either has no effect on the score 
or else decreases it (if any of the removed edges carried 
substitutions). Second, we suppress vertices (in group 
3) with out-degree 1. Consider a pair of vertices s and 
v that are incident to the same edge in T |R but are not 
incident to the same edge in T. If s and v are in the same 
state, then the minimum number of substitutions on the 
path between them in T is 0, and if s and v are in differ-
ent states, then the minimum number of substitutions on 
the path between them in T is 1. In both cases, the sup-
pression step either has no change on the score or else 
decreases the score. It follows that ĉ|R is not a Dollo-labe-
ling for Dollo(T |R, c|R) , which is a contradiction.

We now claim that a unique Dollo-labeling ĉ∗ for (T,  c) 
that can be determined for any vertex v ∈ V (T ) with 
SubBip(v) = X |Y  by applying conditions 1–3 (see proof 
of Corollary 1) plus one additional condition:

•	 Condition 0: For all leaves l ∈ X ∪ Y  , c[l] = ?.

If condition 0 is true, we set ĉ∗[v] = ? . If condition 0 is 
false, we proceed in the usual fashion, setting ĉ∗[v] = 1 if 
at least one of conditions 1–3 is true and setting ĉ∗[v] = 0 
otherwise. We need to show that this procedure produces 
a valid Dollo-labeling for (T, c) for all v ∈ V (T ) . This can 
be achieved by evaluating the outcomes of applying con-
ditions 0–3 to vertices in groups 1–3.
Group 1: The outcomes of applying conditions 1–3 
to any vertex v in group 1 will be the same as applying 
conditions 1–3 to the corresponding vertex w in V (T |R) 
because SubBip(v) = SubBip(w) after we remove all 
leaves assigned state ? from the SubBip(v).

Group 2: Condition 0 will be true for vertex v if and only 
if v is in group 2; thus, applying condition 0 assigns state 
? correctly.

Group 3: Each vertex v in group 3 maps to an edge 
e = s �→ t ∈ E(T |R) . For each of these vertices v, the 
subtree bipartition SubBip(v) = X |Y  will have either all 
leaves in X assigned state ? or all leaves in Y assigned state 
?. Thus, for any two vertices v1 and v2 in group 3 that map 
to the same edge e = s �→ t , SubBip(v1) = SubBip(v2) 
after all leaves assigned ? are removed. It follows that v1 
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and v2 will be assigned the state when applying condi-
tions 1–3. Lastly, we need to show that the state assigned 
v1 (call v) will be the same as either the state assigned to s 
or the state assigned to t. For simplicity, assume v induces 
SubBip(v) = X |Y  and that all leaves in X are assigned 
state ?; we can now check the outcomes of applying con-
ditions 1–3 to v.

•	 Condition 1 is false because there does not exist a 
leaf x ∈ X such that c[x] = 1.

•	 Condition 2 is false for the same reason.
•	 Condition 3 may be either true or false.

–	 If condition 3 is true for v, then v is assigned state 1. 
Because condition 3 is true for v, there exists a leaf 
y ∈ Y  and a leaf z ∈ Z such that c[y] = c[z] = 1 . 
Thus, t is on the path from the LCA(y, z) to leaf y. It 
follows that t is also assigned state 1.

–	 If condition 3 is false for v, then v is assigned state 0. 
Because condition 3 is false for v, at least one of the 
following statements is true. For all y ∈ Y  , c[y] �= 1 . 
In this case, t is also assigned state 0 . For all z ∈ Z , 
c[z] �= 1 . In this case, s is also assigned state 0.

	  The above logic can be applied if all leaves in Y are 
assigned state ? (we just swap our arguments for 
conditions 2 and 3, replacing set Y with X).

This proves our second claim. Note that our procedure 
still works when c has no missing values because all ver-
tices in T will be in group 1. It is also worth noting that 
the missing states in c can be imputed without increasing 
the Dollo score simply by propagating the states assigned 
to vertices in group 3 down the tree. In Fig. 2, this would 
correspond to assigning state 0 to H,  I (because y is 
assigned state 0) and so on.�  �

The procedure in the proof of Theorem 2 gives an O(nk) 
algorithm for determining a unique Dollo-labeling at ver-
tex v, denoted ĉ[v] , for a set of k characters on n species, 
provided we know SubBip(v). We refer to this procedure 
as GetState (see Additional file  1: Algorithm  1 in for 
details).

The relationship between the subtree bipartitions of a 
tree and its Dollo-labeling brings us back to the CC-LDP 
problem, where the solution space is constrained by a set 
of clades, which in turn constrains the subtree biparti-
tions of any solution and thus its Dollo-labeling.

Corollary 2  Consider the set T  of all solutions to 
CC-LDP given species set S, character set C , and clade 

set � . Let ST B = {X |Y : X ,Y ,X ∪ Y ∈ �} be the set 
of all subtree bipartitions that can be formed from � , 
and let ST B(A) = {X |Y ∈ ST B : X ∪ Y = A} be the 
subset of subtree bipartitions in ST B that are asso-
ciated with clade A. Then, the unique Dollo-labe-
ling at internal vertex v in an arbitrary phylogenetic 
tree T ∈ T  that induces clade A must be in the set 
Lab(A) = {GetState(X |Y , S, C) : X |Y ∈ ST B(A)}   . 
Note that if v is a leaf, Lab(A) is simply given by the input 
character set C.

Corollary 2 easily follows from Theorem 2. We refer to 
Lab(A) as the allowed state assignments for clade A and 
ST B(A) as the allowed subtree bipartitions for clade A. 
These quantities can be precomputed or computed on 
the fly and saved. Whenever this is done, we also com-
pute the set ST B(A, st) of subtree bipartitions X|Y such 
that X ∪ Y = A and GetState(X |Y , S, C) = st.

Lastly, if we know the state assignments for some 
vertex v as well as its children v.left and v.right, it is 
possible for us to compute the number of losses that 
occur on the outgoing edges of v. We simply need to 
count the number of times v is assigned state 1 and 
v.left is assigned state 0, repeating for v.right. This can 
be done if O(k) time. We refer to this procedure as 
CountLosses (see Additional file  1: Algorithm  2 for 
details). Now we are ready to present the dynamic pro-
gramming algorithm for CC-LDP.

DynamicProgramming 1  Let Dollo[A,  st] be the small-
est number of losses for any pair (tA, ĉA) such that tA is a 
rooted binary tree on leaf set A that draws all its clades 
from � and ĉA is an assignment of states to all vertices 
of tA constrained by Corollary 2 and returning st for the 
root of tA (note that these requirements imply A ∈ � and 
st ∈ Lab(A) ). The quantity Dollo[A, st] can be computed 
with dynamic programming as follows.

Base Case: Clade A contains a single species, i.e., |A| = 1.

Recurrence: Clade A contains multiple species, i.e., 
|A| > 1.

The Dollo score of any solution to CC-LDP equals 
minst∈Lab(S) Dollo[S, st] , and a solution can be recovered 
by backtracking.

Dollo[A, st] := 0

Dollo[A, st] := min
X |Y∈ST B(A,st),StX∈Lab(X),StY ∈Lab(Y )

Dollo[X , StX ]+

Dollo[Y , StY ]+

�����������(st, StX , StY )
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Theorem 3  The dynamic programming algorithm above 
correctly solves CC-LDP.

Proof  Base case: The base case for Dollo[A, st] is trivial 
because when |A| = 1 there is only one rooted, binary 
tree possible: a single leaf assigned the states given by 
the input character set C . There are no edges and thus no 
losses, so Dollo[A, st] = 0.

Induction step: Now we consider the case where |A| > 1 . 
By the induction hypothesis, we assume that we have cor-
rectly solved Dollo[X , StX ] and Dollo[Y , StY ] . Let (tX , ĉX ) 
be an arbitrary solution to subproblem Dollo[X , StX ] , 
implying that (1) tX is a rooted binary tree on leaf set X 
with Clade(tX ) ⊆ � , (2) ĉX is an assignment of states to 
all vertices of tX constrained by Corollary 2 and return-
ing StX for the root of tX , and (3) the number of losses 
for (tX , ĉX ) equals Dollo[X , StX ] , which is the minimum 
number of losses for any pair (tree and state assignment) 
that satisfies both (1) and (2). Similarly, let (tY , ĉY ) be 
an arbitrary solution to subproblem Dollo[Y , StY ] . Note 
that by (1), X ,Y ∈ � and that by (2), StX ∈ Lab(X) and 
StY ∈ Lab(Y ) . Let (t, ĉ) be formed by connecting (tX , ĉX ) 
and (tY , ĉY ) at their roots and assigning state st to the new 
root. The pair (t, ĉ) is a candidate solution for subproblem 
Dollo[A,  st] provided that X |Y ∈ ST B(A) (so require-
ment 1 is satisfied) and st = State(X |Y , S, C) ∈ Lab(A) 
(so requirement 2 is satisfied). These two require-
ments can be summarized as X |Y ∈ ST B(A, st) . For 
this candidate solution, the number of losses equals 
Dollo[X , StX ] + Dollo[Y , StY ] + �����������(st, StX , StY ) , where 
the last term gives the number of losses for the new 
edges. Now we need to consider requirement 3. Specifi-
cally, we need to check whether a better score (i.e., lower 
number of losses) can be obtained from any other can-
didate solution. Keeping clades X and Y, other candidate 
solutions can be formed by all other ways of selecting 
StX ∈ Lab(X) and StY ∈ Lab(Y ) . Moreover, this process 
can be repeated for the other allowed subtree bipartitions 
for clade A that produce state assignment st (i.e., all other 
ways of selecting X |Y ∈ ST B(A, st) ). Any other possibil-
ities will violate (1) and/or (2), and thus will not produce 
valid candidate solutions. Thus, our recurrence is correct.

Recurrence is solvable by dynamic programming: 
In our recurrence, Dollo[A,  st] only depends on sub-
problems: Dollo[X , StX ] and Dollo[Y , StY ] for all 
X |Y ∈ STB(A, st) , StX ∈ Lab(X) , and StY ∈ Lab(Y ) . 
Since |X| and |Y| must be less than |A|, solving subprob-
lems in order of clade cardinality will guarantee that 
all trivial subproblems are solved first (hitting the base 
cases) and that all subproblem dependencies are satis-
fied moving forward (because there are no dependencies 

between subproblems corresponding to the same clade 
but different state assignments at the root). Thus, we can 
use dynamic programming to solve this recurrence.

Putting it all together: We compute Dollo[S,  st] for all 
st ∈ Lab(S) , recording a subproblem for which the num-
ber of losses is minimized. Backtracking gives an arbi-
trary solution to this subproblem, which is also a solution 
to CC-LDP by (1), (2), and (3). � �

Theorem  4  The runtime of the dynamic programming 
algorithm described above is polynomial in the number 
n of species, the number k of characters, and the num-
ber of clades in � . To be specific, it has time complexity: 
O(|�|3.726(n+ k)+ |�|1.726nk).

Proof  We need to show that the number of subprob-
lems is polynomial and that each subproblem can be 
solved in polynomial time (and also that the precomputa-
tion phases can be done in polynomial time).

We first consider the number of subproblems. The 
dynamic programming matrix has two dimensions: the 
first corresponds to clade A ∈ � and the second corre-
sponds to an allowed state assignment st ∈ Lab(A) . The 
former is clearly O(|�|) . The latter is also O(|�|) because 
|Lab(A)| has an upper bound of |ST B(A)| , which in turn 
has an upper bound of |�| . From this analysis, the num-
ber of subproblems is O(|�2|) ; however, we can tighten 
this upper bound by using the result from Kane and Tao 
[35], which gives 

∑
A∈� |ST B(A)| < |�|1.726 . In other 

words, the number of subproblems is O(|�|1.726) . Note 
that to perform the traceback, we also need to store 
pointers back to the two child subproblems for every 
subproblem but this does not impact the storage or time 
complexity.

Before tackling the subproblems, we precompute sev-
eral quantities. First, for each clade A ∈ � , we com-
pute its associated subtree bipartitions ST B(A) ; this 
first precomputation phase can be done in O(|�|2n) 
time using Additional file  1: Algorithm  3 in if perform-
ing set operations with bitvectors. Second, for each 
subtree bipartition X |Y ∈ ST B(A) , we compute its 
state assignment st ′ in O(nk) time using the Get-
States function (Additional file  1: Algorithm  1), 
and then we add st ′ to set Lab(A) and add X|Y to set 
ST B(A, st ′) , which can be done in O(n) time and 
O(n+ k) time, respectively, if hashing bitvectors. There-
fore, the second precomputation phase can be done in ∑

A∈� O(|ST B(A)|(nk + 2n+ k)) = O(|�|1.726nk) time 
(see Additional file 1: Algorithm 4 for details).
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We now consider the cost of solving each subprob-
lem. Subproblem Dollo[A,  st] can be solved by com-
puting candidate solutions from Dollo[X , StX ] and 
Dollo[Y , StY ] , for all X |Y ∈ ST B(A, st) , StX ∈ Lab(X) , 
and StY ∈ Lab(Y ) . For each candidate solution, we 
must retrieve Dollo[X , StX ] and Dollo[Y , StY ] , which 
takes O(n+ k) time if hashing bitvectors, execute 
CountLosses, which takes O(k) time, and then sum 
three terms together. Thus, the total time to solve sub-
problem Dollo[A, st] is

because |Lab(X)| and |Lab(X)| are both O(|�|) , as pre-
viously discussed. Putting this all together, the time 
complexity of our dynamic programming algorithm is 
O(|�|3.726(n+ k)+ |�|1.726nk) .�  �

Extension to Camin‑Sokal parsimony
Our results for Dollo can be extended to Camin-Sokal 
parsimony. Specifically, we can define the clade-con-
strained large Camin-Sokal parsimony (CC-LCSP) prob-
lem, in the natural way. We can also extend our algorithm 
by replacing the CountLosses function to count gains 
0 → 1 instead and by redefining the GetStates func-
tion based on the following result.

Theorem 5  Let T be a rooted binary tree, and let c be 
an ordered binary character (with no missing values), 
both on the same species set. A Camin-Sokal-labeling for 
(T, c) must assign state 0 to every internal vertex that is 
an ancestor of a leaf assigned state 0 and assign state 1 to 
all remaining vertices.

Proof  We first claim that in a valid Camin-Sokal-labe-
ling for (T, c), any internal vertex that is an ancestor of a 
leaf assigned state 0 must be assigned state 0. To show 
our claim, let ĉ be a Camin-Sokal labeling for (T, c), let u 
be an internal vertex that is an ancestor of a leaf l assigned 
state 0, and suppose for the sake of contradiction that 
ĉ[u] = 1 . However, since u is an ancestor of l and c[l] = 0 , 
at some point in the path from the u to l there must be a 
loss; this is not allowed under Camin-Sokal so we have a 
contradiction.

We now claim that assigning all remaining internal verti-
ces state 1 will yield the unique Camin-Sokal-labeling for 

∑

A∈�

∑

st∈Lab(A)

O(|ST B(A, st)||�|2(n+ k)) ≤
∑

A∈�

O(|ST B(A)||�|2(n+ k))

= O(|�|3.726(n+ k))

(T, c). Assume that ĉ is formed in this way but is not the 
unique Camin-Sokal labeling for (T, c). This implies the 
existence of another labeling ĉ′ �= ĉ that yields the same 
or a lower score for (T,  c). By our first claim, we know 
that the differences between ĉ′ and ĉ occur at vertices that 
are not an ancestor of a leaf assigned state 0, that is, they 
lie in maximally-size subtrees of T whose leaves are all 
assigned state 1. Thus, in at least one of those subtrees, 
there exists a vertex v such that ĉ′[v] = 0 , so there are at 
least two gains in that subtree. Because this subtree is 
maximally-sized, the parent of its root in the tree T must 

be assigned state 0. Thus, changing the assignments of all 
vertices in that subtree to 1 will improve the overall score 
for T by at least 1. The same logic can be applied to all 
subtrees, and re-assigning states in all subtrees from 0 to 
1 will yield ĉ . It follows that ĉ is a Camin-Sokal-labeling 
for T and is the unique Camin-Sokal-labeling for T.�  �

Corollary 3  Let c be an ordered binary character on 
species set S, let T be an arbitrary rooted binary tree on 
S, and let ĉ be the unique Camin-Sokal-labeling for (T, c). 
Then for any internal vertex v in T, ĉ[v] can be determined 
just by having knowledge of Clade(v); no other knowledge 
of T is needed. Moreover, if c is allowed to have missing 
values, a unique Camin-Sokal-labeling can be found in a 
similar fashion.

Proof  Consider an internal vertex v in T that induces 
clade A. By Theorem  5, ĉ[v] = 0 if the following case 
holds (otherwise ĉ[v] = 1)

•	 Case C: Vertex v is an ancestor of at least one leaf 
assigned state 0.

Looking at clade Clade(v) = A , case C holds if condi-
tion 4 below is true.

•	 Condition 4: There exists a leaf a ∈ A such that 
c[a] = 0.

To summarize, ĉ[v] = 0 if condition 4 is true; otherwise 
ĉ[v] = 1 . Condition 4 can be evaluated so long as we 
know the clade induced by v (given the character c and its 
complete leaf set S). This proves our first claim.
We now allow for missing values. All aspects of the 
proof are similar to that for Theorem  2, except we now 
apply condition 4 instead of conditions 1–3 to vertices 
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in groups 1 and 3 (recall that condition 0 will be true if 
and only if a vertex is in group 2). Applying condition 4 
to vertices in group 1 will simply propagate state assign-
ments from T |R back to T. For vertices in group 3, we 
need to show that every vertex v that maps to the same 
edge e = s �→ t ∈ E(T |R) will be assigned the same state: 
either the state assigned to s or the state assigned to t (so 
there may be multiple state assignments that achieve the 
optimal score). For each of these vertices v, the subtree 
bipartition SubBip(v) = X |Y  will have either all leaves 
in X assigned state ? or all leaves in Y assigned state ?. 
Thus, for any two vertices v1 and v2 in group 3 that map 
to the same edge e = s �→ t , Clade(v1) = Clade(v2) after 
all leaves assigned ? are removed. It follows that v1 and v2 
will be assigned the same state when applying condition 
4. Now we just need to check the outcomes of applying 
condition 4 to v1 (call v).

•	 If condition 4 is true for v, it is true for both s and t. 
Thus, v, s, t are all assigned state 0.

•	 If condition 4 is false for v, it is false for t. Thus, v and 
t are both assigned state 1.

This proves our second claim. Note that our procedure 
still works when c has no missing values because all verti-
ces in T will be in group 1.�  �

Extensions to Fitch parsimony
For the large Dollo and Camin-Sokal parsimony prob-
lems, the state assignments (labelings) are constrained 
by the allowed clades (Theorem 2 and Corollary 3); thus 
we can treat these problems as “stitching” clades together 
into an optimal scoring tree on the complete leaf set. 
Extensions of our algorithm to Fitch parsimony are not 
so straight-forward. Recall that the large Fitch parsimony 
problem takes unordered binary characters as input and 
seeks an unrooted binary tree to minimize the Fitch 
score. To apply our algorithm in this context, it would 
make more sense to constrain the space with biparti-
tions, and then to transform the bipartitions into clades 
by rooting them at an arbitrarily selected leaf; this is the 
approach taken by ASTRAL [6], which constructs a tree 
rooted at the arbitrarily selected leaf and then unroots 
it. Additionally, we would need update the scoring func-
tion, computing it as a Hamming distance between state 
assignments instead of using the CountLosses func-
tion for Dollo. The major challenge is how to assign states 
to the internal vertices for Fitch parsimony. Consider the 
two trees in Fig.  1E and Fig.  1F, specifically the edge in 
each tree that induces bipartition A, B|C, D, E. The Fitch-
labeling of the vertex incident to this edge and adjacent 
to leaves A and B depends on the remainder of the tree 

(or at least requires more information about the tree 
than a single bipartition). Because it is not obvious how 
to constrain the state assignments at an internal vertex 
simply by looking at its associated subtree bipartition or 
clade, we could consider all possible state assignments, 
which are all binary strings with length k. However, in 
this case, the number of subproblems would become 
�(|�|2k) rather than O(|�|1.726) for Dollo parsimony, so 
our dynamic programming algorithm, when extended 
to the large Fitch parsimony problem, would not run in 
polynomial time.

Experimental study
We now describe an experimental study evaluating our 
dynamic programming algorithm for CC-LDP against 
traditional methods for parsimony: heuristic search and 
branch-and-bound.

Character data sets
We evaluate methods in the context of species tree esti-
mation under the infinite sites plus neutral Wright-Fisher 
(IS+nWF) model [36, 37]. Under the infinite sites model, 
characters evolve without homoplasy, meaning paral-
lel mutations and reversals are prohibited. Some types 
of retroelement insertions, like L1 in mammals [38], are 
typically assumed to evolve with little homoplasy [39]. 
The idea is that two insertions are unlikely to occur at 
exactly the same position in the genome (so no parallel 
evolution) and that insertions are unlikely to be precisely 
excised (so no reversals) [39]. Note that the absence/pres-
ence of an insertion corresponds to ancestral/derived 
states so these characters are ordered.

Characters that evolve without homoplasy would result 
in a perfect phylogeny; however, this ignores population-
level processes. For sexually reproducing organisms, 
insertions arising in egg or sperm cells are transmitted 
from parent to offspring. Thus, the mutation is polymor-
phic in the population when it arises and its frequency in 
the population changes randomly assuming neutral evo-
lution (note that the population structure is governed by 
the species tree). To summarize, an insertion is gained 
( 0 → 1 ) exactly once but then it can be lost ( 1 → 0 ) due 
to genetic drift. These rules are suitable for Dollo parsi-
mony, and indeed, Dollo parsimony has been used to 
estimate species trees from low-homoplasy retroelement 
insertions in prior studies (e.g., [18–23]). Here, we re-
analyze three retroelement presence/absence data sets; 
we also benchmark methods on a collection of synthetic 
data sets simulated under the IS+nWF model.

Biological Data Sets The Myotis data set from [22] has 
11 taxa and 10,595 characters. Each character represents 
the presence/absence of a Ves SINE (short interspersed 
nuclear element) insertion at an orthologous position 
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across the species’ genomes. No character states are 
ambiguous, and all characters are parsimony-informa-
tive, specifically there are at least two 0’s and at least two 
1’s. The original analysis of this data set included maxi-
mum parsimony using branch-and-bound with the Dollo 
criterion score (Fig. 2 in [22]).

The Palaeognathe data set from [17] has 13 taxa and 
4,301 parsimony-informative characters (note that 18% 
of the character states in this matrix are ambiguous). 
Each character represents the presence/absence of a 
CR1 LINE (long interspersed nuclear element) insertion 
at an orthologous position across the species’ genomes. 
The original analysis of this data set did not include Dollo 
parsimony; rather insertions were used to corroborate a 
species tree estimated from (estimated) gene trees with 
ASTRAL and MP-EST [40].

The Toothed Whales data set from [41] has 25 taxa and 
1,197 parsimony-informative characters (note that 2% of 
the states in this data set are ambiguous). Each character 
represents the presence/absence of a CHR SINE insertion 
at an orthologous position across the species’ genomes. 
The original analysis of this data set included maximum 
parsimony using heuristic search under the Dollo parsi-
mony score; branch support was estimated via bootstrap-
ping with 1000 replicates (Supplementary Figure S1b in 
[41]).

Simulated Data Sets All synthetic data sets used in 
our study were simulated under an approximation to the 
IS+nWF model using ms[42]. The simulation requires a 
model species tree. At the high-level, a gene genealogy is 
simulated within the model species tree under the coales-
cent and then a mutation arises on a branch of the gene-
alogy so all taxa that are descendants have the mutation 
(all other taxa do not). This process is repeated, produc-
ing a collection of binary characters that evolved inde-
pendently within the model species tree. We only utilize 
the parsimony-informative characters, varying the total 
number of characters given to methods as input from 500 
to 50,000.

The first collection of synthetic data sets are taken from 
Molloy et  al. [43]. These data sets were simulated given 
the Palaeognathe species tree estimated by Cloutier et al. 
[17] using MP-EST. The ms  simulation was repeated 25 
times to produce 25 replicate data sets. We created a sec-
ond collection of synthetic data sets by taking the species 
trees generated in a prior study [10]. Specifically, Mirarab 
et al. [10] simulated species trees with varying numbers 
of taxa under the Yule model with SimPhy  [44], set-
ting the species tree height to 2 million generations and 
the effective population size to 200,000. This process was 
repeated 50 times for each number of taxa. We ran the 
ms  simulation, described above, for the first 25 species 

trees with 10, 50, 100, and 200 ingroup taxa (and one out-
group taxa). This produced 25 replicate characters matri-
ces for each number of taxa.

Methods
We evaluated four different methods for the large Dollo 
parsimony problem. All approaches implemented in 
PAUP*  [30] were executed using version 4a168_cen-
tos64 (downloaded from https://​paup.​phylo​solut​ions.​
com).

Branch-and-bound Branch-and-bound finds an opti-
mal solution by searching tree space in a systematic fash-
ion. Specifically, the parsimony score of an initial tree is 
used to rule out parts of tree space that do not need to 
be searched (as they must contain sub-optimal trees). 
We used the implementation of branch-and-bound in 
PAUP*  (see Additional file 1: Section 2.1 for command) 
and saved all optimal trees.

Fast and Slow Heuristic Searches FastH is a “fast heu-
ristic search” that operates in two phases. First, a starting 
tree is constructed via random taxon addition, meaning 
that the taxa are put in a random order and then a tree 
is built by iteratively adding these taxa to the tree so that 
the criterion score is optimized. This process is repeated 
ten times and then the best scoring tree is taken as the 
starting tree. Second, hill-climbing is performed from 
the starting tree with Tree Bisection and Reconnec-
tion (TBR) edit moves. FastH  was implemented with 
PAUP*  (see Additional file  1: Section  2.2 for the com-
mand; the reconnection limit was set to eight branches 
by default). The 100 best-scoring trees found during the 
heuristic search were saved for use with our dynamic 
programming method.
SlowH  is a “slow heuristic search” that operates by 

performing 100 independent searches. In each search, a 
starting tree is built via random taxon addition and then 
hill climbing is initiated from the starting tree using TBR 
edit moves. SlowH  was implemented with PAUP*  (see 
Additional file  1: Section  2.3 for the command). As in 
the FastH  the reconnection limit for TBR moves was 
set to eight branches by default; however, unlike SlowH, 
FastH  only performs a single search, with these edit 
moves, as oppose to 100 independent searches. All trees 
with the best criterion score found were saved.

Dollo-CDP We implemented our dynamic program-
ming algorithm for CC-LDP in C++ software pack-
age Dollo-CDP. The CC-LDP problem requires not 
only a character matrix but also a set of clades to use 
as constraints. We evaluated two different approaches 
for generating the constraints, both of which rely on 
ASTRAL-III  [11]. The idea is to give Dollo-CDP  a 
character set and a set of trees, from which it will 

https://paup.phylosolutions.com
https://paup.phylosolutions.com
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generate a set of clusters using ASTRAL-III  (note that 
clusters are subsets of taxa, like clades).

Our two approaches differ in the set of trees given 
to ASTRAL-III  as input. Our first approach (called 
Dollo-CDP-fast) gives ASTRAL-III  the 100 best-
scoring trees found by FastH. Our second approach 
(called Dollo-CDP-char) gives ASTRAL-III  the 
input characters reformatted as unrooted trees, as pro-
posed by [45]. The idea is that each parsimony-informa-
tive character encodes an unrooted tree with exactly one 
internal branch, indicating the transition between taxa in 
state 0 to taxa in state 1 or vice versa.

After the clusters are computed with ASTRAL-III, 
Dollo-CDP  processes them, keeping only the clus-
ters that form clades in a tree rooted at some set O of 
outgroup taxa (note that outgroups are typically avail-
able when using Dollo parsimony, as they are often 
used when calling variants and coding them as ances-
tral or derived). A cluster C produced by ASTRAL-
III  is added to the constraint (clade) set if either (1) 
C ⊆ O or (2) C ⊆ {S \ O} . When the outgroup is a sin-
gle taxon, both of these approaches ensure a solution to 
CC-LDP exists. For Dollo-CDP-fast, all trees pro-
duced by FastH, denoted P , can be rooted at O; there-
fore, � = {Clade(T ) : T ∈ P} . For Dollo-CDP-char, 
a solution is guaranteed by virtue of how ASTRAL-
III  handles polytomies (i.e., vertices of degree greater 
than three); however, this produces a large number of 
clades, which, in turn, makes the second approach more 
computationally intensive. Consequently, we only apply 
Dollo-CDP-char to the biological data sets.

The command for running Dollo-CDP  is given in 
Additional file  1: Section  2.4. Users are responsible for 

providing trees for building constraints if using the first 
approach. They are also responsible for downloading and 
extracting ASTRAL-III  into the src directory so that 
Dollo-CDP  can find it. We used ASTRAL-III  ver-
sion 5.7.8 from Github (https://​github.​com/​smira​rab/​
ASTRAL).

Evaluation metrics
All computational experiments were run on the compute 
cluster for the Center for Bioinformatics and Compu-
tational Biology at the University of Maryland, College 
Park. This is a homogenous compute cluster, with all 
compute nodes having dual socket AMD EPYC 7313 
16-Core processors and two terabytes of memory. All 
methods were given access to 64 GB of memory, one 
CPU, and a maximum wallclock time of 24 h (resources 
were managed by the SLURM submission system). We 
recorded the total wallclock time in minutes as well as 
the best Dollo parsimony score found. We added the 
runtime of FastH to the runtime of Dollo-CDP, when 
the former was used to construct the constraint set for 
the latter. Our method Dollo-CDP  only counts losses 
and does not count gains, unlike PAUP*   (note that the 
number of gains should not impact the relative scores as 
the evolution of each character must be explained with 
one gain, either on the tree or implied above the root). 
To ensure scores were comparable, we recomputed the 
Dollo criterion score for all trees using PAUP* (see Addi-
tional file 1: Section 2.5 for the command).

Experimental results
We now present the results of our experimental study on 
biological and synthetic data sets.

Fig. 3  Subfigure A shows the tree returned by Dollo-CDP-char for the Myotis data set [22]. This is the same tree recovered 
by branch-and-bound. Subfigure B shows the tree returned by Dollo-CDP-char for the Palaeognathae data set [17]. A branch-and-bound 
analysis recovered 60 optimal trees (the Dollo-CDP tree is one of the 60). The three branches highlighted in red indicate the strict consensus 
of the 60 equally optimal trees

https://github.com/smirarab/ASTRAL
https://github.com/smirarab/ASTRAL
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Results on biological data sets
For the Myotis, all approaches recovered the same tree as 
branch-and-bound, which was the unique optimal solu-
tion (Fig. 3A). All methods completed in less than a sec-
ond, except for Dollo-CDP-char  (this analysis took 
54  s). For the Palaeognathe data set, branch-and-bound 
recovered 60 optimal trees, and the strict consensus had 
just three branches (Fig. 3B), all of which are in the spe-
cies tree estimated by Cloutier et al. [17] using MP-EST. 
All methods we ran recovered one of the 60 optimal trees 
and completed in less than 3  s. Lastly, for the Toothed 
Whales data set, branch-and-bound recovered 72 

optimal trees and the strict consensus had 15 branches 
(Fig. 4). All methods we ran recovered one of the optimal 
trees and completed in less than 8 s. To summarize, the 
biological data sets, which had up to 25 taxa, were small 
enough to leverage branch-and-bound and the other 
methods tested achieved similar results to branch-and-
bound in terms of parsimony score and runtime.

Results on simulated data sets
Similar trends to the biological data sets were observed 
for the first collection of synthetic data sets, which 
were simulated from a Palaeognathe species tree by 

Fig. 4  Tree returned by Dollo-CDP-char for the Toothed Whale data set [41]. A branch-and-bound analysis recovered 72 optimal trees (the 
Dollo-CDP tree is one of the 72). The 15 branches highlighted in red indicate the strict consensus of the 72 equally optimal trees
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Molloy et  al. [43]. For all but one replicate, all meth-
ods recovered trees with the same Dollo parsimony 
score as branch-and-bound (which typically recovered 
one or two equally optimal trees). For the remaining 
replicate, FastH  returned a tree with a slightly lower 
score than the other methods. Thus, Dollo-CDP-
fast slightly improved upon FastH in terms of Dollo 
parsimony score for one replicate. Similar trends were 
observed for the second collection of simulated data 
sets with 10 ingroup taxa. Like the biological data sets, 
the analyses of synthetic data sets suggest that as long 
as the number of taxa is sufficiently small, all methods 
will produce similar results and compare favorably to 
branch-and-bound.

We were unable to run branch-and-bound on 
data sets with 50 or more taxa (specifically the jobs 
were killed due to our maximum wallclock time of 
24  h). For these data sets, we first looked at whether 
or not Dollo-CDP-fast  found trees with bet-
ter scores than FastH  (Table  1). For 50 ingroup 

taxa, Dollo-CDP-fast  typically improved upon 
FastH for about half of the replicates. For 100 and 200 
ingroup taxa (and at least 5000 characters), Dollo-
CDP-fast  nearly always improved upon  FastH. 
Moreover, Dollo-CDP-fast has an average runtime 
of less than 3 min for all data sets (Table 2).

Next, we compared the performance of Dollo-
CDP-fast  to SlowH  (Table  2). For 50 and 100 
ingroup taxa, Dollo-CDP-fast  performed as well 
as SlowH in terms of parsimony scores and was faster, 
although SlowH  still always completed in less than 
16 min on average. For 200 ingroup taxa, SlowH  took 
nearly 40  min on average for 5000-100,000 charac-
ters and over 1.5 h for 100,000 characters. In contrast, 
Dollo-CDP-fast  always completed in less than 
5  min. On the other hand, SlowH  did recover better 
scoring trees in about one third of the replicates. To 
summarize, our results suggest that for larger numbers 
of taxa and larger numbers of characters, Dollo-CDP-
fast improves upon FastH and is faster than SlowH.

Conclusions
We have introduced the clade-constrained large Dollo 
parsimony problem and presented a polynomial time 
algorithm that solves it. Although constraints and 
dynamic programming (CDP) have been a powerful 
combination in phylogenetics, to our knowledge this is 
the first attempt at using CDP for character parsimony. 
An important distinction between prior problems and 
character parsimony is the assignment of states at inter-
nal vertices required to compute the parsimony score of 
a tree. We found that Dollo as well as Camin-Sokal crite-
rion scores have nice properties that make CDP possible 
(they also might make heuristic search quite effective in 
practice). These nice properties for state assignments did 
not easily extend to Fitch parsimony, so our algorithmic 
approach seems less favorable in this setting.

We implemented the CDP algorithm for the Dollo cri-
terion score in a package called Dollo-CDP, including 
two approaches for generating clade constraints: Dollo-
CDP-char and Dollo-CDP-fast. In an experimental 
evaluation, we found that both approaches had good per-
formance (finding high scoring trees quickly), although 
all existing methods performed similarly when data sets 
had relatively few taxa. We found, by way of a simulation 
study, that Dollo-CDP-fast can provide a benefit for 
larger numbers of taxa. Most notably, branch-and-bound 
could not scale to data sets with 50 or more taxa, so 
Dollo-CDP-fast was the only method run that could 
provide some guarantee of optimality, albeit a more lim-
ited one. In practice, we found Dollo-CDP-fast often 
found higher scores trees than FastH, even though the 
trees from  FastH   were used to form constraints for 

Table 1  This table shows a comparison of the tree produced by 
Dollo-CDP-fast  and a best-scoring tree found by the fast 
heuristic search (FastH)

We report the number of replicates for which Dollo-CDP-fast is the same 
or better than FastH in terms of Dollo criterion score. For the replicates for 
which Dollo-CDP-fast is better, we also report the average absolute 
difference in scores between the trees (rounded to the nearest integer). Recall 
that Dollo-CDP-fast is given trees produced by FastH as constraints; thus 
Dollo-CDP-fast is strictly slower in runtime and at least as good in score (we 
confirmed this was the case in our experiments)

# of Same Dollo-CDP-fast Better
characters # reps # reps ( � score)

50 taxa

 500 16 9 (2)

 1000 11 14 (2)

 5000 12 13 (7)

 10000 14 11 (16)

 50000 13 12 (54)

100 taxa

 500 25 0 (NA)

 1000 22 3 (1)

 5000 0 25 (6)

 10000 2 23 (13)

 50000 4 21 (43)

200 taxa

 500 25 0 (NA)

 1000 25 0 (NA)

 5000 6 19 (2)

 10000 4 21 (3)

 50000 0 25 (27)
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Dollo-CDP-fast. SlowH  sometimes found higher 
scoring trees than Dollo-CDP-fast  but was much 
slower for large numbers of taxa and characters. A caveat 
of our study is that all methods were run with one thread. 
All searches in SlowH  are independent so it would be 
much faster with threading. Dollo-CDP  could also 
take advantage of threading, using techniques from Yin 
et  al. [46] and could be better optimized. We leave this 
to future work. Even if the runtime of SlowH  improves 
with threading, Dollo-CDP  could then be run using 
trees found by SlowH, in addition to the ones found 
by FastH, to form constraints. The benefit here is that 
leveraging Dollo-CDP  is fast, strictly improves upon 
prior searches, and gives a guarantee of optimality for the 
constrained solution space.

In analyzing the Palaeognathae and the Toothed 
Whales data sets, we found many optimal trees using 
branch-and-bound. Dollo-CDP  returns a single 
binary tree, and future work should enable users to 
get a consensus of the optimal trees in the constrained 
solution space, similar to SIESTA [47]. Lastly, we 
explored methods for Dollo parsimony in the context of 
species tree estimation, where data are assumed to fol-
low a population genetics model. Dollo parsimony has 
also been leveraged in tumor phylogenetics [13–16]. It 

would be interesting to explore the utility of Dollo-
CDP  in this application area, especially as the number 
of leaves (cells instead of species) can be quite large in 
this setting. Applying Dollo-CDP  to this setting will 
likely necessitate the exploration and development of 
approaches for generating the constraint set, which 
impact the performance of Dollo-CDP  in terms of 
score and runtime.

Abbreviation
CC-LDP	� Clade-constrained large Dollo parsimony
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