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Abstract 

Background:  The early development of a zygote can be mathematically described by a developmental tree. To com-
pare developmental trees of different species, we need to define distances on trees. If children cells after a division 
are not distinguishable, developmental trees are represented by the space T  of rooted trees with possibly repeated 
labels, where all vertices are unordered. If children cells after a division are partially distinguishable, developmental 
trees are represented by the space P of rooted trees with possibly repeated labels, where vertices can be ordered or 
unordered.

Results:  On T  , the space of rooted unordered trees with possibly repeated labels, we define two metrics: the best-
match metric and the left-regular metric, which show some advantages over existing methods. On P , the space of 
rooted labeled trees with ordered or unordered vertices, there is no metric, and we define a semimetric, which is a 
variant of the best-match metric. To compute the best-match distance between two trees, the expected time com-
plexity and worst-case time complexity are both O(n2) , where n is the tree size. To compute the left-regular distance 
between two trees, the expected time complexity is O(n) , and the worst-case time complexity is O(n log n).

Conclusions:  For rooted labeled trees with (fully/partially) unordered vertices, we define metrics (semimetric) that 
have fast algorithms to compute and have advantages over existing methods. Such trees also appear outside of 
developmental biology, and such metrics can be applied to other types of trees which have more extensive applica-
tions, especially in molecular biology.
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Background
In developmental biology, the early development of a 
zygote is a central topic. For most species, the zygote fol-
lows a highly deterministic process. For example, con-
sider a zygote of Arabidopsis thaliana. In stage 1, the 
zygote divides asymmetrically along the apical-basal axis 
into two cells. In stage 2, the upper (apical) cell under-
goes a symmetric horizontal (meridional) division, 
and the lower (basal) cell undergoes a vertical (equa-
torial) division. In stage 3, the upper two cells divide 

asymmetrically, and the lower two cells undergo sym-
metric vertical divisions. In stage 4, the upper four cells 
divide asymmetrically, the middle two cells do not divide, 
and the lower two cells undergo symmetric vertical divi-
sions [1]. See Fig. 1 for illustrations of this process.

A mathematical representation of the zygote’s early 
development is a developmental tree [2]. In this tree, each 
vertex represents a cell. Each cell has a label, representing 
the cell event it will perform, such as division (symmetric 
or asymmetric, horizontal or vertical), growth, and death. 
The root vertex is the zygote. Parent vertices (cells) and 
children vertices (cells) are linked by edges. Each level of 
this tree corresponds to all the cells at a given stage. See 
Fig. 2 for the developmental tree of Arabidopsis thaliana.
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Zygotes of different species can have different early 
developments. See Figs.  3 and 4 for the early develop-
ment of a sea urchin zygote and the corresponding devel-
opmental tree [3]. Starting from the zygote, sea urchin 
and Arabidopsis thaliana are different in division plane 
and division symmetry, and the cell numbers at stage 4 
are already different (16 vs. 14). To quantitatively study 
the development of different organisms, we need a math-
ematical method to compare different developmental 
trees.

When we plot and compare developmental trees, we 
need to embed them in the plane, namely considering 
their planar embeddings. We put the zygote to the top, 
and its two children to the next lower level, and so on. 
An important question is: after a cell division, which 
child cell should be put to the left, and which to the right? 
In some situations, we cannot distinguish two children 
cells, and we can arbitrarily switch the position of these 
two children cells in the planar embedding. See Fig. 5 for 
equivalent planar embeddings of the same tree. Notice 

Fig. 1  Early development of an Arabidopsis thaliana zygote [1]. Each unit is a cell. A green line between two cells means these two cells were just 
generated by a symmetric horizontal division. A blue line between two cells means these two cells were just generated by a symmetric vertical 
division. A red line between two cells means these two cells were just generated by an asymmetric division. An orange circle in a cell means this cell 
did not divide during the last stage

Fig. 2  The developmental tree of Arabidopsis thaliana, TA , corresponding to Fig. 1. Each vertex represents a cell, and its label represents the cell 
event it performs. Label X means symmetric horizontal division; label Z means symmetric vertical division; label W means asymmetric division; label 
S means the cell stays still and does not divide
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that when we switch cells in the planar embedding, the 
corresponding cell events are also switched. In some 
situations, we can distinguish two children cells from an 
asymmetric division or by which cell inherits the mother 
centriole [4]. Then we can set a rule to determine which 
child cell is the left child in the planar embedding, and we 
cannot switch these two children cells.

We start from the easier situation that we cannot dis-
tinguish children cells, so that in the planar embedding 
of the developmental tree, we can switch two subtrees 
for each vertex. Notice that a developmental tree has 
the zygote as its root, and different vertices can have the 
same label (cell event). The goal is to compare develop-
mental trees.

In the language of graph theory, we need to define 
a metric on the space of rooted unordered trees with 

possibly repeated labels. Each tree has a root vertex, and 
each vertex has a label that is not necessarily unique. All 
vertices are unordered, meaning that we can switch left 
and right children in the planar embedding of each tree. 
Vertices and their labels are always associated, so that 
we do not distinguish a vertex and the label of a vertex. 
Therefore, when switching vertices, their labels are also 
switched. Such trees are not limited to developmental 
biology, but can be applied in various fields.

There are many metrics defined on trees, which can 
be roughly classified into three groups by their ideas: (1) 
Calculate the minimal operations needed to transform 
one tree into another, such as rearrangement distance [5], 
tree edit distance [6], edge rotation distance [7], and geo-
desic distance [8]. (2) Find the largest common structure 
of two trees, such as bottom-up distance [9] and subtree 

Fig. 3  Early development of a sea urchin zygote [3]. Each unit is a cell. A green line between two cells means these two cells were just generated 
by a symmetric horizontal division. A red line between two cells means these two cells were just generated by an asymmetric division

Fig. 4  The developmental tree of sea urchin, TS , corresponding to Fig. 3. Each vertex represents a cell, and its label represents the cell event it 
performs. Label X means symmetric horizontal division; label W means asymmetric division
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distance [10]. (3) Compare structures induced by the 
trees (e.g., splits or triple-vertices subtrees), such as Rob-
inson-Foulds metric [11], matching cluster distance [12], 
and triples distance [13].

However, many existing methods have specific require-
ments on trees, so that they are not applicable in our case 
(rooted unordered trees with possibly repeated labels). 
Some methods require that different vertices have dif-
ferent labels, and different trees have the same label set 
[5, 7]. Some methods work for phylogenetic trees: only 
leaves vertices have labels; different vertices have differ-
ent labels; different trees have the same label set [8, 11–
13]. Some methods require that the trees are ordered [6].

In existing methods, the bottom-up distance [9] and 
the subtree distance [10] could work on rooted unor-
dered trees with possibly repeated labels. The bot-
tom-up distance between two trees T1,T2 is defined as 
DBU(T1,T2) = 1− f /max(n1, n2) , where n1, n2 are the 
tree sizes, and f is the size of the largest common forest 
of two trees. The subtree distance DST(T1,T2) is defined 
almost the same as the bottom-up distance, except that 
f is the size of the largest common subtree of two trees. 
Both distances could be calculated in linear time [9, 14]. 
These two methods have some disadvantages. For exam-
ple, they are not robust under small perturbations on 
labels, and they do not compare non-common structures. 
See the next section for detailed discussions.

We develop two new metrics that apply for rooted 
unordered trees with possibly repeated labels: the best-
match metric DBM and the left-regular metric DLR . For 
two unordered trees, the best-match metric searches 
all their planar embeddings, and compares the most 
similar pair. To calculate the left-regular metric for two 
unordered trees, we apply a procedure to fix one planar 
embedding for each unordered tree (its “regular form”), 
and compare the regular forms of these two unordered 
trees. These two metrics take into account different simi-
larities between labels and different weights concerning 
their positions. These two metrics, especially the best-
match metric, consider any common structures and 
compare non-common structures. To compute the best-
match distance between two trees (binary or general k-
ary), the expected time complexity and the worst-case 
time complexity are both O(n2) , where n is the tree size. 
To compute the left-regular distance between two trees 
(binary or not), the expected time complexity is O(n) , 
and the worst-case time complexity is O(n log n).

The above discussions are for unordered trees, where 
all vertices are unordered. In some cases, we can dis-
tinguish two children cells, so that certain vertices are 
ordered. Then the space we need to consider consists of 
rooted trees with possibly repeated labels, where verti-
ces can be ordered or unordered. This larger space has 
complicated structures that do not allow the existence 

Fig. 5  An equivalent class of ordered trees, consisting of four equivalent ordered trees that differ by exchanging the left and right subtrees of some 
vertices
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of a proper metric. Existing methods and the left-regular 
metric introduced in this paper are not applicable. Nev-
ertheless, the best-match metric can be slightly modified 
to become a semimetric that works in this scenario.

The main text consists of the following contents: com-
pare existing methods and our new methods; introduce 
related terminologies in graph theory; define two met-
rics on the space of rooted unordered trees with possi-
bly repeated labels; define a semimetric on the space of 
rooted trees with possibly repeated labels, where vertices 
can be ordered or unordered.

Comparison of existing methods and new methods
In this section, we compare the performance of existing 
methods and new methods on rooted unordered trees 
with possibly repeated labels, so as to explain the moti-
vation to develop new methods. The examples used are 
illustrated in Figs. 6, 7 and 8. See Table 1 for a summary 
of these comparisons.

Compared to the left-regular metric DLR , especially to 
the best-match metric DBM introduced in this paper, the 
bottom-up distance DBU [9] and the subtree distance DST 
[10] have some disadvantages.

Fig. 6  Three trees T1, T2, T3 , used to compare the bottom-up distance DBU , the subtree distance DST , the best-match metric DBM , and the left-regular 
metric DLR

Fig. 7  Three trees T4, T5, T6 , used to compare the bottom-up distance DBU , the subtree distance DST , the best-match metric DBM , and the left-regular 
metric DLR
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In Fig.  6, T1,T2 have the same distribution of leaves 
labels, while T1,T3 have different distributions of leaves 
labels. However, DBU(T1,T2) = DBU(T1,T3) = 3/7 , 
DST(T1,T2) = DST(T1,T3) = 6/7 . The reason is that 
DBU and DST only consider common structures, but 
not their detailed patterns. DBM and DLR can recog-
nize the difference: DBM(T1,T2) = 3 , DBM(T1,T3) = 5 ; 
DLR(T1,T2) = 3 , DLR(T1,T3) = 5.

In Fig.  7, T4,T5 have the same tree topology, while 
T4,T6 have different tree topologies. However, 
DBU(T4,T5) = DBU(T4,T6) = 1 , DST(T4,T6) = DST(T4,T6) = 1 . 
The reason is that DBU and DST do not compare non-com-
mon structures. DBM and DLR can recognize the difference: 
DBM(T4,T5) = 2 , DBM(T4,T6) = 6 ; DLR(T4,T5) = 2 , 
DLR(T4,T6) = 6.

In Fig.  8, T7,T8 only differ by a leaf label, 
while T7,T9 are much more different. However, 
DBU(T7,T8) = 2/3 > 1/2 = DBU(T7,T9) , DST(T7,T8)

= DST(T7,T9) = 5/6 . The reason is that DBU and DST only 
consider certain common structures (sub-forest and sub-
tree). DBM and DLR consider any common structures and 
recognize that T7,T8 are more similar: DBM(T7,T8) = 1 , 
DBM(T7,T9) = 5 ; DLR(T7,T8) = 1 , DLR(T7,T9) = 5.

Besides, for two vertices with different labels, DBU and 
DST only know they are different, but not concerning how 
different they are. In reality, such as in comparing devel-
opmental trees, some labels are very different, while some 

Fig. 8  Five trees T7, T8, T9, T10, T11 , used to compare the bottom-up 
distance DBU , the subtree distance DST , the best-match metric DBM , 
and the left-regular metric DLR

Table 1  Summary of the comparisons in the “Comparison of existing methods and new methods”

Performance of DBM , DLR , DBU , and DST on trees in Figs. 6, 7 and 8 are illustrated

DBM DLR Size of largest common 
forest

DBU Size of largest common 
subtree

DST

T1 and T2 3 3 4 3/7 1 6/7

T1 and T3 5 5 4 3/7 1 6/7

T2 and T3 5 5 4 3/7 1 6/7

T4 and T5 2 2 0 1 0 1

T4 and T6 6 6 0 1 0 1

T5 and T6 6 6 0 1 0 1

T7 and T8 1 1 2 2/3 1 5/6

T7 and T9 5 5 3 1/2 1 5/6

T7 and T10 1 8 4 1/3 4 1/3

T7 and T11 9 9 6 1/7 6 1/7

T8 and T9 5 5 2 2/3 1 5/6

T8 and T10 2 8 2 2/3 1 5/6

T8 and T11 8 8 2 5/7 1 6/7

T9 and T10 5 7 2 2/3 1 5/6

T9 and T11 7 7 3 4/7 1 6/7

T10 and T11 9 10 4 3/7 4 3/7
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labels are rather similar. The position of vertices can also 
be concerned. In general, a label difference closer to the 
root should be more crucial. In DBM and DLR , different 
distances between labels and different weights on vertices 
can be introduced naturally.

The above discussion explains our motivation to 
develop the best-match metric DBM and the left-reg-
ular metric DLR . However, DBM and DLR also have 
disadvantages.

In Fig. 8, T7,T10 only differ by a leaf label. In this case, 
DBU(T7,T10) = 1/3 , DST(T7,T10) = 1/3 , DBM(T7,T10) = 1 , 
but DLR(T7,T10) = 8 . The reason is that DLR is not 
always robust under small perturbations on labels, simi-
lar to DBU and DST . DBM is robust under small perturba-
tions on labels.

In Fig.  8, inserting one vertex to T7 produces T11 . In 
this case, DBU(T7,T11) = 1/7 , DST(T7,T11) = 1/7 , but 
DBM(T7,T11) = 9 , DLR(T7,T11) = 9 . The reason is that 
DBM and DLR are not robust under small perturbations 
on the tree topology, especially perturbations near the 
roots. DBU and DST are more robust to the change of tree 
topology near the roots.

In summary, our methods outperform the existing 
methods in most cases. In general, we recommend the 

best-match metric DBM . If time cost is a major concern, 
the left-regular metric DLR can be applied.

Definitions and notations
Trees
In graph theory, a rooted tree is a connected acyclic undi-
rected graph, where one vertex v0 is designated as the 
root. Some vertices are linked by edges. For each vertex 
vi , there is a unique path (edge sequence) that connects vi 
and the root v0 . The number of edges in this path is called 
the depth of vi . The depth of the root v0 is stipulated as 0. 
The depth of a tree is the largest depth of its vertices. The 
kth level (or level k) of a tree consists of all vertices whose 
depths are k. If the depth of a tree is m, it is also called 
an m-level tree. If there is an edge between two vertices 
vi, vj , and the depth of vi is smaller than the depth of vj , 
then vi is the parent vertex of vj , and vj is a child vertex 
of vi . For vi and its child vertex vj , the tree with root vj is 
called a subtree of vi . A vertex without children vertices is 
called a leaf vertex [15].

In this paper, each vertex has a label, and different verti-
ces might have the same label. The set of possible labels L 
can have infinite elements or even uncountable elements. 
In the following, we use L = {X ,Y ,Z} as an example.

Fig. 9  A 2-level tree T12 (upper left), its level-2 completion T̄12(2) (upper right) and its level-3 completion T̄12(3) (lower). The level (Lv.) of each vertex 
is marked on the left
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For simplicity, we only consider binary trees, meaning that 
each vertex has at most two children vertices. However, the 
methods in this paper also work for general k-ary trees.

For an l-level tree T and any m ≥ l , we construct its level-
m completion T̄ (m) as the following: For a vertex not in 
level m, if it has less than two children vertices, add children 
vertices to it until it has two. Newly added vertices have the 
label “N” (means “null”). Repeat this procedure, until every 
vertex not in level m has two children vertices, and every 
vertex in level m has no children vertices. In other words, 
we construct a perfect binary m-level tree. See Figs. 9 and 
10 for two trees and their completions with different levels.

For trees after completion, the label set is L̄ = L ∪ {N } , 
which is {X ,Y ,Z,N } in our examples. For now, we just 
require that there is a metric d on L̄ . In this paper, for 
simplicity, we shall apply the trivial metric that different 
labels always have distance 1. Later, we will also need a 
total order on L̄.

A vertex is called ordered if in the planar embedding 
of this tree, we know which of its child vertex is the 

left child, and which is the right child. Otherwise, it is 
called unordered, and we can switch its two subtrees in 
the planar embedding. A tree is ordered if all its verti-
ces are ordered. A tree is unordered if all its vertices are 
unordered.

Each ordered tree corresponds to a unique planar 
embedding. In the following, we do not distinguish an 
ordered tree and its planar embedding. For the space of 
rooted ordered trees with possibly repeated labels, we 
define that two trees are equivalent if one tree can trans-
form into the other tree by switching subtrees of some 
vertices (labels are also switched along with the vertices). 
Here after transformations, two trees have the same tree 
topology, and corresponding vertices have the same label. 
The notation T1 ∼ T2 means T1,T2 are equivalent, and 
T1  ∼ T2 means T1,T2 are not equivalent. With this equiv-
alence relationship, the space of ordered trees is divided 
into different equivalent classes. See Fig. 5 for an equiva-
lent class of ordered trees, where four ordered trees are 
equivalent.

Fig. 10  A 1-level tree T13 (upper left), its level-2 completion T̄13(2) (upper right) and its level-3 completion T̄13(3) (lower). The level (Lv.) of each 
vertex is marked on the left
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An unordered tree corresponds to different planar 
embeddings (ordered trees). Since we can switch two 
subtrees of an unordered vertex, equivalent ordered trees 
represent the same unordered tree. Besides, non-equiv-
alent ordered trees represent different unordered trees. 
Therefore, the space of unordered trees is isomorphic to 
the space of equivalent classes of ordered trees. The four 
ordered trees in Fig. 5 represent the same unordered tree.

Metrics
To define a metric on unordered trees, we can switch to 
equivalent classes of ordered trees. A metric D on the 
space of equivalent classes of ordered trees maps a pair of 
such trees to a non-negative real number, and it satisfies 
the following criteria for any trees T1,T2,T3 : 

	(A1)	 D(T1,T2) = D(T2,T1);
	(A2)	 D(T1,T2) ≥ 0 , and D(T1,T2) = 0 if and only if 

T1 ∼ T2;
	(A3)	 D(T1,T2)+ D(T1,T3) ≥ D(T2,T3).

A metric that satisfies (A1)–(A3) also has another prop-
erty: if T1 ∼ T2 , then D(T1,T3) = D(T2,T3).

Before introducing metrics on unordered trees, we first 
need a metric on the space of ordered trees (not equiva-
lent classes). For two ordered trees T1 and T2 , consider 
their level-m completions, where m is no less than the 
depths of T1 and T2 . For these two completed m-level 
trees T̄1(m), T̄2(m) with the same tree topology, there is 
a bijection between vertices. We define the ordered tree 
metric DOT(T1,T2) for such completed ordered trees:

where i′ ∈ T̄2(m) is the corresponding vertex of i, d is the 
metric on the label set L̄ , and c(i) is the weight coefficient 
that depends on the depth of i. In some scenarios, we 
want to emphasize the differences closer to the root (cor-
respond to earlier developmental stages), meaning that 
we can assign a larger value to c(i) with smaller depth 
of i. For simplicity, we use c(i) = 1 for all vertices in this 
paper. We can see that the value of DOT does not depend 

DOT(T1,T2) = DOT(T̄1(m), T̄2(m)) =
∑

i∈T̄1(m)

c(i)d(i, i′),

on the choice of m. For tree T12 in Fig. 9 and tree T13 in 
Fig. 10, their DOT distance is

since they have 4 pairs of corresponding vertices with dif-
ferent labels. In the rest of this paper, we always consider 
trees after completion of proper levels. Therefore, the 
number of vertices (tree size) n and the depth m satisfies 
n = 2m+1 − 1.

Best‑match metric on unordered trees
Definition
We start to define metrics on the space T  of unordered 
trees, namely the equivalent classes of ordered trees. For 
two ordered trees T1 , T2 (representing their equivalent 
classes), we can check all pairs of ordered trees that one 
is equivalent with T1 , the other is equivalent with T2 , and 
choose the best-match pair with the minimal DOT dis-
tance. We define DBM on equivalent classes of ordered 
trees:

This DBM(T1,T2) satisfies the criteria (A1)-(A3) for a 
metric, defined in the previous section. We name DBM 
the best-match metric. For the tree T12 in Fig. 9 and the 
tree T13 in Fig. 10, DBM(T12,T13) = 4.

From the definition of the best-match metric 
DBM(T1,T2) , we can see that changing one label of T1 will 
make DBM(T1,T2) change by at most 1. Therefore, the 
best-match metric is robust under small perturbations 
on labels. This property does not hold for the left-regular 
metric, the bottom-up distance, and the subtree distance.

A dynamic programming implementation
There are exponentially many trees being equivalent to a 
given tree. Thus brute-force searching is too expensive. 
Here we introduce a dynamic programming algorithm 
[16] for calculating the best-match metric DBM(Ta,Tb) . 

DOT(T12,T13) = DOT( ¯T12(2), ¯T13(2))

= DOT( ¯T12(3), ¯T13(3)) = 4,

DBM(T1,T2) = min
T1∼T ′

1,T2∼T ′
2

DOT(T
′
1,T

′
2).
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See Algorithm  1 for the workflow of calculating the 
best-match metric DBM . The idea is simple: For the root, 
we only need to determine whether the left and right 
subtrees should be switched. In either case, the problem 
is reduced to minimizing the distance between subtrees. 
In other words, the vertex correspondence that mini-
mizes the distance between two trees also minimizes the 
distance between two subtrees.

In the appendix, we illustrate the detailed procedure 
of calculating DBM for the developmental trees of Arabi-
dopsis thaliana and sea urchin. DBM is also applied to 
other developmental trees with tree size ∼ 100 , and it is 
discovered that species with similar developmental trees 
(i.e., smaller DBM ) are more likely to have the same ana-
tomical traits [17]. For more examples, see Figs.  6, 7, 8, 
and Table  1. The Python code for calculating DBM can 
be found online (https://​github.​com/​YueWa​ngMat​hbio/​
TreeM​etric, DOI: https://​doi.​org/​10.​5281/​zenodo.​64002​
67).

Computational complexity
Assume we need g(m) steps to calculate the best-
match distance between two m-level trees. Then 
we have g(0) = 1 , g(m+ 1) = 4g(m)+ 4 . Thus 
g(m) = 4m+1 × 7/12− 4/3 . The number of vertices is 
n = 2m+1 − 1 , thus the time complexity of computing 
the best-match metric is O(n2) . Here the worst-case time 
complexity and the expected time complexity are equal. 
The space complexity of computing the best-match met-
ric is trivially O(n) . When the trees are not binary, but 
k-ary, we have g(m+ 1) = k2g(m)+ k · k! . Here the 
k2g(m) term means that there are k2 pairs of subtrees 
to compare. The k · k! term means that for k! possible 
subtree correspondences, we need (k − 1) · k! steps to 
compute the sum of distances, k! − 1 steps to compare 
them, and 1 step to add d(T 0

1 ,T
0
2 ) . Since g(0) = 1 , we 

have g(m) = [1/k2 + (k − 1)!/(k2 − 1)](k2)m+1 − (k · k!)/(k2 − 1) . 
With n = (km+1 − 1)/(k − 1) , the time complexity is still 
O(n2).

https://github.com/YueWangMathbio/TreeMetric
https://github.com/YueWangMathbio/TreeMetric
https://doi.org/10.5281/zenodo.6400267
https://doi.org/10.5281/zenodo.6400267
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Left‑regular metric on unordered trees
Preparation
Since the metric is defined on the equivalent classes of 
ordered trees, we need to guarantee that equivalent trees 
have the same behavior, namely D(T1,T3) = D(T2,T3) 
for T1 ∼ T2 . One idea is to transform a given tree into 
some “regular form”, which is unique to each equivalent 
class.

We define a total order on the label set L̄ , such as 
N > X > Y > Z . Ideally, similar labels should be closer. 
With this total order on the label set (alphabet), there is 
an induced total order, namely the lexicographic order 
[18], for strings of labels with the same length: for two 
strings, compare the corresponding labels from the 
beginning, until there is a difference, and apply the total 
order for labels. For example, XZN < XNY  , since X = X , 
and Z < N  . For a tree after completion, we can write its 
labels as a string, in the order of up-down (root-leaf ), 
left-right. This is named its label string. For example, 
the label string of T̄12(2) in Fig. 11 is XYZNNYZ. We can 
reconstruct a tree from its label string.

Now we describe the procedure of left-regularization, 
through which a tree is transformed into its “regular 
form”. Consider a tree T after level-l completion. For each 
vertex in level l − 1 , if the label string of its left subtree 
is larger than the label string of its right subtree, switch 
its left and right subtrees. This procedure is called “left-
regularization”. After the left-regularization of level l − 1 , 

repeat this procedure for level l − 2,l − 3,. . . , 1, 0. When 
the procedure is finished, we obtain the fully “left-regu-
larized” form of T. The procedure of left-regularization 
for the tree T̄12(2) is shown in Fig. 11.

In a fully left-regularized tree, for each vertex, the label 
string of its left subtree is no larger than that of its right 
subtree. Thus each subtree is also fully left-regularized. 
By induction with the tree depth, we can see that two 
equivalent ordered trees have the same left-regulari-
zation. Two trees with the same left-regularization are 
obviously equivalent. Therefore, two ordered trees are 
equivalent if and only if their left-regularizations are the 
same. With this procedure, each unordered tree (or its 
corresponding equivalent class of ordered trees) corre-
sponds to a unique left-regularized ordered tree.

Definition and properties
For a tree T, denote its fully left-regularized form as T̃  . 
Now we can define DLR on unordered trees:

This DLR satisfies the criteria (A1)-(A3) for a metric, and 
we name it the left-regular metric. Notice that the choice 
of total order on L̄ might affect the value of DLR(T1,T2) . 
See Algorithm 2 for the workflow of calculating the left-
regular metric DLR . The definition of the left-regular met-
ric already implies how to calculate it. 

DLR(T1,T2) = DOT(T̃1, T̃2).

Fig. 11  Procedure of left-regularization. A 2-level tree T̄12(2) (upper). After left-regularization on level 1 (lower left). Fully left-regularized (lower right)
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trees are randomly generated, then the expectation of steps 
needed to compare two label strings is bounded by a con-
stant C, regardless of string length. Thus the expected total 
number of steps is no more than C2m+1 , and the expected 
time complexity is O(n) . When the trees are not binary, 
but k-ary, the orders of the worst-case time complexity and 
the expected time complexity are not changed.

Both the best-match metric and the left-regular met-
ric transform two trees by switching subtrees, and com-
pare the trees after transformation. The best-match 
metric switches subtrees for two trees cooperatively, 
so as to find the pair that has the minimal DOT distance. 
The left-regular metric just switches subtrees indepen-
dently, and the final pair might not be the best match. 
Thus we can see that for any two unordered trees T1,T2 , 
DLR(T1,T2) ≥ DBM(T1,T2) . Thus DLR is an upper bound 
of DBM.

The tree T̄13(2) in Fig.  10 is already left-regularized. 
Thus we can compare it with T̄12(2) after left-regulariza-
tion in Fig. 11 to find DLR(T12,T13) = 5 . In the appendix, 
we illustrate the detailed procedure of calculating DLR for 
the developmental trees of Arabidopsis thaliana and sea 
urchin. For more examples, see Fig. 6, 7, 8, and Table 1. 
The Python code for calculating DLR can be found online 
(https://​github.​com/​YueWa​ngMat​hbio/​TreeM​etric, DOI: 
https://​doi.​org/​10.​5281/​zenodo.​64002​67).

Consider an m-level tree. For each vertex in level l, to 
compare the label strings of its subtrees, we need at most 
2m−l steps. Therefore, the left-regularization on each level 
needs at most 2m steps, and the total number of steps is 
no more than (m+ 1)2m . Thus the worst-case time com-
plexity of computing the left-regular metric is O(n log n) , 
where n is the vertex number. The space complexity of 
computing the left-regular metric is trivially O(n) . If the 

https://github.com/YueWangMathbio/TreeMetric
https://doi.org/10.5281/zenodo.6400267
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A semimetric on trees with ordered and unordered 
vertices
In some situations, for a developmental tree, we know 
the order of children cells for some cells, but not other 
cells. Therefore, in this section, we consider the space P 
of rooted trees with possibly repeated labels, where ver-
tices can be ordered or unordered. This space contains 
all ordered trees and unordered trees. To represent this 
space, we consider ordered trees, where some non-leaves 
vertices have “lock marks”, denoted by circles surround-
ing the labels. See Fig.  12 for some examples. For trees 
T ∗
1 ,T

∗
2  possibly with lock marks, if we can switch subtrees 

of some vertices without lock marks in T ∗
1  , so that T ∗

1  is 
transformed into T ∗

2  (comparing both labels and lock 
marks), then we define that T ∗

1 ,T
∗
2  are equivalent, and 

denote it by T ∗
1 ∼ T ∗

2  . Under this equivalence relation, 
the space of ordered trees with lock marks is divided into 
different equivalent classes, and the space of such equiva-
lent classes is isomorphic to the space of trees where ver-
tices can be ordered or unordered. If a tree T ∗ with lock 
marks belongs to an equivalent class that represents T, 
then a vertex in T ∗ has a lock mark if and only if the cor-
responding vertex in T is ordered. We will define a dis-
tance on the equivalent classes of ordered trees with lock 
marks (not a metric, but a semimetric).

If we try to define a metric on the space of such equiv-
alent classes, we shall meet a problem. Consider two 
ordered trees T ∗

1 ,T
∗
2  with the same tree topology and 

labels, but different lock marks, then T ∗
1 �∼ T ∗

2  . If we 
have a metric D , then D(T ∗

1 ,T
∗
2 ) > 0 . However, T ∗

1 ,T
∗
2  

have the same labels for corresponding vertices, and we 
argue that their distance should be 0. Due to this reason, 
we need to define another relation between ordered trees 
with lock marks.

For an ordered tree T ∗ that could have lock marks, 
and a normal ordered tree T without lock marks, if we 
can switch subtrees of some vertices without lock marks 
in T ∗ , so that T ∗ is transformed into T (only comparing 
labels, but not lock marks), then we say T ∗ → T  . For 
two ordered trees T ∗

1 ,T
∗
2  that possibly have lock marks, 

if there exists an ordered tree T without lock marks, so 
that T ∗

1 → T  and T ∗
2 → T  , then we define that T ∗

1 ,T
∗
2  are 

semi-equivalent, denoted by T ∗
1 ≈ T ∗

2  . T ∗
1 �≈ T ∗

2  means 
T ∗
1 ,T

∗
2  are not semi-equivalent. The semi-equivalence 

relation is reflexive ( T ∗ ≈ T ∗ ) and symmetric ( T ∗
1 ≈ T ∗

2  
means T ∗

2 ≈ T ∗
1  ), but not transitive: in Fig. 12, T ∗

14 ≈ T ∗
15 , 

T ∗
14 ≈ T ∗

16 , but T ∗
15 �≈ T ∗

16 . Thus semi-equivalence is not 
an equivalence relation, and the space of ordered trees 
with lock marks cannot be divided into different equiva-
lent classes by this relation. Equivalence is stronger than 
semi-equivalence: T ∗

1 ∼ T ∗
2  implies T ∗

1 ≈ T ∗
2  , but not 

vice versa. Besides, if T ∗
1 ∼ T ∗

3  , T ∗
2 ∼ T ∗

4  , T ∗
1 ≈ T ∗

2  , then 
T ∗
3 ≈ T ∗

4 .
If T ∗

1 ≈ T ∗
2  , then after certain transformations, they 

have the same labels, and their distance should be 0. If 
T ∗
1 �≈ T ∗

2  , then they are essentially different, and their dis-
tance should be positive. Therefore, to define a distance D 
on the space of ordered trees that could have lock marks, 
we need to satisfy the following criteria for any trees 
T ∗
1 ,T

∗
2 ,T

∗
3 :

(B1) D(T ∗
1 ,T

∗
2 ) = D(T ∗

2 ,T
∗
1 );

(B2) D(T ∗
1 ,T

∗
2 ) ≥ 0 , and D(T ∗

1 ,T
∗
2 ) = 0 if and only if 

T ∗
1 ≈ T ∗

2 .
However, the triangular inequality does not 

hold. Consider T ∗
14,T

∗
15,T

∗
16 in Fig.  12. Since 

T ∗
14 ≈ T ∗

15 , T ∗
14 ≈ T ∗

16 , T ∗
15 �≈ T ∗

16 , we have 
D(T ∗

14,T
∗
15)+ D(T ∗

14,T
∗
16) = 0 < D(T ∗

15,T
∗
16) . There-

fore, we cannot define a metric with respect to the semi-
equivalence relation. Besides, T ∗

1 ≈ T ∗
2  does not imply 

D(T ∗
1 ,T

∗
3 ) = D(T ∗

2 ,T
∗
3 ) . Nevertheless, we could require 

that
(B3): T ∗

1 ∼ T ∗
2  implies D(T ∗

1 ,T
∗
3 ) = D(T ∗

2 ,T
∗
3 ).

We seek a distance that satisfies (B1)-(B3), which is a 
semimetric.

For the space of ordered trees that could have lock 
marks, existing methods and the left-regular metric are 
not applicable with respect to the semi-equivalence rela-
tion. Nevertheless, the best-match metric can be slightly 
modified to work in this scenario. On the space of 
ordered trees that could have lock marks, D∗

BM is defined 
as

This D∗
BM(T ∗

1 ,T
∗
2 ) satisfies the criteria (B1)-(B3) for 

a semimetric, and we name it the best-match semi-
metric. For the trees in Fig.  12, D∗

BM(T ∗
14,T

∗
15) = 0 , 

D∗
BM(T ∗

14,T
∗
16) = 0 , D∗

BM(T ∗
15,T

∗
16) = 6 . See Algorithm  3 

for the workflow of calculating the best-match semimet-
ric D∗

BM . It is only slightly different from Algorithm 1 that 
calculates DBM . 

D∗
BM(T ∗

1 ,T
∗
2 ) = min

T∗
1→T1,T

∗
2→T2

DOT(T1,T2).
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Fig. 12  Three ordered trees possibly with lock marks (circles): T ∗14 ≈ T
∗
15 , T

∗
14 ≈ T

∗
16 , T

∗
15 �≈ T

∗
16
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The time complexity of computing the best-match sem-
imetric D∗

BM is also O(n2) , where n is the number of verti-
ces. The space complexity of computing D∗

BM is O(n).

Conclusions
To study the early development of zygotes by compar-
ing developmental trees, we define different distances on 
trees. On the space of rooted unordered trees with pos-
sibly repeated labels, we introduce two metrics: the best-
match metric and the left-regular metric. For the same 
pair of trees, the best-match metric is no larger than the 
left-regular metric. They consider any common struc-
tures and compare non-common structures. Besides, 
different distances between labels and different weights 
on vertices can be introduced naturally. The best-match 
metric has an extra advantage: it is robust under small 
perturbations on labels. To compute the best-match met-
ric, the time complexity is quadratic, and the left-regular 
metric has linear expected time complexity. In general, 
we recommend the best-match metric. If time cost is a 
major concern, the left-regular metric can be applied.

On the space of rooted trees with possibly repeated 
labels, where vertices might be ordered or unordered, 
most methods are not applicable, and we introduce 
the best-match semimetric. The properties of the best-
match semimetric are almost the same as the best-match 
metric.

The methods introduced in this paper (possibly with 
modifications) can be applied to more commonly treated 
scenarios, e.g., unrooted trees, unlabeled or leaf-labeled 
trees, or trees with unique labels on vertices. Since our 
methods are not developed for such scenarios, the per-
formance might not be as satisfactory as existing meth-
ods. Nevertheless, the ideas of our methods might inspire 
new methods in such scenarios.

Appendix
In this appendix, we present the detailed procedure of 
calculating the best-match metric DBM and the left-regu-
lar metric DLR for the developmental trees of Arabidopsis 
thaliana ( TA , Fig. 2) and sea urchin ( TS , Fig. 4).

Fig. 13  The developmental trees of Arabidopsis thaliana, T̃A and sea urchin, T̃S , after left-regularization
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Best‑match metric DBM

The procedure is recursive. We need to determine the 
correspondence of subtrees rooted in level 1, which 
depends on the correspondence of subtrees rooted in 

level 2, which then depends on the correspondence of 
subtrees rooted in level 3.

Step 1:

Step 2.1:

Step 3.1.1 to Step 3.1.4 (the same procedure)

Back to Step 2.1

Step 2.2:

Step 3.2.1 and Step 3.2.3 (the same procedure)

Step 3.2.2 and Step 3.2.4 (the same procedure)

DBM(TA,TS) =DBM(WXZWWZZWWWWSSZZ,

XXXWWWWXXXXWWWW )

=d(W ,X)+min{DBM(XWWWWWW ,XWWXXXX)

+ DBM(ZZZSSZZ,XWWWWWW ),

DBM(XWWWWWW ,XWWWWWW )

+ DBM(ZZZSSZZ,XWWXXXX)}.

DBM(XWWWWWW ,XWWXXXX)

= d(X ,X)+min{DBM(WWW ,WXX)+ DBM(WWW ,WXX),

DBM(WWW ,WXX)+ DBM(WWW ,WXX)}.

DBM(WWW ,WXX)

= d(W ,W )+min{d(W ,X)+ d(W ,X), d(W ,X)+ d(W ,X)}

=2.

DBM(XWWWWWW ,XWWXXXX) = 4.

DBM(ZZZSSZZ,XWWWWWW )

= d(Z,X)+min{DBM(ZSS,WWW )+ DBM(ZZZ,WWW ),

DBM(ZSS,WWW )+ DBM(ZZZ,WWW )}.

DBM(ZSS,WWW )

= d(Z,W )+min{d(S,W )+ d(S,W ), d(S,W )+ d(S,W )}

=3.

DBM(ZZZ,WWW )

= d(Z,W )+min{d(Z,W )+ d(Z,W ), d(Z,W )+ d(Z,W )}

=3.

Back to Step 2.2

Step 2.3:

Step 3.3.1 to Step 3.3.4 (the same procedure)

DBM(ZZZSSZZ,XWWWWWW ) = 7.

DBM(XWWWWWW ,XWWWWWW )

= d(X ,X)+min{DBM(WWW ,WWW )+ DBM(WWW ,WWW ),

DBM(WWW ,WWW )+ DBM(WWW ,WWW )}.

Back to Step 2.3

Step 2.4:

Step 3.4.1 and Step 3.4.3 (the same procedure)

Step 3.4.2 and Step 3.4.4 (the same procedure)

DBM(WWW ,WWW )

= d(W ,W )+min{d(W ,W )+ d(W ,W ), d(W ,W )+ d(W ,W )}

=0.

DBM(XWWWWWW ,XWWWWWW ) = 0.

DBM(ZZZSSZZ,XWWXXXX)

= d(Z,X)+min{DBM(ZSS,WXX)+ DBM(ZZZ,WXX),

DBM(ZSS,WXX)+ DBM(ZZZ,WXX)}.

DBM(ZSS,WXX)

= d(Z,W )+min{d(S,X)+ d(S,X), d(S,X)+ d(S,X)}

=3.

DBM(ZZZ,WXX)

= d(Z,W )+min{d(Z,X)+ d(Z,X), d(Z,X)+ d(Z,X)}

= 3.
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Back to Step 2.4

Back to Step 1

Left‑regularization metric DLR

We use the total order Z < X < W < S on the label set. 
We apply the left-regularization from level 2 to level 0.

Left-regularization on level 2:
For each vertex in level 2 of TA and TS , its left subtree 

and right subtree have the same label string, and we do 
not need to switch these subtrees. After this step, the 
label string of TA is WXZWWZZWWWWSSZZ, and the 
label string of TS is XXXWWWWXXXXWWWW​.

Left-regularization on level 1:
For the vertex with label “Z” in level 1 of TA , its left sub-

tree label string is “ZSS”, which is larger than that of its 
right subtree, “ZZZ”. Thus we switch two subtrees of this 
vertex. For the other three vertices in level 1 of TA and 
TS , the left subtree and right subtree have the same label 
string, and we do not need to switch these subtrees. After 
this step, the label string of TA is WXZWWZZWWW-
WZZSS, and the label string of TS is XXXWWWWXXXX-
WWWW​.

Left-regularization on level 0:
For the root vertex (level 0) of TA , its left subtree label 

string is “XWWW​WWW​”, which is larger than that of its 
right subtree, “ZZZZZSS”. Thus we switch two subtrees 
of this vertex. For the root vertex of TS , its left subtree 
label string is “XWWXXXX”, which is smaller than that 
of its right subtree, “XWWW​WWW​”. Thus we do not 
need to switch these subtrees. After this step, the label 
string of TA is WZXZZWWZZSSWWWW​, and the label 
string of TS is XXXWWWWXXXXWWWW​.

The left-regularization results of TA and TS are in 
Fig.  13. We can calculate the DOT metric for these two 
trees. Since there are eight pairs of corresponding verti-
ces with different labels, we have DLR(TA,TS) = 8.
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