
Nakagawa et al.
Algorithms for Molecular Biology (2022) 17:9
https://doi.org/10.1186/s13015-022-00211-1

RESEARCH

Efficient privacy-preserving variable-length
substring match for genome sequence
Yoshiki Nakagawa1, Satsuya Ohata2 and Kana Shimizu1,3*

Abstract

The development of a privacy-preserving technology is important for accelerating genome data sharing. This study
proposes an algorithm that securely searches a variable-length substring match between a query and a database
sequence. Our concept hinges on a technique that efficiently applies FM-index for a secret-sharing scheme. More
precisely, we developed an algorithm that can achieve a secure table lookup in such a way that V [V [. . . V [p0] . . .]]
is computed for a given depth of recursion where p0 is an initial position, and V is a vector. We used the secure table
lookup for vectors created based on FM-index. The notable feature of the secure table lookup is that time, communi-
cation, and round complexities are not dependent on the table length N, after the query input. Therefore, a substring
match by reference to the FM-index-based table can also be conducted independently against the database length,
and the entire search time is dramatically improved compared to previous approaches. We conducted an experiment
using a human genome sequence with the length of 10 million as the database and a query with the length of 100
and found that the query response time of our protocol was at least three orders of magnitude faster than a non-
indexed database search protocol under the realistic computation/network environment.

Keywords: Private genome sequence search, Secure multiparty computation, Secret sharing, FM-index, Suffix array,
LCP array, Maximal exact match

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
The dramatic reduction in the cost of genome sequenc-
ing has prompted increased interest in personal genome
sequencing over the last 15 years. Extensive collections
of personal genome sequences have been accumulated
both in academic and industrial organizations, and there
is now a global demand for sharing the data to acceler-
ate scientific research [1, 2]. As discussed in previous
studies, disclosing personal genome information has a
high privacy risk [3], so it is crucial to ensure that indi-
viduals’ privacy is protected upon data sharing. At pre-
sent, the most popular approach for this is to formulate
and enforce a privacy policy, but it is a time-consum-
ing process to reach an agreement, especially among

stakeholders with different legal backgrounds, which
slows down the pace of research. Therefore, there is a
strong demand for privacy-preserving technologies that
can potentially compensate for or even replace the tra-
ditional policy-based approach [4, 5]. One important
application that needs a privacy-preserving technol-
ogy is private genome sequence search, where different
stakeholders respectively hold a query sequence and a
database sequence and the goal is to let the query holder
know the result while simultaneously keeping the query
and the database private. Many studies have addressed
the problem of how to compute exact or approximate edit
distance or the longest common substring (LCS) through
techniques based on homomorphic encryption [6–8]
and secure multi-party computation (MPC) [9–15], or
how to compute sequence similarity based on private set
intersection [16]. While these studies can evaluate global
sequence similarity for two sequences of similar length,

Open Access

Algorithms for
Molecular Biology

*Correspondence: shimizu.kana@waseda.jp
3 National Institute of Advanced Industrial Science and Technology, Tokyo,
Japan
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-022-00211-1&domain=pdf

Page 2 of 22Nakagawa et al. Algorithms for Molecular Biology (2022) 17:9

other studies address the problem of finding a substring
between a query and a long genome sequence or a set of
long genome sequences, with the aim of evaluating local
sequence similarity [17–23]. Shimizu et al. proposed an
approach to combine an additive homomorphic encryp-
tion and index structures such as FM-index [24] and the
positional Burrows-Wheeler transform [25] to find the
longest prefix of a query that matches a database (LPM)
and a set-maximal match for a collection of haplotypes
[17]. Sudo et al. used a similar approach and improved
the time and communication complexities for LPM on a
protein sequence by using a wavelet matrix [19]. Ishimaki
et al. improved the round complexity of a set-maximal
match, though the search time was more than one order
of magnitude slower than [17] due to the heavy computa-
tional cost caused by the fully homomorphic encryption
[18]. Sotiraki et al. used the Goldreich-Micali-Wigderson
protocol to build a suffix tree for a set-maximal match
[20]. According to experiments by [21], the search time
of [20] is one order of magnitude slower than [17, 21].
Mahdi et al. [21] used a garbled circuit to build a suffix
tree for substring match and a set-maximal match under
a different security assumption such that the tree-tra-
versal pattern is leaked to the cloud server. Chen et al.
[22] and Popic et al. [23] found fixed-length substring
matches using a one-way hash function or homomorphic
encryption on a public cloud under a security assump-
tion such that the database is a public sequence and a
query is leaked to a private cloud server.

In this study, we aim to improve privacy-preserving
substring match under the security assumption such that
both the query and the database sequence are strictly
protected. We first propose a more efficient method
for finding LPM, and then extend it to find the longest
maximal exact match (LMEM), which is more practically
important in bioinformatics. We designed the protocol
for LMEM for ease of explanation, and the protocol can
be applied to similar problems such as finding all maxi-
mal exact matches (MEMs) with a small modification. To
our knowledge, this is the first study to address the prob-
lem of securely finding MEMs.

Our contribution
The time complexity of the previous studies [17, 19]
include the factor of N , and thus they do not scale well
to a large database. For a similar reason, using secure
matching protocols (e.g., [26]) for the shares (or tags in
searchable encryption) of all substrings in a query and
database is even worse in terms of time complexity. To
achieve a real-time search on an actual genome database,
we propose novel secret-sharing-based protocols that do
not include the factor of N in the time, communication,

and round complexities for the search time (i.e., the time
after the input of a query until the end of the search).

The basic idea of the protocols is to represent the data-
base string by a compressed index [24, 27] and store the
index as a lookup table. LPM and MEMs are found by at
most ℓ and 2ℓ table lookups respectively, where ℓ is the
length of the query. More specifically, the table V is ref-
erenced in a recursive manner; i.e., one needs to obtain
V [j] , where j = V [i] , given i. To ensure security, we need
to compute V [j] without seeing any element of V . The
key technical contribution of this study is an efficient
protocol that achieves this type of recursive reference.
We named the protocol secret-shared recursive oblivi-
ous transfer (ss-ROT). While the previous studies require
O(N) time complexity to ensure security, the time, com-
munication, and round complexities of ss-ROT are all
O(ℓ) for ℓ recursive table lookups, except for the prepa-
ration of the table and generation of shares before the
query input. Since the entire protocols mainly consist of ℓ
table lookups for LPM, and 2ℓ table lookups and 2ℓ inner
product computations for LMEM, the search times for
LPM and LMEM do not depend on the database size. In
addition to the protocols based on ss-ROT, we developed
a protocol to reduce data transfer size in the initial step
by using a similar approach taken in ss-ROT. The pro-
tocol offers a reasonable trade-off between the amount
of reduction in data transfer in the initial step and the
increase in computational cost in the later step.

We implemented the proposed protocol and tested it
on substrings of a human genome sequence 103 to 107 in
length and confirmed that the actual CPU time and data
transfer overhead were in good agreement with the theo-
retical complexities. We also found that the search time
of our protocol was three orders of magnitude faster than
that of the previous method [17, 19]. For conducting fur-
ther performance analysis, we designed and implemented
baseline protocols using major techniques of secret-shar-
ing-based protocols. The results showed that the search
times of our protocols were at least two orders of magni-
tude faster than those of the baseline protocols.

Preliminaries
Secure computation based on secret sharing
Here, we explain the 2-out-of-2 additive secret sharing
((2, 2)-SS) scheme and how to securely compute arithme-
tic/Boolean gates (Fig. 1).

Secret sharing and secure computation In t-out-of-
n secret sharing (e.g., [28]), we split the secret value x
into n pieces, and can reconstruct x by combining more
or an equal number of t pieces. We call the split pieces
“share”. The basic security notion for secret sharing is
that we cannot obtain any information about x even

Page 3 of 22Nakagawa et al. Algorithms for Molecular Biology (2022) 17:9

if we gather less than or equal to (t − 1) shares. In this
paper, we consider a case with (t, n) = (2, 2) . A 2-out-
of-2 secret sharing ((2, 2)-SS) scheme over Z2n consists
of two algorithms: Share and Reconst . Share takes as
input x ∈ Z2n and outputs ([[x]]0, [[x]]1) ∈ Z

2
2n , where the

bracket notation [[x]]i denotes the arithmetic share of the
i-th party (for i ∈ {0, 1}). We denote [[x]] = ([[x]]0, [[x]]1)
as their shorthand. Reconst takes as inputs [[x]]0 and [[x]]1
and outputs x. For arithmetic sharing [[x]]i and Boolean
sharing [[x]]Bi , we consider power-of-two integers n (e.g.,
n = 16) and n = 1 , respectively.

Depending on the secret sharing scheme, we can com-
pute arithmetic/Boolean gates over shares; that is, we can
execute some kind of processing related to x without x.
This means it is possible to perform some computation
without violating the privacy of the secret data, and is
called secure (multi-party) computation. It is known
that we can execute arbitrary computation by combining
basic arithmetic/Boolean gates. In the following para-
graphs, we show how to concretely compute these gates
over shares.

Semi-honest secure two-party computation based on
(2, 2)-Additive SS We use a standard (2, 2)-additive SS
scheme, defined by

• Share(x) : randomly choose r ∈ Z2n and let [[x]]0 = r
and [[x]]1 = x − r.

• Reconst([[x]]0, [[x]]1) : output [[x]]0 + [[x]]1.

Note that one of the shares of x ([[x]]0 or [[x]]1) does not
reveal any information about x. In Fig. 1, the secret value
x = 2 is split into [[x]]0 = 4 and [[x]]1 = 6 . These are
valid (2, 2)-additive shares because 4 + 6 ≡ 2 (mod 8)
holds. Even if we can see [[x]]0 = 4 , we cannot decide the
value of x since we execute a split of x uniformly at ran-
dom. This means, in Fig. 1, computing nodes P0 and P1
cannot obtain any information about x as long as these
two nodes do not collude. On the other hand, we can

compute arithmetic ADD/MULT gates over shares as
follows:

• [[z]] ← ADD([[x]], [[y]]) can be done locally by just
adding each party’s share on x and on y. In Fig. 1
(left), we show an example of secure addition. P0/P1
obtain shares 6/7 by adding their two shares. In this
process, P0/P1 cannot find they are computing 2+ 3.

• Multiplication is more complex than addition. There
are various methods for multiplication over shares,
most of which require communication between
computing nodes. In this paper, we use the stand-
ard method for [[w]] ← MULT([[x]], [[y]]) based on
Beaver triples (BT) [29]. Such a triple consists of
bt0 = (a0, b0, c0) and bt1 = (a1, b1, c1) such that
(a0 + a1)(b0 + b1) = (c0 + c1) . Hereafter, a, b, and
c denote a0 + a1 , b0 + b1 , and c0 + c1 , respectively.
We use these BTs as auxiliary inputs for computing
MULT . Note that we can compute them in advance
(or in offline phase) since they are independent of
inputs [[x]] and [[y]] . We adopt a trusted initializer set-
ting (e.g., [30, 31]); that is, BTs are generated by the
party other than two computing nodes and then dis-
tributed. In the online phase of MULT , each i-th party
Pi (i ∈ {0, 1}) can compute the multiplication share
[[z]] = [[xy]] as follows:

1) Pi first computes ([[x]]i − ai) and ([[y]]i − bi) , and
sends them to P1−i.

2) Pi reconstructs x′ = x − a and y′ = y− b.
3) P0 computes [[z]]0 = x′y′ + x′b0 + y′a0 + c0 , and P1

computes [[z]]1 = x′b1 + y′a1 + c1.
 Here, [[z]]0 and [[z]]1 calculated with the above

procedures are valid shares of xy; that is,
Reconst([[z]]0, [[z]]1) = xy . We shorten the notations
and write the ADD and MULT protocols simply as
[[x]] + [[y]] and [[x]] · [[y]] , respectively.

Fig. 1 Arithmetic addition and multiplication over secret sharing

Page 4 of 22Nakagawa et al. Algorithms for Molecular Biology (2022) 17:9

We also write ADD(ADD([[xA]], [[xB]]), [[xC]]) as
�c={A,B,C}[[xc]] . Note that, similarly to the ADD protocol,
we can also locally compute multiplication by constant c,
denoted by c · [[x]] . We can easily extend the above proto-
cols to Boolean gates. By converting + and − into ⊕ in the
arithmetic ADD and MULT protocols, we can obtain the
XOR and AND protocols, respectively. We can construct
NOT and OR protocols from the properties of these
gates. When we compute NOT([[x]]B0 , [[x]]B1) , P0 and P1
output ¬[[x]]B0 and [[x]]B1 , respectively. When we compute
OR([[x]]B, [[y]]B) , we compute ¬AND(¬[[x]]B,¬[[y]]B) . We
shorten the notations and write XOR , AND , NOT , and
OR simply as [[x]] ⊕ [[y]] , [[x]] ∧ [[y]] , ¬[[x]] , and [[x]] ∨ [[y]] ,
respectively. By combining the above gates, we can
securely compute higher-level protocols. The function-
ality of the secure subprotocols [15] used in this paper
are shown in Table 1. Due to space limits, we omit the
details of their construction. Note that we can compute
Choose by [[z]] = [[y]] + [[e]] · ([[x]] − [[y]]) . In this paper,
we consider the standard simulation-based security
notion in the presence of semi-honest adversaries (for
2PC), as in [32]. We show the definition in Appendix 2.
Roughly speaking, this security notion guarantees the
privacy of the secret under the condition that computing
nodes do not deviate from the protocol; that is, although
computing nodes are allowed to execute arbitrary attacks
in their local, they do not (maliciously) manipulate trans-
mission data to other parties. The building blocks we
adopt in this paper satisfy this security notion. Moreo-
ver, as described in [32], the composition theorem for
the semi-honest model holds; that is, any protocol is pri-
vately computed as long as its subroutines are privately
computed.

Index structure for string search
Notation and definition � denotes a set of ordered sym-
bols. A string consists of symbols in � . We denote a lexi-
cographical order of two strings S and S′ by S ≤ S′ (i.e., A
< C < G < T and AAA < AAC). We denote the i-th letter
of a string S by S[i] and a substring starting from the i-
th letter to the j-th letter by S[i, j]. The index starts with

0. The length of S is denoted by |S|. A reverse string of
S (i.e., S[|S| − 1], . . . , S[0]) is denoted by Ŝ . We consider
a direction from the i-th position to the j-th position as
rightward if i < j and leftward otherwise.

Given a query w and a database S, we define the long-
est prefix that matches a database string (LPM) by
max(0,j){j|w[0, . . . , j] = S[k , . . . , l]} , where 0 ≤ j < ℓ and
0 ≤ k ≤ l < N , and the longest maximal exact match
(LMEM) by max(i,j){j − i|w[i, . . . , j] = S[k , . . . , l]} , where
0 ≤ i ≤ j < ℓ and 0 ≤ k ≤ l < N .

FM-Index and related data structures FM-Index [24]
and related data structures [27] are widely used for
genome sequence search. Given a query string w of
length ℓ and a database string S of length N, [24] enables
LPM to be found in O(ℓ) time regardless of N, and it also
enables LMEM to be found in O(ℓ) if auxiliary data struc-
tures are used [27]. Given all the suffixes of a string S:
S[0, . . . , |S| − 1] , S[1, . . . , |S| − 1], . . . , S[|S| − 1] , a suffix
array is an array of positions (p0, . . . , p|S|−1) such
that S[p0, . . . , |S| − 1] ≤ S[p1, . . . , |S| − 1] ≤ S[p2, . . . ,
|S| − 1], . . . ,≤ S[p|S|−1, . . . , |S| − 1] . We denote the suffix
array of S by SA and denote its i-th element by SA[i]. A
Burrows-Wheeler transform (BWT) is a permutation of
the sequence S such that its i-th letter becomes
S[SA[i] − 1] . We denote a BWT of S by L and denote its
i-th letter by L[i]. Let us define a rank of S for a letter
c ∈ � at position t by Rankc(t, S) = |{j|S[j] = c, 0 ≤ j < t}|
and a count of occurrences of letters that are lexicograph-
ically smaller than c in S by CFc(S) =

∑

r<c Rankr(|S|, S) ,
and the operation LFc(i, S) = CFc(L)+ Rankc(i, L) . The
match between w and S is reported as a form of left-
closed and right-open interval on SA, and the lower and
upper bounds of the interval are respectively computed
by LF . Given a letter c and an interval [f, g) that corre-
sponds to suffixes that share the prefix x (i.e., [f, g) reports
the locations of the substring x in S), we can find a new
interval that corresponds to all suffixes that share the
prefix cx (i.e., locations of the substring cx) by

The leftward extension of the match is called a backward
search, which is the main functionality of FM-Index. By
starting the search with the initial interval [0, N) and con-
ducting the backward searches for w[ℓ− 1],w[ℓ− 2], . . . ,
the longest suffix match is detected when f = g . Rank
and CF are precomputed and stored in an efficient from
that can be searched in constant time. Therefore, the
longest suffix match can be computed in O(ℓ) time. LPM
is found if the search is conducted on Ŝ and match is
extended by w[0],w[1], . . . ,w[ℓ− 1].

Searching LMEM by repeating LPM for
w[0, . . . , ℓ− 1],w[1, . . . , ℓ− 1],w[2, . . . , ℓ− 1], . . . ,w[ℓ− 1] takes

(1)[f ′, g ′) = [LFc(f , S),LFc(g , S)).

Table 1 Secure subprotocols used in this paper

Input Output

Equality [[x]] , [[y]] [[z]]B s.t. z = 1 if x = y otherwise z = 0

Comp [[x]] , [[y]] [[z]]B s.t. z = 1 if x < y otherwise z = 0

CastUp [[x]] ∈ Z2n , n′ [[x]] ∈ Z2n
′ (n < n′)

B2A [[x]]B [[x]]
Choose [[x]] , [[y]] , [[e ∈ {0, 1}]] [[z]] s.t. z = x if e = 1 , otherwise (e = 0)

z = y

Page 5 of 22Nakagawa et al. Algorithms for Molecular Biology (2022) 17:9

O(ℓ2) time. We can improve it to O(ℓ) time by using
the longest common prefix (LCP) array and related
data structures [27]. The LCP array, denoted by LCP ,
is an array that stores the length of the longest prefix
of S[SA[i − 1], |S| − 1] and S[SA[i], |S| − 1] in LCP[i]
for 0 < i ≤ N . The lcp-interval [i, j) of lcp-value d is an
interval such that it satisfies LCP[i] < d , LCP[j] < d ,
LCP[k] > d for all k ∈ {i + 1, . . . , j − 1} , and LCP[k] = d
for at least one k ∈ {i + 1, . . . , j − 1} , and is denoted by
d − [i, j) . d − [i, j) corresponds to all the suffixes that
share the prefix S[SA[i], . . . , SA[i] + d − 1] . The parent
interval of d − [i, j) is the lcp-interval h− [m, n) such
that h < d and 0 ≤ m ≤ i < j ≤ n < N , and there is
no other lcp-interval t − [r, s) such that h < t < d and
0 ≤ m ≤ r ≤ i < j ≤ s ≤ n < N . The parent of the lcp-
interval [f, g) can be found by

where PSV[i] = max{j|0 ≤ j < i ∧ LCP[j] < LCP[i]} and
NSV[i] = min{j|i ≤ j < N ∧ LCP[j] < LCP[i]} . By find-
ing a parent interval using PSV and NSV whenever it
fails to extend the match, we can avoid useless backward
searches, and thus LMEM is found at most 2ℓ backward
searches. LCP , PSV and NSV are precomputed and
stored in an efficient form that can be searched in con-
stant time, so we can find LMEM in O(ℓ) time. See sec-
tion 5.2 of [27] for more details of the data structures.
Examples of the search by FM-Index, LCP , PSV , and
NSV are provided in Appendix 1.

Proposed protocols
Problem setting and outline of our protocols
We assume that a query holder A , a database holder B ,
and two computing nodes P0 and P1 participate the pro-
tocol. A holds a query string w of length ℓ and B holds a
database string T of length N . After the protocol is run,

(2)

[f ′, g ′) =
{
[PSV[fi],NSV[fi]) LCP[gi] ≤ LCP[fi]
[PSV[gi],NSV[gi]) (otherwise),

only A knows LPM or LMEM between w and T . P0 and
P1 do not obtain any information of w and T , except for
ℓ and N .

Our protocol consists of offline, DB preparation, and
Search phases. In the offline phase, B generates BTs (cor-
related randomness used for multiplication) and sends
them to P0 and P1 . In the DB preparation phase, B cre-
ates a lookup table and distributes its shares to P0 and
P1 . In the Search phase, A generates shares of the query
and sends them to P0 and P1 , and P0 and P1 jointly com-
pute the result without obtaining any information of
the lookup table. Finally, A obtains the results. Figure 2
shows the schematic view of our goal and model. Note
that the offline and DB preparation phases do not depend
on a query string, so they can be computed in advance
for multiple queries.

In section "Secret-shared recursive oblivious transfer",
we propose the important building block ss-ROT that
enables recursive reference to a lookup table. In sec-
tion "Secure LPM", we describe how to design the lookup
table based on FM-Index, and propose an efficient pro-
tocol for LPM by using the lookup table and ss-ROT. In
section "Secure LMEM", we describe the additional table
design for auxiliary data structures, and propose the
complete protocol for LMEM. Table 2 summarizes the
theoretical complexities of the three protocols. For com-
parison, the complexities of the baseline protocols and a
previous method for LPM based on an additive homo-
morphic encryption [17, 19] are shown. As we men-
tioned in section "Introduction", the baseline protocols
are designed using major techniques of secret-sharing-
based protocols. The detailed algorithms are described in
Appendix 3.

Secret‑shared recursive oblivious transfer
We define a problem called a secret-shared recursive
oblivious transfer (ss-ROT) as follows.

Fig. 2 Schematic view of our goal and model. (0) Server (DB holder) distributes Beaver triples. (A reliable third party can serve as the trusted
initializer instead.) (1) Server distributes shares of the database. (2) User (query holder) distributes shares of the query. (3) The computing nodes
jointly calculate shares of the result. (4) The results are sent to User. The offline phase is (0), DB preparation phase is (1), and Search phase consists of
(2)–(4)

Page 6 of 22Nakagawa et al. Algorithms for Molecular Biology (2022) 17:9

Definition 1 We assume a database holder B and two
computing nodes P0 and P1 participate the protocol. B
holds a vector V of length N and 0 ≤ V [i] < N . Given the
initial position p0 and the depth of recursion ℓ (2 ≤ ℓ) ,
the secret-shared recursive oblivious transfer protocol
outputs shares of

without leaking V to P0 and P1.

For simplicity, we denote the recursion of Eq. 3 by
V (ℓ)[p0] (e.g., V [V [p0]] is denoted by V (2)[p0]). In our
protocol, all the random values are uniformly generated
from Z2n.

DB preparation phase B generates ℓ− 1 random val-
ues r0, . . . , rℓ−2 and computes the following vectors
R0, . . . ,Rℓ−1 . Each vector Rj has N elements.

(3)
V [V [· · ·V
︸ ︷︷ ︸

ℓ

[p0] · · ·]]

(4)

Rj[i] =

(V [i] + rj) mod N (j = 0)

(V [(i − rj−1) mod N] + rj) mod N (1 ≤ j ≤ ℓ− 2)

(V [(i − rj−1) mod N]) mod N (j = ℓ− 1)

B computes Share(Rj[i]) and sends [[Rj[i]]]0 and [[Rj[i]]]1
to P0 and P1 , for i = 0, . . . ,N − 1 and j = 0, . . . , ℓ− 1.

Search phase The Search phase consists of two steps
and is described in Lines 2–5 of Protocol 1. The input
is the initial position p0 and shares of R. The output is
[[V (ℓ)[p0]]] . An example of a search is illustrated in Fig. 3.

Security intuition
In the DB preparation phase of ss-ROT, B does not
disclose any private values, and P0 and P1 receive the
shares. In the Search phase, all the messages exchanged
between P0 and P1 are shares except for the result of
Reconst in Step 1. In the j-th step of the loop in Step 1,
pj+1 = Rj[pj] = (V (j+1)[p0] + rj) mod N is reconstructed.
Since the reconstructed value is randomized by rj , no
information is leaked. Note that for each vector Rj , all
the elements Rj[0], . . . ,Rj[N − 1] are randomized by the
same value rj , but only one of them is reconstructed,
and different random numbers r0, . . . , rℓ−1 are used for
R0, . . . ,Rℓ−1 . In Step 2, P0 and P1 output a result, and no
information other than the result is leaked.

Table 2 Summary of complexities for our protocols and related protocols

BTime and Bsize are generation time and size of BTs. Dtime and Dsize are generation time for the shares of the database and size of the shares. Stime is the time for
Search phase. Comm. is the size of data exchanged between computing nodes. Round is the number of data exchanges

Btime Bsize Dtime Dsize Stime Comm. Round

ss-ROT (proposed) 0 0 ℓN ℓN ℓ ℓ ℓ

Secure LPM (proposed) ℓ ℓ ℓN ℓN ℓ ℓ ℓ

[17, 19] (LPM by AHE) − − − − ℓN ℓ
√
N ℓ

Baseline LPM ℓ2N ℓ2N N N ℓ2N ℓ2N log ℓ+ logN

Secure LMEM (proposed) ℓ2 ℓ2 ℓN ℓN ℓ2 ℓ2 ℓ

Baseline LMEM ℓ3N ℓ3N N N ℓ3N ℓ3N log ℓ+ logN

Page 7 of 22Nakagawa et al. Algorithms for Molecular Biology (2022) 17:9

Security

Theorem 1 ss-ROT is correct and secure in the semi-
honest model.

Proof Correctness and security of ss-ROT protocol are
proved as follows.

Correctness. We assume the following equation.

In Step1, for j = 0 , the protocol computes p1 by recon-
structing R0[p0] . From the definition of Rj[i] in Eq. 4,

For j = k , the protocol computes pk+1 by reconstruct-
ing Rk [pk] . From the definition of Rj[i] in Eq. 4 and the
assumption of Eq. 5,

Eq. 5 holds for i = 1 by Eq. 6. It also holds for i = k + 1
under the assumption that Eq. 5 holds for i = k . There-
fore by induction, Eq. 5 holds for i = 1, . . . , ℓ− 1.

In Step 2, P0 and P1 output [[Rℓ−1[pℓ−1]]] . Since Eq. 5
holds for i = ℓ− 1,

is transformed into (V (ℓ)[p0]) mod N by plugging in
pℓ−1 = V (ℓ−1)[p0] + rℓ−2 . Therefore the final output of
ss-ROT becomes (V (ℓ)[p0]) mod N . The above argument
completes the proof of correctness of Theorem 1.

Security. Since the roles of P0 and P1 are symmetric, it is
sufficient to consider the case when P0 is corrupted. The

(5)pi = (V (i)[p0] + ri−1) mod N

(6)p1 = R0[p0] = (V (1)[p0] + r0) mod N .

(7)

pk+1 = Rk [pk] =(V [(pk − rk−1) mod N] + rk) mod N

=(V [V (k)[p0]] + rk) mod N

=(V (k+1)[p0] + rk) mod N .

Rℓ−1[pℓ−1] = (V [(pℓ−1 − rℓ−2) mod N]) mod N

Fig. 3 Example of a search when V = (2, 0, 3, 1) , p0 = 2 , and ℓ = 4 . The goal is to compute [[V (4)[2]]] = [[2]] . Here we assume B generates
r0 = 1, r1 = 2, r2 = 1 . In Step 1 of Search phase, P0 and P1 jointly compute Reconst([[R0[2]]]0, [[R0[2]]]1) to obtain R0[2] = 0 . (R0[2] is randomized
by r0 , so any element of V is leaked.) In a similar way, P0 and P1 compute R1[0] = 3 and R2[3] = 1 . In Step 2, P0 and P1 output [[R3[1]]]0 and
[[R3[1]]]1 respectively. Since R0[2] = V [2] + r0 , R1[V [2] + r0] = V [V [2] + r0 − r0] + r1 , R2[V [V [2]] + r1] = V [V [V [2]] + r1 − r1] + r2 , and
R3[V [V [V [2]]] + r2] = V [V [V [V [2]]] + r2 − r2] , ss-ROT successfully computes [[V (4)[2]]]

input to P0 is p0 and ℓ , and output of P0 is V (ℓ)[p0] . The
function achieved by Protocol 1 is deterministic and the
protocol is correct. Therefore, to ensure the security of
Protocol 1, we need to prove existence of a probabilistic
polynomial-time simulator S such that

where X is P0 ’s view. X consists of:

• [[Rj[i]]]0 for i = 0, . . . ,N − 1 and j = 0, . . . , ℓ− 1 (a
message from B)

• [[Rj[pj]]]1 (j-th message from P1) for j = 0, . . . , ℓ− 1

• pj (j-th value obtained by Reconst([[Rj[pj]]]0, [[Rj[pj]]]1)
in Step1) for j = 1, . . . , ℓ− 1.

All the messages from B and P1 are uniformly at
random in Z2n , as they are generated by Share .
pj + 1 = Reconst([[Rj[pj]]]0, [[R

j[pj]]]1) holds for j = 0, . . . , ℓ− 2 ,
and V (ℓ)[p0] = Reconst([[Rℓ−1[pℓ−1]]]0, [[Rℓ−1[pℓ−1]]]1)
holds. p1 = R0[p0], p2 = R1[p1], . . . , pℓ−1 = Rℓ−2[pℓ−2]
are uniformly at random in ZN from the definition of
Eq. 4.
Let us denote a random number u chosen from a set
U uniformly at random by u

R∈U . We construct S as
described in Protocol 2. The output of S is R̃0 ∈ Z

ℓ×N
2n ,

R̃1 ∈ Z
ℓ
2n , and p̃1, . . . , p̃ℓ−1 . In Line 6 and Line 9,

p̃1, . . . , p̃ℓ−1 are generated such that they are uniformly at
random in ZN . In Line 7, R̃0

j[p0] and R̃1[0] are generated
by Share such that they are shares of p̃1 and uniformly
at random in Z2n . In Line 10, R̃0

j[p̃j] and R̃1[j] are gener-
ated by Share such that they are shares of p̃j+1 and uni-
formly at random in Z2n for j = 1, . . . , ℓ− 2 . In Line 12,
R̃0

j[p̃ℓ−1] and R̃1[ℓ− 1] are generated by Share such that
they are shares of V (ℓ)[p0] and uniformly at random in
Z2n . All the elements of R̃0 except for R̃0

0[p0] and R̃0
j[p̃j]

(j = 1, . . . , ℓ− 1) are uniformly at random in Z2n by
Line 3. Therefore, Eq. 8 holds. By the above discussion,
we find our ss-ROT satisfies security in the semi-honest
model. �

(8){(S(p0, ℓ,V (ℓ)[p0]),V (ℓ)[p0])} ≡ {(X ,V (ℓ)[p0])},

Page 8 of 22Nakagawa et al. Algorithms for Molecular Biology (2022) 17:9

Complexities
In the DB preparation phase, B generates shares of V of
length N for ℓ times. Therefore, time and communication
complexities are O(ℓN) . For the Search phase, Reconst is
computed ℓ times in Step 1. Since the time, communica-
tion, and round complexities of Reconst are O(1), those
of the Search phase become O(ℓ).

Secure LPM
Construction of lookup table The goal is to find LPM
securely. To apply FM-Index for a prefix search, the
reverse string of T (i.e., T̂) is used. The backward search
of FM-Index is formulated by Eq. 1. If we precompute
LFc(i, T̂) for i = 0, . . . ,N and c ∈ {A,T,G,C} , and store
them in a lookup table that consists of four vectors:
VA , VC , VG , and VT such that Vc[i] = LFc(i, T̂) , Eq. 1 is
replaced by the following table lookup

I.e., starting with the initial interval [f0 = 0, g0 = N) , we
can compute the match by recursively referring to the
lookup table while f < g.

Protocol overview The key idea of Secure LPM is to
refer to V by ss-ROT, i.e., P0 and P1 jointly refer to V ℓ
times in a recursive manner. To achieve backward
search, P0 and P1 need to select Vx[·] for each refer-
ence, where x is a query letter to be searched with. This
is achieved by expressing the query letter by unary code

(9)fk+1 = Vw[k][fk], gk+1 = Vw[k][gk].

(Eq. 11) and computing the inner product of Eq. 11 and
(VA[·],VC[·],VG[·],VT[·]) . To find LPM, P0 and P1 need
to check f = g for each reference. We use the subproto-
col Equality to check it securely. Since V is randomized
with different numbers for searching f and g, the dif-
ference of the random numbers is precomputed and
removed securely upon the equality check. A receives
only the result of each equality check to know LPM. For
example, LPM is the prefix of length i − 1 when f = g for
the i-th reference. If f = g for all references, LPM is the
entire query.

DB preparation phaseB creates a lookup table and
generates the following 4ℓ vectors in a similar manner
to ss-ROT. For simplicity, we denote the length of Vc by
N ′ = N + 1.

R
j
c,f [i] is used for computing the lower bound f of the

interval [f, g). We also generate Rj
c,g [i] for the upper

bound g. R consists of 8ℓ vectors, each of length N ′ . Since
the longest match is found when f = g , B also generates
a vector r′[j] = (r

j
f − r

j
g) mod N ′ that is used for equality

check of f and g. Then, B sends shares of Rj
c,f [i] , R

j
c,g [i] ,

and r′[j] to P0 and P1.

(10)

R
j
c,f [i] =

{

(Vc[i] + r
j
f) mod N ′ (j = 0)

(Vc[(i − r
j−1

f) mod N ′] + r
j
f) mod N ′ (1 ≤ j < ℓ)

Page 9 of 22Nakagawa et al. Algorithms for Molecular Biology (2022) 17:9

and LFw[j](g ′, T̂)+ r
j
g in Lines 5–8 without leaking f ′ and

g ′ , where [f ′, g ′) corresponds to the match of w[0, j] and
T̂ . In Lines 10–13, the equality of f ′ and g ′ is examined
for all rounds. Note that different values rj−1

f and rj−1
g are

used for fj = (f ′ − r
j−1

f) mod N ′ and gj = (g ′ − r
j−1
g) mod N ′

in order to conceal f ′ and g ′ . Since f ′ , g ′ , rj−1

f ,
r
j−1
g , r′[j − 1] ∈ {0, . . . ,N ′ − 1} , it is sufficient to check if
fj − gj − r′[j − 1] is equal to either one of −N ′, 0, and N ′ .
In Lines 16–18, A receives all the results of equality
checks (i.e., [[o[1]]]B, . . . , [[o[ℓ]]]B) from P0 and P1 , and
knows LPM by reconstructing them. For example, if w =
GCT and o = (0, 0, 1) , A knows that LPM is GC.

Fig. 4 Example of a secure table lookup when w = GCT and T̂ = ACGT. Only the lookup for a lower bound is shown. For simplicity, Rjc,f and rjf
are denoted by Rjc and rj . LFw[i](fi , T̂) (i = 0, 1, 2) is computed by VG[0], VC[2] , and VT[1] . V is referenced securely by using R. R0

G
[0] is computed by

∑

c∈� qc[0] · Rc[0] . R1C[2+ r0] is computed by
∑

c∈� qc[1] · Rc[2+ r0] . R2
T
[1+ r1] is computed by

∑

c∈� qc[2] · Rc[1+ r1]

Search phase Protocol 3 describes the algorithm in detail.
A generates four vectors qA , qC , qG , qT , each of length ℓ ,
as follows.

For each j, (qA[j], qC[j], qG[j], qT[j]) encodes w[j] (e.g.,
(qA[j], qC[j], qG[j], qT[j]) = (1, 0, 0, 0) if w[j] = A). The aim
of the encode is to compute [[Rx[j]]] = [[∑c∈� qc[j] · Rc[j]]]
when w[j] = x . Figure 4 illustrates an example of the table
lookup.
A generates shares of qA , qC , qG , qT and distributes

them to P0 and P1 . P0 and P1 compute LFw[j](f ′, T̂)+ r
j
f

(11)qc[j] =
{
1 (c = w[j])
0 (c �= w[j])

Page 10 of 22Nakagawa et al. Algorithms for Molecular Biology (2022) 17:9

Security

Theorem 2 Protocol 3 is correct and secure in the semi-
honest model.

Proof Correctness and security of Protocol 3 are proved
as follows.

Correctness. The lookup table V simply stores all possible
outputs of LF . Therefore, backward search (Eq. 1) is
equivalent to Eq. 9. For the case of querying w,
Vw[k−1][· · ·Vw[0][p0] · · ·] becomes lower bound f (for
p0 = 0) or upper bound g (for p0 = N) of the interval
that corresponds to the prefix match of length k. In Line
5 of Protocol 3, [[Rk

A,f [fk] × qA[k] + Rk
C,f [fk] × qC[k]

+Rk
G,f [fk] × qG[k] + Rk

T,f [fk] × qT[k]]] is computed. Since
qw[j][j] = 1 and qc[j] = 0 (c = w[j]), it is equivalent to
[[Rk

w[k],f [fk]]] . Line 6 computes [[Rj
w[k],g [gk]]] in the same

manner. Each vector Rj
c,f in Eq. 10 is generated in the

same manner as Rj in Eq. 4. Since Eq. 10 uses the com-
mon random values rjf and rj−1

f for Rj
A,f , R

j
C,f , R

j
G,f , R

j
T,f ,

we can recursively reference Vc (c ∈ { A, C, G, T }),
which is obvious from the correctness of ss-ROT.
 Therefore, the recursion by Line 5 and Line 7 can
compute (Vw[k−1][· · ·Vw[0][f0] · · ·] + rk−1

f) mod N ′ , and
the recursion by Line 6 and Line 8 can also compute
(Vw[k−1][· · ·Vw[0][g0] · · ·] + rk−1

g) mod N ′.

The longest match is found when the interval width
becomes 0. Since fk = (Vw[k−1][· · ·Vw[0][f0] · · ·] + rk−1

f) mod N ′
and gk = (Vw[k−1][· · ·Vw[0][g0] · · ·] + rk−1

g) mod N ′ are
randomized, Line 11 computes fk − gk − (r′[k − 1] =
(rk−1

f − rk−1
g) mod N ′) to obtain the correct interval width.

When the width is 0, d becomes either one of 0, N ′ and
−N ′ . Therefore, Line 12 computes the equality d and 0,
N ′ and −N ′ respectively. By reconstructing all the results
in Lines 16–18, A knows the round, in which the interval
width becomes 0; i.e., he/she knows LPM. The above
argument completes the proof of correctness of
Theorem 2.

Security We only show a sketch of the proof. For Lines
1–2 of Protocol 3, A and B do not disclose any private
values, and P0 and P1 receive the shares. For Lines
3–14, it is guaranteed by the subprotocols ADD , MULT ,
and Equality that all the messages exchanged between
P0 and P1 are shares except for the output of Reconst

in Lines 7–8. (see section "Secure computation based
on secret sharing" for details of the subprotocols.) In
Lines 7–8, reconstructed values are Rk

w[j],f [fj] and
Rk
w[j],g [gj] . Since the values are (Vw[j][fj] + r

j
f) mod N ′ and

(Vw[j][gj] + r
j
g) mod N ′ according to Eq. 10, it is obvious

that V is randomized for all rounds j = 0, . . . , ℓ− 1 ,
and no information is leaked. For Lines 14–17, only
the output of Equality at Line 11 is reconstructed. The
reconstructed values are either 1 or 0 according to
Equality , and no information other than the result is
leaked. �

A may reveal T by making many queries. Such a problem
is called output privacy. Although output privacy is out-
side of the scope of this paper, we should mention here
that A needs to make an unrealistically large number of
queries for obtaining T by such a brute-force attack, con-
sidering that N is very long.

Complexities
The DB preparation phase generates shares of Rj

c,f and
R
j
c,g (c ∈ � and 0 ≤ j < ℓ); i.e., 8× ℓ vectors of length N ′ .

Therefore, the time and communication complexities are
O(ℓN) . For the Search phase, MULT and Reconst are
computed twice in Lines 4–9 for ℓ rounds and Equality is
computed once in Lines 10–13 for ℓ rounds. Note that
Equality is computed in parallel, and the number of
round can be reduced to a constant number. Each time,
the communication and round complexities of these sub-
protocols are O(1), so those of the Search phase become
O(ℓ).

Secure LMEM
Construction of lookup table As described in sec-
tion "Index structure for string search", we can find a
parent interval by a reference to LCP , PSV , and NSV .
Therefore, in addition to Vc defined in section "Secure
LPM", we prepare lookup tables that simply store all the
outputs of them; i.e., Vlcp[i] = LCP[i] , Vpsv[i] = PSV[i] ,
and Vnsv[i] = NSV[i].

DB preparation phase B generates randomized vectors
Rc,f , Rc,g and r′[j] = (r

j
f − r

j
g) mod N ′ using the same algo-

rithm in section "Secure LPM" for length 2ℓ . As shown in
Eq. 2, Vlcp is referred by the upper and lower bounds of
[f, g). Therefore, B generates following circular permuta-
tions of Vlcp such that Wl,f and Rc,f , and Wl,g and Rc,g , are
permutated by the same random values, respectively. I.e.,

Page 11 of 22Nakagawa et al. Algorithms for Molecular Biology (2022) 17:9

where x is either f or g. Vpsv is referred by both f and g, and
is plugged in to f. Therefore, B generates Wj

p,f and Wj
p,g

such that both of them are randomized by rjf , and Wj
p,f is

permutated by rj−1

f and Wj
p,g is permutated by rj−1

g as
follows.

 Similarly, Vnsv is referred by both f and g, and is plugged
in to g. Therefore, B generates Wj

n,f [i] and Wj
n,g [i] as

follows.

 B distributes shares of Rc,f , Rc,g , r′ , Wl,f , Wl,g , Wp,f , Wp,g ,
Wn,f , and Wn,g to P0 and P1.

Search phase Protocol 4 describes the algorithm in
detail. A generates query vectors qA , qC , qG , qT by Eq. 11
and distributes shares of the vectors to P0 and P1 . In Line
6 of Protocol 4, [f̂ , ĝ) is computed by the reference to R
(i.e., a search based on a backward search) similarly to
Lines 5–6 of Protocol 3. In Line 11, [fex, gex) is computed
by the reference to W (i.e., a search based on LCP , PSV
and NSV). In Line 13, the interval is updated by either
[f̂ , ĝ) or [fex, gex) based on the result of f ′ = g ′ in Lines
7–9, where [f ′, g ′) corresponds to the interval that corre-
sponds to a substring match.

In each round, we need to know a query letter to be
searched with, so we need to maintain the right end
position of the match in the query. The position moves
toward the right while the match is extended, but remains
the same when the interval is updated based on PSV and
NSV . To memorize the position, we prepare shares of
a unit bit vector u of length ℓ , in which the position t is
memorized as u[t] = 1 and u[i �= t] = 0 . In Lines 20–23,
u remains the same if the interval is updated based
on PSV and NSV , and u = (0,u[0],u[1], . . . ,u[ℓ− 2])

W
j
l,x[i] =

{
Vlcp[i] (j = 0)

Vlcp[(i − r
j−1
x) mod N] (1 ≤ j < 2ℓ),

W
j
p,f [i] =

{

(Vpsv[i] + r
j
f) mod N (j = 0)

(Vpsv[(i − r
j−1

f) mod N] + r
j
f) mod N (1 ≤ j < 2ℓ)

W
j
p,g [i] =

{

(Vpsv[i] + r
j
g) mod N (j = 0)

(Vpsv[(i − r
j−1
g) mod N] + r

j
f) mod N (1 ≤ j < 2ℓ)

W
j
n,f [i] =

{

(Vnsv[i] + r
j
f) mod N (j = 0)

(Vnsv[(i − r
j−1

f) mod N] + r
j
g) mod N (1 ≤ j < 2ℓ)

W
j
n,g [i] =

{

(Vnsv[i] + r
j
g) mod N (j = 0)

(Vnsv[(i − r
j−1
g) mod N] + r

j
g) mod N (1 ≤ j < 2ℓ)

otherwise. When the search is finished (e.g., the right
end of a match exceeds the right end of the query)
u = (0, . . . , 0) . Therefore in Lines 25–28, x = 1 while the
right end of a match dose not exceed the right end of
the query and x = 1 after finishing the search. In Lines
29–31, the inner product of qc (c ∈ �) and u becomes the
encode of w[t] that is used for the next round.

We also maintain the left end position of the match.
While the match is extended, the position remains the
same and it moves toward the right when the interval
is updated by [fex, gex) . The new left end position can be
computed by p+m− c where p is the current position,
m is the length of the current match, and c is the lcp-
value of [fex, gex) (i.e., the longest common prefix length of
suffixes contained in [fex, gex)). The position is computed
in Line 33. The match length is incremented by 1 for
each extension while the right end of the match does not
exceed the query length. When the interval is updated
by [fex, gex) , the match length is reduced to the lcp-value
of [fex, gex) , which is computed by max(LCP[f], LCP[g]) .
The match length is computed in Line 32. In Line 35,
the longest match length and the corresponding left end
position are updated. After all the positions in the query
have been examined, LMEM and its left end position are
sent to A in Line 37.

Security

Theorem 3 Protocol 4 is correct and secure in the semi-
honest model.

Proof Correctness and security of Protocol 4 are proved
as follows. Correctness. V, R, r′ and q are generated by the
same algorithm used in Protocol 3. Therefore, Line 6 is
equivalent to a backward search, and e1 is the result of
the equality check of 0 and the width of the obtained
interval in Lines 7-8. The lookup tables Vlcp , Vpsv , and Vnsv
store all the outputs of LCP , PSV and NSV , and Wl , Wp ,
and Wn are generated based on Vlcp , Vpsv , and Vnsv ,
respectively. Since Wj

l,f and Wj
l,g are circular permutations

of Vlcp by the same random values rj−1

f and rj−1
g that are

used for generating Rc,f and Rc,g (c ∈ �) respectively, Line
8 can compute LCP[gj] ≤ LCP[fj] and e2 holds the result.
By using Choose and e2, either [Wj

p,f [fj],W
j
n,f [fj]) or

[Wj
p,g [gj],Wj

n,g [gj]) is selected. Wj
p,f and Wj

p,g are permu-
tated by rj−1

f and rj−1
g , but are randomized by the identi-

Page 12 of 22Nakagawa et al. Algorithms for Molecular Biology (2022) 17:9

cal random value rjf . Similarly, Wj
n,f and Wj

n,g are permu-
tated by rj−1

f and rj−1
g , but are randomized by rjg . Since

Wp,f [fj] and Wj
n,g [gj] are generated in the same manner as

Rc,f and Rc,g , it is obvious that the reference by them is
correct. The reference by Wj

n,f [fj] is transformed into

and the reference by Wj
p,f [gj] is transformed into

where Xj+1 is any one of Rj+1
c , Wj+1

p and Wj+1
n , and Vx is

the corresponding lookup table; i.e., either one of Vc , Vpsv
and Vnsv . Note that Vx could be a different table for each
j + 1 , but we abuse the same notation for simplicity of
notation. Since fj and gj are described in the form of
V

(j)
x [p0] + r

j−1

f and V (j)
x [p′0] + r

j−1
g based on Eq. 5, Eq. 12

and Eq. 13 are transformed into V (j+2)
x [p0] + r

j+1
g and

V
(j+2)
x [p′0] + r

j+1

f , which also satisfy the recursion form of
Eq. 5. Thus, the intervals [Wj

p,f [fj],W
j
n,f [fj]) and

[Wj
p,g [gj],Wj

n,g [gj]) are correct intervals and Line 11 is
equivalent to computing Eq. 2.

Lines 16–23, u remains the same if e1 = 0 and
u = (0,u[0],u[1], . . . ,u[ℓ− 2]) otherwise. Therefore
Lines 29–31 can choose the letter to be searched with.
The match length and the start position are obtained
based on e1 in Lines 32–33, and the longest value and the
corresponding position are selected in Lines 34–35. The
shares of the length and start position of LMEM are sent
to A , and A reconstructs them. Then, Protocol 4 outputs
them. The above argument completes the proof of cor-
rectness of Theorem 3.

(12)

X
j+1
g [Wj

n,f [fj]] = Vx[Wj
n,f [fj] − r

j
g] + r

j+1
g

= Vx[Vnsv[fj − r
j−1

f] + r
j
g − r

j
g] + r

j+1
g

= Vx[Vnsv[fj − r
j−1

f]] + r
j+1
g

(13)

X
j+1

f [Wj
p,g [gj]] = Vx[Wj

p,g [gj] − r
j
f] + r

j+1

f

= Vx[Vpsv[gj − r
j−1
g] + r

j
f − r

j
f] + r

j+1

f

= Vx[Vpsv[gj − r
j−1
g]] + r

j+1

f

Security. We only show a sketch of the proof. For Lines
1–2 of Protocol 4, A and B do not disclose any private
values, and P0 and P1 receive the shares. For Lines 3–37,
it is guaranteed by the subprotocols ADD , MULT ,
Equality , and Choose that all the messages exchanged
between P0 and P1 are shares except for the output of
Reconst in Line 14. (see section "Secure computation
based on secret sharing" for details of the subprotocols.)
In Line 14, the reconstructed values are
fi+1 = V

(j+1)
x [p0] + r

j
f and gj+1 = V

(j+1)
x [p0] + r

j
g ,

according to Eq. 5, Eq. 12, and Eq. 13. Since fj+1 and gj+1
are randomized by rjf and rjg , respectively, for all rounds
j = 0, . . . , 2ℓ− 1 , no information is leaked. In Line 38, A
reconstructs only the search result (the length and start
position of LMEM). �

Complexities
The DB preparation phase generates shares of Rj

c,f and
R
j
c,g (c ∈ � , 0 ≤ j < ℓ) and Wj

x,f and Wj
x,g (x ∈ {l, p, n} and

0 ≤ j < ℓ); 14 × ℓ vectors of length N + 1 . Therefore, the
time and communication complexities are O(ℓN) . For
the Search phase, MULT is computed ℓ times in parallel in
Lines 17–18. (These are not dependent on each other.) In
Line 30, MULT is computed ℓ times in parallel, and Line
30 is computed in parallel four times in Lines 29–31.
Lines 17–18 and Lines 29–31 are repeated for 2ℓ− 1
rounds. Other subprotocols are also computed for 2ℓ− 1
rounds. The time, communication, and round complexi-
ties are O(1) for MULT , and independent computation of
MULT for ℓ times does not increase the round complex-
ity. The time, communication and round complexities
are O(1) for the other subprotocols used in Protocol 4.
Therefore, the complexities of the Search phase are O(ℓ2)
for time and communication, and O(ℓ) for the number of
rounds. The time complexity of the standard (i.e., non-
privacy-preserving) LMEM is O(ℓ) while that of Secure
LMEM is O(ℓ2) . The increase in time complexity is
caused by the computation for maintaining match posi-
tion securely.

Page 13 of 22Nakagawa et al. Algorithms for Molecular Biology (2022) 17:9

Page 14 of 22Nakagawa et al. Algorithms for Molecular Biology (2022) 17:9

Reducing size of shares in DB preparation phase
The protocols based on ss-ROT are quite efficient in
Search phase, however, they require large data trans-
fer from B to the computing nodes in DB preparation
phase when the number of queries and the length of the
database are large. To mitigate the problem, we propose
another protocol that can reduce size of shares in DB
preparation phase.

We use two parameters m and n (m < n) for comput-
ing shares. When Share outputs ([[x]]0, [[x]]1) ∈ Z

2
2m , we

denote the share by ([[x]]m0 , [[x]]m1) . When Share outputs
([[x]]0, [[x]]1) ∈ Z

2
2n , we denote the share by ([[x]]0, [[x]]1) .

We denote M = 2m . In our protocol, all the random val-
ues are uniformly generated from Z2n.

Basic idea Vc[i] = LFc(i, T̂) is a lookup table
used by Protocol 3 and 4. We sample Vc[i] at
i = 0,M, 2M, . . . , ⌊N ′/M⌋M , where N ′ is the length of
Vc and store the sampled values in a vector z. We com-
pute x[i] = Vc[i] − Vc[p] for i = 0, . . . ,N ′ − 1 , where p
is the sampled position closest to i and p ≤ i . Given a
position k, we can compute Vc[k] by z[⌊k/M⌋] + x[k] .
Any element in z is non-negative and at most N ′ − 1
while that in x is also non-negative and at most M − 1
because 0 ≤ Vc[i + 1] − Vc[i] ≤ 1 . Our idea is to use
n bits for storing z[i] and m bits for storing x[i]. Note
that we used n bits for storing Vc[i] in Protocol 3 and
Protocol 4. There are ⌈N ′/M⌉ sampled positions, so the
size of the lookup table becomes O(n⌈N ′/M⌉ +mN ′) ,
which is n/m times smaller compared to Vc if M is suf-
ficiently large. We use a rotation technique to hide an
intermediate position. Since 1 < Vc[0] − Vc[N ′ − 1] for
most cases, we design a rotated table V ′ that satisfies
0 ≤ V ′

c[i + 1] − V ′
c[i] ≤ 1 by subtracting an offset from

Vc.
DB preparation phase B computes following vectors for

j = 0, . . . , ℓ− 1

where rf [j] is a random value, ojc,f = Vc[(N ′ − 1−rf [j]) mod N ′]
−Vc[N ′ − 1]and ōjc,f = Vc[(N ′ − 1−rf [j]) mod N ′]−Vc[0].

(14)

V ′j
c,f [(i + rf [j]) mod N ′]

=
{

Vc[i] − o
j
c,f (i ≤ (i + rf [j]) mod N ′)

Vc[i] − ō
j
c,f (i > (i + rf [j]) mod N ′) ,

Theorem 4 0 ≤ V ′ j
c,f [i + 1] − V ′ j

c,f [i] ≤ 1 for i = 0, . . . ,N ′ − 2.

Proof Following equation is equivalent to Eq. 14.

0 ≤ Vc[i + 1] − Vc[i] ≤ 1 holds for i = 0, . . . ,N ′ − 2
from the definition of Vc.

I f (rf [j]) mod N ′ = 0 , Vc = V ′j
c,f . T h e r e f o r e ,

0 ≤ V ′j
c,f [i + 1] − V ′j

c,f [i] ≤ 1 holds for i = 0, . . . ,N ′ − 2.

If (rf [j]) mod N ′ �= 0 and i = (rf [j] − 1) mod N ′ , V ′ j
c,f [i + 1] − V ′ j

c,f [i]
= Vc[0] − o

j
c,f − Vc[N ′ − 1] + ō

j
c,f = 0 . Let us consider

when
(rf [j]) mod N ′ �= 0 and i = (rf [j] − 1) mod N ′ . We denote

i = (rf [j] − 1+ a) mod N ′ (0 < a < N ′
)
 . Then,

(i + 1− rf [j]) mod N ′

= (a) mod N ′ and i + 1 = (rf [j] − 1+ a) mod N ′ + 1 . Since
(a) mod N ′ − ((rf [j] − 1+ a) mod N ′ + 1)

= (a− 1) mod N ′ − (rf [j] − 1+ a) mod N ′ holds because
0 < a , an offset for V ′j

c,f [i + 1] and that for V ′j
c,f [i] are

same and V ′ j
c,f [i + 1] − V ′ j

c,f [i] = Vc[(a) mod N ′] − Vc[(a− 1) mod N ′] .
Therefore, 0 ≤ V ′j

c,f [i + 1] − V ′j
c,f [i] ≤ 1 holds for

i = 0, . . . ,N ′ − 2 . �

Let Qj
c,f be an integer vector of length ⌈N ′/M⌉ such that

Note that V ′j
c,f [i] = Q

j
c,f [⌊i/M⌋] + R

j
c,f [i] , and Vc[i] is

obtained by adding an offset to V ′j
c,f [i].

Since Rj
c,f [i] is non-negative and at most M − 1 , B gen-

erates shares [[Rj
c,f [i]]]m . B also generates [[Qj

c,f [p]]] , [[o
j
c,f]] ,

[[ōjc,f]] and [[rf [j]]] . Above shares are used for computing
lower bound f of an interval. B generates shares for upper
bound g in a same manner. Then B distributes all the
shares to P0 and P1.

Search phase A generates table w for a query string w
by Eq. 11. A generates shares of q and distributes them to
P0 and P1 . The entire protocol is described in Protocol 5.

(15)

V ′ j
c,f [i]

=
{

Vc[(i − rf [j]) mod N ′] − o
j
c,f ((i − rf [j]) mod N ′ ≤ i)

Vc[(i − rf [j]) mod N ′] − ō
j
c,f ((i − rf [j]) mod N ′ > i) .

Q
j
c,f [p] = V ′j

c,f [pM] , and R
j
c,f [i]

= V ′j
c,f [i] − V ′j

c,f [M⌊i/M⌋] .

Page 15 of 22Nakagawa et al. Algorithms for Molecular Biology (2022) 17:9

Security

Theorem 5 Protocol 5 is correct and secure in semi-hon-
est setting.

Proof Correctness and security of Protocol 5 are proved
as follows.

Correctness. In Line 5-6 of Protocol 5, pj = (fj + rj) mod N ′
is computed. In Line 8, CastUp(Rj

c,f [pj]) is computed to
avoid overflow in Line 9. In Line 9, shares of V ′j

c,f [pj] are
computed, which is obvious from the definition of Qj

c,f
and Rj

c,f . In Line 11-13, [[f̂ j+1
w[j]]] , [[o

j
w[j],f]] and [[ōjw[j],f]] are

selected. From the definition of V ′j
c,f described in Eq. 14,

it is obvious that Vc[fj] is obtained by V ′j
c,f [pj] + o

j
c,f when

fj ≤ pj and V ′j
c,f [pj] + ō

j
c,f when fj > pj , and Line 14

computes [[Vc[fj]]] . g is computed similarly to f. Since ref-
erence to Vc achieved in Lines 4–16 is equivalent to eval-
uating Eq. 1 and an equality check of f = g is conducted
in Lines 17–19, Protocol 5 is correct.

Security We only show sketch of the proof. All the mes-
sages exchanged between P0 and P1 are shares except for
Line 6. In Line 6, reconstructed value pj is randomized by
rf [j] in Line 5. Therefore, no information is leaked. �

Complexities
In DB preparation phase, shares of Rj

c,f are generated
with a parameter m and shares of other values including
Q
j
c,f are generated with a parameter n. The length of Rj

c,f
is N + 1 and that of Qj

c,f is ⌈(N + 1)/M⌉ . The total num-
ber of other values do not depend on N. The query
length is ℓ and shares of Rj

c,f , Q
j
c,f , and other values are

necessary for each query character. Therefore, time
complexity is O(ℓN) and communication complexity is
O(ℓNm+ ℓ⌈N/M⌉n).

For Search phase, ADD , MULT , Reconst , CastUp and
Comp are computed a few times for 2ℓ times in Line 4-16
and Equality is computed ℓ times in Line 17-19. Since
each time and communication and round complexities of
these subprotocols are O(1), those of the entire protocol
become O(ℓ).

Experiment
We implemented Protocol 3 (Secure LPM), Protocol 4
(Secure LMEM) and Protocol 5. For comparison, we
also implemented baseline protocols (Baseline LPM and
Baseline LMEM). Details of the baseline protocols are
provided in Appendix 3. All protocols were implemented
by Python 3.5.2. The dataset was created from Chromo-
some 1 of the human genome. We extracted substrings of

Page 16 of 22Nakagawa et al. Algorithms for Molecular Biology (2022) 17:9

length N = 103 , 104 , 105 , 106 , and 107 for databases, and
ℓ = 10 , 25, 50, 75, and 100 for queries. Share was run
with n = 16 and n = 32 for N < 105 and 105 ≤ N in the
proposed protocols, and n = 1 for a Boolean share and
n = 8 for an arithmetic share in the baseline protocols.
We did not implement a data transfer module, and each
protocol is implemented as a single program. Therefore,
the search time of the protocols was measured by the
time consumed by either one of P0 and P1 . To assess the
influence of communication on a realistic environment,
we theoretically estimated delays caused by network
bandwidth and latency. We assume three environments:
LAN (0.2 ms/10 Gbps), WAN1 (10 ms/100 Mbps), and
WAN2 (50 ms/10 Mbps). During the run of Search phase,
we stored all the data that were transferred from P0 to P1
in a file and measured the file size as an actual commu-
nication size. Note that the communication is symmet-
ric and data transfer size from P0 to P1 is equal to that
from P1 to P0 . Based on the data transfer size D byte, we
estimate the communication delay by D/k + eT/1000 ,
where k is bandwidth, e is latency and T is a round of
communication. All the protocols were run with a single
thread on the same machine equipped with Intel Xeon
2.2 GHz CPU and 256 GB memory. We also tested the
C++ implementation of [19], which is based on AHE.
The algorithm for LPM in [17] for the string with |�| ≤ 4

(e.g., genome sequence) is the same as [19]. Sudo et al.
[19] is implemented as a server-client software, and the
client and the server were run with individual single
threads on the same machine. Therefore, the results of
[19] do not include delays caused by bandwidth limita-
tion and latency, so we also estimated delays based on
the data transfer size and round of communication in the

Table 3 Offline time (Time), offline size (Size), DB preparation time (Time), DB preparation size (Size), Search time on a local machine
(Time), Search communication size (Size), estimated Search time for three environments: LAN (0.2 ms/10 Gbps), WAN1 (10 ms/100
Mbps), and WAN2 (50 ms/10 Mbps), for N = 10

4 (only for Baseline LMEM), 105, 106, 107 , and ℓ = 100

The size unit is MB and the time unit is s except for the cell describing “20 h<”

N Offline DB preparation Search Estimated timeon network

Time Size Time Size Time Size LAN WAN1 WAN2

Secure 105 0.166 0.013 123 305 0.141 0.010 0.181 2.162 10.249

LPM 106 0.141 0.013 1248 3051 0.113 0.010 0.153 2.134 10.221

(proposed) 107 0.150 0.013 12628 30517 0.126 0.010 0.167 2.147 10.234

Secure 105 2.318 0.162 123 77 2.888 0.040 3.028 9.911 38.020

LPM2 106 2.317 0.162 1236 774 2.878 0.040 3.018 9.901 38.010

(proposed) 107 2.342 0.162 12387 7748 2.939 0.040 3.079 9.962 38.071

105 – – – – 691 163 691 707 838

[19] 106 – – – – 7817 517 7818 7863 8261

107 – – – – 20 h< – – – -

Baseline (LPM) 105 3995 184 0.146 0.095 13 122 13 24 118

106 38767 1841 1.522 0.954 164 1227 165 268 1196

107 20 h< – – – – – – – –

Secure 105 7.619 1.704 435 1068 4.817 0.999 5.577 42.900 195.654

LMEM 106 7.882 1.704 4467 10681 4.926 0.999 5.686 43.009 195.763

(proposed) 107 8.457 1.704 46384 106811 5.740 0.999 6.501 43.824 196.578

Baseline 104 12747 611 0.015 0.010 46 407 46 80 389

(LMEM) 105 20 h< – – – – – – – –

Fig. 5 Estimated time (actual search time on a local machine +
estimated data-transfer time) for various N

Page 17 of 22Nakagawa et al. Algorithms for Molecular Biology (2022) 17:9

same manner. Each run of the program was terminated if
the total runtime of all phases exceeded 20 h.

Comparison to baseline protocols
Table 3 shows the offline time and size, DB preparation
time and size, and Search time and communication size
for N = 105, 106, 107 , and ℓ = 100 . It also shows the
result of Baseline LMEM for N = 104 , as the runs for
N > 104 did not finish within 20 h. The Search times and
communication sizes of Secure LPM and Secure LMEM
are several orders of magnitudes faster and smaller than
those of Baseline LPM and Baseline LMEM. Since the
round and communication complexities of the proposed
protocols do not depend on N, their estimated Search
time remains small even on WAN environments. Fig-
ure 5 shows the estimated Search time on WAN1 for
N = 103, 104, . . . , 107 and ℓ = 100 . The times of Secure
LPM and Secure LMEM do not increase, while those
of the baseline protocols increase linearly to N. Fig-
ure 6 shows the estimated Search time on WAN1 for
ℓ = 10, 25, . . . , 100 for N = 106 . We can not show the
results of Baseline LMEM because none of its runs were
finished within the time limit. As shown in the graph,
the time of Secure LPM increases linearly to ℓ and that
of Baseline LPM increases proportionally to ℓ2 , which
are in good agreement with the theoretical complexities
in Table 2. According to the graph, the time of Secure
LMEM also increases linearly to ℓ though its time and
communication complexities are O(ℓ2) . This is because
the CPU times are much smaller than the delays caused
by network latency that are influenced by the round com-
plexity O(ℓ).

We have preliminary results for testing Secure LPM
and Baseline LPM on the actual network (10 ms/100

Mbps). The results were 40 s for Secure LPM and 1739
s for Baseline LPM when N = 106 . Though both of the
preliminary implementations have room for improve-
ment in the performance of data transfer, the results also
indicate that our protocol outperforms the baseline pro-
tocol and the previous study.

The time and size of Secure LPM and Secure LMEM
are several orders of magnitude better than those of the
baseline protocols for the offline phase, and vice versa for
the DB preparation phase. The total time of the offline
and DB preparation phases of our protocols are more
than one order magnitude faster than that of baseline
protocols. For the total size of the offline and DB prep-
aration phases, Secure LMEM was better than Baseline
LMEM, but Baseline LPM was better than Secure LPM
though the complexity is better for Secure LPM. This is
because the majority of the shares were Boolean in the
baseline protocols, while all of the shares were arithmetic
in the proposed protocols.

Comparison to [19]
[19] is a two-party MPC based on AHE. Each homo-
morphic operation is time consuming and has no offline
and DB preparation phases. As shown in Table 3, the
Search time of Secure LPM is four orders of magnitude
faster than [19] for N = 106 . Since time complexity of
[19] includes a factor of N, the difference in Search time
becomes greater as N becomes large. Moreover, our pro-
tocols have a further advantage in communication for a
query response when the network environment is poor,
as the round complexity of [19] and our protocols are the
same while [19] requires O(

√
N) communication size.

The entire runtimes including all the phases are still six
times faster for N = 105 and N = 106 . We can compute
LMEM by examining [19] for all the positions in a query
string, but this approach consumed 3406 s and 2.6 GByte
of communication for N = 104.

Result of the approach in section "Reducing size of shares
in DB preparation phase"
We also implemented Protocol 5 (Secure LPM2) to inves-
tigate a trade-off between reduction of the size of shares
in DB preparation phase and increase in search time and
communication overhead in Search phase. We used the
same programming language (i.e., Python 3.5.2) for the
implementation and used the same datasets. Share was
run with n = 8 when generating the arithmetic shares
of R. For the generation of rest of the arithmetic shares,
Share was run with n = 16 and n = 32 for N < 105 and
105 ≤ N . (i.e., m = 8 , n = 16 (N < 105), and n = 32
(105 ≤ N) for the notation used in section "Reduc-
ing size of shares in DB preparation phase"). The results
are shown in Table 3. The total size of shares in DB

Fig. 6 Estimated time (actual search time on a local machine +
estimated data-transfer time) for various ℓ

Page 18 of 22Nakagawa et al. Algorithms for Molecular Biology (2022) 17:9

preparation phase was 7.7GB for Protocol 5 and 30.5GB
for Protocol 3, which is in good agreement with the theo-
retical complexities discussed in section "Reducing size
of shares in DB preparation phase". The search time of
Protocol 5 is around 2 s longer than that of Protocol 3.
We consider the increase in search time is mainly caused
by using rather costly subprotocols: CastUp , Comp and
MULT more times, which also increases the number of
communication rounds. Although the increase in search
time, Protocol 5 is still more than two orders of magni-
tude faster than Baseline LPM and three orders of mag-
nitude faster than [19], so we consider that Protocol 5
offers a reasonable trade-off between performance in DB
preparation phase and Search phase.

Discussion
As clearly shown by the results, Search time of the pro-
posed protocols are significantly efficient. Considering
the importance of query response time for real applica-
tions, it is realistic to reduce Search time at the cost of
DB preparation time. Since the total times for offline and
DB preparation phases of the proposed protocols were
significantly better than those of the well-designed base-
line protocols, we consider the trade-off between Search
and DB preparation times in our approach to be efficient.
For further reduction of DB preparation time, paralleliz-
ing the share generation is a feasible approach. Regard-
ing the DB preparation phase, the data transfer between
the server and the computing nodes is problematic when
the number of queries and the length of the database

are large. To mitigate the problem, we also proposed
the approach that uses arithmetic shares of a shorter bit
length, which offers a reasonable trade-off between the
reduction of data size in DB preparation phase and the
increase in time and communication overhead in Search
phase. Another solution that potentially mitigate the
problem is to use an AES-based random number gen-
eration that is similar to the technique used in [33]. To
explain it briefly, when the server needs to distribute a
share of x, (1) the server and P0 generate the same ran-
domness r using a pre-shared key and a pseudorandom
function, and (2) the server computes x − r and sends it
to P1 . Although P0 ’s computation cost increases, we can
remove the data transfer from the server to P0 . In our
protocols, the generation of shares in the DB preparation
phase cannot be outsourced because they are depend-
ent on the database. Designing an efficient algorithm
to outsource the share generation is an important open
question.

Appendices
Appendix 1: Examples of a aearch with FM‑Index
and auxiliary data structures
Let us show examples of a search with FM-Index, LCP
array, PSV and NSV. In addition to the data structures
defined in section "Index structure for string search",
we also define a string F such that F [i] = S[SA[i]] . For
the case of S =ATG AAT GCGA, the indices become
SA = (9, 3, 0, 4, 7, 8, 2, 6, 1, 5) , L = GGA AGC TTAA, and

Fig. 7 An example of search by FM-Index

Page 19 of 22Nakagawa et al. Algorithms for Molecular Biology (2022) 17:9

F = AAA ACG GGTT. Figure 7 illustrates the example of
a backward search to find the longest suffix of the query
(ATG) that matches the database, and Fig. 8 illustrates
the search for MEMs with the query (CGC) by using LCP
array, PSV, and NSV. As shown in the upper center panel
of Fig. 8, the search failed when the backward search
with ‘C’ after finding the interval [7, 8) that corresponds
to GC. Since LCP[8] ≤ LCP[7] , the parent lcp-interval
becomes [PSV[7] = 5,NSV[7] = 8) , which corresponds
to ‘G’. The match CG is then searched with the backward
search with ‘C’ from the parent lcp-interval.

Appendix 2: Semi‑honest security
Here, we recall the simulation-based security notion in
the presence of semi-honest adversaries (for two-party
computation), as in [32].

Definition 2 Let f : ({0, 1}∗)2 → ({0, 1}∗)2 be a proba-
bilistic 2-ary functionality and fi(�x) denote the i-th ele-
ment of f (�x) for �x = (x0, x1) ∈ ({0, 1}∗)2 and i ∈ {0, 1} ;
f (�x) = (f0(�x), f1(�x)) . Let � be a 2-party protocol to com-
pute the functionality f. The view of party Pi for i ∈ {0, 1}
during an execution of � on input �x = (x0, x1) ∈ ({0, 1}∗)
where |x0| = |x1| , denoted by View�

i (�x) , consists of
(xi, ri,mi,1, . . . ,mi,t) , where xi represents Pi ’s input, ri
represents its internal random coins, and mi,j repre-
sents the j-th message that Pi has received. The out-
put of all parties after an execution of � on input �x is
denoted as Output�(�x) . Then, for each party Pi , we say
that � privately computes f in the presence of semi-honest

corrupted party Pi if there exists a probabilistic polyno-
mial-time algorithm S such that

where the symbol ≡ means that the two probability dis-
tributions are statistically indistinguishable.

As described in [32], the composition theorem for the
semi-honest model holds; that is, any protocol is pri-
vately computed as long as its subroutines are privately
computed.

Appendix 3: Our secure baseline LPM and LMEM
In this section, we show our secure baseline LCP and
LMEM based on secret sharing. We explain how to
construct LCP, since we can obtain LMEM by (paral-
lelly) executing LCP for all positions in the query. Note
that �x = (x1, x2, · · ·) , �xi denotes an i-th element of �x ,
[[�t]] = ([[�t]]0, [[�t]]1) , and (|�x|, |�y|) = (L,N) . Here, we
assume N > L . When [[�x]] = ([[x1]], [[x2]], · · · , [[xp]]) ,
[[�x]] ≫ 1 means ([[0]], [[x1]], · · · , [[x]]p−1) . In our protocol,
we use two subprotocols as follows:

• All-AND takes a list [[�t]] (with p Boolean shares) as
input and outputs [[t1 ∧ · · · ∧ tp]]B . We can compute
this function with ⌈p⌉ communication rounds (by
appropriate parallelization) and O(p)-bit data transfer.

• All-OR takes a list [[�u]] (with p Boolean shares) as
input and outputs [[u1 ∨ · · · ∨ up]]B . We can com-
pute this function with ⌈p⌉ communication rounds (by
appropriate parallelization) and O(p)-bit data transfer.

{(S(i, xi, fi(�x)), f (�x))} ≡ {(View�
i (�x), Output�(�x))},

Fig. 8 An example of search by FM-ndex, LCP array, PSV and NSV

Page 20 of 22Nakagawa et al. Algorithms for Molecular Biology (2022) 17:9

Our protocol is as in Protocol A1. In the following, we
explain the details of our baseline longest common prefix
search protocol using an example that strings �x = “TGA”
and �y = “ATTGC”. In this example, w = 2 since there
exists “TG” in �y , but “TGA” does not. For better under-
standing, we introduce a more straightforward approach
and analyze its efficiency before explaining our baseline
protocol. In the straightforward approach, we securely
check whether the first letter of �x (i.e., “T”) exists in y or
not. Next, we check every pattern up to the second let-
ter of �x (i.e., “TG”) for a match anywhere in �y . We also
execute the same operations for up to the third latter of
�x (i.e., “TGA”). In these processes, we necessary to exe-
cute the “check if the characters match”, “check if all the
characters match”, and “check if at least one of the perfect

matches exist”. For these operations, we need to use
O(N), O(NL), and O(N) secure AND gates, respectively.
Since we execute these operations for all L candidates,
the number of AND gates we need for are O(NL), O(NL2) ,
and O(NL), respectively. In these operations, We do not
need to compute the letters match for each time since
the string is fixed. In our baseline protocol, therefore, we
compute whether the letter is matched or not beforehand
and repeatedly use them. Since we can check this check
with O(NL), however, our baseline still requires O(NL2)
AND gates. Although it may be possible to reduce the
number of AND gates via increasing other costs (e.g.,
communication rounds), it will not be easy to construct
the protocol with N-independent online cost like the pro-
posed one with this strategy.

Page 21 of 22Nakagawa et al. Algorithms for Molecular Biology (2022) 17:9

Why the offline cost of our baseline is so significant: In
secure computation, it is impossible in principle to change
the behavior depending on the computation results in the
middle. In other words, we are always forced to perform the
worst-case computation. In the previous example, for exam-
ple, we consider the case for checking whether the first let-
ter of �x (i.e., “T”) matches any of the letters in y. If it is done
in plain text, the moment we find “T” in the second letter
of �y , we don’t have to worry about the rest of the letters in
�y . In secure computation, however, we have to check eve-
rything, including the rest, since we cannot find that the
match has already existed. In addition, we consider the case
that we check the match for up to the first two letters in �x
(i.e., “TG”) and the first two letters in �y (i.e., “AT”). In this
case, the moment we see A, we can decide there is no match
and terminate the process in plaintext computation. In
secure computation, however, this is impossible. As we see
above, we are always forced to consider the worst-case com-
puting cost in secure computation. Note that offline costs
for secure computation are linear to the number of AND
gates. We need O(NL2) offline cost in our baseline (and
straightforward) protocol, and N is large in our setting. This
is why the offline cost of our baseline protocol is so large.
Our proposed protocol successfully avoids this problem by
developing a new secure primitive and combining it with an
appropriate data structure.

Acknowledgements
This work is partially supported by JST CREST Grant Number JPMJCR19F6,
MEXT/JSPS KAKENHI grant number 19K12209 and 21H04871/21H05052.
KS thanks Prof. Kunihiko Sadakane and Mr. Tomoki Uchiyama for giving the
important comments for improving the paper.

Authors’ contributions
KS designed proposed protocols with the help of SO and YN, and organ-
ized the study. SO implemented a secure multi-party computation library
equipped with all the sub-protocols necessary for this study and designed
baseline protocols. YN implemented proposed and baseline protocols and
conducted experiments. KS and SO mainly wrote the manuscript. All the
authors contributed to the final form of the manuscript. All authors read and
approved the final manuscript.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Computer Science and Engineering, Waseda University, Tokyo,
Japan. 2 Self-employment, Tokyo, Japan. 3 National Institute of Advanced Indus-
trial Science and Technology, Tokyo, Japan.

Received: 19 November 2021 Accepted: 1 March 2022

References
 1. Fiume M, Cupak M, Keenan S, Rambla J, de la Torre S, Dyke SO, Brookes

AJ, Carey K, Lloyd D, Goodhand P, et al. Federated discovery and sharing
of genomic data using beacons. Nat Biotechnol. 2019;37(3):220–4.

 2. Philippakis AA, Azzariti DR, Beltran S, Brookes AJ, Brownstein CA,
Brudno M, Brunner HG, Buske OJ, Carey K, Doll C, et al. The matchmaker
exchange: a platform for rare disease gene discovery. Hum Mutat.
2015;36(10):915–21.

 3. Erlich Y, Narayanan A. Routes for breaching and protecting genetic
privacy. Nat Rev Genet. 2014;15(6):409–21.

 4. Aziz MMA, Sadat MN, Alhadidi D, Wang S, Jiang X, Brown CL, Mohammed
N. Privacy-preserving techniques of genomic data—a survey. Briefings
Bioinform. 2019;20(3):887–95.

 5. Naveed M, Ayday E, Clayton EW, Fellay J, Gunter CA, Hubaux J-P, Malin BA,
Wang X. Privacy in the genomic era. ACM Comput Surv. 2015;48(1):1–44.

 6. Jha S, Kruger L, Shmatikov V Towards practical privacy for genomic com-
putation. In: Proc. of IEEE S&P 2000; 2008, p. 216–230.

 7. Cheon JH, Kim M, Lauter KE Homomorphic computation of edit distance.
In: Proc. of FC 2015; 2015, p. 194–212.

 8. Nuida K, Ohata S, Mitsunari S, Attrapadung N. Arbitrary univariate func-
tion evaluation and re-encryption protocols over lifted-elgamal type
ciphertexts. IACR Cryptology ePrint Archive. 2019;2019:1233.

 9. Huang Y, Evans D, Katz J, Malka L Faster secure two-party computation
using garbled circuits. In: Proc. of USENIX 2011; 2011.

 10. Wang XS, Huang Y, Zhao Y, Tang H, Wang X, Bu D Efficient genome-wide,
privacy-preserving similar patient query based on private edit distance.
In: Proc. of CCS 2015; 2015, p. 492–503.

 11. Zhu R, Huang Y Efficient and precise secure generalized edit distance
and beyond. IEEE Transactions on Dependable and Secure Computing.
2020;1–1.

 12. Cheng K, Hou Y, Wang L Secure similar sequence query on outsourced
genomic data. In: Proc. of AsiaCCS 2018; 2018. p. 237–251.

 13. Asharov G, Halevi S, Lindell Y, Rabin T. Privacy-preserving search of similar
patients in genomic data. PoPETs. 2018;2018(4):104–24.

 14. Schneider T, Tkachenko O EPISODE: efficient privacy-preserving similar
sequence queries on outsourced genomic databases. In: Proc. of AsiaCCS
2019, pp. 315–327 (2019)

 15. Ohata S, Nuida K Communication-efficient (client-aided) secure two-
party protocols and its application. In: Proc. of FC 2020; 2020, p. 369–385.

 16. Baldi P, Baronio R, Cristofaro E.D., Gasti P, Tsudik G Countering GAT TAC A:
efficient and secure testing of fully-sequenced human genomes. In: Proc.
of CCS 2011; 2011, p. 691–702.

 17. Shimizu K, Nuida K, Rätsch G. Efficient privacy-preserving string search
and an application in genomics. Bioinformatics. 2016;32(11):1652–61.

 18. Ishimaki Y, Imabayashi H, Shimizu K, Yamana H Privacy-preserving string
search for genome sequences with fhe bootstrapping optimization. In:
Proc. of IEEE Big Data 2016, pp. 3989–3991 (2016)

 19. Sudo H, Jimbo M, Nuida K, Shimizu K. Secure wavelet matrix: alphabet-
friendly privacy-preserving string search for bioinformatics. IEEE/ACM
Trans Comput Biol Bioinform. 2019;16(5):1675–84.

 20. Sotiraki K, Ghosh E, Chen H. Privately computing set-maximal matches in
genomic data. BMC Med Genom. 2020;13(7):1–8.

 21. Mahdi MSR, Al Aziz MM, Mohammed N, Jiang X. Privacy-preserving string
search on encrypted genomic data using a generalized suffix tree. Inform
Med Unlocked 23, 100525 (2021)

 22. Chen Y, Peng B, Wang X, Tang H Large-scale privacy-preserving mapping
of human genomic sequences on hybrid clouds. In: Proc. of NDSS 2012;
2012.

 23. Popic V, Batzoglou S. A hybrid cloud read aligner based on minhash and
kmer voting that preserves privacy. Nat Commun. 2017;8(1):1–7.

 24. Ferragina P, Manzini G Opportunistic data structures with applications. In:
Proc. of FOCS 2000; 2000; p. 390–398.

Page 22 of 22Nakagawa et al. Algorithms for Molecular Biology (2022) 17:9

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

 25. Durbin R. Efficient haplotype matching and storage using the positional
burrows-wheeler transform (pbwt). Bioinformatics. 2014;30(9):1266–72.

 26. Yasuda M, Shimoyama T, Kogure J, Yokoyama K, Koshiba T Secure pattern
matching using somewhat homomorphic encryption. In: Juels, A., Parno,
B. (eds.) Proc. of CCSW’13; 2013, p. 65–76.

 27. Fischer J, Mäkinen V, Navarro G An(other) entropy-bounded compressed
suffix tree. In: Proc. of CPM 2008; 2008, p. 152–165.

 28. Shamir A. How to share a secret. Commun ACM. 1979;22(11):612–3.
 29. Beaver D Efficient multiparty protocols using circuit randomization. In:

Proc. of CRYPTO 1991; 1991, p. 420–432.
 30. Mohassel P, Orobets O, Riva B. Efficient server-aided 2pc for mobile

phones. PoPETs. 2016;2016(2):82–99.
 31. Mohassel P, Zhang Y Secureml: a system for scalable privacy-preserving

machine learning. In: Proc. of IEEE S&P 2017; 2017, p. 19–38.
 32. Goldreich O. The foundations of cryptography. Basic applications, vol. 2.

Cambridge: Cambridge University Press; 2004.
 33. Araki T, Furukawa J, Lindell Y, Nof A, Ohara K High-throughput semi-

honest secure three-party computation with an honest majority. In: Proc.
of CCS 2016; 2016, p. 805–817.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	Efficient privacy-preserving variable-length substring match for genome sequence
	Abstract
	Introduction
	Our contribution

	Preliminaries
	Secure computation based on secret sharing
	Index structure for string search

	Proposed protocols
	Problem setting and outline of our protocols
	Secret-shared recursive oblivious transfer
	Security intuition
	Security
	Complexities

	Secure LPM
	Security
	Complexities

	Secure LMEM
	Security
	Complexities

	Reducing size of shares in DB preparation phase
	Security
	Complexities

	Experiment
	Comparison to baseline protocols
	Comparison to [19]
	Result of the approach in section "Reducing size of shares in DB preparation phase"

	Discussion
	Acknowledgements
	References

