
Dai et al. Algorithms for Molecular Biology (2024) 19:2
https://doi.org/10.1186/s13015-023-00249-9

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Algorithms for
Molecular Biology

Dollo‑CDP: a polynomial‑time algorithm
for the clade‑constrained large Dollo parsimony
problem
Junyan Dai1, Tobias Rubel1, Yunheng Han1 and Erin K. Molloy1,2* 

Abstract 

The last decade of phylogenetics has seen the development of many methods that leverage constraints plus dynamic
programming. The goal of this algorithmic technique is to produce a phylogeny that is optimal with respect to some
objective function and that lies within a constrained version of tree space. The popular species tree estimation
method ASTRAL, for example, returns a tree that (1) maximizes the quartet score computed with respect to the input
gene trees and that (2) draws its branches (bipartitions) from the input constraint set. This technique has yet to
be used for parsimony problems where the input are binary characters, sometimes with missing values. Here, we
introduce the clade-constrained character parsimony problem and present an algorithm that solves this problem
for the Dollo criterion score in O(|�|3.726(n+ k)+ |�|1.726nk) time, where n is the number of leaves, k is the number
of characters, and � is the set of clades used as constraints. Dollo parsimony, which requires traits/mutations to be
gained at most once but allows them to be lost any number of times, is widely used for tumor phylogenetics as well
as species phylogenetics, for example analyses of low-homoplasy retroelement insertions across the vertebrate tree
of life. This motivated us to implement our algorithm in a software package, called Dollo-CDP, and evaluate its utility
for analyzing retroelement insertion presence / absence patterns for bats, birds, toothed whales as well as simulated
data. Our results show that Dollo-CDP can improve upon heuristic search from a single starting tree, often recovering
a better scoring tree. Moreover, Dollo-CDP scales to data sets with much larger numbers of taxa than branch-and-
bound while still having an optimality guarantee, albeit a more restricted one. Lastly, we show that our algorithm
for Dollo parsimony can easily be adapted to Camin-Sokal parsimony but not Fitch parsimony.

Keywords  Phylogenetics, Parsimony, Dollo, Retrotransposons

Introduction
The last decade of phylogenetics has seen the develop-
ment of many methods that leverage constraints plus
dynamic programming (CDP). The goal of CDP is to pro-
duce a phylogeny that is optimal with respect to some

objective function and that lies within a constrained ver-
sion of tree space. To our knowledge, the first method
based on CDP was introduced in 2000 by Hallet and
Lagergren [1] for gene tree parsimony, which seeks a spe-
cies tree that minimizes the number of events (e.g., dupli-
cations and losses) needed to explain the input gene trees
(also see the related results presented at WABI 2017 [2,
3]). Since its introduction, CDP has been leveraged for a
variety of optimization problems, including minimizing
deep coalescence [4], maximizing quartet support [5, 6]
(see [7] for extensions to multi-copy genes), and maxi-
mizing bipartition support [8] (see [9] for extensions to

*Correspondence:
Erin K. Molloy
ekmolloy@umd.edu
1 Department of Computer Science, University of Maryland, College Park,
MD, USA
2 University of Maryland Institute for Advanced Computer Studies,
College Park, MD, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-023-00249-9&domain=pdf

Page 2 of 17Dai et al. Algorithms for Molecular Biology (2024) 19:2

multi-copy genes). All of these optimization problems
take gene trees as input and seek a species tree that mini-
mizes the dissimilarity between it and the input gene
trees or alternatively maximizes the similarity (note that
species trees depict the evolutionary history of species,
whereas gene trees depict the evolutionary history of
recombination-free, orthologous genomic regions).

That CDP is so widely utilized in phylogenetics is likely
due to it being possible to build effective constraints in
practice. The constraints are effective if (nearly) optimal
solutions lie within the constrained search space and
this space is small enough to enable efficient running
times. As an example, the species tree estimation method
ASTRAL solves the bipartition-constrained maximum
quartet support supertree problem [6]. The first version
of ASTRAL [6] formed the constrained solution space
from the set of all bipartitions (i.e., branches) found in
the input gene trees. The newer versions of ASTRAL [10,
11] allow extra bipartitions to be included as constraints
with the goal of improving accuracy. FASTRAL [12], on
the other hand, aggressively limits the number of biparti-
tions added with the goal of improving runtime. Overall,
the popularity of the ASTRAL family of methods is likely
due to their speed and accuracy on practical inputs.

Given the success of CDP thus far, we explore the use
of this technique for traditional parsimony problems
where the input are binary characters, sometimes with
missing values. The remainder of this paper is organ-
ized as follows. After providing notation and prelimi-
naries, we introduce the clade-constrained character
parsimony problem and present an algorithm that solves
this problem in polynomial time for the Dollo criterion
score. We then show how our algorithm can be adapted
to Camin-Sokal parsimony but not Fitch parsimony.
Dollo parsimony, in particular, is widely used for tumor
phylogenetics [13–16] as well as species phylogenetics,
for example analyses of the presence or absence of low-
homoplasy retroelement insertions across the vertebrate
tree of life. Prior studies have leveraged Dollo parsimony
to analyze higher-level clades of birds (e.g., Palaeog-
nathe [17]) and mammals (e.g., Laurasiatheria [18, 19]),
in addition to clades at the family and genus levels (e.g.,
rorquals [20], mouse-eared bats [21, 22], and primates
[23]).

This motivated us to implement our algorithm for the
Dollo criterion score in Dollo-CDP, an open-source
software package available on Github. We evaluate
Dollo-CDP on real and synthetic data sets of retro-
element insertion presence / absence in comparison to
branch-and-bound and heuristic search. Our results
reveal that Dollo-CDP can improve upon heuristic
search from a single starting tree, often recovering a

better scoring tree. Moreover, Dollo-CDP scales to data
sets with much larger numbers of taxa than branch-and-
bound while still having an optimality guarantee, albeit
a more restricted one. We conclude with a discussion of
limitations and opportunities for future research.

Background
Before introducing the clade-constrained Dollo parsi-
mony problem, we review some preliminaries on phylo-
genetic trees, characters, and parsimony approaches.

Phylogenetic trees
A phylogenetic tree T is an acyclic graph whose leaves
(i.e., vertices with degree one) are bijectively labeled by
a set S of species (note that in the context of tumor phy-
logenetics the leaves may be labeled by cells in a tumor).
For convenience and simplicity of notation, we treat
leaves and species as being interchangeable. We use L(T),
V(T), and E(T) to denote the leaf set, vertex set, and edge
set of T, respectively.

Phylogenetic trees can be either unrooted or rooted; for
the former the graph is undirected and for the latter the
graph is directed, with edges orientated away from the
root (a special vertex with in-degree zero). For rooted
trees, we say that vertex u is an ancestor of v (or that v
is a descendant of u) if u is on a directed path from the
root to v. The lowest common ancestor (LCA) for a set V
of vertices is the vertex that is the ancestor of all vertices
in V that is farthest away from the root.

Unless otherwise noted, we will assume that all trees
are binary. An unrooted tree is binary if all non-leaf
vertices (called internal vertices) have degree three, and
a rooted tree is binary if all non-leaf vertices have out-
degree two (all non-root vertices have in-degree one).
For rooted trees, we use v.parent to indicate the parent
of vertex v; similarly, we use v.left and v.right to denote
the left and right children of vertex v, respectively. Some-
times it will be useful to restrict a tree T to a subset
X ⊆ S of leaves, meaning that each leaf in S\X is deleted
from T and then all vertices with degree two are sup-
pressed. There are three additional concepts for phyloge-
netic trees that will prove useful later.

Definition 1  (Bipartition) Each edge e in an unrooted
phylogenetic tree T induces a bipartition, which splits
the leaf set of T into two disjoint subsets whose union is
the complete leaf set S. The bipartition Bip(e) = X |Y is
formed by deleting edge e but not its endpoints from T
and assigning the leaves in one of the resulting subtrees
to X and the leaves in the other to Y.

Page 3 of 17Dai et al. Algorithms for Molecular Biology (2024) 19:2 	

Definition 2  (Clade) Each vertex v in a rooted phyloge-
netic tree T induces a clade, denoted Clade(v), which is
simply the set of leaves that are descendants of v. A clade
is trivial if it contains only a single element (as it must be
associated with a leaf vertex) or if it contains all leaves (as
it must be associated with the root vertex).

Definition 3  (Subtree bipartition [24]) Each internal
vertex v in a rooted binary phylogenetic tree T induces
a subtree bipartition, which partitions the leaf set of the
subtree into two disjoint subsets whose union is Clade(v).
A subtree bipartition SubBip(v) = X |Y is formed by set-
ting X to be the leaves that are descendants of v.left and Y
to be the set of leaves that are descendants of v.right (or
vice versa).

It is well established that an unrooted phyloge-
netic tree t is uniquely defined by its bipartition set
Bip(t) = {Bip(e) : e ∈ E(t)} and that a rooted phy-
logenetic tree T is uniquely defined by its clade set

Clade(T) = {Clade(v) : v ∈ V (T)} (see Chapters 2
and 3 in [25]). Similarly, we define the subtree biparti-
tion set of T as SubBip(T) = {SubBip(v) : v ∈ V (T)} .
Note that X |Y ∈ SubBip(T) if and only if
{X ,Y ,X ∪ Y } ⊆ Clade(T) ; thus, we can go back and
forth between clades and subtree bipartitions.

Characters and parsimony
A character c on species set S is a function mapping spe-
cies in S to a state set, which is {0,1} for binary charac-
ters. For biological data, the 0 and 1 might refer to some
feature of the genomic data with all species assigned the
same state having the same feature. If 0 indicates the
ancestral state and 1 indicates the derived (i.e., mutated)
state, we say the characters are ordered; otherwise, we
say they are unordered. We later describe how biological
data that are encoded as ordered binary characters. These
character matrices also include a third state ? to indicate

Fig. 1  Let v be the internal vertex associated with the subtree bipartition X|Y, where X = {A} and Y = {B} (note that these vertices are circled
in the trees above). Subfigures A and B show two different trees on the same species set with Dollo-labelings for the same character. The state
assignment at v only requires us to know the subtree bipartition associated with v (Corollary 1). Vertex v is assigned state 1 because there is a leaf
in Y assigned state 1 and a leaf in S \ X ∪ Y assigned state 1. Subfigures C and D show two different trees with Camin-Sokal-labelings for the same
character. The state assignment at v only requires us to know the clade associated with v (Corollary 3). Vertex v is assigned state 0 because there
is a leaf in clade X ∪ Y assigned state 0. Lastly, subfigures E and F show two different trees with Fitch-labelings for the same character. In subfigure
E, the assignment of state 0 or 1 to v results in a score of two or three, respectively (so 0 is better). In subfigure F, the assignment of state 0 or 1
to v results in a score of three or two, respectively (so 1 is better). Thus, for the Fitch criterion score, the state assignment at v depends on more
than the bipartition induced by the edge incident to v 

Page 4 of 17Dai et al. Algorithms for Molecular Biology (2024) 19:2

the state assignment is ambiguous or missing; in other
words, it could not be reliably called as 0 or 1.

For now, we assume that we are given a set C of binary
characters with no missing values, and our goal is to
find a phylogenetic tree T that best explains our data. To
explain how character c evolves on a tree T on the same
species set as c, we must assign states to the internal ver-
tices of T. The quality of our explanation is determined
by the number of substitutions, where a substitu-
tion is implied by any edge e = (u, v) ∈ E(T) such that
c[u] �= c[v] (assuming neither c[u] nor c[v] are the ambig-
uous state ? ). This brings us to the small and large parsi-
mony problems.

Definition 4  (Small Fitch Parsimony Problem) Given
an unrooted binary tree T and an unordered binary char-
acter c, both on species set S, the Fitch parsimony score,
denoted Fitch(T, c), is the minimum number of substitu-
tions needed to explain the evolution of c on T. A Fitch-
labeling for (T, c) is a function ĉ mapping vertices in V(T)
to states in {0, 1} so that ĉ[l] = c[l] for all l ∈ L(T) and the
number of substitutions equals Fitch(T, c).

Problem 1  (Large Fitch Parsimony Problem) The large
Fitch parsimony problem takes as input a set C of unor-
dered binary characters, each on species set S; the out-
put is an unrooted binary tree T on S that minimizes ∑

c∈C Fitch(T , c).

Although the small Fitch parsimony problem can
be solved in polynomial time [26], the large Fitch par-
simony problem is NP-hard [27]. We now consider
ordered characters and rooted phylogenetic trees,
which enables us to distinguish between the 0 → 1
substitution (indicating a mutation is gained) and the
1 → 0 substitution (indicating a mutation is lost).

Definition 5  (Dollo and Camin-Sokal Parsimony Score)
Given a rooted binary tree T and an ordered binary char-
acter c, both on species set S, the Dollo parsimony score,
denoted Dollo(T, c), is the minimum number of losses
needed to explain the evolution of c on T when at most
one gain is allowed (note that sometimes the gains are
also counted as part of the score). The Camin-Sokal par-
simony score, denoted CamSok(T, c), is the minimum
number of gains needed to explain the evolution of c on
T when losses are prohibited.

Just as the Fitch parsimony score was used to define
the Fitch-labeling and the large Fitch parsimony prob-
lem, we can define similar concepts for the Dollo and
Camin-Sokal parsimony scores. The following result

about Dollo-labelings is the basis of a linear-time algo-
rithm presented by Bouckaert et al. [28] for computing
Dollo(T, c).

Theorem 1  (Theorem 1 in [28]) Let T be a rooted,
binary tree and let c be an ordered, binary character with
no missing values, both on the same species set. A Dollo-
labeling for (T, c) must assign state 1 to every internal
vertex on a path from the LCA of all leaves assigned state
1 (including the LCA) to any leaf assigned state 1 and
assign state 0 to all remaining vertices.

It follows that a Dollo-labeling for (T, c) is unique
and always exists, provided the root is allowed to
be assigned state 1. In this case, the gain must have
occurred above the root so no gains are allowed on T
(see Fig. 1A for an example).

Lastly, the large Dollo and Camin-Sokal parsi-
mony problems are NP-hard [29]. The existing meth-
ods for these problems, including those implemented
in PAUP* [30] and Phylip [31], are based on
either heuristic searches of tree space (which have no

Fig. 2  When there are ambiguous states, we can restrict a character c
and tree T to the subset of labels assigned non-ambiguous states (i.e.,
R = {A, C ,G, J,Out} ) and then compute the Dollo score in the usual
fashion (see proof of Theorem 2). To create the restricted tree T |R , we
first identify all edges incident to maximally-sized subtrees with all
leaves assigned the ambiguous state (shown in red shorter dashes).
After deleting these edges, we have a tree T ′ on R (shown with solid
lines) and a collection P of subtrees (shown in grey, with edges
as longer dashes) whose leaves are all assigned the ambiguous state.
We then suppress vertices with out-degree 1 (shown in red) in T ′
to get T |R . Lastly, we apply conditions 1–3 to find the Dollo-labeling
for the internal vertices of T |R ; this gives us one loss on edge v → A
(and also one gain on edge q → s ). This procedure for constructing
T |R classifies vertices in T into three groups. The vertices in Group 1
(r, q, s, v) are assigned the same labels as in T |R . The vertices in Group
2 (x, z) are assigned the ambiguous state. The vertices in Group 3
(t, u, w, y) need to be assigned states so as not to increase the Dollo
score. In this example, there are two possible ways to assign a state
to vertex w; the approach described in the proof of Theorem 2
assigns state 0 to w 

Page 5 of 17Dai et al. Algorithms for Molecular Biology (2024) 19:2 	

optimality guarantees) or branch-and-bound (which is
guaranteed to find an optimal solution but is time con-
suming for large, complex data sets). We provide an
overview of these approaches in presenting our experi-
mental study, referring the interested reader to [32, 33]
for more information.

The clade‑constrained large Dollo parsimony
problem and a polynomial‑time algorithm
We now introduce the clade-constrained large Dollo
parsimony (CC-LDP) problem.

Problem 2  (Clade-constrained large Dollo parsimony
problem) The CC-LDP problem is defined by the follow-
ing input and output.

Input: A set S of species, a set C of ordered binary char-
acters (each on species set S), and a set � of clades (sub-
sets of S)

Output: A rooted binary tree on species set S such that ∑
c∈C Dollo(T , c) is minimized and Clade(T) ⊆ � , if such

a tree exists

The CC-LDP problem has a solution provided there
exists at least one binary tree T on S with Clade(T) ⊆ � .
In our experimental study, we present approaches for
constructing � from C in such a way that a solution to
CC-LDP always exists. The basis of our polynomial-time
algorithm for CC-LDP is that for an arbitrary tree T, the
Dollo-labeling for every character in C at an internal ver-
tex v of T is fully constrained by the subtree bipartition
induced by v. Thus, the clade set � not only constrains
the search space in terms of the allowed tree topologies
but also the allowed state assignments at internal verti-
ces. This decouples the processing of individual char-
acters for the NP-hard large Dollo parsimony problem,
similar to the small Dollo parsimony problem, which, as
previously mentioned, can be solved in polynomial time
(e.g. via the Sankoff-Rousseau [34] algorithm). We begin
by giving a corollary of Theorem 1 in [28].

Corollary 1  Let c be an ordered binary character on
species set S (with no missing values), let T be a rooted
binary tree on S, and let ĉ be the unique Dollo-labeling for
(T, c). Then for any internal vertex v ∈ V (T) , ĉ[v] can be
determined just by having knowledge of its subtree bipar-
tition SubBip(v); no other information about T is needed.

Proof  Consider an arbitrary internal vertex v ∈ V (T)
that induces subtree bipartition X|Y. Without loss of

generality, let X contain the leaves that are descendants
of v.left, let Y contain the leaves that are descendants of
v.right, and let Z contain all other leaves so X|Y|Z is a
partition of S. When c has no missing values, by Theo-
rem 1, there exists a unique Dollo-labeling ĉ for (T, c),
where ĉ[v] = 1 if at least one of the following two cases
holds (otherwise ĉ[v] = 0).

•	 Case A: Vertex v is the LCA of two leaves assigned
state 1.

•	 Case B: Vertex v is on the path from the LCA of two
leaves assigned state 1 to one of those two leaves.

Looking at subtree bipartition SubBip(v) = X |Y  , case A
holds if condition 1 below is true, and case B holds if at
least one of conditions 2 and 3 below is true.

•	 Condition 1: There exists a leaf x ∈ X and a leaf
y ∈ Y such that c[x] = c[y] = 1.

•	 Condition 2: There exists a leaf x ∈ X and a leaf
z ∈ Z such that c[x] = c[z] = 1.

•	 Condition 3: There exists a leaf y ∈ Y and a leaf
z ∈ Z such that c[y] = c[z] = 1.

Therefore, ĉ[v] = 1 if at least one of conditions 1–3 is
true; otherwise ĉ[v] = 0 . Conditions 1–3 can be evalu-
ated so long as we know the subtree bipartition induced
by v (given the character c and its complete leaf set S). �

Theorem 2  Let c be an ordered binary character on spe-
cies set S, and let T be a rooted binary tree on S. If c has
missing values, the Dollo-labeling for (T, c) may not be
unique. However, we can define a unique Dollo-labeling
ĉ∗ for (T, c) with the property that ĉ∗[v] can be determined
for any internal vertex v ∈ V (T) just by having knowledge
of its subtree bipartition SubBip(v); no other knowledge of
T is needed.

Proof  If c contains missing values or ambiguous
states, we define R to be the subset of leaves assigned
non-ambiguous states, letting T |R and c|R denote the
restriction of T and c to R, respectively. We claim that
Dollo(T, c) must equal Dollo(T |R, c|R) . To prove this
claim, we first show how to construct a labeling ĉ for
(T, c) that yields score Dollo(T |R, c|R) given a Dollo-labe-
ling ĉ|R for (T |R, c|R) . We then show that ĉ is a Dollo-labe-
ling for (T, c).

To build ĉ , we classify the vertices of T into three groups
based on the formation of T |R described next (see Fig. 2
for an example).

Page 6 of 17Dai et al. Algorithms for Molecular Biology (2024) 19:2

1.	 First, we identify every edge incident to the root of
a maximally-sized subtree of T whose leaves are
all assigned state ?. That is, we identify every edge
a → b ∈ E(T) such that all leaves in Clade(b) are
assigned state ? and at least one leaf in Clade(a) is
assigned a non-ambiguous state. Let E denote the set
of edges with this property.

2.	 Second, we delete each edge in E but not its end-
points from T. This produces a tree T ′ with no leaves
assigned state ? plus a collection P of subtrees of T
whose leaves are all assigned state ?.

3.	 Lastly, we form T |R by suppressing all vertices in T ′
with out-degree one.

We now use the above procedure to classify the vertices
of T into three groups by which we can build a labeling ĉ
for (T, c) that yields score Dollo(T |R, c|R) as follows.

•	 Group 1 contains every vertex v ∈ V (T) that maps to
a vertex w ∈ V (T |R) . For each vertex v in this group,
we assign ĉ[v] = ĉ|R[w] . The idea is to propagate the
state assignments for T |R back to T. Now we need to
assign states to the remaining vertices in T without
changing the Dollo score.

•	 Group 2 contains every vertex v ∈ V (T) that maps
to a vertex w ∈ ∪t∈PV (t) , meaning that v is in a
maximally-sized subtree of T whose leaves are all
assigned state ?. For each vertex v in this group, we
set ĉ[v] = ? . This state assignment does not change
the Dollo score because substitutions are not counted
on edges with at least one of their two endpoints
assigned state ?.

•	 Group 3 contains every vertex v ∈ V (T) that does
not map to any vertex in V (T |R) ∪ ∪t∈PV (t) ,
meaning that the corresponding vertex must have
been suppressed in step 3. Thus, v maps to an edge
e ∈ E(T |R) , and exactly one of v’s children is the root
of a maximally-sized subtree of T whose leaves are
all assigned state ?. A state assignment that does not
change the Dollo score can be achieved by assigning
every vertex v in this group that maps back to the
same edge e = s �→ t ∈ E(T |R) the same state: either
the state assigned to s or the state assigned to t.

Importantly, there can be multiple ways to assign states
to vertices in group 3; thus, a unique labeling for (T, c)
that yields score Dollo(T |R, c|R) does not always exist (see
Fig. 2 for an example).
We have shown that given a Dollo-labeling ĉ|R for
(T |R, c|R) , we can construct a labeling ĉ for (T, c) that
yields score Dollo(T |R, c|R) . It remains to show that ĉ is
a Dollo-labeling for (T, c). For the sake of contradiction,
assume that ĉ is not a Dollo-labeling for (T, c). Thus,

there exists some other labeling ĉ′ �= ĉ that yields score
q < Dollo(T |R, c|R) . In this case, we can use c′ to form a
labeling for T |R by propagating the state assignments for
vertices of T in group 1 back to T |R . This new labeling of
T |R has score at most q as follows. Recall that to form T |R
from T, we first remove edges associated with maximally-
sized subtrees whose leaves are all assigned the ambigu-
ous state; this procedure either has no effect on the score
or else decreases it (if any of the removed edges carried
substitutions). Second, we suppress vertices (in group
3) with out-degree 1. Consider a pair of vertices s and
v that are incident to the same edge in T |R but are not
incident to the same edge in T. If s and v are in the same
state, then the minimum number of substitutions on the
path between them in T is 0, and if s and v are in differ-
ent states, then the minimum number of substitutions on
the path between them in T is 1. In both cases, the sup-
pression step either has no change on the score or else
decreases the score. It follows that ĉ|R is not a Dollo-labe-
ling for Dollo(T |R, c|R) , which is a contradiction.

We now claim that a unique Dollo-labeling ĉ∗ for (T, c)
that can be determined for any vertex v ∈ V (T) with
SubBip(v) = X |Y by applying conditions 1–3 (see proof
of Corollary 1) plus one additional condition:

•	 Condition 0: For all leaves l ∈ X ∪ Y  , c[l] = ?.

If condition 0 is true, we set ĉ∗[v] = ? . If condition 0 is
false, we proceed in the usual fashion, setting ĉ∗[v] = 1 if
at least one of conditions 1–3 is true and setting ĉ∗[v] = 0
otherwise. We need to show that this procedure produces
a valid Dollo-labeling for (T, c) for all v ∈ V (T) . This can
be achieved by evaluating the outcomes of applying con-
ditions 0–3 to vertices in groups 1–3.
Group 1: The outcomes of applying conditions 1–3
to any vertex v in group 1 will be the same as applying
conditions 1–3 to the corresponding vertex w in V (T |R)
because SubBip(v) = SubBip(w) after we remove all
leaves assigned state ? from the SubBip(v).

Group 2: Condition 0 will be true for vertex v if and only
if v is in group 2; thus, applying condition 0 assigns state
? correctly.

Group 3: Each vertex v in group 3 maps to an edge
e = s �→ t ∈ E(T |R) . For each of these vertices v, the
subtree bipartition SubBip(v) = X |Y will have either all
leaves in X assigned state ? or all leaves in Y assigned state
?. Thus, for any two vertices v1 and v2 in group 3 that map
to the same edge e = s �→ t , SubBip(v1) = SubBip(v2)
after all leaves assigned ? are removed. It follows that v1

Page 7 of 17Dai et al. Algorithms for Molecular Biology (2024) 19:2 	

and v2 will be assigned the state when applying condi-
tions 1–3. Lastly, we need to show that the state assigned
v1 (call v) will be the same as either the state assigned to s
or the state assigned to t. For simplicity, assume v induces
SubBip(v) = X |Y and that all leaves in X are assigned
state ?; we can now check the outcomes of applying con-
ditions 1–3 to v.

•	 Condition 1 is false because there does not exist a
leaf x ∈ X such that c[x] = 1.

•	 Condition 2 is false for the same reason.
•	 Condition 3 may be either true or false.

–	 If condition 3 is true for v, then v is assigned state 1.
Because condition 3 is true for v, there exists a leaf
y ∈ Y and a leaf z ∈ Z such that c[y] = c[z] = 1 .
Thus, t is on the path from the LCA(y, z) to leaf y. It
follows that t is also assigned state 1.

–	 If condition 3 is false for v, then v is assigned state 0.
Because condition 3 is false for v, at least one of the
following statements is true. For all y ∈ Y  , c[y] �= 1 .
In this case, t is also assigned state 0 . For all z ∈ Z ,
c[z] �= 1 . In this case, s is also assigned state 0.

	 The above logic can be applied if all leaves in Y are
assigned state ? (we just swap our arguments for
conditions 2 and 3, replacing set Y with X).

This proves our second claim. Note that our procedure
still works when c has no missing values because all ver-
tices in T will be in group 1. It is also worth noting that
the missing states in c can be imputed without increasing
the Dollo score simply by propagating the states assigned
to vertices in group 3 down the tree. In Fig. 2, this would
correspond to assigning state 0 to H, I (because y is
assigned state 0) and so on.� �

The procedure in the proof of Theorem 2 gives an O(nk)
algorithm for determining a unique Dollo-labeling at ver-
tex v, denoted ĉ[v] , for a set of k characters on n species,
provided we know SubBip(v). We refer to this procedure
as GetState (see Additional file 1: Algorithm 1 in for
details).

The relationship between the subtree bipartitions of a
tree and its Dollo-labeling brings us back to the CC-LDP
problem, where the solution space is constrained by a set
of clades, which in turn constrains the subtree biparti-
tions of any solution and thus its Dollo-labeling.

Corollary 2  Consider the set T of all solutions to
CC-LDP given species set S, character set C , and clade

set � . Let ST B = {X |Y : X ,Y ,X ∪ Y ∈ �} be the set
of all subtree bipartitions that can be formed from � ,
and let ST B(A) = {X |Y ∈ ST B : X ∪ Y = A} be the
subset of subtree bipartitions in ST B that are asso-
ciated with clade A. Then, the unique Dollo-labe-
ling at internal vertex v in an arbitrary phylogenetic
tree T ∈ T that induces clade A must be in the set
Lab(A) = {GetState(X |Y , S, C) : X |Y ∈ ST B(A)}   .
Note that if v is a leaf, Lab(A) is simply given by the input
character set C.

Corollary 2 easily follows from Theorem 2. We refer to
Lab(A) as the allowed state assignments for clade A and
ST B(A) as the allowed subtree bipartitions for clade A.
These quantities can be precomputed or computed on
the fly and saved. Whenever this is done, we also com-
pute the set ST B(A, st) of subtree bipartitions X|Y such
that X ∪ Y = A and GetState(X |Y , S, C) = st.

Lastly, if we know the state assignments for some
vertex v as well as its children v.left and v.right, it is
possible for us to compute the number of losses that
occur on the outgoing edges of v. We simply need to
count the number of times v is assigned state 1 and
v.left is assigned state 0, repeating for v.right. This can
be done if O(k) time. We refer to this procedure as
CountLosses (see Additional file 1: Algorithm 2 for
details). Now we are ready to present the dynamic pro-
gramming algorithm for CC-LDP.

DynamicProgramming 1  Let Dollo[A, st] be the small-
est number of losses for any pair (tA, ĉA) such that tA is a
rooted binary tree on leaf set A that draws all its clades
from � and ĉA is an assignment of states to all vertices
of tA constrained by Corollary 2 and returning st for the
root of tA (note that these requirements imply A ∈ � and
st ∈ Lab(A) ). The quantity Dollo[A, st] can be computed
with dynamic programming as follows.

Base Case: Clade A contains a single species, i.e., |A| = 1.

Recurrence: Clade A contains multiple species, i.e.,
|A| > 1.

The Dollo score of any solution to CC-LDP equals
minst∈Lab(S) Dollo[S, st] , and a solution can be recovered
by backtracking.

Dollo[A, st] := 0

Dollo[A, st] := min
X |Y∈ST B(A,st),StX∈Lab(X),StY ∈Lab(Y)

Dollo[X , StX]+

Dollo[Y , StY]+

�����������(st, StX , StY)

Page 8 of 17Dai et al. Algorithms for Molecular Biology (2024) 19:2

Theorem 3  The dynamic programming algorithm above
correctly solves CC-LDP.

Proof  Base case: The base case for Dollo[A, st] is trivial
because when |A| = 1 there is only one rooted, binary
tree possible: a single leaf assigned the states given by
the input character set C . There are no edges and thus no
losses, so Dollo[A, st] = 0.

Induction step: Now we consider the case where |A| > 1 .
By the induction hypothesis, we assume that we have cor-
rectly solved Dollo[X , StX] and Dollo[Y , StY] . Let (tX , ĉX)
be an arbitrary solution to subproblem Dollo[X , StX] ,
implying that (1) tX is a rooted binary tree on leaf set X
with Clade(tX) ⊆ � , (2) ĉX is an assignment of states to
all vertices of tX constrained by Corollary 2 and return-
ing StX for the root of tX , and (3) the number of losses
for (tX , ĉX) equals Dollo[X , StX] , which is the minimum
number of losses for any pair (tree and state assignment)
that satisfies both (1) and (2). Similarly, let (tY , ĉY) be
an arbitrary solution to subproblem Dollo[Y , StY] . Note
that by (1), X ,Y ∈ � and that by (2), StX ∈ Lab(X) and
StY ∈ Lab(Y) . Let (t, ĉ) be formed by connecting (tX , ĉX)
and (tY , ĉY) at their roots and assigning state st to the new
root. The pair (t, ĉ) is a candidate solution for subproblem
Dollo[A, st] provided that X |Y ∈ ST B(A) (so require-
ment 1 is satisfied) and st = State(X |Y , S, C) ∈ Lab(A)
(so requirement 2 is satisfied). These two require-
ments can be summarized as X |Y ∈ ST B(A, st) . For
this candidate solution, the number of losses equals
Dollo[X , StX] + Dollo[Y , StY] + �����������(st, StX , StY) , where
the last term gives the number of losses for the new
edges. Now we need to consider requirement 3. Specifi-
cally, we need to check whether a better score (i.e., lower
number of losses) can be obtained from any other can-
didate solution. Keeping clades X and Y, other candidate
solutions can be formed by all other ways of selecting
StX ∈ Lab(X) and StY ∈ Lab(Y) . Moreover, this process
can be repeated for the other allowed subtree bipartitions
for clade A that produce state assignment st (i.e., all other
ways of selecting X |Y ∈ ST B(A, st) ). Any other possibil-
ities will violate (1) and/or (2), and thus will not produce
valid candidate solutions. Thus, our recurrence is correct.

Recurrence is solvable by dynamic programming:
In our recurrence, Dollo[A, st] only depends on sub-
problems: Dollo[X , StX] and Dollo[Y , StY] for all
X |Y ∈ STB(A, st) , StX ∈ Lab(X) , and StY ∈ Lab(Y) .
Since |X| and |Y| must be less than |A|, solving subprob-
lems in order of clade cardinality will guarantee that
all trivial subproblems are solved first (hitting the base
cases) and that all subproblem dependencies are satis-
fied moving forward (because there are no dependencies

between subproblems corresponding to the same clade
but different state assignments at the root). Thus, we can
use dynamic programming to solve this recurrence.

Putting it all together: We compute Dollo[S, st] for all
st ∈ Lab(S) , recording a subproblem for which the num-
ber of losses is minimized. Backtracking gives an arbi-
trary solution to this subproblem, which is also a solution
to CC-LDP by (1), (2), and (3). � �

Theorem 4  The runtime of the dynamic programming
algorithm described above is polynomial in the number
n of species, the number k of characters, and the num-
ber of clades in � . To be specific, it has time complexity:
O(|�|3.726(n+ k)+ |�|1.726nk).

Proof  We need to show that the number of subprob-
lems is polynomial and that each subproblem can be
solved in polynomial time (and also that the precomputa-
tion phases can be done in polynomial time).

We first consider the number of subproblems. The
dynamic programming matrix has two dimensions: the
first corresponds to clade A ∈ � and the second corre-
sponds to an allowed state assignment st ∈ Lab(A) . The
former is clearly O(|�|) . The latter is also O(|�|) because
|Lab(A)| has an upper bound of |ST B(A)| , which in turn
has an upper bound of |�| . From this analysis, the num-
ber of subproblems is O(|�2|) ; however, we can tighten
this upper bound by using the result from Kane and Tao
[35], which gives

∑
A∈� |ST B(A)| < |�|1.726 . In other

words, the number of subproblems is O(|�|1.726) . Note
that to perform the traceback, we also need to store
pointers back to the two child subproblems for every
subproblem but this does not impact the storage or time
complexity.

Before tackling the subproblems, we precompute sev-
eral quantities. First, for each clade A ∈ � , we com-
pute its associated subtree bipartitions ST B(A) ; this
first precomputation phase can be done in O(|�|2n)
time using Additional file 1: Algorithm 3 in if perform-
ing set operations with bitvectors. Second, for each
subtree bipartition X |Y ∈ ST B(A) , we compute its
state assignment st ′ in O(nk) time using the Get-
States function (Additional file 1: Algorithm 1),
and then we add st ′ to set Lab(A) and add X|Y to set
ST B(A, st ′) , which can be done in O(n) time and
O(n+ k) time, respectively, if hashing bitvectors. There-
fore, the second precomputation phase can be done in ∑

A∈� O(|ST B(A)|(nk + 2n+ k)) = O(|�|1.726nk) time
(see Additional file 1: Algorithm 4 for details).

Page 9 of 17Dai et al. Algorithms for Molecular Biology (2024) 19:2 	

We now consider the cost of solving each subprob-
lem. Subproblem Dollo[A, st] can be solved by com-
puting candidate solutions from Dollo[X , StX] and
Dollo[Y , StY] , for all X |Y ∈ ST B(A, st) , StX ∈ Lab(X) ,
and StY ∈ Lab(Y) . For each candidate solution, we
must retrieve Dollo[X , StX] and Dollo[Y , StY] , which
takes O(n+ k) time if hashing bitvectors, execute
CountLosses, which takes O(k) time, and then sum
three terms together. Thus, the total time to solve sub-
problem Dollo[A, st] is

because |Lab(X)| and |Lab(X)| are both O(|�|) , as pre-
viously discussed. Putting this all together, the time
complexity of our dynamic programming algorithm is
O(|�|3.726(n+ k)+ |�|1.726nk) .� �

Extension to Camin‑Sokal parsimony
Our results for Dollo can be extended to Camin-Sokal
parsimony. Specifically, we can define the clade-con-
strained large Camin-Sokal parsimony (CC-LCSP) prob-
lem, in the natural way. We can also extend our algorithm
by replacing the CountLosses function to count gains
0 → 1 instead and by redefining the GetStates func-
tion based on the following result.

Theorem 5  Let T be a rooted binary tree, and let c be
an ordered binary character (with no missing values),
both on the same species set. A Camin-Sokal-labeling for
(T, c) must assign state 0 to every internal vertex that is
an ancestor of a leaf assigned state 0 and assign state 1 to
all remaining vertices.

Proof  We first claim that in a valid Camin-Sokal-labe-
ling for (T, c), any internal vertex that is an ancestor of a
leaf assigned state 0 must be assigned state 0. To show
our claim, let ĉ be a Camin-Sokal labeling for (T, c), let u
be an internal vertex that is an ancestor of a leaf l assigned
state 0, and suppose for the sake of contradiction that
ĉ[u] = 1 . However, since u is an ancestor of l and c[l] = 0 ,
at some point in the path from the u to l there must be a
loss; this is not allowed under Camin-Sokal so we have a
contradiction.

We now claim that assigning all remaining internal verti-
ces state 1 will yield the unique Camin-Sokal-labeling for

∑

A∈�

∑

st∈Lab(A)

O(|ST B(A, st)||�|2(n+ k)) ≤
∑

A∈�

O(|ST B(A)||�|2(n+ k))

= O(|�|3.726(n+ k))

(T, c). Assume that ĉ is formed in this way but is not the
unique Camin-Sokal labeling for (T, c). This implies the
existence of another labeling ĉ′ �= ĉ that yields the same
or a lower score for (T, c). By our first claim, we know
that the differences between ĉ′ and ĉ occur at vertices that
are not an ancestor of a leaf assigned state 0, that is, they
lie in maximally-size subtrees of T whose leaves are all
assigned state 1. Thus, in at least one of those subtrees,
there exists a vertex v such that ĉ′[v] = 0 , so there are at
least two gains in that subtree. Because this subtree is
maximally-sized, the parent of its root in the tree T must

be assigned state 0. Thus, changing the assignments of all
vertices in that subtree to 1 will improve the overall score
for T by at least 1. The same logic can be applied to all
subtrees, and re-assigning states in all subtrees from 0 to
1 will yield ĉ . It follows that ĉ is a Camin-Sokal-labeling
for T and is the unique Camin-Sokal-labeling for T.� �

Corollary 3  Let c be an ordered binary character on
species set S, let T be an arbitrary rooted binary tree on
S, and let ĉ be the unique Camin-Sokal-labeling for (T, c).
Then for any internal vertex v in T, ĉ[v] can be determined
just by having knowledge of Clade(v); no other knowledge
of T is needed. Moreover, if c is allowed to have missing
values, a unique Camin-Sokal-labeling can be found in a
similar fashion.

Proof  Consider an internal vertex v in T that induces
clade A. By Theorem 5, ĉ[v] = 0 if the following case
holds (otherwise ĉ[v] = 1)

•	 Case C: Vertex v is an ancestor of at least one leaf
assigned state 0.

Looking at clade Clade(v) = A , case C holds if condi-
tion 4 below is true.

•	 Condition 4: There exists a leaf a ∈ A such that
c[a] = 0.

To summarize, ĉ[v] = 0 if condition 4 is true; otherwise
ĉ[v] = 1 . Condition 4 can be evaluated so long as we
know the clade induced by v (given the character c and its
complete leaf set S). This proves our first claim.
We now allow for missing values. All aspects of the
proof are similar to that for Theorem 2, except we now
apply condition 4 instead of conditions 1–3 to vertices

Page 10 of 17Dai et al. Algorithms for Molecular Biology (2024) 19:2

in groups 1 and 3 (recall that condition 0 will be true if
and only if a vertex is in group 2). Applying condition 4
to vertices in group 1 will simply propagate state assign-
ments from T |R back to T. For vertices in group 3, we
need to show that every vertex v that maps to the same
edge e = s �→ t ∈ E(T |R) will be assigned the same state:
either the state assigned to s or the state assigned to t (so
there may be multiple state assignments that achieve the
optimal score). For each of these vertices v, the subtree
bipartition SubBip(v) = X |Y will have either all leaves
in X assigned state ? or all leaves in Y assigned state ?.
Thus, for any two vertices v1 and v2 in group 3 that map
to the same edge e = s �→ t , Clade(v1) = Clade(v2) after
all leaves assigned ? are removed. It follows that v1 and v2
will be assigned the same state when applying condition
4. Now we just need to check the outcomes of applying
condition 4 to v1 (call v).

•	 If condition 4 is true for v, it is true for both s and t.
Thus, v, s, t are all assigned state 0.

•	 If condition 4 is false for v, it is false for t. Thus, v and
t are both assigned state 1.

This proves our second claim. Note that our procedure
still works when c has no missing values because all verti-
ces in T will be in group 1.� �

Extensions to Fitch parsimony
For the large Dollo and Camin-Sokal parsimony prob-
lems, the state assignments (labelings) are constrained
by the allowed clades (Theorem 2 and Corollary 3); thus
we can treat these problems as “stitching” clades together
into an optimal scoring tree on the complete leaf set.
Extensions of our algorithm to Fitch parsimony are not
so straight-forward. Recall that the large Fitch parsimony
problem takes unordered binary characters as input and
seeks an unrooted binary tree to minimize the Fitch
score. To apply our algorithm in this context, it would
make more sense to constrain the space with biparti-
tions, and then to transform the bipartitions into clades
by rooting them at an arbitrarily selected leaf; this is the
approach taken by ASTRAL [6], which constructs a tree
rooted at the arbitrarily selected leaf and then unroots
it. Additionally, we would need update the scoring func-
tion, computing it as a Hamming distance between state
assignments instead of using the CountLosses func-
tion for Dollo. The major challenge is how to assign states
to the internal vertices for Fitch parsimony. Consider the
two trees in Fig. 1E and Fig. 1F, specifically the edge in
each tree that induces bipartition A, B|C, D, E. The Fitch-
labeling of the vertex incident to this edge and adjacent
to leaves A and B depends on the remainder of the tree

(or at least requires more information about the tree
than a single bipartition). Because it is not obvious how
to constrain the state assignments at an internal vertex
simply by looking at its associated subtree bipartition or
clade, we could consider all possible state assignments,
which are all binary strings with length k. However, in
this case, the number of subproblems would become
�(|�|2k) rather than O(|�|1.726) for Dollo parsimony, so
our dynamic programming algorithm, when extended
to the large Fitch parsimony problem, would not run in
polynomial time.

Experimental study
We now describe an experimental study evaluating our
dynamic programming algorithm for CC-LDP against
traditional methods for parsimony: heuristic search and
branch-and-bound.

Character data sets
We evaluate methods in the context of species tree esti-
mation under the infinite sites plus neutral Wright-Fisher
(IS+nWF) model [36, 37]. Under the infinite sites model,
characters evolve without homoplasy, meaning paral-
lel mutations and reversals are prohibited. Some types
of retroelement insertions, like L1 in mammals [38], are
typically assumed to evolve with little homoplasy [39].
The idea is that two insertions are unlikely to occur at
exactly the same position in the genome (so no parallel
evolution) and that insertions are unlikely to be precisely
excised (so no reversals) [39]. Note that the absence/pres-
ence of an insertion corresponds to ancestral/derived
states so these characters are ordered.

Characters that evolve without homoplasy would result
in a perfect phylogeny; however, this ignores population-
level processes. For sexually reproducing organisms,
insertions arising in egg or sperm cells are transmitted
from parent to offspring. Thus, the mutation is polymor-
phic in the population when it arises and its frequency in
the population changes randomly assuming neutral evo-
lution (note that the population structure is governed by
the species tree). To summarize, an insertion is gained
( 0 → 1 ) exactly once but then it can be lost ( 1 → 0 ) due
to genetic drift. These rules are suitable for Dollo parsi-
mony, and indeed, Dollo parsimony has been used to
estimate species trees from low-homoplasy retroelement
insertions in prior studies (e.g., [18–23]). Here, we re-
analyze three retroelement presence/absence data sets;
we also benchmark methods on a collection of synthetic
data sets simulated under the IS+nWF model.

Biological Data Sets The Myotis data set from [22] has
11 taxa and 10,595 characters. Each character represents
the presence/absence of a Ves SINE (short interspersed
nuclear element) insertion at an orthologous position

Page 11 of 17Dai et al. Algorithms for Molecular Biology (2024) 19:2 	

across the species’ genomes. No character states are
ambiguous, and all characters are parsimony-informa-
tive, specifically there are at least two 0’s and at least two
1’s. The original analysis of this data set included maxi-
mum parsimony using branch-and-bound with the Dollo
criterion score (Fig. 2 in [22]).

The Palaeognathe data set from [17] has 13 taxa and
4,301 parsimony-informative characters (note that 18%
of the character states in this matrix are ambiguous).
Each character represents the presence/absence of a
CR1 LINE (long interspersed nuclear element) insertion
at an orthologous position across the species’ genomes.
The original analysis of this data set did not include Dollo
parsimony; rather insertions were used to corroborate a
species tree estimated from (estimated) gene trees with
ASTRAL and MP-EST [40].

The Toothed Whales data set from [41] has 25 taxa and
1,197 parsimony-informative characters (note that 2% of
the states in this data set are ambiguous). Each character
represents the presence/absence of a CHR SINE insertion
at an orthologous position across the species’ genomes.
The original analysis of this data set included maximum
parsimony using heuristic search under the Dollo parsi-
mony score; branch support was estimated via bootstrap-
ping with 1000 replicates (Supplementary Figure S1b in
[41]).

Simulated Data Sets All synthetic data sets used in
our study were simulated under an approximation to the
IS+nWF model using ms[42]. The simulation requires a
model species tree. At the high-level, a gene genealogy is
simulated within the model species tree under the coales-
cent and then a mutation arises on a branch of the gene-
alogy so all taxa that are descendants have the mutation
(all other taxa do not). This process is repeated, produc-
ing a collection of binary characters that evolved inde-
pendently within the model species tree. We only utilize
the parsimony-informative characters, varying the total
number of characters given to methods as input from 500
to 50,000.

The first collection of synthetic data sets are taken from
Molloy et al. [43]. These data sets were simulated given
the Palaeognathe species tree estimated by Cloutier et al.
[17] using MP-EST. The ms simulation was repeated 25
times to produce 25 replicate data sets. We created a sec-
ond collection of synthetic data sets by taking the species
trees generated in a prior study [10]. Specifically, Mirarab
et al. [10] simulated species trees with varying numbers
of taxa under the Yule model with SimPhy [44], set-
ting the species tree height to 2 million generations and
the effective population size to 200,000. This process was
repeated 50 times for each number of taxa. We ran the
ms simulation, described above, for the first 25 species

trees with 10, 50, 100, and 200 ingroup taxa (and one out-
group taxa). This produced 25 replicate characters matri-
ces for each number of taxa.

Methods
We evaluated four different methods for the large Dollo
parsimony problem. All approaches implemented in
PAUP* [30] were executed using version 4a168_cen-
tos64 (downloaded from https://​paup.​phylo​solut​ions.​
com).

Branch-and-bound Branch-and-bound finds an opti-
mal solution by searching tree space in a systematic fash-
ion. Specifically, the parsimony score of an initial tree is
used to rule out parts of tree space that do not need to
be searched (as they must contain sub-optimal trees).
We used the implementation of branch-and-bound in
PAUP* (see Additional file 1: Section 2.1 for command)
and saved all optimal trees.

Fast and Slow Heuristic Searches FastH is a “fast heu-
ristic search” that operates in two phases. First, a starting
tree is constructed via random taxon addition, meaning
that the taxa are put in a random order and then a tree
is built by iteratively adding these taxa to the tree so that
the criterion score is optimized. This process is repeated
ten times and then the best scoring tree is taken as the
starting tree. Second, hill-climbing is performed from
the starting tree with Tree Bisection and Reconnec-
tion (TBR) edit moves. FastH was implemented with
PAUP* (see Additional file 1: Section 2.2 for the com-
mand; the reconnection limit was set to eight branches
by default). The 100 best-scoring trees found during the
heuristic search were saved for use with our dynamic
programming method.
SlowH is a “slow heuristic search” that operates by

performing 100 independent searches. In each search, a
starting tree is built via random taxon addition and then
hill climbing is initiated from the starting tree using TBR
edit moves. SlowH was implemented with PAUP* (see
Additional file 1: Section 2.3 for the command). As in
the FastH the reconnection limit for TBR moves was
set to eight branches by default; however, unlike SlowH,
FastH only performs a single search, with these edit
moves, as oppose to 100 independent searches. All trees
with the best criterion score found were saved.

Dollo-CDP We implemented our dynamic program-
ming algorithm for CC-LDP in C++ software pack-
age Dollo-CDP. The CC-LDP problem requires not
only a character matrix but also a set of clades to use
as constraints. We evaluated two different approaches
for generating the constraints, both of which rely on
ASTRAL-III [11]. The idea is to give Dollo-CDP a
character set and a set of trees, from which it will

https://paup.phylosolutions.com
https://paup.phylosolutions.com

Page 12 of 17Dai et al. Algorithms for Molecular Biology (2024) 19:2

generate a set of clusters using ASTRAL-III (note that
clusters are subsets of taxa, like clades).

Our two approaches differ in the set of trees given
to ASTRAL-III as input. Our first approach (called
Dollo-CDP-fast) gives ASTRAL-III the 100 best-
scoring trees found by FastH. Our second approach
(called Dollo-CDP-char) gives ASTRAL-III the
input characters reformatted as unrooted trees, as pro-
posed by [45]. The idea is that each parsimony-informa-
tive character encodes an unrooted tree with exactly one
internal branch, indicating the transition between taxa in
state 0 to taxa in state 1 or vice versa.

After the clusters are computed with ASTRAL-III,
Dollo-CDP processes them, keeping only the clus-
ters that form clades in a tree rooted at some set O of
outgroup taxa (note that outgroups are typically avail-
able when using Dollo parsimony, as they are often
used when calling variants and coding them as ances-
tral or derived). A cluster C produced by ASTRAL-
III is added to the constraint (clade) set if either (1)
C ⊆ O or (2) C ⊆ {S \ O} . When the outgroup is a sin-
gle taxon, both of these approaches ensure a solution to
CC-LDP exists. For Dollo-CDP-fast, all trees pro-
duced by FastH, denoted P , can be rooted at O; there-
fore, � = {Clade(T) : T ∈ P} . For Dollo-CDP-char,
a solution is guaranteed by virtue of how ASTRAL-
III handles polytomies (i.e., vertices of degree greater
than three); however, this produces a large number of
clades, which, in turn, makes the second approach more
computationally intensive. Consequently, we only apply
Dollo-CDP-char to the biological data sets.

The command for running Dollo-CDP is given in
Additional file 1: Section 2.4. Users are responsible for

providing trees for building constraints if using the first
approach. They are also responsible for downloading and
extracting ASTRAL-III into the src directory so that
Dollo-CDP can find it. We used ASTRAL-III ver-
sion 5.7.8 from Github (https://​github.​com/​smira​rab/​
ASTRAL).

Evaluation metrics
All computational experiments were run on the compute
cluster for the Center for Bioinformatics and Compu-
tational Biology at the University of Maryland, College
Park. This is a homogenous compute cluster, with all
compute nodes having dual socket AMD EPYC 7313
16-Core processors and two terabytes of memory. All
methods were given access to 64 GB of memory, one
CPU, and a maximum wallclock time of 24 h (resources
were managed by the SLURM submission system). We
recorded the total wallclock time in minutes as well as
the best Dollo parsimony score found. We added the
runtime of FastH to the runtime of Dollo-CDP, when
the former was used to construct the constraint set for
the latter. Our method Dollo-CDP only counts losses
and does not count gains, unlike PAUP* (note that the
number of gains should not impact the relative scores as
the evolution of each character must be explained with
one gain, either on the tree or implied above the root).
To ensure scores were comparable, we recomputed the
Dollo criterion score for all trees using PAUP* (see Addi-
tional file 1: Section 2.5 for the command).

Experimental results
We now present the results of our experimental study on
biological and synthetic data sets.

Fig. 3  Subfigure A shows the tree returned by Dollo-CDP-char for the Myotis data set [22]. This is the same tree recovered
by branch-and-bound. Subfigure B shows the tree returned by Dollo-CDP-char for the Palaeognathae data set [17]. A branch-and-bound
analysis recovered 60 optimal trees (the Dollo-CDP tree is one of the 60). The three branches highlighted in red indicate the strict consensus
of the 60 equally optimal trees

https://github.com/smirarab/ASTRAL
https://github.com/smirarab/ASTRAL

Page 13 of 17Dai et al. Algorithms for Molecular Biology (2024) 19:2 	

Results on biological data sets
For the Myotis, all approaches recovered the same tree as
branch-and-bound, which was the unique optimal solu-
tion (Fig. 3A). All methods completed in less than a sec-
ond, except for Dollo-CDP-char (this analysis took
54 s). For the Palaeognathe data set, branch-and-bound
recovered 60 optimal trees, and the strict consensus had
just three branches (Fig. 3B), all of which are in the spe-
cies tree estimated by Cloutier et al. [17] using MP-EST.
All methods we ran recovered one of the 60 optimal trees
and completed in less than 3 s. Lastly, for the Toothed
Whales data set, branch-and-bound recovered 72

optimal trees and the strict consensus had 15 branches
(Fig. 4). All methods we ran recovered one of the optimal
trees and completed in less than 8 s. To summarize, the
biological data sets, which had up to 25 taxa, were small
enough to leverage branch-and-bound and the other
methods tested achieved similar results to branch-and-
bound in terms of parsimony score and runtime.

Results on simulated data sets
Similar trends to the biological data sets were observed
for the first collection of synthetic data sets, which
were simulated from a Palaeognathe species tree by

Fig. 4  Tree returned by Dollo-CDP-char for the Toothed Whale data set [41]. A branch-and-bound analysis recovered 72 optimal trees (the
Dollo-CDP tree is one of the 72). The 15 branches highlighted in red indicate the strict consensus of the 72 equally optimal trees

Page 14 of 17Dai et al. Algorithms for Molecular Biology (2024) 19:2

Molloy et al. [43]. For all but one replicate, all meth-
ods recovered trees with the same Dollo parsimony
score as branch-and-bound (which typically recovered
one or two equally optimal trees). For the remaining
replicate, FastH returned a tree with a slightly lower
score than the other methods. Thus, Dollo-CDP-
fast slightly improved upon FastH in terms of Dollo
parsimony score for one replicate. Similar trends were
observed for the second collection of simulated data
sets with 10 ingroup taxa. Like the biological data sets,
the analyses of synthetic data sets suggest that as long
as the number of taxa is sufficiently small, all methods
will produce similar results and compare favorably to
branch-and-bound.

We were unable to run branch-and-bound on
data sets with 50 or more taxa (specifically the jobs
were killed due to our maximum wallclock time of
24 h). For these data sets, we first looked at whether
or not Dollo-CDP-fast found trees with bet-
ter scores than FastH (Table 1). For 50 ingroup

taxa, Dollo-CDP-fast typically improved upon
FastH for about half of the replicates. For 100 and 200
ingroup taxa (and at least 5000 characters), Dollo-
CDP-fast nearly always improved upon FastH.
Moreover, Dollo-CDP-fast has an average runtime
of less than 3 min for all data sets (Table 2).

Next, we compared the performance of Dollo-
CDP-fast to SlowH (Table 2). For 50 and 100
ingroup taxa, Dollo-CDP-fast performed as well
as SlowH in terms of parsimony scores and was faster,
although SlowH still always completed in less than
16 min on average. For 200 ingroup taxa, SlowH took
nearly 40 min on average for 5000-100,000 charac-
ters and over 1.5 h for 100,000 characters. In contrast,
Dollo-CDP-fast always completed in less than
5 min. On the other hand, SlowH did recover better
scoring trees in about one third of the replicates. To
summarize, our results suggest that for larger numbers
of taxa and larger numbers of characters, Dollo-CDP-
fast improves upon FastH and is faster than SlowH.

Conclusions
We have introduced the clade-constrained large Dollo
parsimony problem and presented a polynomial time
algorithm that solves it. Although constraints and
dynamic programming (CDP) have been a powerful
combination in phylogenetics, to our knowledge this is
the first attempt at using CDP for character parsimony.
An important distinction between prior problems and
character parsimony is the assignment of states at inter-
nal vertices required to compute the parsimony score of
a tree. We found that Dollo as well as Camin-Sokal crite-
rion scores have nice properties that make CDP possible
(they also might make heuristic search quite effective in
practice). These nice properties for state assignments did
not easily extend to Fitch parsimony, so our algorithmic
approach seems less favorable in this setting.

We implemented the CDP algorithm for the Dollo cri-
terion score in a package called Dollo-CDP, including
two approaches for generating clade constraints: Dollo-
CDP-char and Dollo-CDP-fast. In an experimental
evaluation, we found that both approaches had good per-
formance (finding high scoring trees quickly), although
all existing methods performed similarly when data sets
had relatively few taxa. We found, by way of a simulation
study, that Dollo-CDP-fast can provide a benefit for
larger numbers of taxa. Most notably, branch-and-bound
could not scale to data sets with 50 or more taxa, so
Dollo-CDP-fast was the only method run that could
provide some guarantee of optimality, albeit a more lim-
ited one. In practice, we found Dollo-CDP-fast often
found higher scores trees than FastH, even though the
trees from FastH were used to form constraints for

Table 1  This table shows a comparison of the tree produced by
Dollo-CDP-fast and a best-scoring tree found by the fast
heuristic search (FastH)

We report the number of replicates for which Dollo-CDP-fast is the same
or better than FastH in terms of Dollo criterion score. For the replicates for
which Dollo-CDP-fast is better, we also report the average absolute
difference in scores between the trees (rounded to the nearest integer). Recall
that Dollo-CDP-fast is given trees produced by FastH as constraints; thus
Dollo-CDP-fast is strictly slower in runtime and at least as good in score (we
confirmed this was the case in our experiments)

of Same Dollo-CDP-fast Better
characters # reps # reps ( � score)

50 taxa

 500 16 9 (2)

 1000 11 14 (2)

 5000 12 13 (7)

 10000 14 11 (16)

 50000 13 12 (54)

100 taxa

 500 25 0 (NA)

 1000 22 3 (1)

 5000 0 25 (6)

 10000 2 23 (13)

 50000 4 21 (43)

200 taxa

 500 25 0 (NA)

 1000 25 0 (NA)

 5000 6 19 (2)

 10000 4 21 (3)

 50000 0 25 (27)

Page 15 of 17Dai et al. Algorithms for Molecular Biology (2024) 19:2 	

Dollo-CDP-fast. SlowH sometimes found higher
scoring trees than Dollo-CDP-fast but was much
slower for large numbers of taxa and characters. A caveat
of our study is that all methods were run with one thread.
All searches in SlowH are independent so it would be
much faster with threading. Dollo-CDP could also
take advantage of threading, using techniques from Yin
et al. [46] and could be better optimized. We leave this
to future work. Even if the runtime of SlowH improves
with threading, Dollo-CDP could then be run using
trees found by SlowH, in addition to the ones found
by FastH, to form constraints. The benefit here is that
leveraging Dollo-CDP is fast, strictly improves upon
prior searches, and gives a guarantee of optimality for the
constrained solution space.

In analyzing the Palaeognathae and the Toothed
Whales data sets, we found many optimal trees using
branch-and-bound. Dollo-CDP returns a single
binary tree, and future work should enable users to
get a consensus of the optimal trees in the constrained
solution space, similar to SIESTA [47]. Lastly, we
explored methods for Dollo parsimony in the context of
species tree estimation, where data are assumed to fol-
low a population genetics model. Dollo parsimony has
also been leveraged in tumor phylogenetics [13–16]. It

would be interesting to explore the utility of Dollo-
CDP in this application area, especially as the number
of leaves (cells instead of species) can be quite large in
this setting. Applying Dollo-CDP to this setting will
likely necessitate the exploration and development of
approaches for generating the constraint set, which
impact the performance of Dollo-CDP in terms of
score and runtime.

Abbreviation
CC-LDP	� Clade-constrained large Dollo parsimony

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13015-​023-​00249-9.

Additional file 1. Algorithms and software commands.

Acknowledgements
We thank the anonymous reviewers for their detailed constructive feedback
that led to improvements in our paper.

Author contributions
EKM conceptualized the project. JD and EKM designed the Dollo-CDP algo-
rithm and proved the theorems. JD, TR, and YH implemented the Dollo-CDP
algorithm. JD and EKM ran the experiments, analyzed the data, and created

Table 2  This table shows a comparison of the tree produced by Dollo-CDP-fast and a best-scoring tree found by the slow
heuristic search (SlowH)

We report the number of replicates for which Dollo-CDP-fast is same, better, or worse than SlowH in terms of Dollo criterion score. We also report the absolute
difference in scores for the trees estimated by the two methods, averaged over the better and worse cases, respectively (rounded to the nearest integer). Lastly, we
report the runtime (in seconds), averaged across all 25 replicates (rounded to nearest integer). Recall that the runtime of Dollo-CDP-fast includes the time to run
FastH, the output of which is used to build constraints

of Same Better Worse Dollo-CDP-fast SlowH

characters # reps # reps ( � score) # reps ( � score) Runtime Runtime

50 taxa

 500 25 0 (NA) 0 (NA) 2 8

 1000 25 0 (NA) 0 (NA) 2 11

 5000 25 0 (NA) 0 (NA) 3 27

 10000 24 0 (NA) 1 (14) 4 40

 50000 25 0 (NA) 0 (NA) 9 114

100 taxa

 500 24 1 (1) 0 (NA) 27 28

 1000 24 1 (3) 0 (NA) 23 75

 5000 25 0 (NA) 0 (NA) 10 206

 10000 24 0 (NA) 1 (7) 13 333

 50000 23 0 (NA) 2 (56) 33 935

200 taxa

 500 19 5 (1) 1 (1) 131 132

 1000 25 0 (NA) 0 (NA) 183 174

 5000 17 0 (NA) 8 (3) 77 2358

 10000 19 0 (NA) 6 (6) 103 2362

 50000 17 0 (NA) 8 (24) 145 5638

https://doi.org/10.1186/s13015-023-00249-9
https://doi.org/10.1186/s13015-023-00249-9

Page 16 of 17Dai et al. Algorithms for Molecular Biology (2024) 19:2

the figures. JD and EKM wrote the original draft of the paper. All authors
edited the paper, reviewed the manuscript, and approved of the final version.

Funding
This work was financially supported by the State of Maryland. All computa-
tional experiments were performed on the compute cluster for the Center
for Bioinformatics and Computational Biology at the University of Maryland,
College Park.

Availability of data and materials
The source code for the DolloCDP software is available on Github (https://​
github.​com/​molloy-​lab/​Dollo-​CDP). All analysis scripts and data sets simu-
lated for this study are available on Github (https://​github.​com/​molloy-​lab/​
dollo-​study).

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no compng interests.

Received: 18 October 2023 Accepted: 10 December 2023

References
	1.	 Hallett MT, Lagergren J. New algorithms for the duplication-loss model.

In: Proceedings of the Fourth Annual International Conference on Com-
putational Molecular Biology. RECOMB ’00, Association for Computing
Machinery, New York, NY, USA 2000; pp. 138– 146. https://​doi.​org/​10.​
1145/​332306.​332359

	2.	 Bayzid MS, Warnow T. Gene Tree Parsimony for Incomplete Gene Trees. In:
Schwartz, R., Reinert, K. (eds.) 17th International Workshop on Algorithms
in Bioinformatics (WABI 2017). Leibniz International Proceedings in Infor-
matics (LIPIcs), vol. 88, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany 2017; pp. 2– 1213. https://​doi.​org/​10.​4230/​LIPIcs.​
WABI.​2017.2

	3.	 Bayzid MS, Warnow T. Gene tree parsimony for incomplete gene trees:
addressing true biological loss. Algorithms Mol Biol. 2018. https://​doi.​org/​
10.​1186/​s13015-​017-​0120-1.

	4.	 Yu Y, Warnow T, Nakhleh L. Algorithms for MDC-based multi-locus
phylogeny inference: beyond rooted binary gene trees on single alleles.
J Comput Biol. 2011;18(11):1543–59. https://​doi.​org/​10.​1089/​cmb.​2011.​
0174.

	5.	 Bryant D, Steel M. Constructing optimal trees from quartets. J Algorithms.
2001;38(1):237–59. https://​doi.​org/​10.​1006/​jagm.​2000.​1133.

	6.	 Mirarab S, Reaz R, Bayzid MS, Zimmermann T, Swenson MS, Warnow T.
ASTRAL: genome-scale coalescent-based species tree estimation. Bio-
informatics. 2014;30(17):541–8. https://​doi.​org/​10.​1093/​bioin​forma​tics/​
btu462.

	7.	 Zhang C, Scornavacca C, Molloy EK, Mirarab S. ASTRAL-Pro: Quartet-based
species-tree inference despite paralogy. Mol Biol Evol. 2020;37(11):3292–
307. https://​doi.​org/​10.​1093/​molbev/​msaa1​39.

	8.	 Vachaspati P, Warnow T. FastRFS: fast and accurate robinson-foulds
supertrees using constrained exact optimization. Bioinformatics.
2016;33(5):631–9. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btw600.

	9.	 Molloy EK, Warnow T. FastMulRFS: fast and accurate species tree esti-
mation under generic gene duplication and loss models. Bioinformat-
ics. 2020;36:57–65. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btaa4​44.

	10.	 Mirarab S, Warnow T. ASTRAL-II: coalescent-based species tree estima-
tion with many hundreds of taxa and thousands of genes. Bioinformat-
ics. 2015;31(12):44–52. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btv234.

	11.	 Zhang C, Rabiee M, Sayyari E, Mirarab S. ASTRAL-III: Polynomial
time species tree reconstruction from partially resolved gene
trees. BMC Bioinformatics. 2018;19(6):153. https://​doi.​org/​10.​1186/​
s12859-​018-​2129-y.

	12.	 Dibaeinia P, Tabe-Bordbar S, Warnow T. FASTRAL: improving scalability of
phylogenomic analysis. Bioinformatics. 2021;37(16):2317–24. https://​doi.​
org/​10.​1093/​bioin​forma​tics/​btab0​93.

	13.	 Bonizzoni P, Ciccolella S, Della Vedova G, Soto M. Beyond perfect phy-
logeny: Multisample phylogeny reconstruction via ilp. In: Proceedings of
the 8th ACM International Conference on Bioinformatics, Computational
Biology,and Health Informatics. ACM-BCB ’17, Association for Computing
Machinery, New York, NY, USA 2017; pp. 1– 10. https://​doi.​org/​10.​1145/​
31074​11.​31074​41

	14.	 Bonizzoni P, Ciccolella S, Vedova GD, Soto M. Does relaxing the infinite
sites assumption give better tumor phylogenies? An ILP-based compara-
tive approach. IEEE/ACM Trans Comput Biol Bioinf. 2019;16(5):1410–23.
https://​doi.​org/​10.​1109/​TCBB.​2018.​28657​29.

	15.	 Ciccolella S, Soto Gomez M, Patterson M.D, Vedova G.D, Hajirasouliha I,
Bonizzoni P. gpps: an ILP-based approach for inferring cancer progres-
sion with mutation losses from single cell data. BMC Bioinformatics.
2020;21(Suppl 1):313. https://​doi.​org/​10.​1186/​s12859-​020-​03736-7.

	16.	 El-Kebir M. SPhyR: tumor phylogeny estimation from single-cell sequenc-
ing data under loss and error. Bioinformatics. 2018;34(17):671–9. https://​
doi.​org/​10.​1093/​bioin​forma​tics/​bty589.

	17.	 Cloutier A, Sackton TB, Grayson P, Clamp M, Baker AJ, Edwards SV.
Whole-genome analyses resolve the phylogeny of flightless birds
(Palaeognathae) in the presence of an empirical anomaly zone. Syst Biol.
2019;68(6):937–55. https://​doi.​org/​10.​1093/​sysbio/​syz019.

	18.	 Doronina L, Churakov G, Kuritzin A, Shi J, Baertsch R, Clawson H, Schmitz
J. Speciation network in laurasiatheria: retrophylogenomic signals.
Genome Res. 2017;27:997–1003. https://​doi.​org/​10.​1101/​gr.​210948.​116.

	19.	 Doronina L, Hughes GM, Moreno-Santillan D, Lawless C, Lonergan T, Ryan
L, Jebb D, Kirilenko BM, Korstian JM, Dávalos LM, Vernes SC, Myers EW,
Teeling EC, Hiller M, Jermiin LS, Schmitz J, Springer MS, Ray DA. Contra-
dictory phylogenetic signals in the laurasiatheria anomaly zone. Genes.
2022;13(5):766. https://​doi.​org/​10.​3390/​genes​13050​766.

	20.	 Lammers F, Blumer M, Rücklé C, Nilsson MA. Retrophylogenomics in
rorquals indicate large ancestral population sizes and a rapid radiation.
Mob DNA. 2019;10:5. https://​doi.​org/​10.​1186/​s13100-​018-​0143-2.

	21.	 II RNP, Zhang Y, Witherspoon DJ, Xing J, Suh A, Keith MS, Jorde LB, Stevens
RD, Ray DA. Targeted capture of phylogenetically informative VES sine
insertions in genus myotis. Genome Biol Evol. 2015;7(6):1664–75. https://​
doi.​org/​10.​1093/​gbe/​evv099.

	22.	 Korstian JM, Paulat NS, Platt RN II, Stevens RD, Ray DA. Sine-based phylog-
enomics reveal extensive introgression and incomplete lineage sorting in
myotis. Genes. 2022;13(3):399. https://​doi.​org/​10.​3390/​genes​13030​399.

	23.	 Salem A-H, amd Jinchuan Xing DAR, Callinan PA, Myers JS, Hedges DJ,
Garber RK, Witherspoon DJ, Jorde LB, Batzer MA. ALU elements and
hominid phylogenetics. Proc Natl Acad Sci USA. 2003;100(22):12787–91.
https://​doi.​org/​10.​1073/​pnas.​21337​66100.

	24.	 Islam M, Sarker K, Das T, Reaz R, Bayzid MS. STELAR: a statistically consist-
ent coalescent-based species tree estimation method by maximizing
triplet consistency. BMC Genomics. 2020;21(1):136. https://​doi.​org/​10.​
1186/​s12864-​020-​6519-y.

	25.	 Warnow T. Computational Phylogenetics: an introduction to designing
methods for phylogeny estimation. Cambridge, United Kingdom: Cam-
bridge University Press; 2017.

	26.	 Fitch WM. Toward defining the course of evolution: minimum change for
a specific tree topology. Syst Biol. 1971;20(4):406–16. https://​doi.​org/​10.​
1093/​sysbio/​20.4.​406.

	27.	 Graham RL, Foulds LR. Unlikelihood that minimal phylogenies for a
realistic biological study can be constructed in reasonable computational
time. Math Biosci. 1982;60(2):133–42. https://​doi.​org/​10.​1016/​0025-​
5564(82)​90125-0.

	28.	 Bouckaert R, Fischer M, Wicke K. Combinatorial perspectives on Dollo-k
characters in phylogenetics. Adv Appl Math. 2021;131: 102252. https://​
doi.​org/​10.​1016/j.​aam.​2021.​102252.

	29.	 Day WHE, Johnson DS, Sankoff D. The computational complexity of infer-
ring rooted phylogenies by parsimony. Math Biosci. 1986;81(1):33–42.
https://​doi.​org/​10.​1016/​0025-​5564(86)​90161-6.

https://github.com/molloy-lab/Dollo-CDP
https://github.com/molloy-lab/Dollo-CDP
https://github.com/molloy-lab/dollo-study
https://github.com/molloy-lab/dollo-study
https://doi.org/10.1145/332306.332359
https://doi.org/10.1145/332306.332359
https://doi.org/10.4230/LIPIcs.WABI.2017.2
https://doi.org/10.4230/LIPIcs.WABI.2017.2
https://doi.org/10.1186/s13015-017-0120-1
https://doi.org/10.1186/s13015-017-0120-1
https://doi.org/10.1089/cmb.2011.0174
https://doi.org/10.1089/cmb.2011.0174
https://doi.org/10.1006/jagm.2000.1133
https://doi.org/10.1093/bioinformatics/btu462
https://doi.org/10.1093/bioinformatics/btu462
https://doi.org/10.1093/molbev/msaa139
https://doi.org/10.1093/bioinformatics/btw600
https://doi.org/10.1093/bioinformatics/btaa444
https://doi.org/10.1093/bioinformatics/btv234
https://doi.org/10.1186/s12859-018-2129-y
https://doi.org/10.1186/s12859-018-2129-y
https://doi.org/10.1093/bioinformatics/btab093
https://doi.org/10.1093/bioinformatics/btab093
https://doi.org/10.1145/3107411.3107441
https://doi.org/10.1145/3107411.3107441
https://doi.org/10.1109/TCBB.2018.2865729
https://doi.org/10.1186/s12859-020-03736-7
https://doi.org/10.1093/bioinformatics/bty589
https://doi.org/10.1093/bioinformatics/bty589
https://doi.org/10.1093/sysbio/syz019
https://doi.org/10.1101/gr.210948.116
https://doi.org/10.3390/genes13050766
https://doi.org/10.1186/s13100-018-0143-2
https://doi.org/10.1093/gbe/evv099
https://doi.org/10.1093/gbe/evv099
https://doi.org/10.3390/genes13030399
https://doi.org/10.1073/pnas.2133766100
https://doi.org/10.1186/s12864-020-6519-y
https://doi.org/10.1186/s12864-020-6519-y
https://doi.org/10.1093/sysbio/20.4.406
https://doi.org/10.1093/sysbio/20.4.406
https://doi.org/10.1016/0025-5564(82)90125-0
https://doi.org/10.1016/0025-5564(82)90125-0
https://doi.org/10.1016/j.aam.2021.102252
https://doi.org/10.1016/j.aam.2021.102252
https://doi.org/10.1016/0025-5564(86)90161-6

Page 17 of 17Dai et al. Algorithms for Molecular Biology (2024) 19:2 	

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	30.	 Swofford DL. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other
Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts 2003

	31.	 Felsenstein J. PHYLIP (Phylogeny Inference Package). https://​evolu​tion.​
genet​ics.​washi​ngton.​edu/​phylip.​html. Accessed 2005.

	32.	 Felsenstein J. Parsimony in systematics: biological and statistical issues.
Ann Rev Ecol Syst. 1983;14:313–33.

	33.	 Felsenstein J. Inferring phylogenies, 2nd edn. Sinauer Associates, Inc.,
Sunderland, Massachusetts 2004;. https://​doi.​org/​10.​1007/​BF017​34359

	34.	 Sankoff D, Rousseau P. Locating the vertices of a Steiner tree in an arbi-
trary metric space. Math Program. 1975;9:240–6. https://​doi.​org/​10.​1007/​
BF016​81346.

	35.	 Kane D, Tao T. A bound on partitioning clusters. Electron J Combinatorics
2017; https://​doi.​org/​10.​37236/​6797

	36.	 Fisher RA. On the dominance ratio. Proc R Soc Edinb. 1923;42:321–41.
https://​doi.​org/​10.​1017/​S0370​16460​00239​93.

	37.	 Wright S. Evolution in mendelian populations. Genetics. 1931;16(2):97–
159. https://​doi.​org/​10.​1093/​genet​ics/​16.2.​97.

	38.	 Platt RN, Vandewege MW, Ray DA. Mammalian transposable elements
and their impacts on genome evolution. Chromosome Res. 2018;26:25–
43. https://​doi.​org/​10.​1007/​s10577-​017-​9570-z.

	39.	 Shedlock AM, Milinkovitch MC, Okada N. SINE evolution, missing data,
and the origin of whales. Syst Biol. 2000;49:808–17.

	40.	 Liu L, Yu L, Edwards SV. A maximum pseudo-likelihood approach for
estimating species trees under the coalescent model. BMC Evol Biol.
2010;10:302. https://​doi.​org/​10.​1186/​1471-​2148-​10-​302.

	41.	 Doronina L, Ogoniak L, Schmitz J. Homoplasy of retrotransposon inser-
tions in toothed whales. Genes. 2023;14(9):1830. https://​doi.​org/​10.​3390/​
genes​14091​830.

	42.	 Hudson RR. Generating samples under a Wright-Fisher neutral model of
genetic variation. Bioinformatics. 2002;18(2):337–8. https://​doi.​org/​10.​
1093/​bioin​forma​tics/​18.2.​337.

	43.	 Molloy EK, Gatesy J, Springer MS. Theoretical and practical considera-
tions when using retroelement insertions to estimate species trees in
the anomaly zone. Syst Biol. 2021;71(3):721–40. https://​doi.​org/​10.​1093/​
sysbio/​syab0​86.

	44.	 Mallo D, De Oliveira Martins L, Posada D. SimPhy : phylogenomic simula-
tion of gene, locus, and species trees. Syst Biol. 2015;65(2):334–44. https://​
doi.​org/​10.​1093/​sysbio/​syv082.

	45.	 Springer MS, Molloy EK, Sloan DB, Simmons MP, Gatesy J. ILS-aware analy-
sis of low-homoplasy retroelement insertions: Inference of species trees
and introgression using quartets. J Hered. 2019;111(2):147–68. https://​doi.​
org/​10.​1093/​jhered/​esz076.

	46.	 Yin J, Zhang C, Mirarab S. ASTRAL-MP: scaling ASTRAL to very large
datasets using randomization and parallelization. Bioinformatics.
2019;35(20):3961–9. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btz211.

	47.	 Vachaspati P, Warnow T. SIESTA: enhancing searches for optimal super-
trees and species trees. BMC Genom. 2018;19:252. https://​doi.​org/​10.​
1186/​s12864-​018-​4621-1.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://evolution.genetics.washington.edu/phylip.html
https://evolution.genetics.washington.edu/phylip.html
https://doi.org/10.1007/BF01734359
https://doi.org/10.1007/BF01681346
https://doi.org/10.1007/BF01681346
https://doi.org/10.37236/6797
https://doi.org/10.1017/S0370164600023993
https://doi.org/10.1093/genetics/16.2.97
https://doi.org/10.1007/s10577-017-9570-z
https://doi.org/10.1186/1471-2148-10-302
https://doi.org/10.3390/genes14091830
https://doi.org/10.3390/genes14091830
https://doi.org/10.1093/bioinformatics/18.2.337
https://doi.org/10.1093/bioinformatics/18.2.337
https://doi.org/10.1093/sysbio/syab086
https://doi.org/10.1093/sysbio/syab086
https://doi.org/10.1093/sysbio/syv082
https://doi.org/10.1093/sysbio/syv082
https://doi.org/10.1093/jhered/esz076
https://doi.org/10.1093/jhered/esz076
https://doi.org/10.1093/bioinformatics/btz211
https://doi.org/10.1186/s12864-018-4621-1
https://doi.org/10.1186/s12864-018-4621-1

	Dollo-CDP: a polynomial-time algorithm for the clade-constrained large Dollo parsimony problem
	Abstract
	Introduction
	Background
	Phylogenetic trees
	Characters and parsimony

	The clade-constrained large Dollo parsimony problem and a polynomial-time algorithm
	Extension to Camin-Sokal parsimony
	Extensions to Fitch parsimony

	Experimental study
	Character data sets
	Methods
	Evaluation metrics

	Experimental results
	Results on biological data sets
	Results on simulated data sets

	Conclusions
	Anchor 18
	Acknowledgements
	References

