
Shibuya et al.
Algorithms for Molecular Biology (2022) 17:5
https://doi.org/10.1186/s13015-022-00212-0

RESEARCH

Space-efficient representation of genomic
k-mer count tables
Yoshihiro Shibuya1, Djamal Belazzougui2 and Gregory Kucherov1,3*

Abstract

Motivation: k-mer counting is a common task in bioinformatic pipelines, with many dedicated tools available. Many
of these tools produce in output k-mer count tables containing both k-mers and counts, easily reaching tens of GB.
Furthermore, such tables do not support efficient random-access queries in general.

Results: In this work, we design an efficient representation of k-mer count tables supporting fast random-access
queries. We propose to apply Compressed Static Functions (CSFs), with space proportional to the empirical zero-order
entropy of the counts. For very skewed distributions, like those of k-mer counts in whole genomes, the only currently
available implementation of CSFs does not provide a compact enough representation. By adding a Bloom filter to
a CSF we obtain a Bloom-enhanced CSF (BCSF) effectively overcoming this limitation. Furthermore, by combining
BCSFs with minimizer-based bucketing of k-mers, we build even smaller representations breaking the empirical
entropy lower bound, for large enough k. We also extend these representations to the approximate case, gaining
additional space. We experimentally validate these techniques on k-mer count tables of whole genomes (E. Coli and C.
Elegans) and unassembled reads, as well as on k-mer document frequency tables for 29 E. Coli genomes. In the case of
exact counts, our representation takes about a half of the space of the empirical entropy, for large enough k’s.

Keywords: k-mers, Counts, Compression, Compressed static function, Bloom filter

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Nowadays, many bioinformatics pipelines rely on k-mers
to perform a multitude of different tasks. Representing
sequences as sets of words of length k generally leads to
more time-efficient algorithms than relying on traditional
alignments. For these reasons, alignment-free algorithms
have started to replace their alignment-based coun-
terparts in a wide range of practical applications, from
sequence comparison and phylogenetic reconstruction
[1–4] to finding SNPs [5, 6] and other tasks. These algo-
rithms often require to associate some kind of informa-
tion to k-mers involved in the analysis, that is, to build
maps where keys are k-mers. Typical values to associate
to k-mers are their frequencies in a particular dataset.

Actual counting can be performed by one of several
available k-mer counting tools developed in recent years
[7–10]. Count tables generally include both k-mers and
counts requiring considerable amounts of disk space to
be stored. For example, the output generated by KMC [7]
for a human genome, with k = 32 weights in at around
28GB.

In many applications, space can be significantly reduced
by representing the mapping without actually storing
k-mers. Having two independent data structures allows
for more aggressive space optimizations. For example,
the original sequence dataset can be used as the primary
source of k-mers while a random-access data structure
will then allow retrieving their counts efficiently. One
application of such a data structure is the efficient repre-
sentation of k-mer counts for read correction [11]. More
generally, information about k-mer counts is increasingly

Open Access

Algorithms for
Molecular Biology

*Correspondence: gregory.kucherov@univ-eiffel.fr
1 LIGM, Université Gustave Eiffel, Marne-la-Vallée, France
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-022-00212-0&domain=pdf

Page 2 of 15Shibuya et al. Algorithms for Molecular Biology (2022) 17:5

used in other applications too [1, 5, 6, 12–15], which can
benefit from space-efficient solutions.

Minimal Perfect Hash Functions (MPHFs for short)
implement such an approach [16–18] and have been
exstensivly used in bioinformatics in recent years [19,
20]. A MPHF bijectively maps each item from a set S to
an index in the range [0, |S| − 1] . Any additional infor-
mation can then be stored in an array indexed by the
values returned by the MPHF. However, using an exter-
nal array to store counts can be suboptimal when count
values are non-uniformly distributed, i.e. the empirical
entropy of their distribution is low. It is in fact known
that k-mer counts for fully assembled genomes follow
a skewed heavy-tail distribution [21, 22]. For k large
enough, counts tend to be power-law distributed, with
the majority of k-mers occurring only few times, mostly
once. Because of this, the multiset of k-mer counts will
typically have a fairly low empirical zero-order entropy
and it could be effectively compressed to save further
space. However, simply compressing the count array
does not maintain queryability, which requires special-
ized algorithms for this task. The same considerations
apply to unassembled datasets as long as the empirical
entropy of the multiset of counters is low. Note also that
MPHFs themselves encompass a non-negligible space
overhead even without the space for storing the values,
with BBHash [19] requiring around 3 bits/key whereas
the theoretical minimum is 1.44.

Maps on static sets of keys can also be encoded using
so-called Static Functions [23, 24]. Unlike MPHFs, the
actual hash function and the values are encoded into the
same structure. In particular, Compressed Static Func-
tions (CSFs) try to benefit from the compressibility of the
value array and approach the number of bits defined by
the empirical entropy. This feature makes them particu-
larly useful for representing different k-mer annotations,
such as counts or presence information across sequences
of a given sample [12–15]. CSFs can be used as readily
available drop-in replacements of MPHFs since both
methods assume that only k-mers present in the datasets
can be queried for their frequency. In many cases, this is
not restrictive as the “universe” of query k-mers can be
effectively specified: for example, it can be restricted to
k-mers from a given genome or a pan-genome. It is also
conceivable to add an appropriate structure providing
presence-absence information, in order to benefit from
the reduction of space provided by a compact count
representation.

The goal of this paper is to study data structures for
storing genomic k-mer count tables using the smallest
possible space. Our first contribution is the enhancement
of CSFs with a Bloom filter to deal with datasets of very

small entropy and to achieve better space usage. We call
it Bloom-enhanced CSF or BCSF for short. Our second
improvement takes advantage of the fact that similar
k-mers tend to have identical (or similar) counts (see also
[12]). Following this insight, we introduce a minimizer-
based bucketing scheme to cluster together count values
of k-mers with the same minimizer. A similar idea is used
by some k-mer counting algorithms [7, 8, 25] with the
difference that in our case buckets contain counts rather
than the k-mers themselves. By choosing a representative
value for each bucket, we obtain a “bucket table” that we
encode using Bloom-enhanced CSF.

We study different implementation schemes based
on these ideas and compare their space performance,
as well as associated query time. Our results show that
our algorithms are useful for both low and high entropy
datasets. For large enough k (and large enough minimiz-
ers lengths), we are able to compress count values in less
space than their empirical entropy while retaining fast
query times. To the best of our knowledge, this is the first
implementation proposing such a compact representa-
tion. We also study an extension of our algorithm to the
approximate case for which we save additional space by
allowing a pre-defined absolute error over queries.

Technical preliminaries
Throughout the paper we consider a k-mer count table to
be an associative array f mapping a set of k-mers K, con-
sidered static, to their counts, i.e. number of occurrences
in a given dataset. ||f ||1 stands for the L1-norm of f, that
is
∑

q∈K f (q).

Minimizers
Minimizers are a popular technique used in different
applications involving k-mer analysis. Given a k-mer
q of length k, its minimizer of length m, with m ≤ k , is
the smallest substring of q of length m w.r.t. some order
defined on m-mers. The use of minimizers for biose-
quence analysis goes back to [26], whereas a similar con-
cept, named winnowing, was earlier applied in [27] to
document search. The guiding idea is that a minimizer
can be considered as a “footprint” (hash value) of a cor-
responding k-mer so that similar (e.g. neighboring in the
genome) k-mers are likely to have the same minimizer.
The order of m-mers is usually defined via a standard
non-cryptographic hash function. In this case, minimiz-
ers can be seen as a specific instance of locality-sensitive
hashing, in particular of MinHash sketching [28]. The
choice of hash function is not important as long as it has
good statistical guarantees (randomness and uniformity).
Note that the lexicographic ordering has been shown to
have poor statistical properties [26].

Page 3 of 15Shibuya et al. Algorithms for Molecular Biology (2022) 17:5

Minimizers have been successfully applied to vari-
ous data-intensive sequence analysis problems in bio-
informatics, such as metagenomics (Kraken [29]) or
minimizing cache misses in k-mer counting (KMC [7]),
or mapping and assembling long single-molecule reads
[30, 31]. Recently, there has been a series of works on
both theoretical and practical aspects of designing effi-
cient minimizers, see e.g. [32, 33] and references therein.

Bloom filters
A Bloom filter is a very common probabilistic data struc-
ture that supports membership queries for a given set S
drawn from a large universe U, admitting a controlled
fraction of false positives. To insure a false positive rate
ε , that is the probability ε for an item from U \ S to be
erroneously classified as belonging to S, a Bloom filter B
requires |S| log e log 1

ε
 bits, i.e. ≈ 1.44 log 1

ε
 bits per ele-

ment of S. For a set T ⊆ U \ S , we denote FPB(T) the set
of false positives of T, of expected size ε|T |.

Compressed static functions
A static function (SF) is a representation of a function
defined on a given subset S of a universe U such that an
invocation of the function on any element from S yields
the function value, while an invocation on an element
from U \ S produces an arbitrary output. The problem
has been studied in several works (see references in [23,
24]) resulting in several solutions that allow function val-
ues to be retrieved without storing elements of S them-
selves. One natural solution comes through MPHFs: one
can build a MPHF for S and then store function values in
order in a separate array. This solution, however, incurs
an overhead associated with the MPHF, known to be the-
oretically lower-bounded by about 1.44 bits per element
of S.

This overhead is especially unfortunate when the distri-
bution of values is very skewed, in which case the value
array may be compressed into a much smaller space.
Compressed Static Functions try to solve this problem by
proposing a static function representation whose size
depends on the compressed value array. The latter is usu-
ally estimated through the zero-order empirical entropy,
defined by H0(f) =

∑

ℓ∈L
|f −1(ℓ)|
|K |

log(|K |

|f −1(ℓ)|
) , where L is

the set of all values (i.e. L = {f (t) | t ∈ K }}) and
f −1(ℓ) = {t | f (t) = ℓ} is the set of k-mers with count ℓ .
|K | ·H0(f) can be viewed as a lower bound on the size of
compressed value array, in absence of additional assump-
tions. Thus, the goal of CSFs is to approach the bound of

H0(f) bits per element as closely as possible, in represent-
ing a static function f.

An overview of different algorithmic solutions for
SFs and CSFs is out of scope of this paper, we refer the
reader to [23, 24] and references therein. [23] pro-
posed a solution for CSF taking an asymptotically opti-
mal nH0(f)+ o(nH0(f)) space (n size of the underlying
value set), however the solution is rather complex and
probably not suitable for practical implementation. As
of today, to our knowledge, the only practical imple-
mentation of a CSF is GV3CompressedFunction [24],
found in the Java package Sux4J (https:// sux. di. unimi.
it/). Although entropy-sensitive, the method of [24],
has an intrinsic limitation of using at least 1 bit per ele-
ment, due to involved coding schemes. This is a serious
limitation when dealing with very skewed distributions
of values, where one value occurs predominantly often
and the empirical entropy can be much smaller than 1.
This is precisely the case for count distributions in whole
genomes, one of the applications studied in this paper.

Methods
Representation of low‑entropy data
As mentioned earlier, Compressed Static Functions
(CSF) of [24] do not properly deal with datasets gener-
ated by low-entropy distributions, in particular with
entropy smaller than 1. This case occurs when data-
sets have a dominant value representing a large fraction
(say, more than a half) of all values. This is typically the
case with genomic k-mer count data, especially whole-
genome data, where a very large fraction of k-mers occur
just once. For example, in E.Coli genome (≈5.5Mbp),
about 97% of all distinct 15-mers occur once, with only
the remaining 3% occurring more than once. For such
datasets, the method of [24] does not approximate well
the empirical entropy, as it cannot achieve less than 1 bit
per key.

Here we propose a technique to circumvent this defi-
ciency in order to achieve, in combination with CSFs of
[24], a compression close to the empirical entropy. We
start by building a Bloom filter for all k-mers whose value
is not the dominant one, and then we construct a CSF
on all positives (i.e. true and false positives) of this filter.
At query time, we first check the query k-mer against
the Bloom filter and, if the answer is positive, recover its
value from the CSF.

Formally, let K0 be the k-mers with the most common
frequency. Let |K0| = α|K | . Assume that our Bloom filter

https://sux.di.unimi.it/
https://sux.di.unimi.it/

Page 4 of 15Shibuya et al. Algorithms for Molecular Biology (2022) 17:5

implementation takes CBF log
1
ε
 bits per key and our CSF

implementation takes CCSF bits per key. For the purpose
of explanation, we will specify both CBF and CCSF at the
end of this section.

We store keys K \ K0 in a Bloom filter B and build a
CSF for (K \ K0) ∪ FPB(K0) . The total space is

The Bloom filter enables space saving only if α is suffi-
ciently large. To decide if we need a Bloom filter, we have
to verify if the inequality

holds for some ε < 1 . Note again that CCSF on the left
and right sides are not exactly the same in reality, how-
ever assuming them the same is not reductive because of
specificities of the CSF implementation we use. We will
elaborate further on this later on. Then (2) rewrites to

Using simple calculus, we obtain that if CBF
CCSF

1−α
α

> ln 2
(that is, CBF

CCSF

1−α
α

log e > 1), then (3) never holds for
0 < ε < 1 . The left-hand side of (3) reaches its minimum
for

and this minimum is smaller than 1 if ε0 < 1 . We con-
clude that in order to decide if a Bloom filter enables
space saving, we have to check the value ε0 . If ε0 ≥ 1 , we
do not need a Bloom filter, otherwise we need one with
ε = ε0 . This shows that a Bloom filter is needed whenever

For CBF = CCSF , this gives α > 0.59.
In order to apply equation (4), we need estimates of

CBF and CCSF , that is, estimates of the number of bits per
element taken by our implementations of Bloom filter
and CSF. For CBF , we have CBF = 1.44 corresponding to
the theoretical coefficient of Bloom filters. On the other
hand, we experimentally estimated CCSF associated with
the implementation we use as a function of the empirical
entropy H0 , giving:

(1)CBF (1− α)|K | log
1

ε
+ CCSF |K |((1− α)+ εα).

(2)
CBF (1− α)|K | log

1

ε
+ CCSF |K |((1− α)+ εα) < CCSF |K |.

(3)
CBF

CCSF

1− α

α
log

1

ε
+ ε < 1.

(4)ε0 =
CBF

CCSF

1− α

α
log e,

(5)α >
CBF log e

CCSF + CBF log e

In the rest of the paper we use the term Bloom-enhanced
Compressed Static Function, BCSF for short, to speak
about CSF possibly augmented by a prior Bloom filter,
as described in this section. Algorithm 1 summarizes the
computation of the BCSF data structure.

Minimizer bucketing
A key idea to reduce the computational burden of
counting k-mers, is to use minimizers to bucket
k-mers and split the counting process across multi-
ple tables (cf e.g. [7]). Here we use the same principle
to bucket count values instead of k-mers themselves.
Let Mm(K) = {µm(q) | q ∈ K } be the set of minimiz-
ers of all k-mers of K of a given length m < k . We
map the input set K onto the (smaller) set Mm(K) . To
each minimizer s ∈ Mm(K) , corresponds the bucket
{f (q) | q ∈ K ,µm(q) = s} . We call a minimizer and the
corresponding bucket ambiguous if this set contains
more than one value. The guiding idea is to replace f by
a mapping g of Mm(K) to N . Querying value f(q) for a
k-mer q ∈ K will reduce to first querying g(µm(q)) and
then possibly “correcting” the retrieved value. In other
words, for each bucket, we replace its set of counts with
one representative value and we split the query into two
operations: retrieving the representative from the buck-
ets and correcting to reconstruct the original value. The
rationale is that k-mers having the same minimizer tend
to have the same count allowing multiple values to be
dealt with by a single bucket. We consider two imple-
mentations which differ on how the representatives are
chosen and how corrections are applied.

(6)CCSF =

{

0.22H2
0 + 0.18H0 + 1.16, if H0 < 2

1.1H0 + 0.2, otherwise.

Page 5 of 15Shibuya et al. Algorithms for Molecular Biology (2022) 17:5

Our first implementation is named AMB (from AMBi-
guity). An extended version of AMB (explained below)
is presented in Algorithm 3. For non-ambiguous mini-
mizers u, AMB defines g(u) to be the unique value of the
bucket. For ambiguous minimizers v, we set g(v) = 0 ,
where 0 is viewed as a special value marking ambigu-
ous buckets (k-mers with count 0 are not present in the
input). This has the disadvantage of providing no infor-
mation about the values of ambiguous buckets, and also
of making g less compressible (because of an additional
value). On the other hand, this has the advantage of dis-
tinguishing between ambiguous and non-ambiguous
buckets and allows the query to immediately return the
answer for k-mers hashing to non-ambiguous buckets.
As a consequence, unambiguous k-mers are not propa-
gated to the second layer, and if g(µm(q)) = 0 it can be
immediately returned as f(q). We then have to store map-
ping f restricted only to k-mers from ambiguous buckets,
which we denote f̃ . Both mappings g and f̃ are stored
using BCSFs.

Our second implementation, named FIL (from FILtra-
tion), is shown in Algorithm 2. Here, g(s) is defined to
be the majority value among all values of its bucket, ties

resolved arbitrarily. In particular, if s is a non-ambigu-
ous minimizer then g(s) is set to the unique value of the
bucket. In practice, computing the majority value may
incur a computational overhead as this requires stor-
ing bucket values until all values are known. An option
to cope with this, not explored further in this work,
is to use the “approximate majority” computed by the
online Boyer-Moore majority algorithm [34]. We then
store a “correcting mapping” h : K → N defined by
h(q) = f (q)− g(µm(q)) . That is, we construct another
counting table h where each k-mer is associated to the
correction factor h(q), which, added to the representative
g(s) results in the original count c. Both mappings g and
h are stored using BCSFs. The rationale for this scheme
is that, due to the properties of minimizers, h(q) is sup-
posed to be often 0, which makes h well compressible
using BCSF. Note that because of the majority rule, 0 will
always be the majority value of h. Therefore, the Bloom
filter of the BCSF storing h (if any) will hold k-mers q
with f (q) = g(µm(q)) (i.e. h(q) = 0). Then the BCSF will
store h restricted to k-mers with h(q) = 0 together with
a subset of k-mers (false positives of the Bloom filter) for
which h(q) = 0.

Page 6 of 15Shibuya et al. Algorithms for Molecular Biology (2022) 17:5

The specific definition of fi and Ki depends on the
implementation.

The multi-layer scheme is particularly intuitive for
the AMB implementation, where each layer stores a
unique value for non-ambiguous minimizers and a spe-
cial value 0 otherwise. In this case, Ki consists of those
k-mers of Ki−1 hashed to ambiguous buckets, and fi is
simply a restriction of f to those k-mers. Algorithm 3
shows a pseudo-code of multi-level AMB extended to
the approximate case (see Sect. 3.4 below). The multi-
layer version of the FIL scheme is shown in Appendix
(Algorithm 4).

Cascading
An intermediate layer corresponding to a minimizer
length m < k , introduced in Sect. 3.2, can be viewed as a
“filter” providing values for some k-mers and “propagat-
ing” the other k-mers to the next layer. Therefore, both
implementations can be cascaded into more than one
layer. This construction is reminiscent of the BBHash
algorithm [19] or to cascading Bloom filters from [35].

For m1 < m2 < ...mℓ ≤ k , each layer i is then input
some map fi−1 defined on a subset of k-mers Ki−1 ⊆ K
(f0 = f , K0 = K) and outputs another map fi defined on
a smaller subset Ki ⊆ Ki−1 . Each layer stores a bucket
table for minimizers Mmi(K) = {µmi(q) | q ∈ Ki−1} .

Page 7 of 15Shibuya et al. Algorithms for Molecular Biology (2022) 17:5

Extension to approximate counts
In addition to cascading, AMB can also be easily extended
to work as an approximation algorithm. Consider, to this
end, the layered bucketing procedure desribed in 3.3.
In the exact case, a bucket is marked as colliding when-
ever it contains two or more distinct count values. In the
approximate case, a collision is defined if a bucket con-
tains a pair of counts, ci , cj such that |ci − cj| > δ with δ a
pre-defined maximum absolute error. With this modifi-
cation, the algorithm guarantees to output a value within
the absolute error δ from the true count.

We chose g(s) to be the minimum value in a bucket if
the bucket is unambiguous. The rationale of using mini-
mum is the decreasing behavior of k-mer spectra which
implies that smaller counts are more frequent and there-
fore more likely to constitute the majority. In order to
detect collisions, it is then sufficient to only remember
the maximum max(s) and minimum min(s) values seen
by each bucket and check if max(s)−min(s) > δ . If that
is the case, then the bucket is marked as colliding, other-
wise min(s) is chosen as representative (see Algorithm 3).

Results and discussion
Three datasets were used in this study:

1 The collection of fully assembled Escherichia Coli
genomes from [2], from now on referred to as “df”.

2 Escherichia Coli Sakai strain (NCBI accession num-
ber B000007) from the previous collection [2] but

from now on referred to as “Sakai” to highlight its
stand-alone usage.

3 Full reference genome of Caenorhabditis Elegans,
strain Bristol N2 downloaded from RefSeq (acces-
sion number GCF_000002985.6). We will refer to this
dataset as “Elegans”.

4 “SRR10211353” run of Illumina reads (10x cover-
age, Escherichia Coli) downloaded from NCBI SRA
(accession number SAMN12880992).

Unless stated otherwise, FIL and AMB were run on
all possible combinations of two and three minimizer
lengths for k ∈ [13, 15, 18, 21] with only the best combi-
nations reported using the following naming convention:

• CSF: baseline CSF implementation from Sux4J [24].
• BCSF: extended CSF with Bloom filter from Sect. 3.1.

It may get reduced to a simple CSF if the Bloom filter
is not useful.

• AMB m1 k: our first implementation, selecting each
representative by minimum and marking colliding
buckets with a special value.

• AMB m1 m2 k: same as before but with an additional
layer.

• FIL m1 k: our second implementation, saving into
each bucket a majority-selected representative and
saving corrections into its second layer.

• FIL m1 m2 k: same as before but with an additional
layer.

Fig. 1 Results for the Sakai dataset for big values of k. For presentation purposes, H0 is represented as an additional red column in each subgroup

Page 8 of 15Shibuya et al. Algorithms for Molecular Biology (2022) 17:5

Compression of skewed data
Figure 1 reports memory usage when compressing the
Sakai dataset. Simple CSF use more than 1 bit/k-mer,
while Bloom-enhanced CSF (BCSF) is considerably more
efficient, reaching space closer to the entropy. For rela-
tively small k’s (k = 13) AMB and FIL give almost the
same results as BCSF, that is, minimizer-based bucketing
is not helpful. For larger k’s, however, both AMB and FIL

lead to significant space reductions, eventually break-
ing the entropy barrier for larger values of k (k = 18, 21).
This demonstrates that for larger k’s, minimizers provide
an effective way of factoring the space of k-mers in such a
way that k-mers with equal counts tend to have the same
minimizer.

More in detail, for larger k, the overwhelming major-
ity of buckets are unambiguous (e.g. more than 99% of

Fig. 2 Results when compressing the Elegans dataset

Fig. 3 Compressed space usage for the high entropy SRR10211353 dataset

Page 9 of 15Shibuya et al. Algorithms for Molecular Biology (2022) 17:5

them, for k = 18,m = 13). As a consequence, AMB is
able to “filter out” a very large number of k-mers with
few buckets. Only a small set of k-mers, corresponding
to ambiguous buckets, are propagated to the next layer.
This, combined with the prevalence of one value due to
the skewedness of the count distribution, and the fact of
using minimizers with increasing lengths, leads to highly

compressible bucket tables. Altogether, this enables
breaking the empirical entropy lower bound.

The situation is similar for FIL: its first layer is even
better compressible than the one of AMB, due to the
absence of the additional special value which makes the
table of AMB slightly less compressible. On the other
hand, the BCSF of the second layer table of FIL turns out

Fig. 4 Compressed space usage for the high entropy df dataset

Fig. 5 Compressed space usage for the high entropy df dataset when using small values of k

Page 10 of 15Shibuya et al. Algorithms for Molecular Biology (2022) 17:5

to take more space than that of AMB. This is because its
Bloom filter operates on the large set of all k-mers, which
implies a very small value of ε to keep the set of false pos-
itives under control, and as a consequence, a relatively
large Bloom filter. Overall, FIL turns out to yield a slightly
larger space than AMB.

For small k’s, none of our methods beats the empiri-
cal entropy, with minimizers unable to provide an efficient
mean to factor the space of k-mers according to count val-
ues. On the contrary, we observe that in this case applying a
BCSF to the input table provides the most efficient solution.

Fig. 6 Space usage when using the approximated version of AMB. Entropy (red columns) and CSF (blue columns) are reported for comparison.
Unlike Fig. 7, AMB is able to break the empirical entropy lower bound when small errors are acceptable

Fig. 7 Space usage of AMB for the Sakai dataset with small k (FIL is slightly worse and was omitted)

Page 11 of 15Shibuya et al. Algorithms for Molecular Biology (2022) 17:5

Since longer k-mers lead to more skewed data, and by
extension, to smaller entropies, both AMB and FIL better
compress whole genome count tables for increasing ks.
To test this assumption we chose to compress the Elegans
dataset (around 100 Mbp). We randomly chose m1 = 18
and m2 = 19 for both three-layer AMB and FIL (ignoring
m2 for the two layered versions). Figure 2 demonstrates
that our algorithms are not limited to bacterial genomes.
Instead they are applicable in the general case as long as
count tables are computed on fully assembled data and
k is large enough. Note that, under such a regime, larger
values of k only reduce the entropy of the data, leading to
more succinct representations whereas simple CSF could
not go below 1.2 bits/k-mer.

Compression of higher entropy data
With very skewed data, collisions of k-mer counts may
happen between unrelated k-mers simply because one
counter value strongly dominates the spectrum. In order
to demonstrate the utility of minimizers in a more gen-
eral setting other than whole genome count tables, we
applied our methods to less skewed distributions. To this
end, we compressed the k-mer count tables when using
dataset SRR10211353 whose results are presented in
Fig. 3. As opposed to fully assembled genomes, entropy

in this case remains well above 1 even for larger values
of k. Nonetheless, both AMB and FIL are able to pro-
duce representations more compact than both simple
CSFs and BCSFs for all k > 13 , beating the entropy lower
bound.

Further proof of the ability of minimizer-based buck-
eting to boost compression of k-mer count tables can
be found in Fig. 4. Here, we compressed the table pro-
duced by counting the number of occurrences for each
k-mer among the 29 E. coli genomes of dataset df (note
that df is a mnemonic for “document frequency”). Note
that entropy does not decrease as rapidly as before
with increasing k, despite counts bounded in the range
[1, 29].

The use of minimizers for larger k’s, proves to be ben-
eficial again, with AMB and FIL requiring much less
space than the empirical entropy of the data. Again,
when k = 13 , both AMB and FIL do not have an advan-
tage over a simpler (B)CSF. For even smaller k-mers (B)
CSF remains the best option (see Additional Fig. 5). The
seemingly erroneous exceptions (BCSF taking more
space than simple CSF) are explained by the approxima-
tion carried out by formula (2) (assumption of equal val-
ues of CCSF in both sides).

Fig. 8 Average query time for AMB with 2 and 3 layers and FIL with 2 layers

Page 12 of 15Shibuya et al. Algorithms for Molecular Biology (2022) 17:5

Approximate counts
In many applications, it is acceptable to tolerate a small
absolute error in retrieved counts. Figure 6 reports space
usage when using the approximate version of AMB
(δ > 0 , see section 3.4) on the Sakai dataset. Results for
the exact algorithm (δ = 0) are reported in Fig. 7 for
comparison.

In order to show how the approximate algorithm
achieves better compression ratios, k was chosen from
[10, 11, 12, 13], a range of values which is particularly
difficult for AMB (or FIL) with δ = 0 . Trying all pos-
sible minimizer combinations compatible with such ks,
the best results are obtained for very short minimizer
lengths (between 1 and 5). Building minimizer layers for
such small values of m does not lead to better compres-
sion than simple (B)CSFs, with Fig. 7 showing no tangi-
ble differences between (B)CSFs and AMB (or FIL). For
these reasons, minimizer lengths in Fig. 6 are equal to
k − 1 (and k − 2) for every choice of k (e.g. if k = 10 , lay-
ers will be 8, 9, 10 for three-layer AMB). Using the same
small lengths of the exact case would not allow meaning-
ful bucketing of counts values.

An interesting observation about the approximate case
is that AMB with three layers is substantially better than
AMB with two layers only for k = 12 and k = 13 . For
k = 10 and k = 11 both versions give almost the same
results.

Query speed
Figure 8 shows query time averaged over all distinct
k-mers, in ns/k-mer. Simple CSFs, not surprisingly, are
the fastest method, with BCSF having a negligible effect
on the average query speed. On the other hand, buck-
eting has a tangible effect on performance, with speed
negatively affected by additional layers. For short k-mers,
both FIL and AMB are slower than the simple CSF by a
factor equal to their number of layers.

The situation is different for larger k’s where AMB is
only marginally slower than a bare-bones CSF. This is
because most queries are solved without accessing all lay-
ers every time, thanks to unambiguous buckets. Two-lay-
ered FIL, on the other hand, gives almost constant average
query times across all test, since all queries have to access
both of its layers to reconstruct the exact count value. We
did not perform tests for FIL with 3 layers because it will
always be slower than the two layered version.

Choosing minimizer lengths
In all reported cases, good minimizer lengths for the first
layer (m0) follow the rule: m0 > ms = (log4 |G| + 2) with
|G| , the size in base pairs of the genome. Smaller m0 , are
no longer capable of partitioning k-mers in a meaningful

way. Furthermore, space tends to first monotonically
decrease to a minimum for increasing minimizer lengths,
to increase again once the optimal value is passed. It is
therefore possible to find the minimum by sequentially
trying all possible minimizers greater than ms and stop as
soon as the compressed size starts to increase again.

If it is not possible to choose m0 > ms = (log4 |G| + 2)
because, e.g. k is already too small, approximation might
be a viable option even for relatively small δ . The only
caveat to pay attention to in this case is to check if a mini-
mizer layer would be useful or not. If yes, δ can be incre-
mented without further adjustments compared to exact
case. If not, minimizer lengths for the bucketing layers
should be chosen as big as possible to allow meaningful
bucketing of count values.

Our results also show how multiple layers have a mar-
ginal effect on final compression sizes. In case of AMB,
using three layers is always helpful, compared to the two-
layer case. Best results are usually achieved for combina-
tions including the best minimizer length obtained for
the two-layer case. On the other hand, FIL with three lay-
ers seems to be advantageous only for low entropy data,
performing worse than its two-layer counterpart when
compressing document frequency tables and for small k’s.

Conclusions
In this work, we introduced three data structures to repre-
sent compressed k-mer count tables. Our BCSF algorithm
combines Compressed Static Functions, as implemented
in Sux4J software [24], with Bloom filters. This allows for
a much better compression for skewed distributions with
empirical entropy smaller than 1. Note that, to the best
of our knowledge, this is the first time CSFs are used in a
bioinformatics application. We also provide a method to
dimension the Bloom filter in a BCSF in order to minimise
the final space. Our two other algorithms, AMB and FIL,
pair BCSF with a bucketing procedure where count values
are mapped into buckets according to minimizer values of
respective k-mers. This locality-sensitive hashing scheme
allows us to efficiently factor the space of counts, which
leads to breaking the empirical entropy lower bound for
large enough k’s. AMB and FIL use slightly different strate-
gies in decomposing the input table across minimizer layers.
Our last contribution is an extension of AMB to the approx-
imate case, gaining more space at the expense of a small and
user-definable absolute error on the retrieved counts.

We validated our algorithms on four different types of
count tables, two fully assembled genomes (E.Coli and
C.Elegans) of different sizes, one dataset of E.Coli reads at
10x coverage and one document frequency table of 29 dif-
ferent E.Coli genomes, for different k-mer lengths showing
how BCSF, AMB and FIL behave in different situations.

Page 13 of 15Shibuya et al. Algorithms for Molecular Biology (2022) 17:5

occurring in data-intensive bioinformatics applications.
One possible future direction is compression of RNA-
Seq experiments where counts may translate expression
levels of genes. Another example is metagenomics where
different species may be present with different abun-
dances which can be captured by k-mer counts. In such
applications, efficient representation of k-mer counts can
be particularly beneficial.

Appendix
Multilayer FIL algorithm

AMB and FIL have a clear advantage when minimizers
are long enough to bucket k-mers in a meaningful way, for
both skewed and high entropy data. When it is not pos-
sible to define a long-enough minimizer length, the advan-
tage of using intermediate minimizer layers vanishes, and
simple CSF and its BCSF provide a better solution.

At query time, CSF and BCSF are the fastest methods
requiring about 100ns on average for a single query. For a
fixed number of layers, AMB is faster than FIL in all situ-
ations when minimizers are useful. FIL becomes faster
than AMB only for those cases when both algorithms
achieve worse compression ratios than simple (B)CSF.

We consider this study to be the first step towards
designing efficient representations for k-mer count tables

Page 14 of 15Shibuya et al. Algorithms for Molecular Biology (2022) 17:5

Authors’ contributions
DB proposed the idea of using Compressed Static Functions with Bloom
filters. YS proposed to use minimizers for count bucketing (AMB algorithm).
GK proposed the FIL algorithm. YS developed and tested the software. YS, DB
and GK analysed the data. YS wrote the manuscript, with editorial contribu-
tion and supervision from GK and DB. All authors read and approved the final
manuscript.

Funding
GK was partially funded by RFBR, project 20-07-00652, and joint RFBR and JSPS
project 20-51-50007.

Availability of data and materials
Datasets
• Collection of 29 fully assembled Escherichia Coli genomes from [2]. Approxi-
mately 25 million k-mers
• Full genome of Caenorhabditis Elegans, strain Bristol N2 downloaded from
RefSeq (accession number GCF_000002985.6).
• SRR10211353 run of Illumina reads (10x coverage, Escherichia Coli) down-
loaded from NCBI SRA (accession number SAMN12880992).
In one of our experiments we specifically targeted the Sakai strain of E.Coli
(one of the genomes included in [2]) with NCBI accession number B000007.
Implementation
All construction code is written in python, except for the CSF part which is
handled by a simple Java program using Sux4J [24]. An utility written in C
using the code provided by Sux4J for reading and querying its CSFs provides
time measurements. We use xxHash https:// github. com/ Cyan4 973/ xxHash to
define an ordering over minimizers. All our code is available at https:// github.
com/ yhhshb/ locom. git.
Experimental setup
Experiments were performed on a machine equipped with an Intel® CoreTM
i7-4770k (Haswell), 8 GB of RAM and Kubuntu 18.04.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 LIGM, Université Gustave Eiffel, Marne-la-Vallée, France. 2 CAPA, DTISI, Centre
de Recherche sur l’Information Scientifique et Technique, Algiers, DZ, Algeria.
3 Skolkovo Institute of Science and Technology, Moscow, Russia.

Received: 15 November 2021 Accepted: 1 March 2022

References
 1. Sims GE, Jun S-R, Wu GA, Kim S-H. Alignment-free genome comparison

with feature frequency profiles (FFP) and optimal resolutions. Proc Natl
Acad Sci USA. 2009;106(8):2677–82. https:// doi. org/ 10. 1073/ pnas. 08132
49106.

 2. Yi H, Jin L. Co-phylog: an assembly-free phylogenomic approach for
closely related organisms. Nucleic Acids Res. 2013;41(7):75. https:// doi.
org/ 10. 1093/ nar/ gkt003.

 3. Dencker T, Leimeister C-A, Gerth M, Bleidorn C, Snir S, Morgenstern B.
Multi-SpaM: A Maximum-Likelihood Approach to Phylogeny Reconstruc-
tion Using Multiple Spaced-Word Matches and Quartet Trees. In: Blan-
chette, M., Ouangraoua, A. (eds.) Comparative Genomics. Lecture Notes
in Computer Science, 2018;pp. 227–241. Springer, Cham. https:// doi. org/
10. 1007/ 978-3- 030- 00834-5_ 13.

 4. Fan H, Ives AR, Surget-Groba Y, Cannon CH. An assembly and alignment-
free method of phylogeny reconstruction from next-generation

sequencing data. BMC Genomics. 2015;16(1):522. https:// doi. org/ 10.
1186/ s12864- 015- 1647-5.

 5. Rahman A, Hallgrímsdóttir I, Eisen M, Pachter L. Association mapping
from sequencing reads using k-meres. eLife. 2018;7:32920. https:// doi.
org/ 10. 7554/ eLife. 32920.

 6. Khorsand P, Hormozdiari F. Nebula: Ultra-efficient mapping-free structural
variant genotyper. bioRxiv, 2019;566620. https:// doi. org/ 10. 1101/ 566620.
Accessed 2020-10-08.

 7. Kokot M, Długosz M, Deorowicz S. KMC 3: counting and manipulating
k-mer statistics. Bioinformatics 2017;33(17), 2759–2761. https:// doi. org/
10. 1093/ bioin forma tics/ btx304. https:// acade mic. oup. com/ bioin forma
tics/ artic le- pdf/ 33/ 17/ 2759/ 25163 903/ btx304. pdf.

 8. Rizk G, Lavenier D, Chikhi R. DSK: k-mer counting with very low memory
usage. Bioinformatics. 2013;29(5):652–3. https:// doi. org/ 10. 1093/ bioin
forma tics/ btt020.

 9. Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel
counting of occurrences of k-mers. Bioinformatics. 2011;27(6):764. https://
doi. org/ 10. 1093/ bioin forma tics/ btr011.

 10. Shokrof M, Brown CT, Mansour TA. MQF and buffered MQF: Quotient
filters for efficient storage of k-mers with their counts and metadata.
bioRxiv, 2020;2020–0823263061. https:// doi. org/ 10. 1101/ 2020. 08. 23.
263061. Accessed 16 Sept 2020.

 11. Limasset A, Flot J-F, Peterlongo P. Toward perfect reads: self-correction
of short reads via mapping on de Bruijn graphs. Bioinformatics.
2020;36(5):1374–81. https:// doi. org/ 10. 1093/ bioin forma tics/ btz102.

 12. Marchet C, Iqbal Z, Gautheret D, Salson M, Chikhi R. REINDEER: efficient
indexing of k-mer presence and abundance in sequencing datasets.
Bioinformatics. 2020;36(Supplement-1):177–85. https:// doi. org/ 10. 1093/
bioin forma tics/ btaa4 87.

 13. Karasikov M, Mustafa H, Danciu D, Zimmermann M, Barber C, Rätsch G,
Kahles A. MetaGraph: Indexing and Analysing Nucleotide Archives at
Petabase-scale. bioRxiv, 2020;2020–1001322164. https:// doi. org/ 10. 1101/
2020. 10. 01. 322164. Accessed 22 May 2021.

 14. Karasikov M, Mustafa H, Joudaki A, Javadzadeh-no S, Rätsch G, Kahles A.
Sparse binary relation representations for genome graph annotation. J
Comput Biol. 2019;27(4):626–39. https:// doi. org/ 10. 1089/ cmb. 2019. 0324.

 15. Mustafa H, Kahles A, Karasikov M, Rätsch G. Metannot: A succinct data
structure for compression of colors in dynamic de Bruijn graphs. bioRxiv,
2018;236711. https:// doi. org/ 10. 1101/ 236711. Accessed 22 May 2021.

 16. Müller I, Sanders P, Schulze R, Zhou W. Retrieval and Perfect Hashing
Using Fingerprinting. In: Gudmundsson, J., Katajainen, J. (eds.) Experimen-
tal Algorithms. Lecture Notes in Computer Science, 2014 pp. 138–149.
Springer, Cham. https:// doi. org/ 10. 1007/ 978-3- 319- 07959-2_ 12.

 17. Yu Y, Belazzougui D, Qian C, Zhang Q. Memory-efficient and Ultra-fast
Network Lookup and Forwarding using Othello Hashing. arXiv: 1608.
05699 [cs] 2017. arXiv: 1608. 05699. Accessed 10 Oct 2020.

 18. Esposito E, Graf TM, Vigna S. RecSplit: Minimal Perfect Hashing via Recur-
sive Splitting. arXiv: 1910. 06416 [cs] 2019. arXiv: 1910. 06416. Accessed 08
Aug 2020.

 19. Limasset A, Rizk G, Chikhi R, Peterlongo P. Fast and Scalable Minimal Per-
fect Hashing for Massive Key Sets. In: 16th International Symposium on
Experimental Algorithms (SEA 2017). Leibniz International Proceedings
in Informatics (LIPIcs), vol. 75, pp. 25–12516. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany 2017. https:// doi. org/ 10.
4230/ LIPIcs. SEA. 2017. 25. http:// drops. dagst uhl. de/ opus/ vollt exte/ 2017/
7619.

 20. Yu Y, Liu J, Liu X, Zhang Y, Magner E, Lehnert E, Qian C, Liu J. SeqOthello:
querying RNA-seq experiments at scale. Genome Biol. 2018;19(1):167.
https:// doi. org/ 10. 1186/ s13059- 018- 1535-9.

 21. Csűrös M, Noé L, Kucherov G. Reconsidering the significance of genomic
word frequencies. Trends Genet. 2007;23(11):543–6. https:// doi. org/ 10.
1016/j. tig. 2007. 07. 008.

 22. Chor B, Horn D, Goldman N, Levy Y, Massingham T. Genomic dna k-mer
spectra: models and modalities. Genome Biol. 2009;10(10):108. https://
doi. org/ 10. 1186/ gb- 2009- 10- 10- r108.

 23. Belazzougui D, Venturini R. Compressed static functions with applications.
In: Proceedings of the Twenty-fourth Annual ACM-SIAM Symposium on
Discrete Algorithms. SODA ’13, 2013;pp. 229–240. Society for Industrial
and Applied Mathematics, New Orleans, Louisiana.

https://github.com/Cyan4973/xxHash
https://github.com/yhhshb/locom.git
https://github.com/yhhshb/locom.git
https://doi.org/10.1073/pnas.0813249106
https://doi.org/10.1073/pnas.0813249106
https://doi.org/10.1093/nar/gkt003
https://doi.org/10.1093/nar/gkt003
https://doi.org/10.1007/978-3-030-00834-5_13
https://doi.org/10.1007/978-3-030-00834-5_13
https://doi.org/10.1186/s12864-015-1647-5
https://doi.org/10.1186/s12864-015-1647-5
https://doi.org/10.7554/eLife.32920
https://doi.org/10.7554/eLife.32920
https://doi.org/10.1101/566620
https://doi.org/10.1093/bioinformatics/btx304
https://doi.org/10.1093/bioinformatics/btx304
https://academic.oup.com/bioinformatics/article-pdf/33/17/2759/25163903/btx304.pdf
https://academic.oup.com/bioinformatics/article-pdf/33/17/2759/25163903/btx304.pdf
https://doi.org/10.1093/bioinformatics/btt020
https://doi.org/10.1093/bioinformatics/btt020
https://doi.org/10.1093/bioinformatics/btr011
https://doi.org/10.1093/bioinformatics/btr011
https://doi.org/10.1101/2020.08.23.263061
https://doi.org/10.1101/2020.08.23.263061
https://doi.org/10.1093/bioinformatics/btz102
https://doi.org/10.1093/bioinformatics/btaa487
https://doi.org/10.1093/bioinformatics/btaa487
https://doi.org/10.1101/2020.10.01.322164
https://doi.org/10.1101/2020.10.01.322164
https://doi.org/10.1089/cmb.2019.0324
https://doi.org/10.1101/236711
https://doi.org/10.1007/978-3-319-07959-2_12
http://arxiv.org/abs/1608.05699
http://arxiv.org/abs/1608.05699
http://arxiv.org/abs/1608.05699
http://arxiv.org/abs/1910.06416
http://arxiv.org/abs/1910.06416
https://doi.org/10.4230/LIPIcs.SEA.2017.25
https://doi.org/10.4230/LIPIcs.SEA.2017.25
http://drops.dagstuhl.de/opus/volltexte/2017/7619
http://drops.dagstuhl.de/opus/volltexte/2017/7619
https://doi.org/10.1186/s13059-018-1535-9
https://doi.org/10.1016/j.tig.2007.07.008
https://doi.org/10.1016/j.tig.2007.07.008
https://doi.org/10.1186/gb-2009-10-10-r108
https://doi.org/10.1186/gb-2009-10-10-r108

Page 15 of 15Shibuya et al. Algorithms for Molecular Biology (2022) 17:5

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

 24. Genuzio M, Ottaviano G, Vigna S. Fast scalable construction of ([com-
pressed] static | minimal perfect hash) functions. Inform Comput.
2020;273:104517. https:// doi. org/ 10. 1016/j. ic. 2020. 104517.

 25. Lemane T, Medvedev P, Chikhi R, Peterlongo P. kmtricks: Efficient con-
struction of Bloom filters for large sequencing data collections. bioRxiv,
2021;2021–0216429304. https:// doi. org/ 10. 1101/ 2021. 02. 16. 429304.
Accessed 31 May 2021.

 26. Roberts M, Hayes W, Hunt BR, Mount SM, Yorke JA. Reducing storage
requirements for biological sequence comparison. Bioinformatics.
2004;20(18):3363–9. https:// doi. org/ 10. 1093/ bioin forma tics/ bth408.

 27. Schleimer S, Wilkerson DS.,Aiken A. Winnowing: local algorithms for
document fingerprinting. In: Proceedings of the 2003 ACM SIGMOD
International Conference on Management Of data. SIGMOD ’03, 2003;pp.
76–85. Association for Computing Machinery, San Diego, California.
https:// doi. org/ 10. 1145/ 872757. 872770. https:// doi. org/ 10. 1145/ 872757.
872770 Accessed 09 Apr 2021.

 28. Broder AZ. On the resemblance and containment of documents. In:
Proceedings. Compression and Complexity of SEQUENCES 1997 (Cat.
No.97TB100171), 1997;pp. 21–29. https:// doi. org/ 10. 1109/ SEQUEN. 1997.
666900.

 29. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence clas-
sification using exact alignments. Genome Biol. 2014;15(3):46. https:// doi.
org/ 10. 1186/ gb- 2014- 15-3- r46.

 30. Li H. Minimap and miniasm: fast mapping and de novo assembly for
noisy long sequences. Bioinformatics. 2016;32(14):2103–10. https:// doi.
org/ 10. 1093/ bioin forma tics/ btw152.

 31. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinfor-
matics 2018;34(18), 3094–3100. https:// doi. org/ 10. 1093/ bioin forma tics/
bty191. https:// acade mic. oup. com/ bioin forma tics/ artic le- pdf/ 34/ 18/
3094/ 25731 859/ bty191. pdf.

 32. Zheng H, Kingsford C, Marçais G. Lower Density Selection Schemes
via Small Universal Hitting Sets with Short Remaining Path Length. In:
Schwartz, R. (ed.) Research in Computational Molecular Biology. Lecture
Notes in Computer Science, 2020;pp. 202–217. Springer, Cham. https://
doi. org/ 10. 1007/ 978-3- 030- 45257-5_ 13.

 33. Ekim B, Berger B, Orenstein Y. A Randomized Parallel Algorithm for
Efficiently Finding Near-Optimal Universal Hitting Sets. In: Schwartz, R.
(ed.) Research in Computational Molecular Biology. Lecture Notes in
Computer Science, 2020;pp. 37–53. Springer, Cham. https:// doi. org/ 10.
1007/ 978-3- 030- 45257-5_3.

 34. Boyer RS, Moore JS. MJRTY-A Fast Majority Vote Algorithm. In: Boyer, R.S.
(ed.) Automated Reasoning: Essays in Honor of Woody Bledsoe. Auto-
mated Reasoning Series, 1991;pp. 105–117. Springer, Dordrecht. https://
doi. org/ 10. 1007/ 978- 94- 011- 3488-0_5. Accessed 2021-04-09.

 35. Salikhov K, Sacomoto G, Kucherov G. Using cascading Bloom filters to
improve the memory usage for de Brujin graphs. BMC Algor Mol Biol.
2014;9(1):2.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1016/j.ic.2020.104517
https://doi.org/10.1101/2021.02.16.429304
https://doi.org/10.1093/bioinformatics/bth408
https://doi.org/10.1145/872757.872770
https://doi.org/10.1145/872757.872770
https://doi.org/10.1145/872757.872770
https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1186/gb-2014-15-3-r46
https://doi.org/10.1186/gb-2014-15-3-r46
https://doi.org/10.1093/bioinformatics/btw152
https://doi.org/10.1093/bioinformatics/btw152
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1093/bioinformatics/bty191
https://academic.oup.com/bioinformatics/article-pdf/34/18/3094/25731859/bty191.pdf
https://academic.oup.com/bioinformatics/article-pdf/34/18/3094/25731859/bty191.pdf
https://doi.org/10.1007/978-3-030-45257-5_13
https://doi.org/10.1007/978-3-030-45257-5_13
https://doi.org/10.1007/978-3-030-45257-5_3
https://doi.org/10.1007/978-3-030-45257-5_3
https://doi.org/10.1007/978-94-011-3488-0_5
https://doi.org/10.1007/978-94-011-3488-0_5

	Space-efficient representation of genomic k-mer count tables
	Abstract
	Motivation:
	Results:

	Background
	Technical preliminaries
	Minimizers
	Bloom filters
	Compressed static functions

	Methods
	Representation of low-entropy data
	Minimizer bucketing
	Cascading
	Extension to approximate counts

	Results and discussion
	Compression of skewed data
	Compression of higher entropy data
	Approximate counts
	Query speed
	Choosing minimizer lengths

	Conclusions
	References

