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Abstract 

Background: Scaffolding is a bioinformatics problem aimed at completing the contig assembly process by deter-
mining the relative position and orientation of these contigs. It can be seen as a paths and cycles cover problem of a 
particular graph called the “scaffold graph”.

Results: We provide some NP-hardness and inapproximability results on this problem. We also adapt a greedy 
approximation algorithm on complete graphs so that it works on a special class aiming to be close to real instances. 
The described algorithm is the first polynomial-time approximation algorithm designed for this problem on non-
complete graphs.

Conclusion: Tests on a set of simulated instances show that our algorithm provides better results than the version on 
complete graphs.
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Background
Motivation
In this paper, we focus on a bioinformatic problem occur-
ring in the production of genomes. Genomes are usually 
obtained by sequencing. Sequencing produces an impor-
tant amount of small sequences of nucleotides called 
reads. Herein, the lengths range from hundreds to tens 
of thousands of characters, depending on the sequencing 
technology. As a rule of thumb, shorter reads, produced 
for example by second generation sequencing (Illumina) 
have a higher quality (contain less read-errors) than long 
reads produced by third generation sequencing tech-
nologies (PacBio or Oxford Nanopore) [1]. The assembly 
process exploits overlaps between reads to reconstruct 
the targeted sequence. However, this is complicated by 
repeated parts in real-world genomes. Assembly algo-
rithms cannot uniquely infer the original genome if it 
contains such repeated regions (the longer the repeated 

region with respect to the read length, the harder it is to 
infer the original genome). To avoid misassembly, such 
algorithms reconstruct only parts of the genome which is 
then returned as set of “contiguous regions” (or contigs). 
A thus fragmented genome is not ideal for further pro-
cessing, and one would like to have as few contigs as pos-
sible while avoiding misassembly. A way to approach this 
are hybrid strategies using both long and short reads [2]. 
However, many genomes comprising current databases 
have been assembled before the development of third 
generation sequencing, preventing such hybrid strate-
gies. One way to reduce the fragmentation of genomes 
in these databases while avoiding costly re-sequencing, 
is the exploitation of “meta-information” about the avail-
able reads.

Genome scaffolding
In second generation sequencing, short reads come in 
pairs, indicating that a fragment of the DNA molecule 
exists whose ends correspond to the two reads of a pair. 
In particular, the total length of said fragment is known 
approximately. This pairing information can be used to 
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infer the order (and orientation) of the given contigs on 
the chromosome, thus completing the genome (modulo 
possible gaps between the contigs). The mathematical 
problem modeling this inference, called scaffolding, is 
made complicated by possible inconsistencies in the pair-
ing information. See [3] for a recent overview of models, 
variants, and methods in this context.

The problem we study here is an optimization prob-
lem in a special graph called scaffold graph. The pre-
sent formulation use both pairing information and 
some genomic structural constraints, like a fixed num-
ber of linear and circular chromosomes. In [4], we pre-
sented preliminary results about the complexity of this 
problem and a first polynomial-time approximation on 
complete graphs. Those results were extended and com-
pleted by another polynomial-time algorithm  [5] and 
by a randomized approach  [6]. We also explored exact 
algorithms [7], and studied some sparse special cases of 
scaffold graphs [8]. The contribution of the present paper 
is a continuation of published works  [9, 10], where spe-
cial classes of graphs have been studied (from sparse to 
very dense). Since real instances are usually sparse but 
contain some dense regions, due to abundance of repeats 
[11], we are interested in graphs built from cliques that 
are separated by bridges (i.e. edges whose removal dis-
connects the graph). The main contribution is the exten-
sion of the approximation algorithm on complete graphs 
of Chateau and Giroudeau [5] to a particular class called 
“connected cluster graph ”. Ultimately, the objective is to 
adapt the algorithm to sparse classes of graphs. To keep 
the approximation algorithm in polynomial time, one 
condition is that the decision problem of the scaffolding 
must be solvable in polynomial time. We propose a nega-
tive result, (i.e. it is NP-complete) for a particular sparse 
graph class. Finally, since the presented approximation 
has a polynomial approximation ratio in some particular 
cases, we show that the scaffolding problem can not be 
approximed with a ratio better than a polynomial func-
tion in such cases.

Organization of the paper
The next section is devoted to notations and the descrip-
tion of the scaffold problem. In "Computational hard-
ness" section, we show a NP-hardness results for sparse 
scaffolding graphs. In "Non-approximability" section, 
we address inapproximability. "Feasibility function for 
connected cluster graphs" section is devoted to a greedy 
algorithm for a special class of graph called connected 
cluster graph. Finally, we provide experimental results for 
the greedy algorithm.

Notation and problem description
Graph definitions
For a graph G, we denote by V(G) and E(G) the set of ver-
tices and edges of G, respectively. Let u be a vertex of G, 
the degree d(u) of u is the number of edges incident with 
u. The girth g(G) of G is the length of the smallest cycle 
of G. A graph is bipartite if its vertices can be partitioned 
into two sets of non-adjacent vertices. A graph is planar 
if it can be drawn in the two-dimensional plane without 
crossing edges.

A matching M∗ ⊆ E(G) of G is a set of non-adjacent 
edges. M∗ is called perfect if it touches all vertices of G. 
For a vertex u, we let M∗(u) denote the unique vertex v 
(if it exists) such that uv ∈ M∗ . In a scaffold graph, ver-
tices represent extremities of contigs. Given a matching 
M∗ , the matching edges represent contigs and edges out-
side the matching represent possible contiguity relation-
ship between contigs. The confidence that two contigs 
(more precisely, contig-extremities) occur consecutively 
in the genomic sequence is represented by a weight on 
edges outside the matching. An alternating path (resp. 
alternating cycle) is a path (resp. cycle) such that its edges 
alternatingly belong to M∗ or not. The extremal edges of 
an alternating path must be in M∗.

A clique of G is a set of vertices such that all vertices 
are adjacent. A bridge (resp. cut vertex) of G is an edge 
(resp. vertex) such that its deletion increases by one the 
number of connected components of  G. In "Feasibility 
function for connected cluster graphs" section, we study 
a particular class of graph called connected cluster graph, 
defined as follows.

Definition 1 A connected cluster graph G is a graph 
that admits a decomposition of its edges E(G) = E′ ∪ B 
such that the subgraph induced by E′ is a disjoint union 
of cliques and each edge e ∈ B is a bridge of G.

Fig. 1 Example of a connected cluster graph. The bridge edges are 
bold
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An example of a connected cluster graph is given in 
Fig. 1.

Scaffolding problem
A scaffold graph (G∗,M∗,ω) is a simple, loopless graph 
G∗ with a perfect matching M∗ and a weight function ω 
on the non-matching edges. The matching M∗ represents 
the set of contigs and for an edge uv, ω(uv) indicates the 
confidence that the contig extremity v follows the contig 
extremity u in the genomic sequence.1 The alternating 
girth of a scaffold graph denoted by g∗(G∗) is the num-
ber of matching edges in the smallest alternating cycle of 
(G∗,M∗,ω) . In this paper, we study a decision and opti-
mization version of scaffolding, defined as follows.

Let S be a collection of p alternating paths and c alternat-
ing cycles. We call the number p+ c the cardinality of S 
and, we let σp(S) := p and σc(S) := c.

Greedy algorithm
The main contribution of this paper is an extension of 
a known polynomial-time 3-approximation  [5] to con-
nected cluster graphs. Whereas the original algorithm 
was developed to work in complete graphs, it can be 
adapted for the general case, as shown in Algorithm  1. 

1 Note that v follows u in the genomic sequence if and only if u follows v in its 
reverse complement. Therefore, scaffolds are modeled as undirected graphs in 
this work.

The two integers σp and σc are used to model restric-
tions on the sought genomic structure by represent-
ing the number of linear and circular chromosomes, 
respectively. 

The idea of this greedy algorithm is to consider each non-
matching edge in decreasing order of weight and add it 
into a partial solution, if possible. The key instruction is 

the feasibility function: given a partial solution S and an 
edge e, this function indicates whether S ∪ e can still be 
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extended into a collection of σc alternating cycles and σp 
alternating paths in (G∗,M∗).

Proposition 1 Let f be a feasibility function with 
time complexity O(t) . Algorithm  1 gives an approxi-
mate solution for max scaffolding (if it exists) in 
O(|E(G∗)| · (t + log |E(G∗)|)).

The solution S given in the input of the feasibility func-
tion is called initiating solution. In general, since scaf-
folding is NP-complete, feasibility cannot be decided 
in polynomial-time, even if S = ∅ (unless P = NP ). 
Thus, we focus on restricted classes of graphs. In [5], a 
constant-time feasibility function was developed for 
complete graphs, leading to the following result.

Theorem 1 ([5]) In complete graphs, Algorithm 1 gives a 
solution with an approximation factor of 3.

In "Feasibility function for connected cluster graphs" 
section, we develop a feasibility function for con-
nected cluster graphs and show that Algorithm 1 gives a 
5-approximate solution in this case. Notice that, on graph 
classes containing the 2× k grids, the worst-case approx-
imation factor of the greedy algorithm cannot be better 
than polynomial, even if a polynomial-time feasibility 
function exists (see Fig. 2).

We conclude this section with a note on real-world 
instances, which are too sparse to fall into our considered 
class. However, we can transform them by adding some 
non-matching edges with weight zero. This technique 
was used to run the feasibility function for complete 
graphs on simulated instances  [5] and the computed 
solution was close to the optimal. One of the reasons 
we develop a feasibility function for connected cluster 
graphs is that we conjecture that using a feasibility func-
tion for a graph class that is closer to the original instance 
(edge-deletion distance from the class) provides better 
approximation in practice, even though the theoretical 
approximation factor of the algorithm becomes worse. 
We test this hypothesis in "Experimental results" section.

Computational hardness
Like said in the previous section, when using the greedy 
algorithm on a real instance, we must complete the 
original instance by adding non-matching edges with 

weight zero. To minimize the number of added edges, 
the solution is to adapt the greedy algorithm to a sparse 
class of graphs. In order to do that, scaffolding must 
be solvable in polynomial time in this particular class 
since otherwise, the feasibility function can not be run 
in polynomial time. In this section, we show that scaf-
folding is NP-hard for the particular class of graphs 
where |M∗| = 2σc + σp . That is, we show that the greedy 
algorithm can not be executed in polynomial time in this 
special case. In such instance, any feasible solution S con-
tains only alternating paths of length one and alternating 
cycles of length four (i.e. the smallest possible elements). 
While scaffolding is polynomial in this case  [5], a 
natural extension would be to consider slightly longer 
alternating paths and alternating cycles. Unfortunately 
however, it turns out that deciding whether (G∗,M∗) con-
tains a collection with alternating paths of length one and 
alternating cycles of length six is already NP-complete. 
In order to show this, we focus on the value of the alter-
nating girth of the scaffold graph. Indeed, in a solution 
of scaffolding with g∗(G∗) · σc + σp edges, each alter-
nating path consists of exactly one matching edge and 
each alternating cycle is an alternating girth. We show 
that finding such a solution is NP-complete, even if 
g∗(G∗) = 3 , by reducing independent set to it.

x1

y1

x2

y2

x3

y3

x4

y4

xk

yk
Fig. 2 Unbounded ratio of Algorithm 1 in the general case. 
Let (G∗ ,M∗ ,ω) be a 2× k grid where the perfect matching 
(bold edges) corresponds to the edges between the two 
rows. Let (x1, . . . , xk) and (y1, . . . , yk) be the vertices of the first 
and second row, respectively. We are looking for a solution 
of max scaffolding with σc = 0 and σp = 1 . If the algorithm 
chooses first the edge x1x2 , then the only feasible solution is 
S = {xℓxℓ | ℓ mod 2 = 1} ∪ {yℓyℓ+1 | ℓ mod 2 = 0} (dashed 
edges). Suppose that an optimal solution is Sopt = E(G∗) \ (M∗ ∪ S) 
(solid edges). If all edges of Sopt and x1x2 are valued by one 
and all edges of S \ {x1x2} are valued by zero, then we have 
(k − 1) · ω(S) = ω(Sopt) which leads to an unbounded ratio
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IS is NP-complete in general graphs. In order to build 
our reduction, we need G to be subcubic and triangle-
free (i.e. �(G) ≤ 3 and g(G) > 3 ). Note that Lozin et 
Milanič  [12] showed that independent set remains 
NP-complete in F -free planar subcubic graphs if F  does 
not contain a tree with exactly three leaves. By choosing 
F := {C3} (where C3 is the cycle on three vertices), we 
obtain the desired NP-completeness. Our reduction 
uses the following construction.

Construction 1 (see Fig.  3) Given a subcubic, triangle-
free graph G, construct a scaffold graph (G∗,M∗,ω) as 
follows:

• for each edge ei ∈ E(G) , construct a matching edge 
uiui , and

• for each vertex vt ∈ V (G) , introduce the match-
ing edges {ujtu

j
t | j ≤ 3− deg(vt)} =: Et and con-

struct an alternating 6-cycle Ct on the vertices 
Et ∪ {uiui | vt ∈ ei} such that no two u (or u ) vertices 
are adjacent.

The alternating cycles Ci are called vertex-cycles. A 
bipartition is given by the u- and u-vertices. Note that, 
if G is planar, it is also possible to construct a planar 
graph (which may no longer be bipartite). To show hard-
ness of scaffolding when |M∗| = g∗(G∗) · σc + σp , we 
use the following properties of graphs resulting from 
Construction 1.

Lemma 1 Let G be a subcubic triangle-free graph and 
let (G∗,M∗,ω) be its scaffold graph produced by Con-
struction  1. Let S be a collection of σc = k alternating 
cycles and σp = |M∗| − 3k alternating paths. Then, 

(a) g∗(G∗) = 3,
(b) every alternating cycle in S is a vertex-cycle, and
(c) let Ct and Ct ′ be vertex-cycles in S, the vertices vt and 

vt ′ are not adjacent in G.

Proof (a) By construction, each vertex-cycle contains 
exactly three matching edges and, thus, g∗(G∗) ≤ 3 . 
Suppose there is an alternating cycle containing 
exactly two matching edges e and e′ . Let Ct be a 
vertex-cycle containing e. Since Ct has length six, 
there is another vertex-cycle Ct ′ �= Ct that contains 
e′ . Indeed, e and e′ are both in Ct and Ct ′ since, oth-
erwise, their extremities cannot be adjacent. By 
construction, there are two edges ei and ej in G that 
are incident to both vt and vt ′ , contradicting G being 
simple. Hence, there is no alternating cycle with 
two matching edges and g∗(G∗) = 3.

(b) Let C be an alternating cycle in S. By Lemma 1(a), 
|M∗| = g∗(G∗) · σc + σp , implying that C has 
length six. Let uiui be a matching edge of C. If there 
is a matching edge v1t v1t ∈ C then, by construc-
tion, the third matching edge of C is either v2t v2t  (if 
deg(vt) = 1 ) or ujuj (where vt ∈ ej in G). Thus, C 

v1

v2

v3

v4

e1

e2 e3

e4

e5

v11

v11

u1

u1

u2

u2

u3 u3

u4

u4

u5

u5

v13

v13

Fig. 3 Example of a scaffold graph produced by Construction 1. Left: input graph with an independent set of size two given by the black 
vertices. Right: output graph with a collection of two alternating cycles and one alternating path in black. A bipartition is given by gray and white 
vertices. An example of a vertex-cycle is Cv1 = {v11, v

1
1 , u1, u1, u2, u2} . It is possible to turn this graph into a planar graph by replacing the edges 

{u3u2, u2u3, u5u3} with {u3u2, u5u2, u5u3}
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is the vertex-cycle Ct . Suppose there is no match-
ing edge v1t v1t  in C. For any pair of matching edges 
(ukuk ,uk ′uk ′) of C, ek and ek ′ are incident to a same 
vertex in G. Let uiui,ujuj  and ukuk  be the three 
matching edges of C. Since G is triangle-free, ei, ej 
and ek are adjacent in G, hence, C is a vertex-cycle.

(c) Let ei = vtvt ′ ∈ E(G) . The matching edge uiui is in 
Ct and Ct ′ and, thus, S cannot contain both Ct and 
Ct ′.

 □
In the proof of correctness, we simulate vertices of the 

independent set with vertex-cycles. If a solution  S con-
tains two vertex cycles Ci and Cj , then vi and vj are not 
adjacent in G. Hence, if a solution  S contains k vertex-
cycles, then there is an independent set of k vertices in G.

Theorem  2 scaffolding is NP-complete, even in 
bipartite (or planar) subcubic scaffold graphs (G∗,M∗,ω) 
were |M∗| = g∗(G∗) · σc + σp and g∗ = 3.

Proof Since, clearly, scaffolding is in NP , it remains 
to show that Construction 1 is a reduction, that is, G has 
an independent set of size k if and only if there is a col-
lection of k alternating cycles and |M∗| − 3k alternating 
paths in (G∗,M∗).

“⇒ ”: Let I be an independent set of size k in G. We build 
a solution of scaffolding as follows. For each vertex 
vt ∈ I , we construct the vertex-cycle Ct in S. For each 
remaining matching edge in M∗ \

⋃

vt∈I
Ct , we construct 

an alternating path of length one. We obtain a solution S 
as thought.

“⇐ ”: Let S be a solution in (G∗,M∗) containing k alter-
nating cycles and |E(G)− k alternating paths and 
let I := {vt |Ct ∈ S} . By Lemma 1(b), any alternating cycle 
of S is a vertex-cycle in (G∗,M∗) and, thus, |I | = k . More-
over, by Lemma 1(c), I is independent in G. □

Note that Theorem  2 can be generalized to g∗(G∗) > 3 
by modifying Construction  1 as follows. First, 
we build our construction from a graph G with 
g(G) > ℓ ≥ 3 . IS remains NP-complete in such graphs 
by the result of Lozin and Milanič: it suffices to take 
F = {Ci | i ≤ ℓ} , where Ci is the cycle of order i. Then, 
we increase the length of every vertex-cycle by taking 
Et = {u

j
tu

j
t | j ≤ 3+ ℓ− deg(vt)} for each vt ∈ V (G) . 

By making these modifications, we construct a scaf-
fold graph with g∗(G∗) = ℓ and we preserve properties 
Lemma 1(b) and Lemma 1(c). This leads to the following 
result.

Corollary 1 scaffolding is NP-complete even in 
bipartite (or planar) subcubic scaffold graphs (G∗,M∗) 
were |M∗| = g∗(G∗) · σc + σp , for all g∗(G∗) ≥ 3.

Non‑approximability
In this section, we discuss the hardness of approximating 
max scaffolding. Notice that, since scaffolding is 
NP-complete, there is no polynomial-time approxima-
tion algorithm for max scaffolding (unless P = NP ). 
However, this argument does not hold for graph classes 
where scaffolding is in P (i.e. classes for which the 
feasibility function (and, thus, the greedy algorithm) runs 
in polynomial time).

We show that, in this case, max scaffolding is still 
Poly-APX-hard, that is, it is not possible to approximate 
max scaffolding within a factor better than a poly-
nomial function in |V (G∗)| + |E(G∗)| (unless P = NP ). 
Recall that Fig. 2 already shows that the greedy algorithm 
can not approximate max scaffolding with a ratio bet-
ter than a polynomial function. The inapproximability 
result presented in this section shows that it is the case 
for any polynomial-time algorithm. In the following, we 
construct an S-reduction (see [13]) from the optimization 
version of independent set.

Construction 2 (see Fig. 4) Let G be a graph. Then, con-
struct the following scaffold graph (G∗,M∗,ω):

• For each ei = vtvq ∈ E(G) , construct a clique 
{uti ,u

t
i ,u

q
i ,u

q
i , ei, ei} with utiu

t
i ,u

q
i u

q
i , eiei ∈ M∗.

• For each vt ∈ V (G) , construct a cycle (vt1, v
t
1, v

t
2, v

t
2) 

with vt1v
t
1, v

t
2v

t
2 ∈ M∗.

• Let vt ∈ V (G) and let At be a list of all edges incident 
with vt in G. Construct an alternating cycle contain-
ing all vertices in {vt1, v

t
1, v

t
2, v

t
2} ∪ {uti ,u

t
i | ∀ei ∈ At} 

as follows:

– For all k < d(vt) , let ei and ej be the kth and k + 1st 
edges of At , respectively, and add a non-matching 
edge between uti and utj .

– Let ei and ej be the first and last edges of At , respec-
tively, and add the non-matching edges vt1u

t
i and 

vt2u
t
j .

• Each non-matching edge has weight zero, except the 
edges vt2ej which have weight one.

Let vt ∈ V (G) . The cycle on {vt
1
, vt1, v

t

2
, vt2} ∪ {ut

i
,ut

i
|

∃q ei = vtvq ∈ E(G)} is called the long vertex-cycle of vt 
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and is denoted by C(vt) . Note that a long vertex-cycle has 
weight one. Now consider the following properties.

Lemma 2 Let G be a graph and let (G∗,M∗,ω) be 
the scaffold graph produced by Construction  2. Let S 
be a collection of |V (G)| + |E(G)| alternating cycles in 
(G∗,M∗,ω) . 

(a) Every non-zero-weight alternating cycle  C of S is a 
long vertex-cycle.

(b) Let C(vt) and C(vq) be two long vertex-cycles of S. 
Then, vtvq /∈ E(G).

Proof Note that it is always possible to build a collec-
tion of |V (G)| + |E(G)| (weight-0) alternating cycles 
in (G∗,M∗,ω) by constructing the alternating cycle 
{uti ,u

t
i ,u

q
i ,u

q
i , ei, ei} for each edge ei = vtvq of G and the 

alternating cycle {vt1, v
t
1, v

t
2, v

t
2} for each vertex vt ∈ V (G)

. □

Claim 1 Let vt ∈ V (G) and ei ∈ E(G) . Then, no alter-
nating cycle of S contains both eiei and vt1v

t
1.

Proof Towards a contradiction, assume that there is 
such an alternating cycle C. By pidgeonhole principle, 
one of the |V (G)+ E(G)| alternating cycles in S, say 
C ′ , avoids both eiei and vt1v

t
1 for all  i, t ∈ N . Let utiu

t
i be 

a matching edge of C ′ for some ei = vtvq . Then, C ′ can-
not contain uqi u

q
i  as, otherwise, eiei cannot be part of an 

alteranting cycle in S, implying that S is not a solution. 
Thus, each matching edge of C ′ is on the long vertex-
cycle C(vt) . Since the graph induced by the vertices of 
C(vt) \ v

t
1v

t
1 is a path, it is not possible to construct C ′ . 

Hence, we conclude that C does not exist. □

v11v11

v12 v12
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Fig. 4 Example of a scaffold graph produced by Construction 2. The input graph is composed by the edges e1 = v1v2 , e2 = v2v3 , e3 = v1v3 , 
e4 = v1v4 and e5 = v3v4 . Gray vertices in the figure belong to an edge gadget and white vertices belong to a vertex gadget. Matching 
edges are bold. Solid edges have weight zero and dashed edges have weight one. The long vertex-cycle C(v2) corresponds to the vertices 
{v21, v

2
1 , u

2
2, u

2
2, u

2
1, u

2
1, v

2
2 , v

2
2}
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(a): Let C be a non-zero-weight alternating cycle of S 
and assume towards a contradiction that C is not a long 
vertex-cycle. Since C contains a non-zero-weight edge 
vt2u

1
i  , the matching edge vt2v

t
2 is in C. As C is not a long 

vertex-cycle, there is some ei = vtvq such that C contains 
both utiu

t
i and uqi u

q
i  . Thus, either the matching edge eiei 

is in C, contradicting Claim 1, or eiei consists of a single-
edge alternating path of S, contradicting our choice of S.

(b): Towards a contradiction, assume that S contains 
C(vt) and C(vq) such that ei = vtvq ∈ E(G) . Then, the 
matching edge eiei is a single-edge alternating path of S, 
contradicting our choice of S.

We now show the Poly-APX-hardness of max 
scaffolding, even for graph classes for which 
Scaffolding ∈ P . Reusing the same idea of Theorem  2, 
we simulate the vertices of the independent set with long 
vertex-cycles. If a solution S of max scaffolding has 
weight k, then S contains k long vertex-cycles and, since 
their related vertices cannot be adjacent, we can con-
struct an independent set with k vertices in G.

Theorem 3 max scaffolding is Poly-APX-hard, even 
for graph classes for which Scaffolding ∈ P.

Proof Let G be an instance of independent set and 
let (G∗,M∗,ω) be the scaffold graph produced by Con-
struction  2. Let S be the set of all collections of σp = 0 
alternating paths and σc = |V (G)| + |E(G)| alternating 
cycles in (G∗,M∗,ω).

Recall that independent set is Poly-APX-complete 
for general graphs  [14]. We show that G has a size-k 
independent set if and only if S contains a solution S of 
score k.

“⇒ ”: Let I be an independent set of size k in G. We con-
struct a solution S ∈ S as follows.

First, for each vt ∈ I , construct the alternating cycle C(vt) 
in S. Second, for each vt ∈ V (G) \ I , construct the alter-
nating cycle (vt1, v

t
1, v

t
2, v

t
2) in S.

Third, for each edge ei = vtvq not incident with a vertex 
in I, construct the alternating cycle (uti ,u

t
i ,u

q
i ,u

q
i , ei, ei) in 

S.

Fourth, for each edge ei = vtvq with vt ∈ I , (the matching 
edge utiu

t
i is in C(vt) which is already in S), construct the 

alternating cycle (uqi ,u
q
i , ei, ei).

Since each long vertex-cycle has weight one, we obtain a 
solution S with ω(S) = k.

“⇐ ”: Let S ∈ S with ω(S) = k . We construct an inde-
pendent set I by taking all vertices whose long vertex-
cycle is in S, that is, I := {vt | C(vt) ∈ S} . Since each long 
vertex-cycle has weight one, Lemma  2a implies that S 
contains k long vertex-cycles. Thus, |I | = k . Further, by 
Lemma 2b, I is independent.

Let f be the function corresponding to Construction  2 
and let g be a function that computes an independent set 
in G from a solution in f(G), as described above. Suppose 
that there is a polynomial-time algorithm A with approx-
imation factor ρ for max scaffolding. The approxima-
tion factor of g ◦ A ◦ f  is equal to ρ , thus Construction 2 
constitutes an S-reduction. Non-approximability results 
of independent set transfer to max scaffolding. □

Feasibility function for connected cluster graphs
In this section, we present a feasibility function for con-
nected cluster graphs using dynamic programming. For 
simplicity, we consider in the following scaffold graphs 
(G∗,M∗,ω) such that G∗ is a connected cluster graph and 
no matching edge is a bridge. The case were a bridge can 
be a matching edge is included in the feasibility function 
for block graph that (see "Experimental results" section).

Definitions
Notice that the structure of a connected cluster graph is 
close to a tree (that is, collapsing each clique of G∗ into 
a single vertex leads to a tree), so we will use a similar 
vocabulary: a rooted connected cluster graph is a con-
nected cluster graph where a clique r is designated as a 
root. Then, the following notation applies: the parent 
of a clique x is the clique connected to x on the unique 
x-r-path. A child of a clique c is clique of which c is the 
parent. Any clique without children is called a leaf. A 
vertex  v of a clique  c is a door of c if v is adjacent to a 
vertex u in a child of c. In that case, for simplicity, we 
say that the clique containing u is a child of v. The upper 
door of a clique c  = r is the unique vertex v that is adja-
cent to a vertex of the parent of c. Let c be a clique of G∗ 
and let S be a partial solution in G∗ . Let S′ be the inter-
section of S and c, an alternating element of c is either 
an alternating cycle of S′ or an alternating path of S′ . 
Notice that an alternating path of S can be decomposed 
into several alternating elements if it belongs to several 
cliques. Let e be the alternating element containing the 
upper door of c. The subclique c′ of c is the subgraph con-
taining every vertex of c that does not belong to e. For-
mally, c′ = G∗[V (c) \ V (e)] . We use the tree-structure to 
develop a bottom-up algorithm, that is, we construct and 
assemble some partial solutions from the leaves to the 
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root. We define some operations to combine this partial 
solutions.

Operations
Let G1 and G2 be two edge-disjoint subgraphs. We can 
build a solution in the graph induced by V (G1) ∪ V (G2) 
from a solution in G1 and a solution in G2 , using four 
operations.

Definition 2 Let G1 and G2 be edge-disjoint subgraphs 
of G∗ . Let S1 and S2 be solutions of G1 and G2 , respec-
tively. Let S be a solution of G∗[V (G1) ∪ V (G2)] . S is a 
composition of S1 and S2 if S can be obtained from S1 ∪ S2 
by at most one of the following operations: 

Merger:  merge an alternating path (u1,u2, . . . ,u2t) 
of S1 with an alternating path 
(v1, v2, . . . , v2q) of S2 by adding the non-
matching edge u2tv1.

Closing:  close an alternating path (u1,u2, . . . ,u2t) 
of S1 and an alternating path 
(v1, v2, . . . , v2q) of S2 into an alternating 
cycle by adding the non-matching edges 
u2tv1 and v2qu1.

Absorption:  replace a non-matching edge v2iv2i+1 of 
an alteranting path in S2 with an alternat-
ing path (u1,u2, . . . ,u2t of S1 by remov-
ing v2iv2i+1 and adding the non-matching 
edges v2iu1 and u2tv2i+1 . We call v2iv2i+1 
absorbent.

 Finally, if no operation is necessary to obtain S from 
S1 ∪ S2 , we say that S is obtained by juxtaposition.

Note that all presented operations add only edges of 
E(G∗) \ (E(G1) ∪ E(G2)) . Note further that not all com-
positions of two solutions are guaranteed to exist for a 
pair S1 and S2 . In the algorithm, we manipulate sets of 
solutions: we can create a new set of solutions from two 
sets of solution if all pairs of solutions of the two input 
sets are used in the resulting set.

Definition 3 Let G1 and G2 be two edge-disjoint sub-
graphs of G∗ and let S1 and S2 be sets of solutions of 
subgraphs G1 and G2 , respectively. Let op be one the 
operation described in Definition  2. Then, we call the 
set S = {op(S1, S2) | ∀S1 ∈ S1 ∧ ∀S2 ∈ S2 } the complete 
composition of S1 and S2.

To ensure the possibility of building a complete com-
position from two sets of solutions, it is useful to 

characterize a solution according to the operations we 
can perform on it.

Definition 4 Let G and G′ be two edge-disjoint sub-
graphs of G∗ and let S be a feasible solution of scaffold-
ing for (G,M∗,ω) . 

1. S is closeable if S contains an alternating path 
(u1,u2 . . . ,u2t) and G′ contains an alternating path 
(v1, v2, . . . , v2q) such that u2tv1 and v2qu1 are edges of 
E(G∗ \M∗.

2. S is extensible by G′ if S contains a vertex v such that 
v is an extremity of an alternating path and v has a 
neighbor in G′ .

3. S is frozen to G′ if S is not extensible.
4. S is absorbent to G′ if S contains an alternating 

path (u1,u2, . . . ,u2t) and G′ contains an alter-
nating path with extremities v and w such that 
vu2i,wu2i+1 ∈ E(G∗) \M∗ for some i < t . Note that 
an absorbent solution can also be closeable, alternat-
ing or frozen.

When omitted, G′ defaults to G∗ − V (G).
Note that all closeable solutions are also extensible. If 

a solution S is closeable by a subgraph G′ , then we can 
close an alternating path of S into an alternating cycle 
by adding some edges of G′ . If a solution S is extensible 
by a subgraph G′ , then we can add some edges of G′ in 
an extremity of an alternating path of S without chang-
ing the cardinality of the solution. Finally, if a solution 
S is absorbent to a subgraph G′ , then we can replace an 
absorbent edge of S by a path of length three without 
changing the cardinality of S. An example of the different 
operations of Definition 4 is given in Fig. 5.

Semantics
Since the number of possible solutions can be expo-
nential, we just store the possible cardinalities in the 
table entries, which is sufficient to answer the ques-
tion of feasibility. Recall that, if X ,Y ⊆ N are two 
sets of integers, then the sum of X and Y is defined as 
X + Y = {x + y | x ∈ X , y ∈ Y } . Note that X +∅ = ∅ . 
In the following, we call an integer j eligible with respect 
to a set S of solutions and an integer i if there is a solu-
tion S ∈ S containing i alternating cycles and j alternat-
ing paths. Then, our dynamic programming table has the 
following semantics.

Definition 5 (Semantics) Let S be a set of solutions and 
let i ∈ N.



Page 10 of 25Davot et al. Algorithms for Molecular Biology           (2022) 17:16 

A table entry [S , i] is the set of all integers eligi-
ble with respect to S and i. More formally, letting 
Xi = {S | S ∈ S ∧ σc(S) = i} , we define [S , i] = {σp(S) | S ∈ Xi}.

Let us highlight three particular values of [S , i] . For 
S = {∅} , we have [{∅}, 0] = {0} and, for each i > 0 , we 
have [{∅}, i] = ∅ . For an alternating path p, we have 
[{p}, 0] = {1} and [{p}, i] = ∅ for each i > 0 . Finally, for an 
alternating cycle c, we have [{c}, 1] = {0} and [{c}, i] = ∅ 
for each i  = 1 . For brevity, we let [S] denote the vector 
([S , 0], . . . , [S , σc]) and, for any operator ⋄ and any sets S1 
and S2 of solutions, we define [S1] ⋄ [S2] as component-
wise ⋄ , that is, [S1, i] ⋄ [S2, i] for each i ∈ [0, σc].

Lemma 3 Let G1 and G2 be two vertex-disjoint sub-
graphs of G∗ and let S1 and S2 be sets of solutions of 
G1 and G2 , respectively. Let S be a set of solutions of 
G∗[V (G1) ∪ V (G2)] such that S is a complete composi-
tion of S1 and S2 . 

1. If S is the set of solutions composed with a merger 
operation, then [S , k] =

⋃

i+j=k ([S1, i] + [S2, j] + {−1}).
2. If S is the set of solutions composed with a closing oper-

ation, then [S , k] =
⋃

i+j+1=k([S1, i] + [S2, j] + {−2}).
3. If S is the set of solutions composed with an absorption 

operation, then [S , k] = ⋃

i+j=k ([S1, i] + [S2, j] + {−1}).

4. If S is the set of solutions composed with a juxtaposi-
tion operation, then [S , k] =

⋃

i+j=k([S1, i] + [S2, j]).

Proof Let S ∈ S and let S1 and S2 denote the solutions 
of S1 and S2 , respectively, such that S is composed by S1 
and S2 . Then, 

1 since S1 and S2 have a common alternating path in S, 
we have σp(S) = σp(S1)+ σp(S2)− 1 and since no 
cycle is formed, σc(S) = σc(S1)+ σc(S2) . Thus, since 
S is a complete composition of S1 and S2 , we have 
[S , k] =

⋃

i+j=k([S1, i] + [S2, j] + {−1}).
2 since one path of S1 and one path of S2 are 

closed into a single alternating cycle, we 
have σp(S) = σp(S1)+ σp(S2)− 2 and 
σc(S) = σc(S1)+ σc(S2)+ 1 . Thus, since S is 
a complete composition of S1 and S∈ , we have 
[S , k] =

⋃

i+j=k([S1, i] + [S2, j] + {−2}).
3 since S1 has an alternating path that is “absorbed” 

into a connected component of S2 , we have 
σp(S) = σp(S1)+ σp(S2)− 1 and since no cycle 
is formed, σc(S) = σc(S1)+ σc(S2) . Thus, since S 
is a complete composition of S1 and S∈ , we have 
[S , k] =

⋃

i+j=k([S1, i] + [S2, j] + {−1}).
4 since all paths and cycles of S1 and S2 are present in 

S, we have σp(S) = σp(S1)+ σp(S2)− 1 and since no 
cycle is formed, σc(S) = σc(S1)+ σc(S2) . Thus, since 
S is a complete composition of S1 and S∈ , we have 
[S , k] =

⋃

i+j=k([S1, i] + [S2, j]). �

We use Lemma 3 to define the four functions juxtapose, 
merget , absorb, and closet , which provide table entries 
for complete compositions “composed” with a juxtaposi-
tion, merge, absorption or closing operation, respectively. 
Although Lemma 3 is defined for two sets, we use a gen-
eralized version which can take as parameters more than 
two sets. The functions merget and closet have a parame-
ter t that indicates the number of paths merged or closed 
during the operation. For example, if we have three sets 
S1 , S2 , and S3 and if it is possible to construct a single 
alternating path in the resulting composition by taking 
one alternating path in each set, then we use the func-
tion merge3({S1}, {S2}, {S3}) . Note that the parameter t 
can be different from the number of sets. In addition, it is 
sometimes possible to close a single alternating path into 
an alternating cycle and, in that case, the function close1 
is used. The four functions are defined in Algorithm  2, 
Algorithm 3 and Algorithm 4. However, we must ensure 
that the associated operation is feasible before using one 
these functions.

v1 v2

v3

v4v5

v6

G1

x1
y1G2

x2

y2

G3

x3

y3

G4

x4

y4

Fig. 5 The solution S is composed of a single alternating path 
{v1, . . . , v6} . S is closeable by subgraph G3 = {x3, y3} : we can close 
the alternating path of S into an alternating cycle by adding the 
edges v1x3 , x3y3 and y3v6 . S is extensible by subgraph G2 = {x2, y2} : 
we can extend the alternating path of S by adding the edges v6y2 
and y2x2 without changing the number of paths in S. S is absorbent 
to G4 = {x4, y4} : we can replace the edge v2v3 of S by the edges 
v2y4, y4x4 and x4v3 without changing the number of paths in S. S is 
frozen to G1 = {x1, y1}
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For each traversed subgraph, we use four different sets 
of solutions distinguishing solutions according to their 
properties.

Definition 6 Let S be a partial solution of G∗ . Let x be a 
vertex, a partial path, a subclique or clique of G∗ and let S′ 
be a solution of the subgraph G∗(x) . Then,

• S ∈ C(x) ⇔ S′ is closeable and S ∩ E(G∗(x)) ⊆ S′.
• S ∈ E(x) ⇔ S /∈ C(x) and S is extensible and 

S ∩ E(G∗(x)) ⊆ S′.
• S ∈ A(x) ⇔ S is frozen and absorbent and 

S ∩ E(G∗(x)) ⊆ S′.
• S ∈ F(x) ⇔ S /∈ A(x) and S is frozen and 

S ∩ E(G∗(x)) ⊆ S′.

In the algorithm, we traverse four different types of 
subgraphs defined as follows.

• Let v ∈ V (G∗) , let child(v) be the set of children of v 
in G∗ (possibly empty). Then, G∗(v) denotes the subg-
rah of G∗ that is induced by v and every branch linked 
to v. Formally, G∗(v) := G∗[{v} ∪

⋃

x∈child(v)

V (G∗(x))].

• Let e be an alternating element. Then, G∗(e) denotes 
the subgraph of G∗ that is induced by e and all children 
of its vertices. Formally, G∗(e) = G

∗[
⋃

v∈e V (G∗(v))].
• Let c be a clique of G∗ and let c′ be the subclique of c. 

For all x ∈ {c, c′} , the subgraph G∗(x) is the union of x 
and all children of x. Formally, 
G

∗(x) = G
∗[

⋃

e∈M∗∩

(

x

2

)

V (G∗(e))]

.
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The algorithm
We now present a method to provide the feasibility func-
tion needed by Algorithm 1. In the next paragraphs, we 
describe the algorithms that calculate the table entries for 
the four types of subgraphs described above.

Vertex
Let v ∈ V (G∗) . We show in this part how to compute the 
table entries for the sets F(v) and E(v) . Note that, since the 
edge between G∗(v) and its parent is a bridge, any solution 
S′ for G∗(v) can have at most one edge incident to v. Thus, 

the sets C(v) and A(v) are empty. If v is not incident to an 
edge of S ∩ E(G∗(v)) , then we construct the table entries 
by successively merging the table entries of the children 
adjacent to v. For that, we use at each step an intermedi-
ate graph Gi . Let Vi be the set of the first i children of v. Gi 
is the subgraph of G∗ induced by v and all vertices in Vi . If 
v is incident with an edge S ∩ E(G∗(v)) , then any solution 
containing S is in E(v) . An example of solutions computed 
by Algorithm 5 is depicted in Fig. 6.

v

c1

c2

v

c1

c2

Fig. 6 Example of two solutions S1 (left, frozen) and S2 (right, extensible) in G∗(v) . The cliques c1 and c2 are children of c(v). Each of S1 and S2 contains 
two alternating elements (solid black lines). The frozen solution is obtained with the juxtaposition of two frozen solutions in c1 and c2 . The extensible 
solution is obtained with the juxtaposition of a frozen solution in c1 and with the merge between v and an extensible solution in c2
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Lemma 4 For any vertex v, the values of the table entries 
provided by Algorithm 5 are correct for the set F(v) and 
E(v).

Proof First, if there is no child linked to v, then G∗(v) 
consists of the single vertex v. In that case, the only solu-
tion for G∗(v) consists of zero alternating cycles and paths 
and this solution is frozen. Thus, the initial values given 
to [F(v)] and [E(v)] in the initialization step (i.e. lines 1 
to 2) are correct. Assume that table entries returned by 
compute_clique are correct. Let S′ be a solution of G∗(v) 
such that S ∩ E(G∗(v)) ⊆ S′ . We distinguish two cases. 

Case 1:  there is an edge uv ∈ S ∩ E(G∗(v)) . Thus, S′ is 
extensible and is composed by the merge of an 
extensible solution in G∗(cu) with uv and the 
juxtaposition of any solution for each child 
cu′ �= cu . Hence, lines 9 and 11 are correct.

Case 2:  there is no edge uv ∈ S ∩ E(G∗(v)) . Then, S′ 
is frozen if and only if it does not contain an 
edge incident to v. As there is no edge uv in 
any child ct , S′ is composed by juxtaposition of 

any solution for each child ct and the assign-
ment in line  13 is correct. If S′ is extensible, 
then there is a unique child ct of v such that 
an alternating path from S′ ∩ E(G∗(ct)) has 
been expanded to v and, therefore, the solu-
tion S′ ∩ E(G∗(ct)) is extensible. Thus, S′ is 
composed by a merge of a extensible solution 
of a unique child and the juxtaposition of any 
solution in other children. Hence, line 14 is 
correct.

 □

Alternating element
Let c be a clique of G∗ and let e be an alternating element 
of c such that e does not contain the upper door of c. We 
show in this part how to compute the table entries for the 
sets C(e) , F(e) and E(e) . If e is a u-v-path, then the idea is 
to merge the computed table entries of u and v and jux-
tapose the frozen solutions of the inner vertices. If e is 
an alternating cycle, then there is no choice and the only 
solution containing S is frozen. An example of solutions 
computed by Algorithm 6 is depicted in Fig. 7.

Lemma 5 For any alternating element e, the values of 
the table entries provided by Algorithm 6 are correct for 
the sets C(e) , F(e) and E(e).

Note that the only possibility to obtain an absorbent 
solution of G∗(e) is when e is a path that is closed into 
an alternating cycle. However, if an absorption opera-
tion is done in the function compute_subclique , then 
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the resulting solution can also be obtained by a closing 
operation with a solution in C(e) . Thus, our dynamic pro-
gramming will not compute the value of [A(e)].

Proof Suppose that the values of the table entries pro-
vided by the function compute_vertex are correct. First 
note that, for each inner vertex vt of e, the subsolutions 
of G∗(vt) are necessarily frozen, then a solution of G∗(e) 
contains a juxtaposition of frozen solutions of the inner 
vertices of e. If e is an alternating cycle, then the only pos-
sible solution is obtained by the juxtaposition of frozen 
solutions of the inner vertices and the alternating cycle e. 
Thus, the assignment line 5 is correct. Suppose that e is a 
partial path. All possible values of the juxtaposition of the 

frozen solutions of the inner vertices are assigned in the 
table entry [Ie].

• A solution S′ of G∗(e) is closeable if the degree of the 
extremities of e are equal to one. Then, the subsolu-
tions of S′ in G∗(v0) and G∗(vk) are frozen. Thus, the 
assignment line 7 is correct.

• A solution S′ of G∗(e) is frozen if the degree of the 
extremities of e are equal to two. It is the case if 
(1) the subsolutions of S′ in G∗(v0) and G∗(vk) are 
extensible or (2) the subsolutions of S′ in G∗(v0) and 
G∗(vk) are frozen and e is closed into an alternating 
cycle. Thus, the assignment line 8 is correct.

u v u v u v

Fig. 7 Example of solutions (black edges) in G∗(e) where e is a u-v-path. The left solution is closeable, the center solution is extensible and the 
right solution is frozen. The closeable solution is obtained by the juxtaposition of e, any solution in G∗(u) and any solution in G∗(v) . The extensible 
solution is obtained by the merge of e with an extensible solution in G∗(u) and the juxtaposition of any solution in G∗(v) . The frozen solution is 
obtained by the merge of e, an extensible solution of G∗(u) and an extensible solution in G∗(v)

Fig. 8 Example of a case ignored by the algorithm. At the top, the solution is obtained after juxtaposing a closeable alternating path p1 and 
absorbing a closeable alternating path p2 . The intermediate solution is in the set A′

+ during the second step. Below, a solution of the same 
cardinality is obtained after absorbing p1 and juxtaposing p2 and in this case, the intermediate solution is in A′ . The upper solution is not considered 
by the algorithm because the bottom solution has the same cardinality
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• A solution S′ of G∗(e) is extensible and not closeable 
if and only if exactly one vertex in {v0, vk} has degree 
one. Then, exactly one subsolution of S in G∗(v0) or 
G∗(vk) is extensible. Thus, the assignment line 9 is 
correct.

 □

Subclique
Let c′ be a subclique of G∗ containing k alternating ele-
ments. We show in this part how to compute the table 

entries for the sets C,F ,A and E . The idea is to construct 
the table entry by merging successively each table entry 
of the alternating elements of c′ . For that, we use at each 
step an intermediate graph Gt and two intermediate sets 
A+ and E+ , defined as follows. Let L(c′) = {e1, . . . , ek} 
be a list of alternating elements of c′ , let t ≤ k , let 
Et = {e1, . . . , et} , and let Vt =

⋃

e∈Et
V (G∗(e)) . Let Gt be 

the subgraph of G∗ induced by Vt . At step t, a solution 
S′ is in A+ (resp. E+ ) if and only if (1) S′ is a solution of 
Gt , (2) S′ contains a set C  = ∅ of closeable paths and (3) 
S \ C is not extensible (resp. extensible).
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Lemma 6 For any subclique c′ , the value of the table 
entries provided by Algorithm  7 are correct for the sets 
C(c′),F(c′),A(c′) and E(c′).

Proof Assume table entries returned by 
compute_alternating_element are correct. We show by 
induction that the values calculated in each step t are 
correct for the graph Gt . First, G0 is the empty graph and 
the unique solution is that containing zero alternating 
cycles and paths and this solution is frozen. Thus, lines 1 
to 3 are correct. Now, consider the alternating element 
et and suppose the previously computed values are cor-
rect (i.e. values stored in F ′,A′, E ′,A′

+ and E ′
+ ). Let S1 be 

a solution in Gt−1 , let S2 be a solution in G∗(et) and let 
S′ be a composition of S1 and S2 . We have the following 
properties:

• if S′ is obtained by a juxtaposition, then S1 is in 
F ′,A′, E ′,A′

+ or E ′
+ and S2 is in C(et),F(et) or E(et),

• if S′ is obtained by a merge, then S1 is in E ′,A′
+ or E ′

+ 
and S2 is in C(et) or E(et),

• if S′ is obtained with an absorption, then S1 is in A′ or 
A′

+ and S2 is in C(et) , and
• if S′ is obtained by a closing, then S1 is in A′

+ or E ′
+ 

and S2 is in C(et).

Thus, there are 25 complete compositions to consider. If 
S2 ∈ C(et) (resp. E(et) ) and S′ is obtained by a closing (resp. 
merge), then S′ is closeable (resp. extensible) if S1 contains 
more than one closeable (resp. extensible) alternating 
path or absorbent, otherwise. Hence, a complete compo-
sition obtained with a closing or a merge is not included 
in a unique set among those defined. This problem can be 
solved by ignoring certain solutions: S′ can be ignored if 
there is another solution in Gt with the same cardinality. 

1 Suppose S′ is obtained with a closing (resp. merge) 
and S1 contains more than one closeable (resp. exten-
sible) alternating path. Let p1 and p2 be closeable 
(resp. extensible) alternating paths of S1 . There is a 
solution S′1 similar to S1 except that p1 and p2 have 
been closed into a cycle (resp. merged into a unique 
alternating path) during a previous step. We can 
obtain a solution in Gt with the same cardinality as 
S′ by juxtaposing S′1 and S2 . Thus, S′ can be ignored, 
and we suppose that a solution obtained with a clos-
ing does not contain a closeable alternating path (i.e. 
is not in A+ or E+ ). Likewise, we can suppose a solu-
tion obtained with a merge between a solution of 
E ′ ∪ E ′

+ and a solution of E(et) does not contain an 
extensible alternating path (i.e. is not in E(c′) or E+).

2 Assume that one of the following conditions is true. 
(1) S1 ∈ A′

+, S2 ∈ E(et) and S′ is obtained by a merge, 
(2) S2 ∈ E ′

+, S2 ∈ F(et) and S′ is obtained by a merge, 
(3) S1 ∈ A′

+, S2 ∈ F(et) and S′ is obtained by an 
absorption. Let p be a closeable alternating path of S1 
that is absorbed or merged in S′ . There is a solution 
S′1 similar to S1 except that all non-matching edges 
of p have been merged or absorbed during previous 
steps. We can obtain a solution in Gt with the same 
cardinality as S′ by juxtaposing S′1 and S2 . Thus, S′ can 
be ignored. Fig. 8 shows an example of case (3).

The second item allows us to ignore three complete com-
positions: there are 22 still to be considered. Each of 
these complete compositions is in only one of the six sets 
of solutions among F(c′) , A(c′) , E(c′) , A′

+ and E ′
+.

• Suppose S′ is frozen. The only feasible operation to 
obtain S′ is juxtaposition because an addition of an 
edge of E(c′) \ S creates an absorbent solution. S1 
and S2 are frozen as, otherwise, their juxtaposition is 
not frozen. Thus, line 9 is correct.

• Suppose S′ is absorbent. Thus, S′ contains at least one 
edge in E(c′) \ S.

– If S2 is frozen, then the only feasible operation is 
juxtaposition and S1 is absorbent.

– If S2 is extensible, then its extensible alternating 
path is merged with an extensible alternating path 
of S1 that is not closeable. Thus, S2 is in E ′.

– If S′ results from an absorption, then S1 is absorbent 
and S2 is closeable.

– If S′ results from a closing, then S1 and S2 are close-
able. Since the resulting solution is absorbent, S1 is 
in A′

+.

  Hence, line 10 is correct.

• Suppose S′ ∈ A+ . Then, S′ is extensible and does not 
contain any extensible alternating paths.

– If S′ results from a juxtaposition, then S1 does not 
contain an extensible alternating path and S2 is 
either frozen or closeable. In the first case, S1 must 
be closeable and therefore S1 ∈ A′

+ . In the second 
case, S1 is in F ′,A′ or A′

+.
– If S′ results from a merge, then S1 is closeable and S2 

is either extensible or closeable. In the first case, the 
extensible alternating path of S1 is merged with an 
extensible alternating path of S2 so that the result-
ing solution is not extensible. Thus, S1 is in E ′

+ . In 
the second case, S1 does not contain an extensible 
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alternating path since otherwise S′ is extensible. 
Thus, S1 is in A+.

  Hence, line 11 is correct.

• Suppose S′ is extensible. Then, either S1 contains an 
extensible alternating path or S2 is extensible.

– If S1 is extensible and S′ results from a juxtaposi-
tion, then S2 is not closeable since otherwise the 
resulting solution is also closeable. Thus, S2 is fro-
zen or extensible.

– If S1 is extensible and S′ results from a merge. Then, 
since we only consider solutions of E ′ with a unique 
extensible alternating path, S2 cannot be extensible 
since otherwise the resulting solution is absorbent. 
Thus, S2 is closeable.

– If S1 is in E ′
+ , then since S′ is not closeable, the 

extensible alternating path of S1 is either merged 
with an alternating path or closed into a cycle with 
a closeable alternating path. Thus, S2 is extensible 
and S′ results from a merge or S2 is closeable and S′ 
results from a closing.

– If S2 is extensible and S1 does not contain any exten-
sible or closeable alternating path, then S′ results 
from a juxtaposition and S1 is frozen or absorbent.

  Hence, line 12 is correct.

• Suppose S′ is in E+ . Then, S′ is closeable and contains 
one extensible alternating path. Recall that we ignore 
solutions resulting from merge between a solution of 
E+ and a closeable solution. Thus, S′ results from a 
juxtaposition and either S1 or S2 contains an extensi-
ble alternating path.

– If S1 is in E ′
+ , then S2 can be any solution.

– If S1 is in A′
+ , then for S′ to contain an extensible 

alternating path, S2 must be extensible.
– If S1 is extensible, then for S′ to contain a closeable 

alternating path, S2 must be closeable.

  Hence, line 13 is correct.

As after these assignments, each of the solutions of Gt is 
in a unique set and is a composition of a solution of Gt−1 
and G∗(et) , computed values for the table entries are cor-
rect for Gt.

Fig. 9 Left: The connected cluster graph G∗ used for the pratical example. The graph contains the following cliques: c1 = {a, b, c, d} , c2 = {f , e} , 
c3 = {h, g} , c4 = {i, j, k, l} , c5 = {m, n, o, p, q, r , s, t} and c6 = {u, v ,w , x} . Right: Tree structure of G∗ used in the algorithm. The root of these structure is 
the clique c6
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d is an extremity of an alternating path of S′ . Likewise, 
S′ ∈ Ed′ if and only if S′ ∈ E(e) and d is not an extremity 
of an alternating path of S′ . Note that E(e) = Ed ∪ Ed′ . In 
order to compute these two sets, we reuse the value of Ie , 
computed in compute_alternating_element.

Finally, after the execution of the loop, computed values 
for sets F(c′),A(c′) and E(c′) are correct for Gk = G∗(c′) . 
It remains to compute the value of the table entry for 
C(c′) . Sets containing closeable alternating paths are 
exactly the sets A+ and E+ , thus A+ ∪ E+ = C(c′) . Hence, 
the assignment line 15 is correct. □

Clique
Let c be a clique of G∗ and let d be the upper door of c. 
We show in this part how to compute the table entries for 
the sets F(c) and E(c) . Note that, since the edge between 
G∗(c) and its parent is a bridge, the sets C(c) and A(c) are 
empty. Let e be the alternating element of c containing the 
upper door d of c. The idea is to first compute the table 
entries for the graph G∗(e) and then merge the obtained 
table entries to the table entries of the subclique. If e is 
an alternating path and d is an extremity of e, we replace 
E(e) by two intermediate sets Ed and Ed′ . Let S′ be a solu-
tion of G∗(e) . Then, S′ ∈ Ed if and only if S′ ∈ E(e) and 

Lemma 7 For any clique c, the values of the table entries 
provided by Algorithm 8 are correct for the sets F(c) and 
E(d).

Proof Suppose e is an alternating path and the upper 
door d of c is an extremity of e. Let d′ be the other extrem-
ity of e. First, we compute the table entries for the sets 
C(e),F(e), Ed and Ed′ . Suppose that the values of the table 
entries provided by compute_alternating_element(p) are 
correct for the sets C(e) and F(e) . It remains to compute 
the table entries for the sets Ed and Ed′ . We recall that Ie 
is the juxtaposition of all frozen solutions of the inner 
vertices of e.
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• A solution S′ of G∗(e) is in Ed if and only if S′ is in 
E(e) and no non-matching edge is incident to d in 
G∗(e) . Thus, Ed is the juxtaposition of e, Ie , F(d) and 
E(d′) , implying that line 5 is correct.

• Similarly, a solution S′ of G∗(e) is in Ed′ if and only if 
S′ is in E(e) and no non-matching edge is incident to 
d′ in G∗(e) . Thus, Ed is the juxtaposition of e, Ie , E(d) 
and F(d′) , implying that line 6 is correct.

Further, we show that the table entries computed for the 
set F(c) and E(c) are correct.

• A solution S′ of G∗(c) is frozen if and only if S′ con-
tains an edge incident to d. This is the case if the 
subsolution of S′ in G∗(e) is in F(e) or Ed′ or if S is 
obtained by a merger operation, an absorption oper-
ation or a closing operation. Thus, line 8 is correct.

• A solution S′ of G∗(c) is extensible if and only if S 
does not contain an edge incident to d. This is the 
case if the subsolution of S in G∗(e) is in C(e) or Ed 
or if S′ is obtained by a merger operation and d′ is an 
extremity of an alternating path in the subsolution of 
S in G∗(e) . Thus, line 10 is correct.

Table 1 Compute_vertex

Vertex #Cycles F E

o 0 [2− 3] [2− 3]

1 ∅ [1− 1]

2 ∅ ∅

q 0 ∅ [1− 1]

[1− 2] ∅ ∅

r 0 [1− 1] [1− 2]

1 [0− 0] ∅

2 ∅ ∅

u 0 [3− 9] [4− 10]

1 [2− 7] [3− 8]

2 [1− 5] [2− 6]

Any other vertex 0 [0− 0] ∅

[1− 2] ∅ ∅

Table 2 Compute_alternating_element

Element #Cycles F E C

op 0 ∅ [2− 3] [3− 4]

1 ∅ [1− 1] [2− 2]

2 ∅ ∅ ∅

qr 0 [1− 2] [2− 3] [3− 4]

1 ∅ [1− 1] [2− 2]

2 ∅ ∅ ∅

uv 0 ∅ [4− 10] [4− 11]

1 ∅ [3− 8] [3− 9]

2 ∅ [2− 6] [2− 7]

Other 0 ∅ ∅ [1− 1]

[1− 2] ∅ ∅ ∅

Table 3 Compute_subclique

Subclique #Cycles F A E C

c′1, c
′
4 0 ∅ ∅ ∅ [1− 1]

[1− 2] ∅ ∅ ∅ ∅

c′2, c
′
3 0 [0− 0] ∅ ∅ ∅

[1− 2] ∅ ∅ ∅ ∅

c′5 0 ∅ ∅ [4− 6] [4− 9]

1 ∅ [3− 7] [3− 7] [3− 6]

2 ∅ [2− 5] [2− 4] [2− 5]

c′6 0 ∅ ∅ [4− 10] [4− 12]

1 ∅ [3− 10] [3− 8] [3− 10]

2 ∅ [2− 8] [2− 6] [2− 8]

Table 4 Compute_clique

Clique #Cycles F E

c1, c4 0 [1− 1] [1− 2]

1 [0− 0] ∅

2 ∅ ∅

c2, c3 0 ∅ [1− 1]

[1− 2] ∅ ∅

c5 0 [3− 9] [4− 10]

1 [2− 7] [3− 8]

2 [1− 5] [2− 6]

Fig. 10 A greedily chosen edge can eliminate up to two optimal 
edges by the update_edge function
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Now, suppose that the upper door d of c is an inner ver-
tex of e. In that case, a subsolution S′ of G∗(c) is neces-
sarily frozen. Then any feasible composition of a solution 
of G∗(c′) and a solution of G∗(e) is a frozen solution and 
thus, line 13 is correct. Similarly, since no extensible solu-
tion of G∗(c) exist, line 14 is correct. □

Feasibility function
We can now provide an answer to the feasibility of find-
ing a solution for Scaffolding by using Algorithm  9. Let 
r be the root of G∗ . Notice than since r does not have 
an upper door then the subclique of r corresponds to r. 
Thus, it is not possible to call compute_clique on r. That is 
why the first recursive call of the algorithm is made with 
the function compute_subclique.

Corollary 2 Given a partial solution S, Algorithm  9 
returns true if and only if (G∗,M∗) can be decomposed 
into σp alternating paths and σc alternating cycles. The 
time complexity of the algorithm is O(|V (G∗)| · σ 2

c ).

Proof Since G∗(root) = G∗ , there is a solution S with 
σp(S) = σp and σc(S) = σc , if and only if S is in C(root) , 
F(root) , A(root) , or E(root) . Thus, the return of the 

function indicates if such a solution exists and then the 
algorithm is correct. Concerning the time complex-
ity, the composition operations are executable in O(σ 2

c ) 
time. Thus, without taking into account the recursive 
calls, the time complexity of Algorithm  5, Algorithm  6, 
Algorithm  7 and Algorithm  8 in one iteration of a loop 
is O(σ 2

c ) . Let C denote the number of cliques in GG. In 
Algorithm  5, the number of iterations made by all calls 
of this function depends on C and then the time com-
plexity of all these iterations is O(C · σ 2

c ) . Similarly, we 
can show that the time complexities of the iterations 
made by all calls of Algorithm 6, Algorithm 7 and Algo-
rithm  8 are O(|V | · σ 2

c ) , O(|M∗| · σ 2
c ) and O(C · σ 2

c ) . 
Then, the time complexity of all iterations in all functions 
is O((|V )| + |M∗| + C) · σ 2

c ) and since the number of 
matching edges and the number of cliques is bounded by 
the number of vertices of G∗ , we have a time complexity 
O(|V (G∗)| · σ 2

c ). □

A running example is depicted in Fig. 9 and Example 1 
(Tables 1, 2, 3, 4 and 5).

Table 5 Detailled computation for subclique c′5

Iteration #cycles F A A+ E E+

{m, n} 0 ∅ ∅ [1− 1] ∅ ∅

[1− 2] ∅ ∅ ∅ ∅ ∅

{m, n, o, p} 0 ∅ ∅ [3− 5] ∅ [3− 4]

1 ∅ [2− 3] [2− 3] ∅ [2− 2]

2 ∅ [1− 1] ∅ ∅ ∅

{e, f , g, h, q, r} 0 ∅ ∅ [4− 9] [4− 6] [4− 8]

1 ∅ [3− 7] [3− 7] [3− 7] [3− 6]

2 ∅ [2− 5] [2− 5] [2− 4] [3− 4]
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Example 1 Running example on the graph depicted in 
Fig. 9. Tables 1, 2, 3 and 4 depicte the table entries result-
ing from Algorithms 5 to 8, respectively. Table 5 display 
the values of the table entries after each iteration of alter-
nating element for the subclique c′5 . Let c be the value 
given by the column “#cycles” and x be the item consid-
ered in the first column. For each X in F ,A,A+, E , E+ 
and C , the interval given by the column X corresponds to 
[X(x), c].

Approximation result
We now prove the following approximation result.

Theorem 4 Algorithm 1 provides a solution for (σp, σc)
-scaffolding in connected cluster graphs with an 
approximation ratio of at most five and a time complex-
ity O(|V | · |E(G∗)| · σ 2

c ) . The approximation ratio is tight.

Proof We suppose that the input of the algorithm is a 
scaffold graph (G∗,M∗,ω) with non-negative weights and 
such that G∗ is a path connected cluster graph. We first 
show that the algorithm is correct. Note that, since each 
time we add an edge e to S, we remove from E all incident 
non matching edges to e, the set S induces only paths and 
cycles.

If it is not possible to build a solution from the graph, 
then the feasibility condition is not verified and then the 
algorithm returns an error. Otherwise, since we ensure 
that the feasibility condition is verified at each step, when 
the algorithm terminates, then it builds σp paths and σc 
cycles.

Now, we prove the approximation ratio. Since they 
always appear in any solution, we do not consider the 
edges of M∗ in what follows. Notice that, since there is, 

for each path, one chosen edge less than the number of 
involved matching edges, and for a cycle, the same num-
ber of chosen edge as the number of involved matching 
edges, then the number of non-matching edges in every 
solution is exactly n− σp.

We denote by e1, . . . , em the edges of the graph G∗ , 
sorted in non-increasing order by their weights. We 
denote by eA1 , . . . , e

A
n−σp

 the edges of the solution SA given 
by Algorithm 1, sorted in non-increasing order by their 
weights. In the same way, we denote by eopt1 , . . . , e

opt
n−σp

 the 
edges of an optimal solution Sopt for the problem, also 
sorted in non-increasing order. Both sequences 
eA1 , . . . , e

A
n−σp

 and eopt1 , . . . , e
opt
n−σp

 are clearly subsequences 
of e1, . . . , em . Let ϕ : Sopt → SA be a mapping such that

Inequality (1) indicates that for each e ∈ E in an optimal 
solution, there is an edge ϕ(e) ∈ SA such that the weight 
of this latter edge is at least the weight of e. Whereas (2) 
states that for each e ∈ SA , we may associate e to at most 
four edges of the optimal solution. In the following, we 
prove that it is possible to define a mapping ϕ satisfying 
these inequalities.

The algorithm may decide not to choose an edge eopti  
for four main reasons:

• e
opt
i  is eliminated because it is in R, when an edge 
eAj  is chosen. In this case, we have ω(eAj ) ≥ ω(e

opt
i ) 

because only edges appearing after eAj  in the ordered 
list can be in R. When an edge eAj  is chosen, it can 
eliminate at most two edges of optimal solution by 

(1)∀e ∈ Sopt ,ω(e) ≤ ω(ϕ(e))

(2)∀e ∈ SA, |ϕ
−1({e})| ≤ 5

Table 6 Real dataset

Species Size (bp) Type Accession

Anopheles gambiae str. PEST (anopheles) 41,963,435 Chromosome 3L NT_078267.5

Bacillus anthracis str. Sterne (anthrax) 5,228,663 Chromosome NC_005945.1

Arabidopsis thaliana (arabido) 119,667,750 Complete genome TAIR10

Zaire ebolavirus (ebola) 18,959 Complete genome NC_002549.1

Gloeobacter violaceus PCC 7421 (gloeobacter) 4,659,019 Chromosome NC_005125.1

Lactobacillus acidophilus NCFM (lactobacillus) 1,993,560 Chromosome NC_006814.3

Danaus plexippus (monarch) 15,314 Mitochondrion NC_021452.1

Pandoravirus salinus (pandora) 2,473,870 Complete genome NC_022098.1

Pseudomonas aeruginosa PAO1 (pseudomonas) 6,264,404 Chromosome NC_002516.2

Oryza sativa Japonica (rice) 134,525 Chloroplast X15901.1

Saccharomyces cerevisiae (sacchr3) 316,613 Chromosome 3 X59720.2

Saccharomyces cerevisiae (sacchr12) 1,078,177 Chromosome 12 NC_001144.5
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updating of the list of edges (see Fig. 10). We assign 
ϕ(e

opt
i ) = eAj  in this case. (1) is satisfied by construc-

tion, and (2) holds when considering only the optimal 
edges which are eliminated by this way.

• e
opt
i  is eliminated because its addition disconnects the 

graph and the number of alternating cycles and alter-
nating paths required to cover the graph becomes too 
big. This happens in one of the following two cases.

– e
opt
i  closes a cycle. In that case, there is at least one 

edge eAj  in this cycle, and since it has been cho-
sen before the algorithm considers eopti  , we nec-
essarily have ω(eAj ) ≥ ω(e

opt
i ) . Thus, we assign 

ϕ(e
opt
i ) = eAj  . Then, (1) is satisfied by construction. 

The edge eAj  has been already chosen, may have 
eliminated at most two optimal edges, but (2) is still 
satisfied.

– e
opt
i  closes a door d and one bridge dx incident to d 

is necessary to construct a solution with the remain-
ing edges. There is a door y which has been closed 
by an edge eAj  in a previous step and this forces dx 
to be in SA . Since closing a door increases by at 
most one the minimum number of alternating paths 
required to cover the graph, the closing of y forces at 
most one bridge of G∗ to be in SA . Thus, the closing 
of y prevents d and x from closing, that is, at most 
two edges of Sopt , incident to d and x respectively, 
can be associated to eAj  Then, (1) is satisfied by con-
struction. The edge eAj  may have eliminated at most 
two optimal edges in R and may prevent the closing 
of a cycle, but (2) is still satisfied.

• e
opt
i  is eliminated because its inclusion would merge 

two paths p1 and p2 . If eopti  is not a bridge and p1 
and p2 are a single-edge paths, then the number of 
alternating cycles and paths are reached in S, that 
is σc = c , σp = p and S = SA . Then, we can find 
an edge eAj  such that |ϕ−1(eAj )| = 0 and we assign 
ϕ(e

opt
i ) = eAj  . Then, (1) and  (2) are satisfied by con-

struction. Otherwise, the algorithm eliminates eopti  
because one of the merged paths must be closed 
into a cycle to reach the correct number of alter-
nating cycles. Otherwise, there is an edge eAj  in SA 
considered before eopti  in the algorithm such that 
|ϕ−1(eAj )| ≤ 3 (since otherwise the path would 
be already closed into a cycle) and then we assign 
ϕ(e

opt
i ) = eAj  . Again, (1) and (2) are satisfied by con-

struction.

From the previous discussion and by (1) and (2), clearly 
we have:

The ratio is tight, as shown by the example depicted in 
Fig. 11.

Concerning the complexity, the edges can be sorted 
in O(|V (G∗)| log |E(G∗)|) time. The feasibility function 

ω(Sopt) ≤ ω(ϕ(Sopt)) ≤ 5ω(SA).

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

Fig. 11 The approximation ratio of five for the greedy algorithm is 
tight. Matching edges are bold, dashed edges are in the approximate 
solution and solid edges are in the optimal solution. G∗ is composed 
by the cliques C1 = {a, b, c, d, e, f } , C2 = {g, h} , C3 = {i, j, k, l} and 
C4 = {m, n, o, p} . All edges have weight zero except ac and the 
edges of Sopt . We suppose that σp = 3 and σc = 0 , and the greedy 
algorithm chooses “the wrong edge” ac first. Consequently, the 
solution SA given by the greedy algorithm is of weight 1, whereas an 
optimal solution would be of weight 5

Table 7 Statistics on scaffold graphs

The completion rate is the percentage of added edges compared to number of 
added edges in the complete version. For all instances, we take σc = 0

Data #Contigs #Edges σp Completion rate 
[%]

Cluster Block

Anopheles 42,045 71,452 7201 27 20

Anthrax 4055 6958 371 94 91

Ebola 17 26 4 81 70

Gloeobacter 4517 7885 506 95 95

Lactobacillus 1898 3335 185 94 89

Monarch 14 19 4 45 39

Pandora 2451 4271 291 91 83

Pseudomonas 5248 9086 543 95 87

Rice 84 26 10 76 69

Sacchr3 296 527 34 88 81

Sacchr12 889 1522 101 94 94



Page 23 of 25Davot et al. Algorithms for Molecular Biology           (2022) 17:16  

is called |E(G∗)| times. Thus, the time complexity of the 
algorithm is O(|E(G∗)| · |V (G∗)| · σ 2

c ).

Experimental results
In this section, we compare the performance of Algo-
rithm  1 with three different feasibility functions and an 
integer linear programming formulation [15] imple-
mented with ILOG CPLEX [16].

Dataset
We reuse the dataset already used in [9], which was 
obtained with the following pipeline:

1 Choice of a reference genome, for instance on the 
nucleotide database from NCBI2. Table  6 presents 
selected genomes used for our experiments. We 
chose a panel of genomes of various origins and sizes.

2 Simulation of paired-end reads, using wgsim [17]. 
The chosen parameters are an insert size of 500bp 
and a read length L of 100bp.

3 Assembly using the de novo assembly tool, based on a 
De Bruijn graph efficient representation: minia [18] 
with k-mer size k = 30.

4 Mapping of reads on contigs, using bwa [19]. This 
mapping tool was chosen according to results 
obtained by Hunt [20], a survey on scaffolding tools.

5 Generation of scaffold graph from the mapping file.

Statistics on the numbers of vertices and edges in pro-
duced scaffold graphs can be viewed in Table 7.

Feasibility functions
There is no polynomial-time computable feasibility func-
tion in the general case. Thus, to use the greedy algorithm 
with a specific feasibility function on a real instance, we 
must transform it. For this, we construct a supergraph by 
adding edges of weight zero. We compare three feasibility 
functions, defined on complete graphs, connected clus-
ter graphs and block graphs3, respectively. Note that the 
construction of a complete supergraph requires the larg-
est amount of edge additions whereas the least amount of 
edge additions is required for the construction of a block 
supergraph. We already showed in [9] that the computed 
ratio is close to one on real instances, that is, relatively far 
from the theoretical ratio of 3. The aim of these experi-
ments is to answer the two following questions:

• Can greedy algorithms on connected cluster graphs 
and block graphs be used on large scaffold graphs, 
and what is its associated computation time?

• Do we get a better practical ratio if the amount of 
additional edges is smaller (e.g. the completion rate, 
see Table 7, is smaller)? In other words, do we obtain 
better results on block graphs and connected cluster 
graphs than in complete graphs?

Results
Experiments were run on a personal computer with four 
i7 processors at 1.9GHz and 16GB RAM. Memory usage 
was very light, even on the biggest instance anopheles. 
Table  8 shows scores and computation times for every 
instance. We can see that greedy computation times are 

Table 8 Results statistics

The score corresponds to the sum of the weights of the edges. Times are given in seconds

Data Complete Cluster Block ILP

Score Time Score Time Score Time Score Time

Anopheles 1,707,529 2.90 1,707,759 99.91 1,707,762 160.77 1,736,748 >3600

Anthrax 226,709 0.26 226,712 0.60 226,712 0.96 228,064 26.22

Abola 776 0.00 776 0.00 776 0.00 776 0.01

Gloeobacter 218,602 0.29 218,602 0.90 218,602 1.38 220,527 14.86

Lactobacillus 95,497 0.12 95,497 0.22 95,497 0.27 96,313 2.48

Monarch 506 0.00 506 0.00 506 0.00 507 0.01

Pandora 119,599 0.16 119,599 0.31 119,599 0.48 120,710 3.85

Pseudomonas 279,607 0.32 279,607 1.18 279,607 1.81 280,978 19.72

Rice 4293 0.00 4293 0.01 4293 0.01 4.320 0.02

Sacchr3 14,524 0.02 14,531 0.03 14,531 0.03 14,623 0.15

Sacchr12 46,041 0.05 46,050 0.07 46,050 0.09 46,395 1.18

3 A block graph is a graph in which every biconnected component is a clique 
(note that a connected cluster graph is a special case of block graph).

2 http:// www. ncbi. nlm. nih. gov/.

http://www.ncbi.nlm.nih.gov/
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less than few seconds except for anopheles, where the 
connected cluster graph version and the block graph ver-
sion need a few minutes. As expected, the greedy algo-
rithms are much faster than the ILP formulation in every 
case. These results let us answer to our first question: 
connected cluster graph and block graph versions of the 
greedy algorithm are capable of treating big instances, 
however the computation time is significantly bigger 
than the complete version. Concerning the scores, we 
can see that the three greedy algorithms have the same 
score for most of the data. The connected cluster graph 
and block graph versions have a slightly better score in 
four instances: anopheles, anthrax, sacchr3 and sacchr12. 
Moreover, connected cluster graph and block graph 
versions have the same score in all instances except in 
anopheles, where the block graph version improves the 
score of the connected cluster graph version by three 
(which is not really significant compared to the abso-
lute values). These results indicate that the answer to 
the second question is positive. However, the differences 
between scores are not significant enough to be com-
pletely affirmative. We can think that using the greedy 
algorithm with feasibility function defined on a sparser 
class of graphs may lead to better results.

Conclusion and future work
We presented in this paper the first polynomial-time 
algorithm approximating the scaffolding problem on 
non-complete graphs. Using a dynamic programming 
approach, we exploited the tree-like nature of connected 
cluster graphs to extend the feasibility function and the 
analysis of the approximation ratio. We also showed that 
this new algorithm provides slightly better results on 
real data than the greedy algorithm on complete graphs, 
although its theoretical ratio is worse. This leads us to the 
hypothesis that using a feasibility function defined on a 
graph class close to the original instance produces bet-
ter results. This is surprising since, intuitively, algorithms 
on superclasses can choose from a larger set of edges to 
build solutions (any solution on the more restricted class 
is also a solution in the more general class). A natural 
extension of this work is to consider sparser graphs: for 
example, one could replace cliques in connected clus-
ter graphs by co-bipartite graphs as the feasibility func-
tion is polynomial-time computable in this case [8]. One 
may also explore the possibility of exploiting randomized 
algorithms to improve the ratio [6].
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