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Abstract 

Background: Directed evolution (DE) is a technique for protein engineering that involves iterative rounds of 
mutagenesis and screening to search for sequences that optimize a given property, such as binding affinity to a speci-
fied target. Unfortunately, the underlying optimization problem is under-determined, and so mutations introduced 
to improve the specified property may come at the expense of unmeasured, but nevertheless important properties 
(ex. solubility, thermostability, etc). We address this issue by formulating DE as a regularized Bayesian optimization 
problem where the regularization term reflects evolutionary or structure-based constraints.

Results: We applied our approach to DE to three representative proteins, GB1, BRCA1, and SARS-CoV-2 Spike, and 
evaluated both evolutionary and structure-based regularization terms. The results of these experiments demonstrate 
that: (i) structure-based regularization usually leads to better designs (and never hurts), compared to the unregular-
ized setting; (ii) evolutionary-based regularization tends to be least effective; and (iii) regularization leads to better 
designs because it effectively focuses the search in certain areas of sequence space, making better use of the experi-
mental budget. Additionally, like previous work in Machine learning assisted DE, we find that our approach signifi-
cantly reduces the experimental burden of DE, relative to model-free methods.

Conclusion: Introducing regularization into a Bayesian ML-assisted DE framework alters the exploratory patterns of 
the underlying optimization routine, and can shift variant selections towards those with a range of targeted and desir-
able properties. In particular, we find that structure-based regularization often improves variant selection compared 
to unregularized approaches, and never hurts.

Keywords: Protein design, Bayesian optimization, Regularization, Directed evolution, Rational design, Gaussian 
process regression, Protein language model, Active learning
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Introduction
The field of protein engineering seeks to design molecules 
with novel or improved properties [1]. The primary tech-
niques used in protein engineering fall into two broad 
categories: rational design [2] and directed evolution (DE) 
[3]. Rational design uses model-driven in silico combina-
torial searches to identify promising candidate designs, 

which are then synthesized and tested experimentally. 
Directed evolution, in contrast, involves iterative rounds 
of saturation mutagenesis at select residue positions, fol-
lowed by in vitro or in vivo screening for desirable traits. 
The most promising sequences are then isolated and used 
to seed the next round of mutagenesis.

Traditionally, directed evolution is a model-free 
approach. That is, computational models are not used to 
guide or simulate mutagenesis. Recently, however, a tech-
nique for incorporating Machine learning (ML) into the 
DE workflow was introduced [4]. Briefly, this ML-assisted 

Open Access

Algorithms for
Molecular Biology

*Correspondence:  cjl@cs.cmu.edu
Computational Biology Department, School of Computer Science, 
Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA

http://orcid.org/0000-0002-2865-6955
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-021-00195-4&domain=pdf


Page 2 of 15Frisby and Langmead  Algorithms Mol Biol           (2021) 16:13 

form of DE uses the screening data from each round to 
update a model that predicts the effects of mutations on 
the property being optimized. The mutagenesis step in 
the next round of DE is then biased towards generating 
sequences with the desired property under the model, 
as opposed to generating a uniformly random sample. 
ML-assisted DE has been shown to reduce the number 
of rounds needed to find optimal sequences, relative to 
traditional (i.e., model-free) DE [4].

Significantly, the models learned in ML-assisted DE are 
myopic in the sense that they only consider the relation-
ship between a limited set of residues (ex. those in a bind-
ing interface) and the screened trait (ex binding affinity). 
Thus, DE may improve the measured trait at the expense 
of those that are unmeasured, but nevertheless impor-
tant (ex. thermostability, solubility, subcellular localiza-
tion, etc). The primary goal of this paper is to introduce 
an enhanced version of ML-assisted DE that is biased 
towards native-like designs, while optimizing the desired 
trait. By ‘native’ we mean that the optimized design still 
has high probability under a generative model of protein 
sequences, or is predicted to be thermodynamically sta-
ble, according to a given energy function. The intuition 
behind this approach is that any sequence with these 
properties is likely to respect factors that are not directly 
accounted for by the fitness model, such as epistatic 
interactions between the mutated residues and the rest of 
the protein [5], among others.

Our method performs Bayesian optimization [6] and 
incorporates a regularization factor derived from either 
a generative model of protein sequence or an in  silico 
prediction of structural thermodynamic stability. In this 
paper, we refer to these as “Evolutionary” or “Structure-
based” regularization factors, respectively. Our method is 
agnostic with respect to the means by which the regulari-
zation factors are computed. For example, we evaluated 
three distinct generative models of protein sequences, 
including a contextual deep transformer language model 
[7], a Markov Random Field (MRF) generated by the 
gremlin algorithm [8], and profile Hidden Markov 
Model (HMMs) [9]. For structural thermodynamic sta-
bility, we use the FoldX protein design Suite [10] to calcu-
late changes in Gibb’s free energy ( ��G ) associated with 
new designs.

We first demonstrate our method by re-designing the 
B1 domain of streptococcal protein G (GB1) at four resi-
dues to maximize binding affinity to the IgG Fc receptor. 
Next, using data obtained from deep-mutational scans, 
we use ML-assisted DE to investigate the factors gov-
erning the relationships between sequence and clinically 
relevant phenotypes. Specifically, we (i) identify variants 
of the RING domain of the BRCA1 protein for which the 
activity of tumor suppressor gene E3 ubiquitin ligase is 

maximal, and (ii) identify variants of the receptor bind-
ing domain of the SARS-CoV2 Spike protein that opti-
mize binding affinity to the ACE2 receptor. Our results 
on these three targets demonstrate that a structure-based 
regularization term usually leads to better designs than 
the unregularized version, and never hurts. The results 
using an evolutionary-based regularization are mixed; 
it leads to better designs for GB1, but worse designs for 
BRCA1. We also demonstrate that a Bayesian approach 
to ML-assisted DE outperforms the (non-Bayesian) 
approach introduced in [4]. Specifically, we show that our 
approach reduces the wet-lab burden to identify optimal 
GB1 designs by 67% , relative to the results presented in 
[4] on the same data.

Background
Directed protein evolution
Directed evolution (DE) is an iterative technique for 
designing molecules. It has been used to create proteins 
with increased stability [11], improved binding affin-
ity [12], to design new protein folds [13], to change an 
enzyme’s substrate specificity [14] or ability to selectively 
synthesize enantiomeric products [4], and to study fitness 
landscapes [15], among others. Given an initial sequence, 
the primary steps in directed evolution are: (i) random 
mutagenesis, to create a library of variants; (ii) screening, 
to identify variants with the desired traits; and (iii) ampli-
fication of the best variants, to seed the next round. Each 
step can be performed in a variety of ways, giving rise to 
multiple options for performing DE. For example, the 
mutagenesis step can be performed one residue at a time, 
called a single mutation walk (Fig. 1-top), or simultane-
ously at multiple positions, followed by genetic recom-
bination (Fig.  1-bottom). The key to the success of DE 
is that it performs what is in effect a parallel in vitro or 
in vivo search over designs that simultaneously explores 
the design space (via the mutagenesis step) while exploit-
ing the information gained in previous rounds (via the 
amplification step). The exploratory aspect of DE is effec-
tively a strategy for getting out of local optima on the 
underlying fitness landscape.

Machine learning‑assisted directed protein evolution
While effective, the mutagenesis, screening, and ampli-
fication steps in DE are expensive and time-consuming, 
relative to in  silico screens using statistical models or 
tools such as FoldX [10]. In an effort to reduce these 
experimental demands, a Machine learning-assisted 
approach to DE was introduced recently [4]. This ML-
assisted form of DE is summarized in Fig.  2. The key 
difference between traditional and ML-assisted DE is 
that the data generated during screening are used to (re)
train a model that is capable of predicting the property 
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of interest for a given sequence. The model, f̂  , may be 
a classifier or regression model and acts as a surrogate 
for the true function, f (i.e., the one used by nature). The 
model can thus be used to perform an in  silico screen 
over designs. Promising designs are then synthesized/
cloned and screened in the lab. The key assumption 
made by ML-assisted DE is that the cost of performing 

an in  silico screen using f̂  is much lower than running 
wet-lab experiments (i.e., evaluating f). This assumption 
is almost always valid.

Like rational design, ML-assisted DE uses computa-
tional models, but the nature of those models is rather 
different. For one, the models used in ML-assisted 
DE make predictions corresponding to the quantity 

Fig. 1 Traditional, model-free approaches to directed evolution: (Top) The ‘single mutation walk’ approach to directed evolution. The library 
of variants is the union of k libraries created by performing saturation mutagenesis at a single location. The resulting library, therefore, has 20k 
variants. The library is screened to find the single variant that optimizes the measured trait. That variant is fixed and the procedure is repeated for 
the remaining k − 1 positions. (Bottom) The library of variants is created by performing saturation mutagenesis at k positions. The top variants are 
identified through screening. Those variants are randomly recombined to generate a second library, which is then screened to find the top design

Fig. 2 Machine learning-assisted directed evolution: The first step in ML-assisted DE is the same as for traditional DE (see Fig. 1). A library of variants 
is created via mutagenesis. Existing data, S = {sk , y}i=1:n are used to train a classifier or regression model, f (sk) → y , which is then used to rank 
variants via an in silico screen. The top variants are then synthesized/cloned and screened using in vitro or in vivo assays. The data from the ith 
round is added to S and used in subsequent DE rounds
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measured in the screening step, whereas the models used 
in rational design tend to be based on physical or statis-
tical energy functions, and are therefore making predic-
tions about the energetic favor of the design. Second, 
the models used in ML-assisted DE are updated after 
each DE round to incorporate the new screening data, 
and thus adapt to protein-specific experimental observa-
tions. The models used in rational design, in contrast, are 
typically fixed. Finally, the models used in ML-assisted 
DE are myopic, in the sense that they only consider the 
relationship between a small subset of sequence posi-
tions (ex. a binding site) and the measured quantity. The 
models used in rational design, in contrast, generally 
consider the entire sequence, and are thus better suited to 
filtering energetically unfavorable designs. The technique 
introduced in this paper seeks to combine the strengths 
of both methods; our method uses a fitness model that 
adapts to the experimental data, but also considers the 
favor of the mutations across the entire sequence.

Bayesian optimization
Bayesian optimization [6] is an iterative technique for 
optimizing black-box (i.e., unknown) objective func-
tions. It is frequently used when the objective function 
is expensive to evaluate, such as in the context of hyper-
parameter optimization in deep learning (ex [16]). Pro-
tein design is a quintessential black-box optimization 
problem with an expensive objective function, and so it is 
a natural candidate for Bayesian optimization, including 
in the context of ML-assisted DE (ex. [17]).

In the Bayesian optimization framework, the objec-
tive function f is unknown, and so it is modeled as a 
random function with a suitably defined prior, P(f). At 
the beginning of each iteration, an algorithm known as 
the acquisition function [18] selects one or more can-
didate designs to evaluate, based on P(f). The resulting 
data are used to compute a posterior distribution over 
f, which becomes the prior for the next round. Typical 
choices for priors/posteriors include Gaussian processes 
[19] and Tree-structured Parzen estimators [16]. In the 
context of this paper, f is the function that maps protein 
sequences to an experimentally measured property (eg. 
fitness or binding affinity/activity), and our goal is to find 
s∗ = arg max s∈Sf (s) , where S is the space of sequences. 
Naturally, the evaluation of f is expensive, because it 
requires the previously described DE mutagenesis and 
screening steps, but a surrogate function, f̂ ∼ P(f ) can 
be used to perform in silico screens.

A variety of acquisition functions have been proposed, 
including: expected improvement (EI), upper (or lower) 
confidence bounds (UCB), Thompson sampling [20], and 
probability of improvement (PI). In general, an acquisi-
tion function defines some trade-off between exploring 

the design space, and simply selecting the point that has 
the best expected value under the posterior (aka exploi-
tation). Our proposed approach uses custom acquisition 
functions that consider whether a given sequence resem-
bles proteins observed in nature [21–23], in addition to 
the usual considerations of exploration and exploita-
tion. Computationally, this is implemented using a reg-
ularization term, as defined in “Methods” section. We 
evaluated two types of regularization terms: (i) an evo-
lutionary factor calculated using generative models of 
protein sequences, and (ii) a structure-based factor cal-
culated using the program FoldX.

Generative modeling of protein sequences
The statistical properties of protein sequences found in 
nature have been optimized through natural evolution to 
ensure that they have a full range of physical, chemical, 
and biological properties to function properly in a com-
plex cellular environment. Therefore, one strategy for 
enforcing native-like properties in engineered proteins 
is to use a regularization term that penalizes designs that 
deviate significantly from the statistical patterns found in 
nature. To do this, we propose to use a generative model 
of protein sequences to calculate the regularization term. 
The primary model we investigate here is the Evolution-
ary Scale Model [7], a deep contextual transformer pro-
tein language model (TPLM). Within the field of Natural 
Language Processing, transformer models have become 
state-of-the-art over Recurrent Neural Networks (RNN). 
This is because the attention-based mechanism [24] 
used by Transformers allows the model to contextualize 
its focus on elements of a sequence it believes are most 
important. Transformer models not only capture long-
range dependencies, but do so without the need to mem-
orize the sequence from beginning to end. This increased 
efficiency lets this class of model handle larger training 
sets relative to RNNs. The transformer model used in this 
paper was trained on over 250 million protein sequences, 
and has been shown to learn representations for pro-
teins that improve predictive performance over many 
tasks, including secondary structure and tertiary contact 
predictions.

In addition to the TPLM, we also evaluate two fold fam-
ily-specific options—profile HMMs and Markov Random 
Fields (MRF), as generated by the gremlin algorithm 
[8] (see Additional file 1). HMM and MRF models can be 
learned from known sequences from a given fold fam-
ily. The primary difference between these models is that 
HMMs make strong assumptions about the conditional 
independencies between residues. In particular, grem-
lin identifies and models both sequential and long-range 
dependencies. Either way, the models encode a joint distri-
bution over residue types at each position in the primary 
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sequence, P(s(1),  ...,  s(n)), which can be used to compute 
the probability (or related quantities, like log-odds) of given 
designs. We assume that any design with a high probability 
or log-odds under the generative model is native-like.

Methods
Data
Protein G B1 domain
Protein G is an antibody-binding protein expressed in 
groups C and G Streptococcus bacteria. The B1 domain of 
protein G (GB1) interacts with the Fc domain of immu-
noglobulins. We performed our experiments on data 
generated by Wu et  al.  [25], who performed saturation 
mutagenesis at four carefully chosen sites in GB1 in order 
to investigate the protein’s evolutionary landscape. The four 
chosen residues (V39, D40, G41, and V54) are collectively 
present in 12 of the protein’s top 20 pairwise epistatic inter-
actions, meaning these sites are not just expected to con-
tain evolutionarily favorable variants  [26], but also those 
that are involved in interactions with each other.

The fitness criterion for their study was binding affin-
ity to IgG-Fc. Experimental measurements were obtained 
for 149,361 out of 160,000 (i.e.  204 ) possible variants at 
these four loci using mRNA display [27], followed by high-
throughput Illumina sequencing. Briefly, this approach to 
measuring binding affinity works by first creating an input 
mRNA-protein fusion library from GB1 variants. This 
input library is then exposed to the GB1 binding target 
IgG-Fc. Any variant that binds to the target is subsequently 
sequenced for identification. By measuring the counts of 
each variant contained in the input library, cin , and output 
“selected” library, cout , the relative fitness w of the ith vari-
ant is calculated as follows:

Here, γ is a normalizing factor that ensures the wildtype 
sequence has fitness 1, and sequences with improved 

(1)wi = γ
cini
couti

fitness are greater than 1. The range of fitness scores is 
from 0 to 8.76, with mean 0.08 (see Table 1). Only 3643 
sequences ( ≈ 2.4% ) have fitness greater than 1.

BRCA1 RING domain
BRCA1 is a multi-domain protein that belongs to a family 
of tumor-suppressor genes. It contributes to this function 
through involvement in homology directed DNA repair, 
which undoes the genetic instability that underlies cancer 
development by fixing broken DNA strands. The RING 
domain of BRCA1 plays a critical role in this process by 
forming a heterodimer with fellow tumor suppressor 
BARD1 to constitute an E3 ubiquitin ligase, whose activ-
ity is responsible for this tumor suppressing function 
[28].

Starita et  al. [29] investigated the functional effect of 
single site point mutations and deletions at BRCA1 resi-
dues 2-304 on E3 ubiquitin ligase activity. Using a phage 
display assay [30], they determined an E3 ubiquitin 
ligase activity score for 5154 total variant sequences. The 
activity was determined by calculating a relative change 
in abundance of each variant allele as a result of the 
assay. The scores were normalized so that the wildtype 
sequence had a score of 1, and nonfunctional sequences 
0. After filtering the sequences based on quality, they 
found scores that ranged from nonfunctional to 2.8.

We used our approach on the Starita data to find 
BRCA1 RING domain sequences that maximize ubiq-
uitin ligase activity, and thus provide insights into the 
factors governing sequence-activity relationships. Our 
experiments were limited to the mutations in residues 
2-103 that passed the quality filter, which correspond to 
the RING domain coordinates. In total, this gave us 1388 
variant sequences. Activity scores across these residues 
range from nonfunctional to  2.8, with an average score 
of  0.63 (see Table  1). Only 227 sequences ( ≈ 15% ) had 
activity scores greater than 1.

Table 1 The mean, median, and variance for each scoring metric and each protein type

The final three columns show spearman correlations between each respective score

Protein Metric Mean Median Variance (1) (2) (3)

GB1 (1) Fitness 0.08 0.003 0.16 1.0 − 0.09 − 0.25

(2) TPLM Log-odds 11.55 11.49 3.80 − 0.09 1.0 − 0.01

(3) FoldX ��G 9.42 8.39 27.93 − 0.25 − 0.01 1.0

BRCA1 (1) E3 ubiquitin ligase activity 0.63 0.60 0.17 1.0 0.31 − 0.38

(2) TPLM log-odds 2.46 2.56 6.06 0.31 1.0 − 0.26

(3) FoldX ��G 2.03 0.76 15.83 − 0.38 − 0.26 1.0

Spike (1) ACE2 binding affinity 0.74 0.87 0.07 1.0 − 0.06 − 0.63

(2) TPLM log-odds 2.62 2.73 0.42 − 0.06 1.0 0.11

(3) FoldX ��G 2.51 1.48 14.36 − 0.63 0.11 1.0
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Spike protein receptor binding domain
The β-coronavirus SARS-CoV-2 is the virus responsi-
ble for the COVID-19 pandemic. The Spike glycopro-
tein is located on the virus’ surface, and plays a critical 
role in viral transmission. More specifically, the Spike 
receptor binding domain binds the human cell surface 
protein ACE2. Binding with ACE2 facilitates entry of 
the virus into the cell’s interior via membrane fusion or 
endocytosis.

Starr et  al. [31] performed a deep mutational scan of 
the Spike glycoprotein using a yeast display platform 
to assess the effect of mutations in the receptor bind-
ing domain on ACE2 binding affinity. Their approach 
obtained measurements for each single site mutation 
within the protein binding domain [32]. In total, they 
tested 4020 variant sequences, and found binding affini-
ties that ranged from − 4.84 to 0.3, where wildtype was 
normalized to have value 0 and higher scores are bet-
ter. We removed knock-out variants, leaving all single-
site point mutations, and re-scaled their affinities to fall 
within the unit interval. The re-scaled wiltype had score 
0.94, and the average score was 0.74 (see Table  1). In 
total, 398 sequences ( ≈ 11% ) had an affinity greater than 
wildtype. We used our approach on the Starr data to find 
Spike receptor binding domain sequences that maximize 
affinity to ACE2, and thus provide insights into one of the 
factors governing host–virus interactions.

Modeling
Evolutionary‑based regularization factors
In order to obtain an evolutionary regularization term, 
we used pre-trained model ESM-1b made available 
through [7]. This transformer model is trained on all data 
available through the UniParc [33] database, and thus 
models every protein fold family represented therein. The 
model is trained using the following masked language 
model objective:

Each training sequence s is masked at a set of indices 
M. The model is trained by minimizing the negative log 
likelihood of each true amino acid s(i) given the masked 
sequence s/M . In other words, the model must learn to 
use the surrounding sequence as context in order to pre-
dict the masked amino acids.

The model itself consists of 33 layers, and contains 
over 650 million parameters. While in principle the 
TPLM can be fine-tuned, we simply use it as-is. We use 
the model to obtain a log-odds score for a given pro-
tein design. To obtain this score, we provide as input 
a variant protein sequence, and the final layer of the 

(2)LMLM = Es∼SEM

∑

i∈M

− log p(s(i)|s/M)

TPLM outputs a logit for each possible amino acid at 
each position in the sequence. By summing over these 
logits for a given variant sequence, we obtain a TPLM-
derived log-odds score. We calculated such log-odds 
scores for each variant in the available GB1, BRCA1, 
and Spike data.

In addition to using the TPLM, we also used MRF 
and HMM models to derive a fold-family specific regu-
larization term. More detail on these models is given in 
Additional file 1.

Structure‑based regularization factors
In order to obtain a structure-based regularization term, 
we used the FoldX protein modeling Suite. FoldX uses an 
empirical force field to calculate changes in energy asso-
ciated with mutations to a protein’s amino acid sequence. 
It contains terms that account for Van der Waal’s inter-
actions, solvation energies, energy due to Hydrogen 
bonding, energy due to water bridges, energy due to elec-
trostatic interactions, and entropy due to dihedral angles 
and side chain conformations. For specific details of the 
FoldX force field, we refer the reader to [10].

For each protein tested, we obtained expected 
changes in Gibbs free energy (relative to the wildtype 
sequence) for each variant sequence. We followed the 
below protocol to obtain these energy calculations for 
each set of variant sequences: 

1. Download a protein structure from the Protein Data 
Bank [34]. Table 2 shows the structures used for each 
protein tested.

2. Repair the PDB structure using FoldX’s RepairPDB 
command. This fixes structures that have bad tor-
sion angles, Van der Waal’s clashes, or total energy 
by rotating specific residues or side chains into more 
energetically favorable conformations.

3. Calculate the energy associated with introduc-
ing each mutation into the structure using FoldX’s 
BuildModel command. Calculations for each 
mutated sequence are done three times.

Table 2 Protein structural data used for FoldX simulations

Binding partner refers to whether or not the structure includes the protein in 
complex with its binding partner

Protein PDB ID Experiment 
type

Resolution (Å) Binding 
partner?

GB1 2GB1 Solution NMR NA No

BRCA1 RING 
Domain

1JM7 Solution NMR NA Yes

Spike PBR 
Domain

6M0J X-ray diffraction 2.45 Yes
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The final energy associated with each mutation is given 
by the average over the three FoldX runs. Mutations that 
are predicted to improve folding energy will have nega-
tive values, whereas positive values indicate an energeti-
cally less favorable mutation.

Bayesian optimization for directed protein evolution
The Bayesian optimization is performed using Gaussian 
process (GP) regression as the prior over the unknown 
fitness or activity function, f. A GP requires a kernel, K, 
which describes the similarity between sequences si and 
sj . In our models, we use the squared exponential kernel 
(also known as the “Radial basis function”) given by:

where d(·, ·) is the Euclidean distance and ℓ the scalar 
length scale. We used a one-hot encoding of the variants. 
That is, each residue was assigned a length 20 vector, 
where each position corresponds to a specific amino acid. 
The position that corresponds to the residue present in 
the sequence takes value 1, and all others 0. Hyperparam-
eter θ is optimized while fitting the GP to data by maxi-
mizing the log marginal likelihood:

Since we use the squared exponential kernel in our 
experiments, length scale ℓ is the only hyperparameter. 
The term y is a vector of the given property (e.g. fitness) 
of N sequences, σ 2 the variance of observations, and I is 
the N × N  identity matrix. Once fitted, the GP encodes a 
distribution, P , which is used to obtain a posterior mean 
function µP(si) and variance over the unknown function 
f:

Ksi ,s refers to the row vector of kernel function values 
between sequence si and all other sequences, denoted by 
subscript s. Additionally, Ks,si = KT

si ,s
.

Regularized acquisition functions
The GP becomes the argument to an acquisition func-
tion, which is used to select sequences for wet-lab screen-
ing. The data produced via the screening step are used to 
update the GP for the next round. We performed experi-
ments that used either the expected improvement (EI), 

(3)Ksi ,sj = exp

(

−
d(si, sj)

2

2ℓ2

)

(4)

log p(y|θ) =−
N

2
log 2π −

1

2
log det|K

+ σ 2I | −
1

2
yT (K + σ 2I)−1y

(5)µP(si) = E[f (si)] = Ksi ,s(K + σ 2I)−1y

(6)Var[f (si)] = Ksi ,si − Ksi ,s(K + σ 2I)−1Ks,si

probability of improvement (PI), or upper confidence 
bound (UCB) criteria as the acquisition function. Two 
versions of each acquisition function were considered: 
(i) the standard version, which is often used in Bayesian 
optimization, and (ii) a regularized form. The standard 
forms of EI, UCB, and PI are given by:

where s+ is the location of the (estimated) optimal poste-
rior mean, β a constant scaling factor (0.05 in our experi-
ments), and σ(·) the standard deviation.

We also evaluated a regularized form of each acquisi-
tion function by scaling the standard version by a design-
specific scaling factor, F(s;P) . In our experiments, F  
refers to the evolution-based log-odds score obtained by 
either a TPLM, MRF, or profile HMM, or the structure-
based ��G calculated be FoldX, as described previously. 
Our regularized EI, PI, and UCB are defined as:

We will demonstrate in “Results” that this small modi-
fication to the acquisition function results in a substan-
tial shift in the designs discovered via ML-assisted DE 
towards native-like designs, as expected.

Directed evolution with machine learning and in silico 
traditional approaches
Our experiments contrast the performance of ‘standard’ 
ML-assisted DE (i.e., non-regularized) to the regularized 
version. We also compare the results to simulated forms 
of ‘traditional’ DE (i.e., without ML), as was also done in 
[4]. Since the BRCA1 and Spike protein data only include 
single-site mutations, we limit this analysis to the more 
exhaustive GB1 data. Specifically, we simulated both 
the single mutation walk and recombination versions of 
DE (see Fig.  1). We note that the single mutation walk 
approach is deterministic, given the starting sequence. 
With the single step, we start each trial with a randomly 
chosen sequence from the GB1 variant library. At each of 
positions 39, 40, 41, and 54, we observe the experimen-
tally determined fitness values for all possible single-
residue mutations. Having observed these mutations, we 
then fix in place the single-residue mutant which has the 

(7)EI(si;P) = EP

[

max
(

0, f (si)− µP(s
+)

)]

(8)PI(si;P) = P
(

f (si) > µP(s
+)

)

(9)UCB(si;P) = µP(si)+ βσ(si)

(10)EIF (si;P) = EI(si;P)F(si)

(11)PIF (si;P) = PI(si;P)F(si)

(12)UCBF (si;P) = UCB(si;P)F(si)
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highest fitness. With this residue fixed, we then repeat 
this procedure for the remaining unfixed residue posi-
tions. Continuing in this manner, the trial ends when 
all residues have been fixed. All observed fitness values 
within a trial thus represent a DE determined fitness 
function approximation.

For the recombination method, we mimic saturation 
mutatgenesis experiments by starting with n randomly 
chosen sequences from the GB1 variant library. From 
these, we identify the top three sequences that have high-
est fitness (as was done in [4]), and use these sequences 
to perform recombination. A recombinant library is 
simulated in  silico by computing the Cartesian product 
S39 × S40 × S41 × S54 , where the set Sm refers to the vari-
ant residues found at position m among the three highest 
fitness sequences in the initial random library. The result-
ing list of 4-tuples defines the recombinant library. Here, 
the DE fitness function approximation is given by observ-
ing fitness values for the n starting sequences as well as 
the recombined sequences.

Results
In this section, we report the results of five approaches 
to performing DE: (i) single mutation walk (see Fig.  1-
top); (ii) recombination (see Fig.  1-bottom); (iii) 
Bayesian optimization using standard acquisition func-
tions (Eqs.  7–9), denoted by ‘GP  +  EI’, ‘GP  +  PI’, or 
‘GP  +  UCB’; (iv) Bayesian optimization using evo-
lution-based regularized acquisition functions with 
TPLM-derived log-odds, denoted by ‘GP + EI + TPLM’, 
‘GP  +  PI  +  TPLM’, or ‘GP  +  UCB  +  TPLM’; and (v) 
Bayesian optimization using structure-based regular-
ized acquisition functions with FoldX-derived ��G val-
ues, denoted by ‘GP +  EI +  FoldX’, ‘GP +  PI +  FoldX’, 
or ‘GP  +  UCB  +  FoldX’. The regularized versions of 
each acquisition function used in (iv) and (v) is given 
by Eqs. 10–12. For simplicity, we focus our analysis on a 
subset of all experiments that we conducted. We include 
additional results briefly mentioned within the text in 
Additional file 1.

Each method was allowed to screen (e.g., obtain fitness 
values for) a total of 191 variants. This number was cho-
sen to be similar to the number of sequences screened 
by the deterministic single mutant walk so that each 
method had similar experimental burden. Each model 
was initially trained on 20 randomly selected sequences. 
The small number of initial sequences simulates the sce-
nario where the available fitness data is limited, prior 
to DE. The Bayesian optimization methods selected the 
top 19 sequences during each acquisition round. Each 
model is then updated with the experimentally meas-
ured fitness values for the chosen batch of 19 sequences, 
and this process is repeated for 9 batches (ie. 20 initial 

sequences plus 9 batches of 19 designs per batch, giving 
20+ 19× 9 = 191 variants selected). We refer to a com-
plete set of variant selection batches as a trial. We per-
formed 100 total trials with each selection strategy with 
different random initial starting sequences. 20% of the 
data were held out for testing purposes (see Additional 
file 1).

ML‑assisted DE outperforms traditional DE
Traditionally, DE techniques aim to identify sequences 
that score highly in one property. In Fig.  3 we dem-
onstrate that ML-assisted DE outperforms simulated 
traditional approaches (i.e., single-mutant walk and 
recombination) when optimizing GB1 with respect to 
fitness. We observe this trend across all three forms of 
acquisition function tested (EI, PI, or UCB). On average, 
ML-assisted techniques (regularized and unregularized) 
identify a variant with fitness 7.22 (EI), 7.27 (PI), and 7.08 
(UCB), whereas simulated traditional approaches identify 
a variant with fitness 4.97. The single mutant walk proce-
dure finds a variant with maximum fitness 5.22, whereas 
recombination yields a variant with maximum fitness 
4.71. Overall, we find that ML-assisted DE thus thus 
improves upon traditional approaches in designing high 
fitness GB1 variants by an average of 45%. This result is 
consistent with the findings in [4]. In Additional file  1: 
Fig. S1, we show that evolution-based regularization via 
gremlin and profile HMMs are also able to improve 
upon traditional DE techniques on the same GB1 variant 
selection task.

Structure‑based regularization usually leads to better 
designs
Next, we investigated the effects of regularization and 
choice of acquisition function in the context of ML-
assisted DE. Figure 4 shows the results of experiments on 
each protein using various regularized and unregularized 
acquisition functions. Overall, we find that structure-
based regularization usually leads to better designs, and 
almost never hurts. The exceptions involve GB1. We note 
that the GB1 structure used in our experiments does not 
include the antibody, and so FoldX does not have a com-
plete picture of the system being optimized.

Figure  4 also shows that the benefits of structure-
based regularization vary according to the experimental 
budget. For example, if one were only able to perform 
four rounds, then the unregularized acquisition works 
better for BRCA1, but not for the other two proteins. 
Still, aside from the previously mentioned exception with 
GB1, structure-based regularization never hurts, given a 
sufficient number of rounds.
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Evolutionary‑based regularization is unreliable
If a structure model is not available, it is natural to 
consider an evolutionary-based regularization term. 
That is, one based on a sequence model, like a trans-
former. However, we find that evolutionary-based reg-
ularization via the as-is ESM-1b TPLM is unreliable. 
As seen in Fig.  4, it does very well for GB1—outper-
forming both structure-based and the unregularized 
methods, but it underperforms for BRCA1 and Spike. 
This variability is perhaps expected, since a sequence 
model is obviously just an abstraction of a molecule. 

The TPLM apparently captures enough of the rel-
evant information for the GB1 design task, but does 
not for BRCA1 or Spike. We also ran experiments that 
used gremlin and HMM regularized methods, but 
found that they did not perform much differently than 
unregularized methods (Additional file 1: Fig. S2-top). 
Together, these results suggest that one should obtain 
more consistent (in some cases, better) results using 
unregularized or structure-based ML-assisted DE 
compared to the evolutionary-based regularization 
methods we have tested.

Fig. 3 ML-assisted directed evolution techniques identify high fitness GB1 variants more frequently than simulated traditional DE approaches. 
Shown are the fraction of trials (y-axis) that reach less than or equal to a specified fitness (x-axis), where the selection criterion was either a 
simulated traditional DE approach, or standard or regularized EI, PI, and UCB was the acquisition function. (Left) Expected Improvement: The 
cumulative-weighted average fitness values are 7.25 for GP + EI + TPLM, 7.24 for GP + EI, and 7.16 for GP + EI + FoldX. (Middle) Probability 
of improvement: The cumulative-weighted average fitness values are 7.62 for GP + PI + TPLM, 7.17 for GP + PI, and 7.03 for GP + PI + FoldX. 
(Right) Upper confidence bound: The cumulative-weighted average fitness values are 7.76 for GP + UCB + TPLM, 7.10 for GP + UCB, and 6.38 for 
GP + UCB + FoldX. (All): The traditional single step and recombination approaches select variants with cumulative-weighted average fitness values 
of 5.22 and 4.71, respectively

Fig. 4 Regularization leads to better designs. Shown are the cumulative per batch scores for each protein averaged (± 1 SEM) over 100 trials. GP 
models were initialized with 20 randomly chosen sequences, and each batch consisted of 19 selected variants. Left: GP + UCB + TPLM selected the 
GB1 variant with highest average fitness (7.76), Middle: GP + EI + FoldX selected the BRCA1 variant with highest average E3 ubiquitin ligase activity 
(2.65), and Right: GP + UCB + FoldX selected the Spike variant with highest average ACE2 binding affinity (0.98)
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Correlation among traits
Naturally, the inclusion of a regularization term will 
bias variant selection towards designs that score 
favorably according to the regularization criteria, in 
addition to the objective value. This is seen clearly in 
Fig. 5, where the grey curves associated with the evo-
lutionary bias achieve high log odds (top row), and 
the brown curves associated with the structural bias 
achieve low ��G values (bottom row), as intended. 
The fact that the corresponding objective values are 
also high (see Fig.  4) simply indicates that the regu-
larization terms generally do no harm. What is unex-
pected, however, is the fact that the blue and brown 
curves in the top row also rise, and the blue and grey 
curves in the bottom row also fall, even though those 
curves correspond to acquisition strategies that do 
not consider the quantity plotted on the y axis. This 
behavior reveals that the objective and regularization 
values carry some information about unmeasured 
traits. gremlin and HMM regularized acquisition 
functions reveal similar patterns (Additional file  1: 
Fig. S2-bottom)

Evolution and structure‑based regularization promotes 
site‑specific exploration of unexplored sequence space
Thus far, we have characterized variants selected by 
each ML-assisted DE technique in terms of their aver-
age fitness (GB1), measured activity (BRCA1), or bind-
ing affinity (Spike). We now consider the residue-specific 
behavior of choices made under each model. Figure  6 
shows residue-specific entropy of variant selections 
with the best performing model for each protein. A high 
entropy block (dark blue) indicates that the method 
selects many different residue types at that position 
within a given batch. Low entropy blocks (light blue) 
indicate that the method selects only few residue types. 
The relative entropy of selections thus provides a sense 
of how the model explores sequence space, as well as the 
confidence the model has that a particular variant residue 
is informative.

Qualitatively, we notice that regularized methods for 
each protein have darker shading than their unregular-
ized counterpart. This indicates that regularized methods 
explore more variant types at specific positions in each 
protein. With GB1 (Fig. 6-left), positions 39 and 40 have 

Fig. 5 Evolution and structure-based regularization biases variant selections towards those that score favorably under multiple criteria. Shown are 
the regularization scores for variants selected for GB1 (Left), BRCA1 (Middle), and Spike (Right) under each selection criterion. As expected, variants 
selected by TPLM-regularized methods have higher log-odds under the TPLM than those selected from non-TPLM regularized methods (Top). 
Similarly, variants selected by FoldX regularized methods have lower ��G values than those selected by non-FoldX methods (Bottom). The figures 
also show that TPLM-regularized methods tend to improve FoldX scores, and that FoldX-regularized methods tend to improve log-odds, indicating 
that there is some correlation between log-odds and thermodynamic stability
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highest entropy for regularized and unregularized meth-
ods. The unregularized method has the least entropy at 
position 41, indicating that it has highest certainty at 
this position, whereas the regularized method has high-
est certainty at position 54. With both BRCA1 and Spike 
(Fig. 6-middle/right), there is generally much more light 
shading throughout the sequence, regardless of whether 
or not there is regularization. This is to be expected 
due simply to the larger number of positions that could 
be mutated using these protein data (recall that while 
the GB1 data includes all pairwise variants across four 

positions, these data include all single-site mutations 
across regions larger than 100 sequences each). Still, the 
regularized methods contain regions of darker shad-
ing, indicating a greater level of site-specific explora-
tion. Given that the only difference between the methods 
shown for each protein is the presence or absence of 
regularization, it is the evolution or structure-based reg-
ularization that must drive this increased exploration at 
targeted positions.

In Fig.  7, we show sequence logos obtained from the 
same models whose entropy are shown in Fig. 6. With GB1 

Fig. 6 Bayesian selection techniques quickly identify informative sequence patterns. Shown are the per-batch average position-specific entropy 
of variant selections under the top scoring model for each protein. These include (Top) GP + UCB + TPLM for GB1, (Middle) GP + EI + FoldX for 
BRCA1, and (Bottom) GP + UCB + FoldX for Spike. Lighter squares denote low entropy decisions, meaning the model selects among fewer residue 
types at that position in that batch

Fig. 7 Evolutionary and structure-based regularization biases variant selection towards sequences with desirable properties. Shown are sequence 
logos for the best performing variant selection method along with their unregularized counterpart. All four residues are shown with the GB1 
protein (Left), whereas the positions that correspond to variants with the top five true activity/binding affinity scores are shown for BRCA1 (Middle) 
and Spike (Right). Highlighted residues denote notable distinctions between the regularized and unregularized sequence selections
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(Fig.  7-left), the regularized method selected consensus 
sequence {V39F,D40W,G41A,V54A} , whereas the unregu-
larized method selected {V39F,D40W,G41L,V54A} . While 
these sequences are similar, the single different amino 
acid selected at position 41 is meaningful in terms of the 
overall fitness of the design— {V39F,D40W,G41A,V54A} 
is the highest fitness variant in the data (8.76), whereas 
{V39F,D40W,G41L,V54A} ranks 443rd (3.66). With 
respect to BRCA1 (Fig. 7-middle) and Spike (Fig. 7-right), 
the sequence logos show amino acid selections for the 
positions where the top five scoring variants within each 
data set are located. For both of these proteins, the con-
sensus sequences selected by the unregularized methods 
corresponds to the wildtype sequence. However, the best 
regularized method used for both proteins arrived at one 
consensus variant. With BRCA1, this corresponds to 
I21E, which is the highest scoring variant in the BRCA1 
data. Additionally, the Spike variant Q120M selected by 
a FoldX regularized method has ACE2 binding affin-
ity 0.18, which is the sixth highest scoring variant in the 
data set. Additionally, while Y is the consensus selection 
at position 120 for both models shown, we see that more 
trials that were regularized by FoldX selected variant 
Y120F, the third highest scoring variant, compared to the 
unregularized methods. Thus, regularized ML-assisted 
DE better identified the top scoring variant in the GB1 
and BRCA1 data, and the third and sixth highest scoring 
variant in the Spike protein data compared to unregular-
ized methods.

Discussion
Our work extends ML-assisted DE via Bayesian optimiza-
tion [17] by incorporating a regularization term into the 
acquisition function. The regularization term is intended 
to prevent the algorithm from optimizing the target 
property at the expense of unmeasured, but nevertheless 
important properties (ex. solubility, thermostability, etc). 
The results on the GB1 design task demonstrate that the 
inclusion of a regularization term can decrease the num-
ber of rounds needed to find high-fitness designs, relative 
to the unregularized version (Fig. 3), but the difference in 
performance does depend on which acquisition criterion 
is used (EI, PI, or UCB), and which regularization term is 
used (evolutionary or structure-based).

When our method is applied to more proteins, a clearer 
picture emerges. Given a sufficient number of rounds, 
structure-based regularization usually produces bet-
ter designs, and only did harm in one configuration 
(GP + UCB + FoldX on GB1). In contrast, evolutionary-
based regularization terms were seen to be unreliable; it 
only helped in two configurations (GP + PI + TPLM and 
GP + UCB + TPLM on GB1), but did poorly on BRCA1 
and one configuration of Spike (GP +  UCB +  TPLM). 

Taken together, these results suggest that structure-based 
regularization using either EI or PI is beneficial or, at 
worst, neutral.

The one protein for which structure-based regulariza-
tion using either EI or PI does not produce better designs 
than the unregularized version was GB1. Here, we note 
that GB1 was the one protein where the structure did 
not include the binding partner (see Table  2). That is, 
FoldX was not given relevant information, and so its pre-
dictions are less helpful as a guide during optimization. 
The structures used for the experiments on BRCA1 and 
Spike, in contrast, include the binding partner. It makes 
sense in this circumstance that FoldX will better deter-
mine the stability induced by a variant when in the pres-
ence of the binding partner—it simply has more relevant 
information.

As previously noted, evolution-based regularization by 
the TPLM is less reliable than its structure-based coun-
terpart. One consideration that may contribute to this 
observation are the differences between the three data 
sets. For one, GB1 has the shortest sequence length (56) 
compared to BRCA1 (103) or Spike (193). It may be that 
the TPLM better captures interactions between sequence 
elements within smaller protein regions. The GB1 data 
is also more exhaustive than that for BRCA1 and Spike 
in that it contains all pairwise variants from four specific 
GB1 residues, whereas the others are limited to single-
site mutations. More specifically, the four GB1 sites that 
were varied were chosen because they were predicted 
to be among the most involved in epistatic interactions 
[26]. That is, these residues are expected to contribute 
to long-range interactions between residues in GB1. The 
TPLM model we used was chosen because it is effec-
tive at encoding long-range dependencies within a pro-
tein sequence [7]. Thus, it may be that the GB1 data set 
is particularly well-suited to demonstrate the strengths 
of the TPLM. Another consideration is the TPLM itself. 
Recall that the TPLM uses unsupervised training across 
over 250 million different proteins to learn an effective 
representation for protein sequences. The model is thus 
very general, and not customized for a particular fold-
family. Others have recently shown that a TPLM can be 
fine-tuned for a given fold family, and that a fine-tuned 
model can perform better compared to the general model 
on predictive tasks related to the tuned protein family 
[35]. An interesting direction for future work would be to 
fine-tune the TPLM model to determine whether doing 
so would improve the reliability of TPLM regularization 
in the context of ML-assisted DE task. If so, then our 
method may be more applicable to circumstances where 
structures are not available.

Finally, our results also demonstrate the benefits of a 
Bayesian approach to ML-assisted DE, as opposed to the 
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approach introduced in [4]. When using the GB1 data 
(the only data set for which a head-to-head compari-
son is possible), we find that a Bayesian approach only 
required 191 fitness value acquisitions (20 initial observa-
tions plus 9 batches of 19) to identify designs with high 
fitness values. In contrast, the experiment in [4] required 
470 initial observations plus a single batch of 100 to find 
similarly fit designs. This is a 67% reduction in the num-
ber of sequences tested, which demonstrates the merits 
of Bayesian optimization in this context. The acquisition 
functions used in Bayesian optimization make a trade-
off between exploration and exploitation of the domain, 
much like DE itself. Thus, ML-assisted DE via Bayesian 
Optimization effectively uses two forms of exploration 
and exploitation (one computational, one experimen-
tal). In contrast, the computational approach used in [4] 
is effectively pure exploitation. It is known that optimal 
regret bounds require a combination of exploration and 
exploitation [36], which may explain the advantage of 
Bayesian optimization in this context. As shown in Fig. 6, 
adding a regularization term to the acquisition function 
changes where the algorithm chooses to explore. This is 
seen by the differences in the entropy at select positions 
between the regularized and unregularized approaches. 
The regularized version tends to concentrate exploration 
at select residues, whereas unregularized methods select 
positions more uniformly. Notably, this trend is apparent 
in all regularized methods and all acquisition function 
types (Additional file  1: Figs.  S3–S5). This difference in 
behavior leads to subtle changes in the final designs, as 
shown in Fig. 7, but regularization tends to produce the 
better design (Fig. 4).

Conclusions
We have introduced a regularized approach to ML-
assisted DE via Bayesian optimization. Two approaches 
were evaluated, one based on structure and the other 
based on evolutionary constraints. Our results suggest 
that structure-based regularization using an EI or PI 
acquisition function usually leads to better designs com-
pared to unregularized approaches, and never hurts. In 
the absence of a structure model, it is natural to consider 
the use of a sequence-based regularization term. How-
ever, our results demonstrate that such terms do not lead 
to reliably better designs, at least for the specific proteins 
we considered. We plan to investigate fine-tuning the 
transformer model as part of future work, to see if doing 
so addresses this problem. Additionally, while we have 
shown how to introduce either evolutionary or structure-
based regularization into a Bayesian DE framework, one 
can imagine combining the two into a single regulariza-
tion term—we leave progress towards this to future work.

Previous research had demonstrated that ML-
assisted DE can reduce the experimental burden, rela-
tive to traditional DE. Our results demonstrate that 
ML-assisted DE via Bayesian optimization decreases 
the experimental burden further, compared to the 
method in [4]. We also demonstrated that integrating 
a regularization term into the acquisition function can 
lead to better designs, and does so by concentrating 
exploration at select residues. We plan to investigate 
whether this insight might be helpful in fine-tuning the 
transformer model, analogous to the approach used to 
train Feedback Generative Adversarial Networks [37].
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