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Abstract 

Background:  In the comparative genomics field, one of the goals is to estimate a sequence of genetic changes 
capable of transforming a genome into another. Genome rearrangement events are mutations that can alter the 
genetic content or the arrangement of elements from the genome. Reversal and transposition are two of the most 
studied genome rearrangement events. A reversal inverts a segment of a genome while a transposition swaps two 
consecutive segments. Initial studies in the area considered only the order of the genes. Recent works have incorpo-
rated other genetic information in the model. In particular, the information regarding the size of intergenic regions, 
which are structures between each pair of genes and in the extremities of a linear genome.

Results and conclusions:  In this work, we investigate the sorting by intergenic reversals and transpositions problem 
on genomes sharing the same set of genes, considering the cases where the orientation of genes is known and 
unknown. Besides, we explored a variant of the problem, which generalizes the transposition event. As a result, we 
present an approximation algorithm that guarantees an approximation factor of 4 for both cases considering the 
reversal and transposition (classic definition) events, an improvement from the 4.5-approximation previously known 
for the scenario where the orientation of the genes is unknown. We also present a 3-approximation algorithm by 
incorporating the generalized transposition event, and we propose a greedy strategy to improve the performance of 
the algorithms. We performed practical tests adopting simulated data which indicated that the algorithms, in both 
cases, tend to perform better when compared with the best-known algorithms for the problem. Lastly, we conducted 
experiments using real genomes to demonstrate the applicability of the algorithms.

Keywords:  Genome rearrangement events, Intergenic regions, Approximation algorithms

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
In the comparative genomics field, there are many ways 
to compare genomic features like DNA sequence, gene 
order, and genomic landmarks from different organ-
isms. Genome rearrangement events are mutations that 
affect large stretches of the DNA sequence. Determining 
the shortest sequence of such events that can transform 

one genome into another is widely used as a metric to 
study evolutionary relationships among organisms, and 
to explain biological similarities and differences as well. 
The reversal and transposition are two of the most stud-
ied genome rearrangement events in the literature [1–3]. 
A reversal inverts a segment of a genome, and a transpo-
sition moves a segment of a genome to another position.

One way to represent a genome is by using the gene 
order as the only genomic trait, which can be encoded as 
a sequence of elements, where each element represents a 
gene. When the compared genomes share the same set of 
genes and do not have replicated genes, we model them 
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as permutations of natural numbers, such that each num-
ber in the sequence appears once. Furthermore, if the ori-
entation of the genes is known, a plus or a minus sign (+ 
or −) is assigned to each element of the permutation to 
indicate its orientation, and we say that the permutation 
is a signed permutation. Otherwise, signs are omitted 
and the permutation is called unsigned.

It is always possible to map the target genome in a per-
mutation such that the elements are in increasing order. 
This permutation is called by identity permutation and 
denoted as ι = (1 2 . . . n) and ι = (+1 +2 . . . +n) , con-
sidering unsigned and signed cases, respectively. There-
fore, the transformation from a source genome to a target 
genome can be seen as a sorting problem.

First studies in the genome rearrangement field con-
sidered a single type of rearrangement events, which 
led to solutions specific to that type. In particular, the 
reversal event leads to the sorting by reversals prob-
lem, which has a polynomial-time algorithm on signed 
permutations [1], whereas it is NP-hard on unsigned 
permutations [4] and the best algorithm has an approxi-
mation factor of 1.375 [2]. The transposition event leads 
to the sorting by transpositions problem, which is 
NP-hard [5] and the best algorithm has an approxima-
tion factor of 1.375 [3]. By allowing both reversal and 
transposition we have the sorting by reversals and 
transpositions problem, which is NP-hard on signed 
and unsigned permutations [6]. The best algorithms have 
approximation factors of 2 [7] and 2.8334 + ǫ [8, 9] for 
signed and unsigned permutations, respectively.

The gene order was fundamental to the initial develop-
ment of rearrangement distance models. However, recent 
studies indicate that incorporating another genetic infor-
mation apart from the gene order could generate more 
realistic models [10, 11]. In particular, the information 
regarding the size of intergenic regions (structures with 
a specific number of nucleotides between each pair of 
genes and in the extremities of genomes) was incorpo-
rated into the mathematical models.

The Double Cut and Join (DCJ) is a rearrangement event 
that cuts the genome in two points and reassembles the 
stretches following a predetermined criterion. The problem 
of sorting by dcjs with intergenic regions is NP-hard [12], 
but one can find a polynomial-time algorithm when DCJs 
are used together with insertions and deletions on intergenic 
regions [13]. The Block-Interchange is a rearrangement event 
that swaps the position of two segments (not necessarily 
consecutive) of the genome. The sorting by intergenic 
block-interchange problem has a 2-approximation algo-
rithm [14] and its complexity is unknown. Considering the 
reversal event, we have the sorting by intergenic rever-
sals problem, which is NP-hard on signed and unsigned 

permutations [15, 16] and the best algorithms have approxi-
mation factors of 2 [15] and 4 [16], respectively. The sorting 
by intergenic transpositions is NP-hard and the best 
algorithm has an approximation factor of 3.5 [17]. The sort-
ing by intergenic reversals and transpositions 
(SbIRT) is NP-hard on signed and unsigned permutations 
[16, 17] and the best algorithms have the approximation fac-
tors of 3 [17] and 4.5 [16], respectively. The SbIRT problem 
with the generalized definition of the transposition event on 
signed permutations has an approximation algorithm with a 
factor of 2.5 [17].

The SbIRT problem with an additional constraint that 
limits the number of genes affected by each operation, 
called super short operations, was investigated [18]. On 
signed permutations it was proposed a 5-approximation 
algorithm, while for unsigned permutations it was pro-
posed a 3-approximation algorithm.

In this work, we investigate the SbIRT problem on 
signed and unsigned permutations. For the unsigned 
case, we present an improved algorithm based on inter-
genic breakpoints that guarantees an approximation fac-
tor of 4. We also show a 3-approximation algorithm for 
the SbIRT problem on unsigned permutations consider-
ing the generalized definition of the transposition event. 
For the signed case, we show approximation algorithms 
with the same approximation factors as in the unsigned 
cases. Although the theoretical approximations for the 
signed case are superior to the previously known results, 
the tests with simulated data pointed that our algorithms 
tend to provide better practical results. We propose a 
greedy strategy to improve the algorithms’ performance 
and tested them using simulated and real data.

This manuscript is organized as follows. "Definitions" 
section presents concepts and definitions used through-
out the paper. "Theoretical results" section shows a lower 
bound and the approximation algorithms for the SbIRT 
problem. "Practical results" section shows the experi-
ments using real and simulated data. "Conclusion" section 
concludes the paper and introduces future directions.

Definitions
The problem we investigate uses information about 
source and target genomes. We assume that both 
genomes share the same set of genes and there are 
no replicated genes. Thus, given a linear genome 
G = (i1, g1, i2, g2, . . . , in, gn, in+1) with n genes and n+ 1 
intergenic regions, we use (i) a permutation π , represent-
ing the order of the genes, and (ii) a list of non-negative 
integer numbers π̆ , representing the sizes of intergenic 
regions. If the orientation of the genes is known, a “ + ” or 
“−” sign is associated with each element of the permuta-
tion π to indicate its orientation. We use πi , 1 ≤ i ≤ n , to 
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denote the element in position i of π . Similarly, we denote 
by π̆i the size of the intergenic region in the left of πi . The 
intergenic region π̆n+1 is on the right of πn.

For convenience, we map the genes from the target 
genome to the identity permutation ι = (1 2 . . . n) for 
the case where the orientation of the genes is unknown 
and ι = (+1 +2 . . . +n) otherwise. The permutation π 
of the source genome can be mapped according to how 
we assigned elements to genes while mapping the target 
genome to the identity permutation, so the source and 
target genomes are represented as (π , π̆) and (ι, ῐ) , respec-
tively. Since the identity permutation is fixed given the 
size of the genomes, an instance for the SbIRT problem is 
composed by (π , π̆ , ῐ) . Figure 1 shows the representation 
of a genome G as (π , π̆).

From now on, we will refer to an instance (π , π̆ , ῐ) of the 
SbIRT problem in which the orientation of the genes is 
known and unknown by signed and unsigned instances, 
respectively. In this work, initially, we consider two rear-
rangement events: intergenic reversal and intergenic 
transposition. In the following, we formally describe them 
and show how they affect a given genome representation.

Definition 2.1  Given a genome (π , π̆) , let i,  j,  x,   and 
y be integers such that 1 ≤ i ≤ j ≤ n , 0 ≤ x ≤ π̆i , and 
0 ≤ y ≤ π̆j+1 . An intergenic reversal ρ(i,j)

(x,y) applied to 
(π , π̆) splits the intergenic regions π̆i (into x|x′ ) and π̆j+1 
(into y|y′ ), where x′ = π̆i − x and y′ = π̆j+1 − y , and it 
reverses the sequence (x′,πi, π̆i+1, . . . , π̆j ,πj , y) , generat-
ing (π ′, π̆ ′) as follows:

such that π̆ ′
i = x + y and π̆ ′

j+1
= x′ + y′ . If the orienta-

tion of the genes is known, the signs of the genes in the 
affected segment are flipped as follows:

(π , π̆) =(. . . π̆i,πi, π̆i+1, . . . , π̆j ,πj , π̆j+1, . . . )

(π ′
, π̆ ′) =(. . . , π̆ ′

i ,πj , π̆j , . . . , π̆i+1,πi, π̆
′
j+1, . . . ),

Definition 2.2  Given a genome (π , π̆) , let i, j, k, x, y,  and 
z be integers such that 1 ≤ i < j < k ≤ n+ 1 , 0 ≤ x ≤ π̆i , 
0 ≤ y ≤ π̆j and 0 ≤ z ≤ π̆k . An intergenic transposi-
tion τ (i,j,k)(x,y,z) applied to (π , π̆) splits the intergenic regions 
π̆i (into x|x′ ), π̆j (into y|y′ ), and π̆k (into z|z′ ), where 
x′ = π̆i − x , y′ = π̆j − y , and z′ = π̆k − z , and swaps 
the adjacent segments (x′,πi, π̆i+1, . . . , π̆j−1,πj−1, y) and 
(y′,πj , π̆j+1, . . . , π̆k−1,πk−1, z) , generating (π ′, π̆ ′) as 
follows:

such that π̆ ′
i = x + y′ , π̆ ′

i+k−j = z + x′ , and π̆ ′
k = y+ z′.

Given a genome (π , π̆) and an operation γ , (π , π̆) · γ 
represents the operation γ applied on (π , π̆) . Similarly, 
given a sequence of operations Sγ = (γ1, . . . , γk) , we use 
(π , π̆) · Sγ to denote (π , π̆) · γ1 . . . γk . We hereafter refer 
to intergenic reversals and intergenic transpositions sim-
ply as reversals and transpositions, respectively. Note that 
both reversal and transposition are conservative events, 
i.e., they do not insert or remove genes nor nucleotides. 
Thus, an instance (π , π̆ , ῐ) from the SbIRT problem is 
valid if the following equality is satisfied:

Given an instance I = (π , π̆ , ῐ) of the SbIRT problem, 
the minimum number of operations needed to trans-
form (π , π̆) into (ι, ῐ) is called the distance and is denoted 
by dSbIRT(I) and dSbIRT(I) for the signed and unsigned 
cases, respectively. The extended form of π is obtained 

(π , π̆) =(. . . π̆i,+πi, π̆i+1, . . . , π̆j ,+πj , π̆j+1, . . . )

(π ′
, π̆ ′) =(. . . , π̆ ′

i ,−πj , π̆j , . . . , π̆i+1,−πi, π̆
′
j+1, . . . ),

(π , π̆) =(. . . , π̆i,πi, . . . ,πj−1, π̆j ,πj , . . . ,πk−1, π̆k , . . . )

(π ′
, π̆ ′) =(. . . , π̆ ′

i ,πj , . . . ,πk−1, π̆
′
i+k−j ,πi, . . . ,πj−1, π̆

′
k , . . . ),

∑

π̆i∈π̆

π̆i =
∑

ῐi∈ῐ

ῐi.

Fig. 1  On the top we have a fictitious genome G , with 5 genes and an intergenic region between each pair of genes and also in the extremities 
of G . Each intergenic region has a specific number of nucleotides (represented by the letters A, C, G, or T). At the bottom, we have the genome 
representation for the SbIRT problem, using a permutation π and a list π̆ , representing the order of the genes and the sizes of the intergenic regions, 
respectively. Observe that for each intergenic region π̆i we have the information about the number of nucleotides inside it
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by adding the elements π0 = 0 and πn+1 = (n+ 1) at the 
beginning and at the end of π , respectively. We hereafter 
assume that permutations are in extended form, and we 
refer to them simply as permutations. Following, we pre-
sent concepts and definitions that are used in previous 
works [16] regarding the SbIRT problem.

Definition 2.3  Given an unsigned instance I = (π , π̆ , ῐ) 
of the SbIRT problem, a pair of elements (πi,πi+1) , such 
that 0 ≤ i ≤ n , is an intergenic breakpoint type one if one 
of the following cases occur:

•	 |πi+1 − πi| �= 1.
•	 |πi+1 − πi| = 1 and π̆i+1 �= ῐx , such that 

x = max(πi,πi+1).

Definition 2.4  Given an unsigned instance I = (π , π̆ , ῐ) 
of the SbIRT problem, a pair of elements (πa,πb) is an 
intergenic adjacency if |a− b| = 1 and (πmin(a,b),πmax(a,b)) 
is not an intergenic breakpoint type one.

In other words, an intergenic breakpoint type one indi-
cates a region that must be affected by a rearrangement 
event to fix the order of the genes or the size of the inter-
genic region to reach the target genome. On the other 
hand, an intergenic adjacency indicates a pair of genes 
that are consecutive in the target genome and the inter-
genic regions between them have the same size. From 
now on, we will refer to intergenic breakpoint and inter-
genic adjacency as breakpoint and adjacency, respectively.

Definition 2.5  A breakpoint type one (πi,πi+1) , such 
that |πi+1 − πi| = 1 , is overcharged if π̆i+1 > ῐx , such that 
x = max(πi,πi+1) , and undercharged otherwise.

Definition 2.6  A pair of breakpoints type one (πi,πi+1) 
and (πj ,πj+1) is connected if the following conditions are 
met: 

1	 The pair of elements (πi,πi+1) , (πj ,πj+1) , (πi,πj) , 
(πi,πj+1) , (πi+1,πj) , or (πi+1,πj+1) are consecutive in 
ι and do not form an adjacency in (π , π̆).

2	 π̆i+1 + π̆j+1 ≥ ῐk , such that ῐk is the intergenic region 
size between the consecutive elements (from condi-
tion 1) in ι.

A pair of connected breakpoints indicate that it is pos-
sible to form an adjacency using only the nucleotides 
from the intergenic regions of the two breakpoints. Note 
that a pair of connected breakpoints has at least one pair 
of consecutive elements between πi , πi+1 , πj , and πj+1 . 
Besides, the number of nucleotides in both breakpoints 
( π̆i+1 + π̆j+1 ) is at least the size of the intergenic region 
between the consecutive elements in ι.

Now, we introduce new definitions which are used to 
derive the results.

Definition 2.7  A breakpoint type one (πi,πi+1) is 
called hard if it is overcharged or undercharged and soft 
otherwise.

Note that in hard breakpoints the pair of genes are 
consecutive in the target genome, but the intergenic 
region between them is not the same as in the target 
genome.

Definition 2.8  A pair of breakpoints type one (πi,πi+1) 
and (πj ,πj+1) is called softly connected if they are con-
nected and both breakpoints are soft.

Definition 2.9  A hard breakpoint (πi,πi+1) is called 
super hard if one of the following cases occur:

•	 i = 0 or i = n.
•	 (πi−1,πi) or (πi+1,πi+2) is a hard breakpoint or an 

adjacency.

Note that a super hard breakpoint is in one of the 
extremities of the genome, or immediately before or 
after the breakpoint exists a hard breakpoint or an 
adjacency.

Definition 2.10  Given an unsigned instance 
I = (π , π̆ , ῐ) , strips are maximal sequences of consecutive 
elements of π without soft breakpoints. A strip with only 
one element πi is called a singleton, and it is defined as 
increasing if i ∈ {0, (n+ 1)} , and as decreasing otherwise. 
A strip with more than one element is called increasing 
if its elements form an increase sequence; and it is called 
decreasing otherwise.

For a signed instance of the SbIRT problem, we have 
the following definition:
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Definition 2.11  Given a signed instance I = (π , π̆ , ῐ) 
of the SbIRT problem, a pair of elements (πi,πi+1) , such 
that 0 ≤ i ≤ n , is an intergenic breakpoint type two if one 
of the following cases occur:

•	 πi+1 − πi �= 1.
•	 πi+1 − πi = 1 and π̆i+1 �= ῐx , such that 

x = max(|πi|, |πi+1|).

Given an unsigned instance (π , π̆ , ῐ) of the SbIRT 
problem, the total number of hard and soft break-
points are denoted by bh(π , π̆ , ῐ) and bs(π , π̆ , ῐ) , respec-
tively, and the total number of breakpoints type one is 
denoted by b1(π , π̆ , ῐ) = bh(π , π̆ , ῐ)+ bs(π , π̆ , ῐ) . The 
variation in the number of breakpoints type one after 
applying a rearrangement event γ to (π , π̆) is denoted 
by �b1(π , π̆ , ῐ, γ ) = b1(π

′, π̆ ′, ῐ)− b1(π , π̆ , ῐ) , where 
(π ′, π̆ ′) = (π , π̆) · γ . Similarly, given a signed instance 
(π , π̆ , ῐ) of the SbIRT problem, the total number of 
breakpoints type two is denoted by b2(π , π̆ , ῐ) and the 
variation in the number of breakpoints type two after 
applying a rearrangement event γ to (π , π̆) is denoted 
by �b2(π , π̆ , ῐ, γ ) = b2(π

′, π̆ ′, ῐ)− b2(π , π̆ , ῐ) , where 
(π ′, π̆ ′) = (π , π̆) · γ.

Remark 2.1  The only unsigned instance I of the SbIRT 
problem such that b1(I) = 0 is (ι, ῐ, ῐ) . Similarly, the 
only signed instance I ′ of the SbIRT problem, such that 
b2(I

′) = 0 is (ι, ῐ, ῐ) . Thus, to transform (π , π̆) into (ι, ῐ) it 
is necessary to remove all the breakpoints of an instance.

Figure 2 shows the concepts using a representation of 
the source and target genomes.

Theoretical results
In this section, we show lower bounds and present approx-
imation algorithms for both cases of the SbIRT problem. 
We start by showing how many breakpoints a reversal and 
a transposition can remove in the best scenario.

Lemma 3.1  Given an unsigned instance I1 = (π , π̆ , ῐ) 
and a signed instance I2 = (π , π̆ , ῐ) of the SbIRT problem, 
�b1(I1, ρ) ≥ −2 and �b2(I2, ρ) ≥ −2 for any reversal 
ρ
(i,j)
(x,y), respectively.

Proof  Recall that a reversal affects two pair of consecutive 
elements of π . In the best case, (πi−1,πi) and (πj ,πj+1) are 
breakpoints, and the reversal ρ(i,j)

(x,y) removes them. � �

Lemma 3.2  Given an unsigned instance I1 = (π , π̆ , ῐ) 
and a signed instance I2 = (π , π̆ , ῐ) of the SbIRT problem, 
�b1(I1, τ ) ≥ −3 and �b2(I2, τ ) ≥ −3 for any transposi-
tion τ (i,j,k)(x,y,z), respectively.

Proof  The proof is similar to the one described in 
Lemma  3.1, and considering that a transposition can 
affect up to three breakpoints. � �

Using the above lemmas we define a lower bound for 
the SbIRT problem.

Fig. 2  An instance I = (π , π̆ , ῐ) , where π = (0, 3, 2, 1, 4, 5, 6, 7), π̆ = (4, 0, 3, 0, 5, 2, 0), and ῐ = (1, 3, 0, 3, 1, 2, 4) . On top we have the source genome 
(π , π̆) and in the bottom the target genome (ι, ῐ) . Breakpoints are indicated above the source genome. Note that bh(I) = 2 and bs(I) = 2 , so 
b(I) = 4 . The hard breakpoints (π4,π5) and (π6,π7) are overcharged and undercharged, respectively. Breakpoints (π0,π1) and (π3,π4) are soft. The 
breakpoints (π0,π1) and (π6,π7) are connected, while (π3,π4) and (π6,π7) are not. Besides, the pair of breakpoints (π0,π1) and (π3,π4) are softly 
connected. The instance I has the increasing strips (π0) and (π4,π5,π6,π7 ), and the decreasing strip (π1,π2,π3)
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Proposition 3.1  (Proposition 7 [16]) Given an unsigned 
instance I = (π , π̆ , ῐ), dSbIRT(I) ≥ b1(I)

3
.

Proposition 3.2  Given a signed instance I = (π , π̆ , ῐ), 
dSbIRT(I) ≥

b2(I)
3

.

Proof  Directly by Remark 2.1 and lemmas 3.1 and 3.2. 
� �

Approximation algorithms for the unsigned case 
of the SbIRT problem
In this section, we investigate the unsigned case of the 
SbIRT problem and present a 4-approximation algo-
rithm considering the reversal and transpositions events. 
Besides, we show a 3-approximation algorithm incorpo-
rating a generalized definition of the transposition event. 
We show a sequence of lemmas that will be used by the 
algorithms as subroutines.

Lemma 3.3  (Lemma 19 [16]) It is possible to perform 
any redistribution of nucleotides within intergenic regions 
π̆i, π̆j, and π̆k using two consecutive transpositions in the 
format:

In this section, we will refer to breakpoint type one 
simply as a breakpoint. Now let us show how to remove 
breakpoints from an unsigned instance depending on 
how many overcharged breakpoints an instance has.

Lemma 3.4  Given an unsigned instance (π , π̆ , ῐ) for 
the SbIRT problem, if there are at least two overcharged 
breakpoints then there exists a sequence of two transposi-
tions that removes at least two breakpoints.

Proof  First note that a third breakpoint must exist 
in (π , π̆ , ῐ) , otherwise the total number of nucleotides 
within intergenic regions of the source genome would be 
greater than the number of nucleotides within intergenic 
regions of the target genome. By Lemma 3.3, it is possi-
ble to make a redistribution of nucleotides within three 
intergenic regions using two consecutive transpositions. 
Without loss of generality, assume that two of these inter-
genic regions are between the two overcharged break-
points, and that the third intergenic region is between an 
existing third breakpoint. In this case, the extra nucleo-
tides from the two overcharged breakpoints are moved to 
the third breakpoint, and the lemma follows. � �

(π , π̆) · τ
(i,j,k)
(ϕi ,ϕj ,ϕk )

· τ
(i,i+k−j,k)

(ϕ′i ,ϕ
′
i+k−j ,ϕ

′
k )
.

Lemma 3.5  Given an unsigned instance (π , π̆ , ῐ) for the 
SbIRT problem, if there is a pair of softly connected break-
points then there exists a reversal or a transposition that 
removes at least one breakpoint.

Proof  Brito et. al. [16, lemmas 14 and 20] showed how 
to remove a breakpoint from a pair of connected break-
points. In particular, when both breakpoints (πi,πi+1) 
and (πj ,πj+1) are soft, we have one of the following three 
possibilities to form at least one adjacency from them:

Case 1: (πi,πj) or (πi+1,πj+1) are consecutive in ι.
Case 2: (πi+1,πj) are consecutive in ι.
Case 3: (πi,πj+1) are consecutive in ι.

For each one of the cases, a reversal or a transposition 
can be applied to remove at least one breakpoint, and the 
lemma follows. � �

Figure 3 shows, for each case in Lemma 3.5, a reversal 
or a transposition that can be applied to remove at least 
one breakpoint. In Case 3, a transposition is applied to 
the pair of soft breakpoints and in a third breakpoint, 
which can be located before or after the pair of soft 
breakpoints.

Remark 3.1  Note that Case 2 of Lemma 3.5 is the only 
one in which a hard breakpoint can be removed as a 
result of the operation applied ( k = i + 1 and k + 1 = j ). 
However, Lemma  3.5 cannot remove a super hard 
breakpoint.

Lemma 3.6  Given a valid unsigned instance 
I = (π , π̆ , ῐ) for the SbIRT problem, if b1(I) > 0 and there 
is no pair of softly connected breakpoints, then there must 
be at least one overcharged breakpoint.

Proof  Assume that there are no overcharged break-
points in I. We will show by contradiction that ∑

π̆i∈π̆
π̆i <

∑
ῐi∈ῐ

ῐi , which contradicts the fact that I is a 
valid instance. Since there is no pair of softly connected 
breakpoints, it follows that for each soft breakpoint 
(πi,πi+1) , we have π̆i+1 < ῐk , where k = max(πi,πi+1) , 
otherwise I has at least one pair of softly connected 
breakpoints.

Let S be the set of soft breakpoints from I. We have 
that 

∑
(πi ,πi+1)∈S

π̆i+1 <
∑

(πi ,πi+1)∈S
ῐmax(πi ,πi+1) , which 
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means that there are not enough nucleotides in soft 
breakpoints to remove all of them while not turning them 
into undercharged breakpoints. Besides, for each under-
charged breakpoint (πi,πi+1) we also have that π̆i+1 < ῐk , 
where k = max(πi,πi+1) . Since I has no overcharged 
breakpoints, it follows that 

∑
π̆i∈π̆

π̆i <
∑

ῐi∈ῐ
ῐi , and I is 

not a valid instance. � �

Lemma 3.7  Given a valid unsigned instance 
I = (π , π̆ , ῐ) for the SbIRT problem, if I has only one 
overcharged breakpoint (πi,πi+1), one undercharged 
breakpoint (πj ,πj+1), and there is no pair of softly con-
nected breakpoints, then π̆i+1 + π̆j+1 ≥ ῐx + ῐy, where 
x = max(πi,πi+1) and y = max(πj ,πj+1).

Proof  By contradiction, assume that 
π̆i+1 + π̆j+1 < ῐx + ῐy . Since no pair of softly connected 
breakpoints exist in I, it follows that there are no soft 
breakpoints in (π , π̆ , ῐ) or there are not enough nucleo-
tides in the soft breakpoints to remove them. In both 
cases, moving the excess of nucleotides from the over-
charged breakpoint (πi,πi+1) to the undercharged break-
point (πj ,πj+1) is not enough to remove two breakpoints 
( π̆i+1 + π̆j+1 < ῐx + ῐy ). So, the instance (π , π̆ , ῐ) remains 

with at least one undercharged breakpoint (πj ,πj+1) and 
possibly with soft breakpoints with not enough nucleo-
tides to remove them, which contradicts the fact that ∑

π̆i∈π̆
π̆i =

∑
ῐi∈ῐ

ῐi . � �

Lemma 3.8  Given an unsigned instance I = (π , π̆ , ῐ) for 
the SbIRT problem, if I has only one overcharged break-
point (πi,πi+1), at least one undercharged breakpoint 
(πj ,πj+1), and there is no pair of softly connected break-
points, then there is a sequence of two operations that 
removes at least two breakpoints.

Proof  By Lemma 3.7 we have that π̆i+1 + π̆j+1 ≥ ῐx + ῐy , 
where x = max(πi,πi+1) and y = max(πj ,πj+1) . If 
π̆i+1 + π̆j+1 = ῐx + ῐy , assume without loss of gener-
ality that i < j . We apply a sequence of two reversals 
ρ
(i+1,j)
(ῐx ,0)

· ρ
(i+1,j)
(ῐx ,0)

 to move the exceeding nucleotides from 
π̆i+1 to π̆j+1 , and both breakpoints are removed.

If π̆i+1 + π̆j+1 > ῐx + ῐy , then at least a third breakpoint 
must exist. By Lemma 3.3, it is possible to redistribute the 
nucleotides within intergenic regions π̆i , π̆j , and π̆k using 
two consecutive transpositions. Initially, we verify if there 
is a soft breakpoint to receive (ῐx + ῐy)− (π̆i+1 + π̆j+1) 

Fig. 3  The possibilities that can arise when a pair of softly connected breakpoints exists. In this case, one operation can be applied to remove at 
least one breakpoint. The pair of elements that are consecutive in the identity permutation is represented with a grayscale color
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nucleotides. Note that adding or removing nucleotides 
to a soft breakpoint does not turn it into a hard break-
point. If the soft breakpoint exists, then the overcharged 
and undercharged breakpoints will be removed and it 
will receive the exceeding nucleotides after applying two 
consecutive transpositions. Otherwise, the third break-
point must be an undercharged breakpoint, which can be 
removed or turned into an overcharged breakpoint after 
receiving the exceeding nucleotides.

In the worst case, two breakpoints are removed after 
applying a sequence of two operations, and the lemma 
follows.�  �

Note that the sequence of operations from Lemma 3.8 
generates at most one overcharged breakpoint after two 
consecutive transpositions, but if it occurs the instance 
(π , π̆ , ῐ) will have no soft breakpoints.

Lemma 3.9  Given an unsigned instance I = (π , π̆ , ῐ) for 
the SbIRT problem such that bs(I) > 0 and with no pair 
of softly connected breakpoints, it is possible to create a 
hard undercharged breakpoint keeping the instance with 
no pair of softly connected breakpoints, or create a super 
hard undercharged breakpoint after applying one opera-
tion of reversal or transposition.

Proof  If there is at least one decreasing strip in π , then 
must exist a pair of soft breakpoints (πi,πi+1) and 
(πj ,πj+1) , with i < j , such that (πi,πj) or (πi+1,πj+1) are 
consecutive in ι [19]. If (πi,πj) are consecutive in ι , then 
we apply a reversal ρ(i+1,j)

(π̆i+1,π̆j+1)
 . Otherwise, we apply a 

reversal ρ(i+1,j)
(0,0)  . Note that in both cases all the nucleo-

tides are moved to the hard undercharged breakpoint 
created, which guarantees that the instance remains with 
no pair of softly connected breakpoints. If there is no 
decreasing strip in π , it is always possible to find three 
soft breakpoints (πi,πi+1) , (πj ,πj+1) , and (πk ,πk+1) , such 
that a transposition τ (i+1,j+1,k+1)

(0,0,0)  creates a hard under-
charged breakpoint and no hard breakpoint is removed 
[7]. Besides, since the instance has only increasing strips, 
it guarantees that the hard undercharged breakpoint cre-
ated (joining two increasing strips) is a super hard under-
charged breakpoint, and the lemma follows. � �

Lemma 3.10  Given an unsigned instance I = (π , π̆ , ῐ) 
for the SbIRT problem such that there is only one over-
charged breakpoint, no undercharged breakpoints, and 
there is no pair of softly connected breakpoints, then there 
is a sequence of at most three operations that removes at 
least two breakpoints or a sequence of at most four opera-
tions that removes at least three breakpoints.

Proof  Note that bs(π , π̆ , ῐ) ≥ 2 , since it is impossible to 
create a valid instance with only one overcharged break-
point and one soft breakpoint. Applying Lemma  3.9 we 
have two possibilities: (i) a hard undercharged breakpoint 
is created keeping the instance with no pair of softly 
connected breakpoints, then Lemma  3.8 can be applied 
(resulting in two breakpoints removed after applying 
three operations); (ii) a super hard undercharged break-
point is created. In this case, if there are no pair of softly 
connected breakpoints in I, then Lemma  3.8 can be 
applied (also resulting in two breakpoints removed after 
applying three operations). Otherwise, Lemma 3.5 can be 
applied. Note that, by Remark 3.1, the super hard under-
charged breakpoint remains untouched, and one of the 
following cases can occur:

•	 A new overcharged breakpoint is created, and 
Lemma  3.4 can be applied (three breakpoints 
removed after applying four operations).

•	 A pair of softly connected breakpoints is created, and 
Lemma 3.5 can be applied (two breakpoints removed 
after applying three operations).

•	 There is no pair of softly connected breakpoints in 
I, and Lemma 3.8 can be applied (three breakpoints 
removed after applying four operations).� �

Remark 3.2  Note that if only two breakpoints are 
removed by Lemma 3.10, then it implies that the result-
ing genome (π , π̆) is different from (ι, ῐ).

Now consider Algorithm 1, which consists of four cases 
depending on the number of overcharged breakpoints or 
the existence of a pair of softly connected breakpoints. 
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Note that at each iteration of Algorithm 1, at least one 
breakpoint is removed, so eventually (π , π̆) will be trans-
formed into (ι, ῐ) and the algorithm stops. Besides, each 
step is performed in linear time using the auxiliary struc-
tures of a breakpoint list and the inverse permutation of 
π (i.e., a permutation that indicates the position of each 
element i in π ). Since b(π , π̆ , ῐ) ≤ n+ 1 , the running time 
of Algorithm 1 is O(n2).

Lemma 3.11  Given an unsigned instance I = (π , π̆ , ῐ) 
for the SbIRT problem, Algorithm 1 transforms (π , π̆) into 
(ι, ῐ) using at most 4b1(π ,π̆ ,ῐ)

3
 operations.

Proof  Algorithm 1 can be analyzed considering the fol-
lowing cases: 

1	 I has at least two overcharged breakpoints (lines 3 to 6).
2	 I has at least one pair of softly connected breakpoints 

(lines 7 to 10).

3	 I has only one overcharged breakpoint, at least one 
undercharged breakpoint, and there is no pair of 
softly connected breakpoints (lines 12 to 15).

4	 I has only one overcharged breakpoint, no under-
charged breakpoints, and there is no pair of softly 
connected breakpoints (lines 16 to 19).

Note that, if the algorithm reaches cases 3 or 4, there is 
exactly one overcharged breakpoint. Otherwise, case 1 
would be performed first or the instance is not a valid 
one (Lemma 3.6).
Cases 1, 2, and 3 remove, on average, one breakpoint per 
operation. If the worst case of Case 4 is performed (where 
two breakpoints are removed with three operations), we 
have by Remark  3.2 that (π , π̆) �= (ι, ῐ) , and cases 1, 2, 
or 3 will be applied subsequently, and all guarantees a 
sequence of operations that will remove, on average, one 
breakpoint per operation. Thus, on average, each break-
point is removed by using at most 4

3
 operations, and the 

lemma follows. � �

Theorem  3.1  Algorithm  1 is a 4-approximation algo-
rithm for the unsigned case of the SbIRT problem.

Proof  Given an unsigned instance I = (π , π̆ , ῐ) for 
the SbIRT problem, we have by Proposition  3.1 that 
dSbIRT(I) ≥

b1(I)
3

 . By Lemma  3.11, Algorithm  1 trans-
forms (π , π̆) into (ι, ῐ) using at most 4b1(π ,π̆ ,ῐ)

3
 operations. 

Thus, we obtain the following approximation ratio:

Incorporating generic transpositions
In this section we use a more generalized definition 
of transpositions and design a 3-approximation algo-
rithm for the sorting by intergenic reversals and 
transpositions problem using that definition. Let us 
start with a formal definition of intergenic moves and 
generic transpositions, that include intergenic transposi-
tions and intergenic moves.

Definition 3.1  An intergenic move τ
(i,i,k)
(x,y,z) , with 

1 ≤ i < k ≤ n+ 1 , x ∈ [0..π̆i − 1] , y ∈ [1..π̆i] , x < y , 
and z ∈ [0..π̆k ] cuts π̆i into three parts of sizes x, y− x 
and π̆i − y , and cuts π̆k after z nucleotides, and inserts 
the segment from π̆i of size y− x into π̆k after the 

4b1(π ,π̆ ,ῐ)
3

b1(π ,π̆ ,ῐ)
3

=
12

3
= 4. �
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z-th nucleotide. This means that (π , π̆) · τ (i,i,k)(x,y,z) results in 
(π , π̆ ′) , with π̆ ′

j = π̆j if j  ∈ {i, k} , π̆ ′
i = π̆i − (y− x) , and 

π̆ ′
k = π̆k + (y− x).

Similarly, an intergenic move τ (i,k ,k)(x,y,z) , with 1 ≤ i < k ≤ n+ 1 , 
x ∈ [0..π̆i] , y ∈ [0..π̆k − 1] , z ∈ [1..π̆k ] , and y < z cuts π̆i 
after x nucleotides, cuts π̆k into three parts of sizes y, z − y 
and π̆k − z nucleotides, and inserts the segment from π̆k 
of size z − y into π̆i after the x-th nucleotide. This means 
that (π , π̆) · ρ results in (π , π̆ ′) , with π̆ ′

j = π̆j if j  ∈ {i, k} , 
π̆ ′
i = π̆i + z − y , and π̆ ′

k = π̆k − (z − y).

Definition 3.2  A generic transposition τ (i,j,k)(x,y,z) , with 
1 ≤ i < k ≤ n+ 1 , is an intergenic move (as in Defini-
tion  3.1), if i = j or j = k , or is an intergenic transposi-
tion (as in Definition 2.2), where 1 ≤ i < j < k ≤ n+ 1.

We note that an intergenic move modifies only two 
intergenic regions of an instance. Now we show how 
generic transpositions affect the number of breakpoints 
from an instance (π , π̆ , ῐ).

Lemma 3.12  Given an unsigned instance I1 = (π , π̆ , ῐ) 
and a signed instance I2 = (π , π̆ , ῐ) of the SbIRT prob-
lem, �b1(I1, τ ) ≥ −3 and �b2(I2, τ ) ≥ −3 for any generic 
transposition τ (i,j,k)(x,y,z), respectively.

Proof  The proof is similar to the one described in 
Lemma 3.1, and considering that an intergenic transposi-
tion can affect up to three breakpoints and an intergenic 
move can affect up to two breakpoints.�  �

In the following lemma we explain how to remove an 
overcharged breakpoint using one intergenic move.

Lemma 3.13  Given an unsigned instance I = (π , π̆ , ῐ) 
for the SbIRT problem, if I has one overcharged break-
point, then it is possible to remove at least one breakpoint 
using an intergenic move.

Proof  Let (πi,πi+1) , with 0 ≤ i ≤ n , be the over-
charged breakpoint, and let w = ῐx − π̆i+1 , such that 
x = max(πi,πi+1) . We note that another breakpoint 
(πk ,πk+1) , with 0 ≤ k ≤ n and k  = i , must exist in 
(π , π̆ , ῐ) , otherwise the instance is not valid. We can use 
an intergenic move to transfer w nucleotides from π̆i+1 
to π̆k+1 , and the overcharged breakpoint is removed. If 
i < k , we can apply the intergenic move τ (i+1,i+1,k)

(0,w,0)  (Fig. 4, 
Case 1); otherwise we can apply the intergenic move 
τ
(k+1,i+1,i+1)
(0,0,w) (Fig. 4, Case 2). � �

Lemma 3.14  Given a valid unsigned instance 
I = (π , π̆ , ῐ) for the SbIRT problem, if b(I) > 0 and there 
are no overcharged breakpoints, then there must be at 
least one pair of softly connected breakpoints.

Proof  Note that, since there is no overcharged break-
point, and b(I) > 0 , then at least two soft breakpoints must 
exist, otherwise the instance has only undercharged break-
points and it is not valid. We can use a similar argument as 
the proof of Lemma 3.6 to show that at least one pair of soft 

Fig. 4  Illustration of an intergenic move applied to remove an overcharged breakpoint. The overcharged breakpoint is represented with a grayscale 
color. On the top (Case 1), the intergenic move τ (i+1,i+1,k+1)

(x ,y ,z)  is applied to move the excess of nucleotides from the overcharged breakpoint (πi ,πi+1) 
to the breakpoint (πk ,πk+1) , such that i < k . Similarly, at the bottom (Case 2), the intergenic move τ (k+1,i+1,i+1)

(x ,y ,z)  is applied but i > k
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breakpoints must be connected, otherwise I is not a valid 
instance. � �

Algorithm  2 consists of two cases: one occurs when 
there is an overcharged breakpoint and the other is 
applied when there are only soft and undercharged 
breakpoints. At each iteration of Algorithm 2 at least one 
breakpoint is removed using one reversal or one generic 
transposition, so eventually (π , π̆) will be transformed 
into (ι, ῐ) and the algorithm ends. The same argument of 
Algorithm 1 can be used to show that the running time of 
Algorithm 2, which is O(n2) . 

Lemma 3.15  Given an unsigned instance I = (π , π̆ , ῐ) 
for the SbIRT problem, Algorithm 2 transforms (π , π̆) into 
(ι, ῐ) using at most b1(π , π̆ , ῐ) operations.

Proof  Algorithm 2 has only two cases: (i) I has at least 
one overcharged breakpoint (lines 3 to 6) and (ii) I has at 
least one pair of softly connected breakpoints (lines 7 to 
10). In both cases at least one breakpoint is removed per 
operation, and the lemma follows. � �

Theorem  3.2  Algorithm  2 is a 3-approximation algo-
rithm for the unsigned case of SbIRT problem incorporat-
ing generic transpositions.

Proof  Since Lemma 3.12 has the same lower bound for 
�b1(π , π̆ , ῐ, τ ) as in Lemma  3.2, Proposition  3.1 is also 
valid when considering intergenic reversals and generic 

transpositions. Given an unsigned instance I = (π , π̆ , ῐ) 
for the SbIRT problem, we have by Proposition 3.1 that 
dSbIRT(I) ≥

b1(I)
3

 . By Lemma  3.15, Algorithm  2 trans-
forms (π , π̆) into (ι, ῐ) using at most b1(π , π̆ , ῐ) operations, 
and the lemma follows. � �

Greedy strategy
To improve the practical performance of algorithms  1 
and 2, we search at the beginning of each iteration for 
one of the following operations. 

1	 A transposition that removes three breakpoints.
2	 A reversal or transposition that removes two break-

points.

The search is performed in linear time knowing where 
each element is placed in π . Therefore, it does not 
increase the asymptotic time complexity of algorithms 1 
and 2. Besides, this strategy does not affect the theoreti-
cal approximation factors of algorithms 1 and 2, since the 
applied operations remove at least two breakpoints each.

Approximation algorithms for the signed case of the SbIRT 
problem
In this section, we show how to obtain approximation 
algorithms for the signed case of the SbIRT problem 
based on a reduction from a signed instance into an 
unsigned instance.

The algorithms are designed following three steps: (i) 
Initially, we describe a polynomial time function F  that 
maps a signed instance I = (π , π̆ , ῐ) of the SbIRT problem 
into a valid unsigned instance I ′ = (π ′, π̆ ′, ῐ′) . (ii) Then, 
we use the algorithms 1 or 2 to provide an solution S(I ′) 
for the instance I ′ , and (iii) we show a polynomial time 
function G that maps a solution S(I ′) into a valid solution 
S(I) for I. Lastly, we prove the theoretical approximation 
factor obtained by adopting this process.

Function F  works as follows: for each element πi of the 
source genome (π , π̆) , we map it into two new elements: 
(2πi − 1, 2πi ), if πi > 0 , and (2|πi|, 2|πi| − 1) , otherwise. 
In both cases, a new intergenic region with size zero is 
inserted between these two new elements. We apply 
the same procedure in the target genome (ι, ῐ) . This pro-
cedure doubles the size of the instance I ′ but note that 
b2(I) = b1(I

′) , since each breakpoint type two is mapped 
into a breakpoint type one. Besides, the F  function takes 
linear time to complete the mapping.

Function G uses the fact that algorithms  1 and  2 act 
only over breakpoints to map a solution S(I ′) for I ′ into 
a valid solution S(I) for I. It maps each reversal ρ(i,j)

(x,y) in 
S(I ′) into ρ(i′,j′)

(x,y)  such that i′ = i+1
2

 and j′ = j
2
 , and each 
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transposition (or generic transposition) τ (i,j,k)(x,y,z) in S(I ′) 
into τ (i

′,j′,k ′)
(x,y,z)  such that i′ = i+1

2
 , j′ = j+1

2
 , and k ′ = k+1

2
 . 

Recall that this mapping is only possible because algo-
rithms  1 and  2 do not create breakpoints of type one 
during the process that transform the source genome 
into the target genome. Furthermore, note that solutions 
S(I) and S(I ′) have the same number of operations. Since 
solution S(I ′) is O(n) , where n is the number of elements 
of π , then function G takes linear time to complete the 
solution mapping.

Figure 5 shows an example using the functions F  and 
G . The signed instance (π , π̆ , ῐ) of the SbIRT problem (at 
the top) is mapped into an unsigned instance (π ′, π̆ ′, ῐ′) 
(at the bottom) using the function F  . Moreover, the 
function G is used to map an solution S′ for (π ′, π̆ ′, ῐ′) into 
a valid solution S of same size for (π , π̆ , ῐ).

Algorithms 3 and 4 show the steps to obtain a solution 
for the signed case of the SbIRT problem. 

Note that the functions F  and G take linear time. Thus, 
the running time of algorithms 3 and 4 are O(n2) . Now 
we show that algorithms 3 and 4 guarantee the approxi-
mation factors of 4 and 3 considering the reversal and 
transposition events and incorporating the generic trans-
position, respectively.

Lemma 3.16  Given a signed instance I = (π , π̆ , ῐ) for 
the SbIRT problem, we have that b2(I) = b1(I

′), where 
I ′ = F(I).

Proof  Direct by the construction of the F  function. � �

Lemma 3.17  Given a signed instance I = (π , π̆ , ῐ) for 
the SbIRT problem, Algorithm  3 transforms (π , π̆) into 
(ι, ῐ) using up to 4b2(π ,π̆ ,ῐ)

3
 reversals and transpositions.

Fig. 5  On top, we have a signed instance (π , π̆ , ῐ) of the SbIRT problem, with π = (−2+1−3) , π̆ = (5, 3, 7, 2) , and ῐ = (4, 4, 8, 1) , which is mapped 
by the F  function into an unsigned instance (π ′ , π̆ ′ , ῐ′) (at the bottom), such that π ′ = (4 3 1 2 6 5) , π̆ ′ = (5, 0, 3, 0, 7, 0, 2) , and ῐ′ = (4, 0, 4, 0, 8, 0, 1) . 
The G function maps a solution S′ =

(
τ
(1,3,5)
(4,3,0) , ρ

(3,4)
(1,3) , ρ

(5,6)
(7,1)

)
 for the instance (π ′ , π̆ ′ , ῐ′) into a valid solution S =

(
τ
(1,2,3)
(4,3,0) , ρ

(2,2)
(1,3) , ρ

(3,3)
(7,1)

)
 , with same size, 

for the instance (π , π̆ , ῐ)
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Proof  By Lemma  3.16, we have that b2(I) = b1(I
′) , 

where I ′ = F(I) . Besides, a solution S(I ′) for I ′ is 
obtained using up to 4b1(π ,π̆ ,ῐ)

3
 reversals and transposi-

tions. Since a valid solution S(I) for I generated by the G 
function has the same size as S(I ′) , the lemma follows. �

Theorem  3.3  Algorithm  3 is a 4-approximation algo-
rithm for the signed case of the SbIRT problem.

Proof  Given an signed instance I = (π , π̆ , ῐ) for 
the SbIRT problem, we have by Proposition  3.2 that 
dSbIRT(I) ≥

b2(I)
3

 . By Lemma  3.17, we have that Algo-
rithm 3 transforms (π , π̆) into (ι, ῐ) using at most 4b2(π ,π̆ ,ῐ)

3
 

operations of reversal and transposition, and the theorem 
follows. � �

Lemma 3.18  Given a signed instance I = (π , π̆ , ῐ) for 
the SbIRT problem, Algorithm  4 transform (π , π̆) into 
(ι, ῐ) using at most b2(π , π̆ , ῐ) operations of reversal and 
transposition.

Proof  The proof is similar to the one described in 
Lemma 3.17 but considering that a solution S(I ′) for the 
instance I ′ is obtained using at most b1(π , π̆ , ῐ) operations 
of reversal and transposition. � �

Theorem  3.4  Algorithm  4 is a 3-approximation algo-
rithm for the signed case of the SbIRT problem incorporat-
ing generic transpositions.

Proof  Given an signed instance I = (π , π̆ , ῐ) for the 
SbIRT problem, we have by lemmas 3.1, 3.2, and 3.12 the 
following lower bound: dSbIRT(I) ≥

b2(I)
3

 . By Lemma 3.18, 
we have that Algorithm  4 transforms (π , π̆) into (ι, ῐ) 
using at most b2(π , π̆ , ῐ) operations of reversal and trans-
position, and the theorem follows.�  �

Practical results
In this section, we compare the proposed algorithms 
using simulated datasets. Besides, we perform an experi-
ment using marine and brackish picocyanobacteria 
genomes from Cyanorak 2.1 [20] system.

Results with unsigned simulated datasets
To assess algorithms  1 and 2, we compare them with 
the 4.5-approximation algorithm for the unsigned case 
of the SbIRT problem presented by Brito et. al. [16]. We 
hereafter refer to the 4.5-approximation algorithm [16], 
Algorithm 1, and Algorithm 2 by 4.5SbIRT , 4 SbIRT , and 

3SbIRGT, respectively. We used the following datasets of 
simulated genomes:

•	 DS1: This dataset was presented by Brito et. al. [16]. 
It is divided into groups according to the number of 
random operations (reversal or transposition) used 
to create each instance in the dataset. Each group 
contains 10.000 instances of size 100. Instances are 
created as follows: the target genome is composed 
by the identity permutation ι and the intergenic 
region sizes in the target genome are randomly cho-
sen in the range [0..100]. The source genome was 
obtained after applying a sequence of random opera-
tions in the target genome. The number of random 
operations ranged from 5 up to 100, in intervals of 5. 
Reversals and transpositions can be selected with the 
same probability to create each instance. This dataset 
has a total of 200.000 instances.

•	 DS2: This dataset contains groups of instances with 
sizes 100, 200, 300, 400, and 500. Each group con-
tains 10.000 instances. Instances are created as fol-
lows: the target genome is again composed by the 
identity permutation ι with intergenic region sizes 
randomly chosen in the range [0..100]. The source 
genome (π , π̆) was obtained by shuffling the lists 
of genes and intergenic region sizes from the target 
genome independently, in order to create instances 
with a large number of breakpoints. This dataset has 
a total of 50.000 instances.

The DS1 dataset explores scenarios considering instances 
of same size and where the number of breakpoints tends 
to increase as the number of random operations used to 
generate each instance grows. The DS2 dataset explores 
scenarios considering groups of instances with different 
sizes and, by the random process of construction, they 
tend to have a higher number of breakpoints.

Tables 1, 2, and 3 consider the DS1 dataset and they use, 
respectively, algorithms 4.5SbIRT , 4 SbIRT , and 3SbIRT. 
Columns OP, Default Implementation, and Greedy Strat-
egy represent the number of random operations used to 
create the instances, the result with no greedy strategy, 
and the result with the greedy strategy, respectively.

From Table 1, we note that the greedy strategy significantly 
improved the results of the 4.5SbIRT algorithm. The mini-
mum, average, and maximum metrics for the distance and 
the approximation ratio using the greedy strategy presented 
lower values when compared with the algorithm default 
implementation, except for the minimum distance when OP 
= 05 . The average approximation ratio tends to increase as 
OP increases. When no greedy strategy is applied, the values 
ranged from 2.01 (OP = 05 ) to 2.96 (OP = 100 ). Using the 
greedy strategy the values ranged from 1.34 (OP = 05 ) to 
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2.11 (OP = 100 ). Besides, by adopting the greedy strategy we 
were able to find at least one optimal solution in the groups 
where OP = 05 and OP = 10 , indicated by the minimum 
approximation ratio column with value 1.00.

Table  2 shows a similar behavior for 4 SbIRT regard-
ing the increase of the average approximation ratio as 
OP grows, and the improvement obtained by the greedy 
strategy. Using no greedy strategy, the average distance 
of 4 SbIRT is better than the average distance of 4.5SbIRT 
algorithm when the number of random operations (OP) 
is greater than or equals to 50. It indicates that the default 
implementation of the 4 SbIRT algorithm tends to pro-
vide better results when the instance has many break-
points. When we compare both algorithms using the 
greedy strategy, the 4 SbIRT algorithm provides better 
results for the vast majority of the groups and metrics. 
Considering all groups and using the greedy strategy, the 
maximum approximation ratio obtained by both algo-
rithms (4.5SbIRT and 4 SbIRT ) was 3.00, which is con-
siderably less than the theoretical approximation factor 
proven for them.

Table  3 shows that 3SbIRGT provided results similar 
to those presented by 4 SbIRT . Considering the average 
distance and average approximation ratio columns, we 
can see a slight improvement for all values of OP com-
pared with the practical results of 4 SbIRT . This fact 
results from the inclusion of the intergenic move opera-
tion, which can reduce the number of operations needed 
to transform a genome into another. Besides, consider-
ing the versions without and with the greedy strategy, 
respectively, the maximum approximation ratios regard-
ing all groups were 2.97 and 2.83. Using the greedy strat-
egy, the average approximation ratio of 3SbIRGT ranged 
from 1.29 to 2.05, which is significantly less than the the-
oretical approximation factor.

Table  4 shows the results for the DS2 dataset using 
4.5SbIRT , 4 SbIRT , and 3SbIRGT. The average distances 
of the algorithms without greedy strategy were close to 
the instance sizes in all groups. Computing the absolute 
difference between the average distance and the instance 
sizes, the highest values provided by the 4.5SbIRT , 
4 SbIRT , and 3SbIRGT algorithms were 4.00 (Size=500), 
0.42 (Size=500), and 0.08 (Size=100), respectively. The 
greedy strategy also led to important improvement of 
the results for all the algorithms and groups. With and 
without greedy strategy, the best results were provided 
by 3SbIRGT followed by the 4 SbIRT and 4.5SbIRT 
algorithms regarding the average distance and average 
approximation ratio metrics.

Table  5 shows the average running time, in seconds, 
of the 4.5SbIRT , 4 SbIRT , and 3SbIRGT algorithms per 
instance, comparing the default implementation (DI) 
and the greedy strategy (GS) using the DS2 dataset. Note 

that the greedy strategy is more time-consuming than the 
default implementation. The maximum average running 
time of an algorithm without greedy strategy was less 
than 0.20 seconds, while using the greedy strategy it was 
0.65 seconds. Observing the improvement in the results 
given by the greedy strategy in Table 4, we highlight that 
the additional running time is a good trade-off regarding 
running time and solution quality.

Based on the results, the practical approximation ratio 
provided by the algorithms tends to be better than the 
theoretical approximation factors. Besides, it is note-
worthy that the greedy strategy has brought a significant 
improvement on both datasets. Since incorporating this 
strategy does not change the asymptotic time complex-
ity nor the theoretical approximation of the algorithms, 
it becomes an excellent alternative to obtain better 
results.

Results with signed simulated datasets
To assess algorithms 3 and 4, we compare them with the 
3-approximation and the 2.5-approximation algorithms 
for the signed case of the SbIRT problem, respectively, 
which were presented by Oliveira et. al. [17]. We hereafter 
refer to the 3-approximation algorithm [17], 2.5-approxi-
mation algorithm [17], Algorithm  3, and Algorithm  4 
by 3 SbIRT , 2.5SbIRGT , 4 SbIRT , and 3 SbIRGT , respec-
tively. The results of the 4 SbIRT and 3 SbIRGT algorithms 
were obtained adopting the greedy strategy. We used the 
DBSIRIT and DBSIRGT datasets presented by Oliveira et. 
al. [17], and they have the following characteristics: Each 
dataset started with 100 target genomes (ι, ῐ) , such that ι 
has 100 elements, and each value of ῐi , with 1 ≤ i ≤ 101 , 
being chosen randomly and uniformly in interval [0..100]. 
After that, from each source genome (ι, ῐ) were generated 
100 instances (π , π̆ , ῐ) by applying:

•	 DBSIRIT: d random operations of reversals and trans-
positions (being 50% of each) in each source genome 
(ι, ῐ).

•	 DBSIRGT​: d random operations of reversals and 
generic transpositions (being 50% of reversals, 40% 
of transpositions, and 10% of moves) in each source 
genome (ι, ῐ).

The parameters of each applied operation were randomly 
generated considering the range of valid values. The value 
of d ranged from 10 up to 100, in intervals of 10. For each 
value of d, a group with 10,000 instances was generated. 
DBSIRIT and DBSIRGT​ datasets have a total of 100,000 
instances each.

Tables  6 and 7 show the practical results of the algo-
rithms using the DBSIRIT and DBSIRGT​ datasets, respec-
tively. The approximation ratio for each instance was 
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computed using the lower bound based on the weighted 
cycle graph structure [17, Theorems 3.8 and 7.6].

Table  6 compares the results obtained by the 3SbIRT 
and 4SbIRT algorithms. The columns Small and Small 
or Equal indicate, for each group, the percentage of solu-
tions provided by the 4SbIRT algorithm with strictly 
smaller size and with small or equal size, respectively, 
when compared to the solutions provided by the 3SbIRT 
algorithm.

From Table 6, it is possible to observe that the 4SbIRT 
algorithm, in all the groups, was able to provide better 
results considering the metrics of average approxima-
tion ratio and average distance. Besides, considering the 
groups with d greater than 20, the algorithm provided 
better solutions in more than 75% of the instances (col-
umn Small). Considering the groups with d greater than 
30, the 4SbIRT algorithm provided better or equivalent 
size solutions (column Small or Equal) in more than 96% 
of the instances. It is important to note that, as the value 
of d increases, the absolute difference between the aver-
age distance provided by the 3SbIRT and 4SbIRT algo-
rithms also increases significantly. When d is greater 
than 50, the absolute difference between the average dis-
tances is superior to 10, which indicates that the 4SbIRT 
algorithm tends to provide better solutions in scenarios 
where a higher number of operations were used.

Table  7 compares the results obtained by the 
2.5SbIRGT and 3 SbIRGT algorithms. The columns Small 
and Small or Equal indicate, for each group, the percent-
age of solutions provided by the 3 SbIRGT algorithm with 
strictly smaller size and with small or equal size, respec-
tively, when compared to the solutions provided by the 
2.5SbIRGT algorithm.

From Table  7, we can note that the 2.5SbIRGT algo-
rithm, when compared to the 3SbIRGT algorithm, 
showed a slightly better result regarding the average 
approximation ratio and distance in the groups with 
d = 10 and d = 20 . Considering these two groups 
( d = 10 and d = 20 ), the absolute difference between 
the average distance provided by the algorithms was 
less than 0.61. Besides, by column Small, we can notice 
that in the groups d = 10 and d = 20 the 3 SbIRGT algo-
rithm provided better solutions in 32.30% and 34.77% of 
the instances, respectively. This shows that the 3 SbIRGT 
algorithm can act in a complementary way with the 
2.5SbIRGT algorithm, even in the cases where both pro-
vide similar results. Since better estimates tend to out-
come in enhanced analysis, selecting the better result 
between each algorithm is a good alternative to assist in 
this task. Regarding the groups where d is greater than 
20, the 3 SbIRGT algorithm provided better results con-
sidering the average approximation ratio and distance. 
Furthermore, in the same groups, the 3 SbIRGT algorithm 

provided better or equivalent size solutions (column 
Small or Equal) in more than 73% of the instances.

From Tables 6 and 7, it is possible to note that 4SbIRT 
and 3 SbIRGT algorithms are robust and tend to provide 
practical results better than the theoretical bounds.

Results with real genomes
To assess the 3 SbIRGT algorithm and analyze the behav-
ior with real genomes, we compared it with the 2-approx-
imation algorithm for the problem considering reversals 
and transpositions on signed permutations (ignoring the 
intergenic regions), presented by Walter et  al. [7]. We 
hereafter refer to the 2-approximation algorithm [7] by 
2sbR t. We used 97 genomes from Cyanorak 2.1 [20], 
which is a system for the visualization and curation of 
marine and brackish picocyanobacteria genomes. The 
system encompasses 51 synechococcus, 3 cyanobium, 
41 prochlorococcus genomes, and 2 prochlorococcus 
metagenome-assembled genomes. For each genome, the 
number of genes ranged from 1834 to 4391, and repli-
cated genes correspond to less than 5% of the total genes, 
on average.

We performed a preprocessing stage to ensure that the 
data fits the model constraints, which is divided in two 
steps: 

1.	 Map the sequence of genes and the intergenic regions 
into (π , π̆) : For each genome, we mapped the first 
occurrence of the genes into a permutation π and 
computed the size of the intergenic regions to obtain 
π̆.

2.	 Pairing: For each pair of genomes, we performed 
a pairing so that the genes and conserved blocks 
shared by both genomes were kept while the remain-
ing genes were removed through a process that simu-
lates a sequence of deletions.

After the preprocessing stage, we obtained for each pair-
ing an instance (π , π̆ , ῐ) . Note that the 2SbRT algorithm 
requires as input only the permutation π , since it was not 
designed to consider the intergenic regions.

Finally, 3 SbIRGT with the greedy strategy and the 2SbR 
t were applied to each pairing. The number of genome 
rearrangement events for each pairing was computed by 
the total of deletions used in the preprocessing stage (step 
2) plus the size of the sequence of reversals and (generic) 
transpositions provided by the algorithms. These num-
bers were fed into a matrix of pairwise distances.

We constructed two phylogenetic trees based on the 
matrix of pairwise distances computed from the algo-
rithms and using the Circular Order Reconstruction 
method [21]. To analyze the topological characteristics 
of the phylogenetic trees, we performed a comparison 
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Fig. 6  Phylogenetic tree based on genome rearrangements using the 3 SbIRGT algorithm with the greedy strategy and 97 genomes from the 
Cyanorak 2.1 system
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Table 1  Comparison between the default implementation and the greedy strategy of the 4.5SbIRT algorithm using the DS1 dataset

OP Default implementation Greedy strategy

Distance Approx. ratio Distance Approx. ratio

Min. Avg. Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.

05 4 8.64 15 1.25 2.01 3.00 4 5.67 14 1.00 1.34 3.00

10 10 17.54 26 1.50 2.25 3.00 8 13.09 25 1.00 1.69 3.00

15 17 26.72 38 1.73 2.46 3.00 13 20.80 33 1.15 1.91 3.00

20 25 35.72 47 1.86 2.63 3.08 16 27.67 40 1.33 2.03 2.85

25 33 43.81 56 2.06 2.74 3.07 23 33.45 45 1.39 2.09 2.79

30 39 50.97 66 2.32 2.81 3.07 28 38.50 53 1.58 2.12 2.79

35 43 57.06 70 2.50 2.86 3.06 30 42.74 57 1.58 2.14 2.82

40 49 62.43 77 2.59 2.88 3.10 34 46.40 60 1.64 2.14 2.68

45 54 67.11 80 2.62 2.90 3.09 39 49.66 63 1.71 2.15 2.76

50 59 71.14 83 2.67 2.92 3.09 39 52.25 69 1.69 2.14 2.76

55 60 74.69 89 2.73 2.93 3.08 42 54.70 69 1.65 2.14 2.67

60 64 77.80 91 2.72 2.94 3.08 44 56.75 70 1.74 2.14 2.62

65 68 80.50 93 2.70 2.94 3.08 44 58.51 73 1.74 2.13 2.59

70 71 82.89 95 2.79 2.94 3.10 48 60.06 74 1.73 2.13 2.57

75 71 85.07 96 2.80 2.95 3.07 48 61.50 76 1.76 2.13 2.57

80 75 86.91 98 2.80 2.95 3.07 50 62.67 76 1.77 2.12 2.54

85 76 88.55 99 2.83 2.95 3.07 52 63.80 79 1.77 2.12 2.55

95 79 90.00 100 2.81 2.95 3.07 52 64.71 78 1.73 2.12 2.52

90 77 91.27 100 2.81 2.96 3.10 54 65.45 80 1.78 2.11 2.58

100 83 92.38 101 2.84 2.96 3.10 53 66.23 81 1.77 2.11 2.55

Table 2  Comparison between the default implementation and the greedy strategy of the 4 SbIRT algorithm using the DS1 dataset

OP Default implementation Greedy strategy

Distance Approx. ratio Distance Approx. ratio

Min. Avg. Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.

05 05 10.17 15 1.25 2.37 3.00 4 5.61 13 1.00 1.33 2.75

10 11 20.54 29 1.57 2.64 3.00 8 12.68 23 1.00 1.63 3.00

15 19 29.81 38 1.91 2.74 3.10 13 19.94 30 1.15 1.83 2.80

20 28 38.11 49 2.14 2.80 3.08 16 26.52 37 1.33 1.95 2.69

25 33 45.37 58 2.35 2.83 3.07 23 32.16 43 1.39 2.01 2.71

30 39 51.91 66 2.53 2.86 3.00 27 37.10 49 1.55 2.04 2.58

35 45 57.58 70 2.48 2.88 3.00 30 41.29 53 1.58 2.06 2.58

40 49 62.69 77 2.62 2.90 3.00 34 44.90 56 1.62 2.07 2.53

45 54 67.19 81 2.70 2.91 3.00 37 48.07 60 1.69 2.08 2.55

50 58 71.11 83 2.71 2.92 3.04 39 50.68 63 1.69 2.07 2.50

55 61 74.56 87 2.72 2.92 3.04 41 53.07 64 1.65 2.08 2.50

60 64 77.64 92 2.73 2.93 3.00 43 55.11 68 1.74 2.08 2.46

65 69 80.32 93 2.79 2.93 3.00 44 56.85 71 1.72 2.07 2.44

70 71 82.68 96 2.79 2.94 3.04 46 58.43 72 1.73 2.07 2.46

75 72 84.84 95 2.79 2.94 3.04 47 59.83 72 1.76 2.07 2.48

80 75 86.70 98 2.80 2.94 3.00 49 61.01 73 1.77 2.07 2.46

85 76 88.30 99 2.81 2.94 3.00 51 62.11 76 1.74 2.07 2.43

95 78 89.75 99 2.83 2.95 3.03 51 63.06 75 1.73 2.07 2.45

90 78 91.00 100 2.83 2.95 3.00 52 63.80 77 1.73 2.06 2.45

100 82 92.13 99 2.83 2.95 3.03 54 64.54 76 1.75 2.06 2.43
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Table 3  Comparison between the default implementation and the greedy strategy of the 3SbIRGT algorithm using the DS1 dataset

OP Default implementation Greedy strategy

Distance Approx. ratio Distance Approx. ratio

Min. Avg. Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.

05 5 9.89 14 1.25 2.30 2.80 4 5.46 12 1.00 1.29 2.75

10 11 20.19 28 1.57 2.59 2.89 7 12.34 22 1.00 1.59 2.83

15 19 29.41 38 1.91 2.70 2.92 13 19.53 30 1.15 1.80 2.70

20 27 37.68 48 2.14 2.77 2.94 16 26.06 36 1.27 1.91 2.67

25 33 44.94 57 2.29 2.80 2.95 22 31.66 42 1.39 1.98 2.64

30 40 51.47 66 2.50 2.83 2.95 27 36.57 48 1.55 2.01 2.53

35 44 57.13 70 2.48 2.85 2.96 30 40.75 53 1.58 2.04 2.53

40 49 62.24 77 2.64 2.87 2.96 34 44.33 56 1.64 2.04 2.53

45 54 66.73 80 2.68 2.88 2.96 37 47.54 60 1.67 2.05 2.50

50 59 70.66 82 2.67 2.89 2.96 39 50.12 63 1.68 2.05 2.48

55 61 74.10 87 2.71 2.90 2.97 41 52.52 65 1.62 2.05 2.50

60 63 77.17 90 2.76 2.91 2.97 43 54.56 67 1.70 2.05 2.46

65 68 79.85 92 2.79 2.91 2.97 44 56.31 70 1.70 2.05 2.44

70 71 82.21 95 2.78 2.91 2.97 46 57.84 71 1.69 2.05 2.46

75 71 84.38 94 2.79 2.92 2.97 47 59.26 72 1.72 2.05 2.43

80 74 86.21 97 2.80 2.92 2.97 49 60.43 72 1.70 2.05 2.43

85 75 87.83 98 2.77 2.92 2.97 51 61.54 75 1.73 2.05 2.42

95 78 89.28 98 2.81 2.93 2.97 51 62.48 74 1.71 2.05 2.41

90 77 90.54 100 2.83 2.93 2.97 52 63.21 76 1.73 2.04 2.42

100 82 91.65 99 2.80 2.93 2.97 52 63.95 76 1.72 2.04 2.40

Table 4  Results of the 4.5SbIRT , 4 SbIRT , and 3SbIRGT algorithms considering the default implementation and the greedy strategy 
using the DS2 dataset

Size Default Implementation Greedy strategy

Distance Approx. ratio Distance Approx. ratio

Min. Avg. Max. Min. Avg. Max. Min. Avg. Max. Min. Avg. Max.

4.5SbIRT

100 99 103.47 112 2.91 3.04 3.29 60 71.77 85 1.76 2.11 2.50

200 199 203.73 215 2.97 3.03 3.21 122 137.83 157 1.82 2.05 2.34

300 299 303.89 315 2.96 3.00 3.12 185 202.53 222 1.83 2.00 2.21

400 399 403.97 412 2.98 3.01 3.07 245 266.51 291 1.83 1.98 2.17

500 499 504.00 513 2.99 3.01 3.07 307 330.05 356 1.84 1.97 2.13

4SbIRT

100 98 100.38 102 2.88 2.95 3.00 60 70.02 81 1.76 2.06 2.38

200 198 200.41 202 2.96 2.99 3.01 121 135.48 152 1.81 2.02 2.27

300 298 300.41 302 2.95 2.97 3.01 181 199.64 219 1.79 1.97 2.17

400 397 400.43 402 2.97 2.98 3.00 241 263.21 290 1.80 1.96 2.16

500 498 500.42 502 2.98 2.99 3.01 303 326.29 352 1.81 1.95 2.11

3SbIRT

100 97 99.92 100 2.88 2.93 2.97 59 69.45 81 1.74 2.04 2.38

200 197 199.93 200 2.94 2.98 2.99 120 134.89 150 1.79 2.01 2.24

300 298 299.93 300 2.95 2.97 2.99 182 199.07 218 1.80 1.97 2.17

400 397 399.93 400 2.97 2.98 2.99 243 262.57 285 1.81 1.96 2.13

500 498 499.94 500 2.98 2.98 2.99 304 325.68 350 1.82 1.95 2.10
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Table 5  The average running time of the 4.5SbIRT , 4 SbIRT , and 3SbIRGT algorithms, in seconds, considering the default 
implementation (DI) and the greedy strategy (GS) using the DS2 dataset

Size 4.5SbIRT 4SbIRT 3SbIRGT​

DI GS DI GS DI GS

100 0.01 0.03 0.01 0.03 0.01 0.02

200 0.03 0.10 0.03 0.10 0.03 0.10

300 0.06 0.23 0.06 0.23 0.06 0.22

400 0.13 0.40 0.12 0.41 0.13 0.43

500 0.18 0.63 0.19 0.64 0.18 0.64

Table 6  Comparison between the 3SbIRT and 4SbIRT algorithms using the DBSIRIT dataset

d 3SbIRT 4SbIRT Small (%) Small or 
equal 
(%)Distance (Avg.) Approx. ratio (Avg.) Distance (Avg.) Approx. ratio (Avg.)

10 12.60 1.68 12.19 1.63 51.37 68.70

20 26.37 1.77 25.60 1.71 54.72 66.48

30 40.23 1.81 36.91 1.66 78.60 85.53

40 53.29 1.85 46.10 1.60 95.84 97.62

50 63.78 1.87 53.21 1.56 99.46 99.74

60 71.88 1.89 58.97 1.55 99.81 99.92

70 77.83 1.90 63.29 1.55 99.97 99.98

80 82.45 1.91 66.73 1.55 99.95 99.99

90 85.98 1.92 69.48 1.55 99.97 99.99

100 88.78 1.93 71.64 1.56 99.99 99.99

Table 7  Comparison between the 2.5SbIRGT and 3 SbIRGT algorithms using the DBSIRGT​ dataset

d 2.5SbIRGT 3SbIRGT Small (%) Small or equal (%)

Distance (avg.) Approx. ratio 
(avg.)

Distance (avg.) Approx. ratio 
(avg.)

10 11.79 1.57 12.25 1.64 32.30 53.18

20 24.97 1.68 25.57 1.72 34.77 49.58

30 38.21 1.74 36.69 1.67 63.31 73.75

40 50.47 1.79 45.61 1.62 89.60 93.69

50 60.46 1.81 52.65 1.58 97.69 98.75

60 68.17 1.83 58.19 1.56 99.45 99.78

70 74.06 1.84 62.54 1.55 99.75 99.90

80 78.68 1.85 65.96 1.55 99.93 99.96

90 82.09 1.85 68.67 1.55 99.92 99.97

100 84.85 1.86 70.82 1.55 99.97 100.00
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with the phylogenetic tree presented by Laurence et  al. 
[20] using a tool [22] based on the maximum agreement 
subtrees (MAST) to determine the topological congru-
ence between two phylogenetic trees. Table 8 shows the 
obtained results.

Table  8 indicates that both phylogenetic tree have 
a high concordance with the phylogenetic trees pre-
sented by Laurence et al. [20], with the phylogenetic tree 
obtained from the 3 SbIRGT algorithm providing a MAST 
with more leaves and consequently a better value for Icong 
and P-value. It is important to mention that the objec-
tive of this experiment using real genomes is to demon-
strate the applicability of our algorithm, which considers 
the information regarding the genes and the size of the 
intergenic regions, compared with a similar model that 
considers only the order and orientation of the genes. We 
used the same data preprocessing stage and reconstruc-
tion method to provide a fair comparison. However, the 
results may differ especially considering genomes with 
different characteristics and the adopted reconstruction 
method. Figure 6 shows a phylogenetic tree constructed 
using the Circular Order Reconstruction method [21] 
with the matrix of pairwise distances from the 3 SbIRGT 
algorithm.

From Fig. 6 (created using treeio R package [23]), we 
observe that the approach separates the organisms con-
sidering the species and performed good groupings. It is 
worth mentioning that the tree was based exclusively on 
rearrangement event information.

Conclusion
We studied the sorting by intergenic reversals and 
transpositions problem on signed and unsigned per-
mutations. We presented, for both cases, a 4-approxima-
tion algorithm, improving the 4.5 approximation factor 
previously known for the unsigned case. Besides, we gen-
eralized the transposition event and presented a 3-approx-
imation algorithm to the problem that arises, which is 
more realistic in scenarios that consider intergenic regions. 
We developed a greedy strategy to improve the practical 
performance of the algorithms and conducted a compari-
son using datasets with different features. Considering the 
signed case of the problem, the tests indicated that our 

algorithms, in the vast majority of the cases, tend to pro-
vide better practical results compared with the previous 
known results. Moreover, we carried out an experiment 
using real genomes to verify the applicability of the pro-
posed algorithms.

From the theoretical point of view, the algorithms pro-
posed for the unsigned case of the sorting by inter-
genic reversals and transpositions problem bring 
an important improvement considering the approxima-
tion factor. On the other hand, the results for the signed 
case of the problem have the practical potential of enhanc-
ing the estimates for the distance of compared genomes, 
and consequently, the analysis regarding the genome 
rearrangements.

In future works, one can incorporate non-conservative 
events (e.g., insertion and deletion of genes or nucleo-
tides) into the model.
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