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Abstract 

Gene clusters are groups of genes that are co‑locally conserved across various genomes, not necessarily in the same 
order. Their discovery and analysis is valuable in tasks such as gene annotation and prediction of gene interactions, 
and in the study of genome organization and evolution. The discovery of conserved gene clusters in a given set of 
genomes is a well studied problem, but with the rapid sequencing of prokaryotic genomes a new problem is inspired. 
Namely, given an already known gene cluster that was discovered and studied in one genomic dataset, to identify 
all the instances of the gene cluster in a given new genomic sequence. Thus, we define a new problem in compara‑
tive genomics, denoted PQ-Tree Search that takes as input a PQ‑tree T representing the known gene orders of a gene 
cluster of interest, a gene‑to‑gene substitution scoring function h, integer arguments dT  and dS , and a new sequence 
of genes S. The objective is to identify in S approximate new instances of the gene cluster; These instances could vary 
from the known gene orders by genome rearrangements that are constrained by T, by gene substitutions that are 
governed by h, and by gene deletions and insertions that are bounded from above by dT  and dS , respectively. We 
prove that PQ-Tree Search is NP‑hard and propose a parameterized algorithm that solves the optimization variant of 
PQ-Tree Search in O∗(2γ ) time, where γ is the maximum degree of a node in T and O∗ is used to hide factors polyno‑
mial in the input size. The algorithm is implemented as a search tool, denoted PQFinder, and applied to search for 
instances of chromosomal gene clusters in plasmids, within a dataset of 1,487 prokaryotic genomes. We report on 
29 chromosomal gene clusters that are rearranged in plasmids, where the rearrangements are guided by the corre‑
sponding PQ‑trees. One of these results, coding for a heavy metal efflux pump, is further analysed to exemplify how 
PQFinder can be harnessed to reveal interesting new structural variants of known gene clusters.
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Introduction
Recent advances in pyrosequencing techniques, com-
bined with global efforts to study infectious diseases, 
yield huge and rapidly-growing databases of microbial 
genomes [3, 4]. These big new data statistically empower 
genomic-context based approaches to functional analy-
sis: the biological principle underlying such analysis 
is that groups of genes that are located close to each 
other across many genomes often code for proteins that 

interact with one another, suggesting a common func-
tional association. Thus, if the functional association and 
annotation of the clustered genes is already known in one 
(or more) of the genomes, this information can be used 
to infer functional characterization of homologous genes 
that are clustered together in another genome.

Groups of genes that are co-locally conserved across 
many genomes are denoted gene clusters. The locations 
of the group of genes comprising a gene cluster in the 
distinct genomes are denoted instances. Gene clusters in 
prokaryotic genomes often correspond to (one or several) 
operons; those are neighbouring genes that constitute a 
single unit of transcription and translation. However, the 
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order of the genes in the distinct instances of a gene clus-
ter may not be the same.

The discovery (i.e. data-mining) of conserved gene clus-
ters in a given set of genomes is a well studied problem 
[5–7]. However, with the rapid sequencing of prokaryotic 
genomes a new problem is inspired. Namely, given an 
already known gene cluster that was discovered and stud-
ied in one genomic dataset, to identify all the instances of 
the gene cluster in a given new genomic sequence.

One exemplary application for this problem is the 
search for chromosomal gene clusters in plasmids. Plas-
mids are circular genetic elements that are harbored by 
prokaryotic cells where they replicate independently 
from the chromosome. They can be transferred horizon-
tally and vertically, and are considered a major driving 
force in prokaryotic evolution, providing mutation sup-
ply and constructing new operons with novel functions 
[8], for example antibiotic resistance [9]. This motivates 
biologists to search for chromosomal gene clusters in 
plasmids, and to study structural variations between the 
instances of the found gene clusters across the two dis-
tinct replicons. However, in addition to the fact that plas-
mids evolve independently from chromosomes and in 
a more rapid pace [10], their sequencing, assembly and 
annotation involves a more noisy process [11].

To accommodate all this, the proposed search approach 
should be an approximate one, sensitive enough to toler-
ate some amount of genome rearrangements: transposi-
tions and inversions, missing and intruding genes, and 
classification of genes with similar function to distinct 
orthology groups due to sequence divergence or conver-
gent evolution. Yet, for the sake of specificity and search 
efficiency, we consider confining the allowed variations 
by two types of biological knowledge: (1) bounding the 
allowed rearrangement events considered by the search, 

based on some grammatical model trained specifically 
from the known gene orders of the gene cluster, and (2) 
governing the gene-to-gene substitutions considered by 
the search by combining sequence homology with func-
tional-annotation based semantic similarity.

Bounding the allowed rearrangement events. The 
PQ-tree [12] is a combinatorial data structure classically 
used to represent gene clusters [13]. A PQ-tree of a gene 
cluster describes its hierarchical inner structure and the 
relations between instances of the cluster succinctly, aids 
in filtering meaningful from apparently meaningless clus-
ters, and also gives a natural and meaningful way of visu-
alizing complex clusters. A PQ-tree is a rooted tree with 
three types of nodes: P-nodes, Q-nodes and leaves. The 
children of a P-node can appear in any order, while the 
children of a Q-node must appear in either left-to-right 
or right-to-left order. (In the special case when a node 
has exactly two children, it does not matter whether it is 
labeled as a P-node or a Q-node.) Booth and Lueker [12], 
who introduced this data structure, were interested in 
representing a set of permutations over a set U, i.e. every 
member of U appears exactly once as a label of a leaf in 
the PQ-tree. We, on the other hand, allow each member 
of U to appear as a label of a leaf in the tree any non-neg-
ative number of times. Therefore, we will henceforth use 
the term string rather than permutation when describing 
the gene orders derived from a given PQ-tree.

An example of a PQ-tree is given in Fig.  1. It repre-
sents a Phn gene cluster that encodes proteins that uti-
lize phosphonate as a nutritional source of phosphorus 
in prokaryotes [14]. The biological assumptions under-
lying the representation of gene clusters as PQ-trees is 
that operons evolve via progressive merging of sub-oper-
ons, where the most basic units in this recursive operon 

Metabolism

(1)

(2)

(3)

Transport

(4)

(5)

E C D F G H I J K L M

R E D C N G H I J L M

C D E F G H I J K L M

F D C E G H I J K L M

E D C M L K J I H G F

Fig. 1 A gene cluster containing most of the genes of the PhnCDEFGHIJKLMNOP operon [14] and the corresponding PQ‑tree. The Phn operon 
encodes proteins that utilize phosphonate as a nutritional source of phosphorus in prokaryotes. The genes PhnCDE encode a phosphonate 
transporter, the genes PhnGHIJKLM encode proteins responsible for the conversion of phosphonates to phosphate, and the gene PhnF encodes a 
regulator. (1)–(3). The three distinct gene orders found among 47 chromosomal instances of the Phn gene cluster. (4) A PQ‑tree representing the 
Phn gene cluster, constructed from its three known gene orders shown in (1)–(3). (5) An example of a Phn gene cluster instance identified by the 
PQ‑tree shown in (4), and the one‑to‑one mapping between the leaves of the PQ‑tree and the genes comprising the instance (indicated by the 
colored lines). The instance genes are rearranged differently from the gene orders shown in (1)‑(3) and yet can be derived from the PQ‑tree. In this 
mapping, gene F is substituted by gene R, gene N is an intruding gene (i.e., deleted from the instance string), and gene K is a missing gene (i.e., 
deleted from the PQ‑tree)
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assembly are colinearly conserved sub-operons [15]. In 
the case where an operon is assembled from sub-oper-
ons that are colinearly dependent, the conserved gene 
order could correspond, e.g., to the order in which the 
transcripts of these genes interact in the metabolic path-
way in which they are functionally associated [16]. Thus, 
transposition events shuffling the order of the genes 
within this sub-operon could reduce its fitness. On the 
other hand, inversion events, in which the genes partici-
pating in this sub-operon remain colinearly ordered are 
accepted. This case is represented in the PQ-tree by a 
Q-node (marked with a rectangle). In the case where an 
operon is assembled from sub-operons that are not col-
inearly co-dependent, convergent evolution could yield 
various orders of the assembled components [15]. This 
case is represented in the PQ-tree by a P-node (marked 
with a circle). Learning the internal topology proper-
ties of a gene cluster from its corresponding gene orders 
and constructing a query PQ-tree accordingly, could 
empower the search to confine the allowed rearrange-
ment operations so that colinear dependencies among 
genes and between sub-operons are preserved.

Governing the gene-to-gene substitutions. A pre-
requisite for gene cluster discovery is to determine how 
genes relate to each other across all the genomes in the 
dataset. In our experiment, genes are represented by 
their membership in Clusters of Orthologous Groups 
(COGs) [17], where the sequence similarity of two genes 
belonging to the same COG serves as a proxy for homol-
ogy. Despite low sequence similarity, genes belonging to 
two different COGs could have a similar function, which 
would be reflected in the functional description of the 
respective COGs. Using methods from natural language 
processing [18], we compute for each pair of functional 
descriptions a score reflecting their semantic similar-
ity. Combining sequence and functional similarity could 
increase the sensitivity of the search and promote the dis-
covery of systems with related functions.

Our contribution and roadmap. We define two new 
problems in comparative genomics, denoted PQ-Tree 
Search and PQ-Tree Alignment (in "Preliminaries" 
section), where the second is a sub-problem of the first. 
Both problems take as input a PQ-tree T (the query) 
representing the known gene orders of a gene cluster of 
interest, a gene-to-gene substitution scoring function h, 
integer arguments dT and dS , and a sequence of genes 
S (the target). The objective in PQ-Tree Search is to 
identify an approximate instance S′ of the gene cluster, 
such that S′ is a substring of S. The objective of PQ-Tree 
Alignment is to determine whether S′ is an approximate 
instance of the gene cluster; An approximate instance 
could vary from the known gene orders by genome 

rearrangements that are constrained by T, by gene sub-
stitutions that are governed by h, and by gene deletions 
and insertions that are bounded from above by dT and 
dS , respectively. We prove that both PQ-Tree Search 
and PQ-Tree Alignment are NP-hard (Theorems 2, 3 in 
"PQ-tree search is NP-hard" section).

We define optimization variants of PQ-Tree Search 
and PQ-Tree Alignment (in " Preliminaries" sec-
tion) and propose an algorithm (in "A parameterized 
algorithm" section) that solves PQ-Tree Search in 
O(nγdT

2dS
2(mp · 2

γ
+mq)) time, where n is the length 

of S, mp and mq denote the number of P-nodes and 
Q-nodes in T, respectively, and γ denotes the maximum 
degree of a node in T. The proposed algorithm for PQ-
Tree Search solves PQ-Tree Alignment for every 
substring of S. Thus, in the same time and space com-
plexities, we can also report all approximate instances of 
T in S and not only the optimal one.

The algorithm is implemented as a search tool, denoted 
PQFinder. The code for the tool as well as all the data 
needed to reconstruct the results are publicly avail-
able on GitHub [2]. The tool is applied to search for 
instances of chromosomal gene clusters in plasmids, 
within a dataset of 1,487 prokaryotic genomes; methods 
are given in "Methods and datasets" section. In our pre-
liminary results (in "Results" section), we report on 29 
chromosomal gene clusters that are rearranged in plas-
mids, where the rearrangements are guided by the cor-
responding PQ-tree. One of these results, coding for a 
heavy metal efflux pump, is further analysed to exemplify 
how PQFinder can be harnessed to reveal interesting new 
structural variants of known gene clusters.

Previous related works. Permutations on strings 
representing gene clusters have been studied earlier by 
[19–23]. PQ-trees were previously applied in physical 
mapping [24, 25], as well as to other comparative genom-
ics problems [26–28].

In Landau et  al. [28] an algorithm was proposed for 
representation and detection of gene clusters in multiple 
genomes, using PQ-trees: the proposed algorithm com-
putes a PQ-tree of k permutations of length n in O(kn) 
time, and it is proven that the computed PQ-tree is the 
one with a minimum number of possible rearrangements 
of its nodes while still representing all k permutations. In 
the same paper, the authors also present a general scheme 
to handle gene multiplicity and missing genes in permu-
tations. For every character that appears a times in each 
of the k strings, the time complexity for the construction 
of the PQ-tree, according to the scheme in that paper, is 
multiplied by an O((a!)k) factor.
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Additional applications of PQ-trees to genomics were 
studied in [29–31], where PQ-trees were considered to 
represent and reconstruct ancestral genomes.

However, as far as we know, searching for approxi-
mate instances of a gene cluster that is represented as a 
PQ-tree, in a given new string, is a new computational 
problem.

Semantic similarity measures between Gene Ontol-
ogy (GO) terms [32] have been previously used in tasks 
such as protein function prediction [33, 34], functional 
enrichment analysis of gene expression datasets [35, 36], 
and protein-protein interaction inference [37, 38]. In the 
context of gene cluster analysis, a recent study mined 
gene clusters that have common functional associations 
among seven amniote genomes, by measuring the GO 
term similarity of the respective genes [39]. However, 
the Gene Ontology Consortium provides annotations for 
only 41 prokaryotic genomes, while the dataset used in 
this study consists of 1487 prokaryotic genomes. Trans-
ferring GO annotations from the annotated genomes to 
the other genomes in our dataset using gene sequence 
similarity would lead to a limited gene coverage. There-
fore, in this study we use COG functional descriptions to 
measure semantic similarity between genes.

Preliminaries
Let � be an NP-hard problem. In the framework of 
Parameterized Complexity, each instance of � is associ-
ated with a parameter k, and the goal is to confine the 
combinatorial explosion in the running time of an algo-
rithm for � to depend only on k. Formally, � is fixed-
parameter tractable (FPT) if any instance (I,  k) of � is 
solvable in time f (k) · |I |O(1) , where f is an arbitrary 
computable function of k. Nowadays, Parameterized 
Complexity supplies a rich toolkit to design or refute the 
existence of FPT algorithms [40–42].

PQ‑tree: representing the pattern.
The possible reordering of nodes in a PQ-tree may create 
many equivalent PQ-trees. In [12] two PQ-trees T and T ′ 
are defined as equivalent (denoted T ≡ T ′ ) if one tree can 
be obtained by legally reordering the nodes of the other; 
namely, randomly permuting the children of a P-node, 
and reversing the children of a Q-node. To allow for dele-
tions in the PQ-trees, a generalization of that definition 
is given in Definition 1 below. Here, smoothing is a recur-
sive process in which if by deleting leaves from a tree T, 
some internal node x of T is left without children, then 
x is also deleted, but its deletion is not counted (i.e. only 
leaf deletions are counted).

Definition 1 (Quasi-Equivalence Between PQ-Trees) 
For any two PQ-trees, T and T ′ , the PQ-tree T is quasi-
equivalent to T ′ with a bound d, denoted T �d T ′ , if T ′ 
can be obtained from T by (a) randomly permuting the 
children of some of the P-nodes of T, (b) reversing the 
children of some of the Q-nodes of T, and (c) deleting 
up to d leaves from T and applying the corresponding 
smoothing. (The order of the operations does not matter.)

Figure  2 shows two equivalent PQ-trees ( T1 and T2 ) 
that are each quasi-equivalent with d = 1 to the third 
PQ-tree ( T3 ). The frontier of a PQ-tree T, denoted F(T), is 
the sequence of labels on the leaves of T read from left to 
right. For example, the frontier of the PQ-tree T1 in Fig. 2 
is ABCDEFG. It is interesting to consider the set of fron-
tiers of all the equivalent PQ-trees, defined in [12] as a 
consistent set and denoted by C(T ) = {F(T ′) : T ≡ T ′

} . 
Intuitively, C(T) is the set of all leaf label sequences 
defined by the PQ-tree structure and obtained by legally 
reordering its nodes. Here, we generalize the consist-
ent set definition to allow a bounded number of dele-
tions from T, using quasi-equivalence. Thus, the set 

T1

A B C D E F G

T2

D C B A E G F

T3

A B D F E G

Fig. 2 Exemplification of three different PQ‑trees. T2 can be obtained from T1 by reversing the children of a Q‑node (the left child of the root) and 
by reordering the children of a P‑node (the right child of the root), so T2 ≡ T1 . The PQ‑tree T3 can be obtained from T1 by deleting one leaf and 
permuting the children of the right child of the root, so T1 �1 T3 . Now, T2 �1 T3 can be inferred because the ≡ is an equivalence relation. By the 
definition of frontier, F(T1) = ABCDEFG ; F(T2) = DCBAEGF ; F(T3) = ABDFEG
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of d-Bounded Quasi-Consistent trees is denoted by 
Cd(T ) = {F(T ′) : T �d T ′

}.
Clearly C(T ) = C0(T ) , and so in a setting where d = 0 

the former notation is used. For a node x of a PQ-tree T, 
the subtree of T rooted in x is denoted by T(x), the set of 
leaves in T(x) is denoted by leaves(x) , and the span of x is 
denoted by span(x) and defined as |leaves(x)|.

Defining the problems
As a preface for the new problems defined ahead, con-
sider the PQ-Tree Membership problem defined in 
Problem 1 below, which stems from the definition of con-
sistent set.

Problem 1 (PQ-Tree Membership) Given a PQ-tree T 
and a string S, decide if S ∈ C(T ).

When considering applications of PQ-trees to com-
parative genomics, it is important to allow for insertion, 
deletion and substitution operations. Thus, a new prob-
lem named PQ-Tree Alignment is defined. In what 
follows we give a decision variant of this problem (in 
Problem 2), and an optimization variant of this problem 
(in Problem  3). PQ-Tree Alignment can be thought 
of as an extension of the PQ-Tree Membership prob-
lem that allows insertions, deletions and substitutions of 
genes. Then, intuitively, given a PQ-tree T and a string 
S′ , the objective is to find a string S′′ such that S′′ ∈ C(T ) 
and S′′ is the most similar to S′ , where similarity is meas-
ured as a sequence alignment score. To avoid confusion, 
the term insertion is not used, and instead two types of 
deletions are used: deletions form the PQ-tree and dele-
tions form the string. In addition, in the rest of this paper, 
the term substitution is used to encompass both matches 
and mismatches between aligned genes.

Formally, an instance of the PQ-Tree Align-
ment problem is a tuple of the form (T , S′, h, dT , dS) , 
where T is a PQ-tree with m leaves, mp P-nodes, mq 
Q-nodes, and every leaf x in T has a label label(x)∈ �T ; 
S′ = σ1 · · · σn ∈ �n

S is a string of length n represent-
ing a sequence of genes; dT ∈ N specifies the number of 
allowed deletions from T; dS ∈ N specifies the number of 
allowed deletions from S′ ; and h is a boolean substitution 
function, describing the possible substitutions between 
the leaf labels of T and the characters of the given string, 
S′ . The function h receives a pair (σt , σs) , where σt ∈ �T 
is one of the labels of the leaves of T, and σs ∈ �S is one 
of the characters of the given string S′ , and returns True if 
σt can be replaced with σs , and False, otherwise. Consid-
ering the biological problem at hand, �T and �S are both 
sets of genes.

The objective of PQ-Tree Alignment is to find a 
one-to-one mapping M between the leaves of T and the 
characters of S′ , which comprises a set of pairs each hav-
ing one of three forms: the substitution form, (x, σs(ℓ)) , 
where x is a leaf in T, σs ∈ �S , h(label(x), σs) = True 
and ℓ ∈ {1, · · · ,n} is the index of the occurrence of σs in 
S′ that is mapped to the leaf x; the character deletion 
form, (ε, σs(ℓ)) , which marks the deletion of the charac-
ter σs ∈ �S at index ℓ of S′ ; the leaf deletion form, (x, ε) , 
which marks the deletion of x, a leaf node of T.

Applying the substitutions defined in M to S′ , result-
ing in the string SM , is the process in which for every 
(x, σs(ℓ)) ∈ M , the character σs at index ℓ of S′ is deleted 
if x = ε , and otherwise substituted by label(x) . This pro-
cess is demonstrated in Fig. 3B. We say that S′ is derived 
from T under M with dT deletions from the tree and dS 
deletions from the string, if dT is equal to the number of 
pairs in M of the leaf deletion form (x, ε) , dS is equal to 
the number of pairs in M of the character deletion form 
(ε, σ) , and SM ∈ CdT (T ) . Thus, by definition, there is a 
PQ-tree T ′ such that F(T ′) = SM and T �dT T ′ . Note 
that the deletions of the nodes in T to obtain the nodes 
in T ′ are determined by M . The conversion of T to T ′ as 
defined by the derivation is illustrated in Fig. 3A. The set 
of permutations and node deletions performed to obtain 
T ′ from T together with the substitutions and deletions 
from S′ specified by M is named the derivation µ of T to 
S′ . We also say that M yields the derivation µ.

Problem  2 (Decision PQ-Tree Alignment) Given a 
string S′ of length n, a PQ-tree T with m leaves, deletion 
bounds dT , dS ∈ N , and a boolean substitution function h 
between �S and �T , decide if there is a one-to-one map-
ping M that yields a derivation of T to S′ with up to dT 
and up to dS deletions from T and S′ , respectively.

Notice that by setting both deletion bounds ( dT and 
dS ) to zero and defining h(σt , σs) = True if and only if 
σt = σs , the PQ-Tree Membership problem is obtained 
from PQ-Tree Alignment. Also, if n < m− dT or 
n > m+ dS , then PQ-Tree Alignment will return false.

To define an optimization version of the PQ-Tree 
Alignment problem it is necessary to have a score for 
every possible substitution between the characters in �T 
and the characters in �S . Hence, for this problem variant 
assume that h is a substitution scoring function, that is, 
h(σt , σs) for σt ∈ �T , σs ∈ �S is the score for substituting 
σs by σt in the derivation, and if σt cannot be substituted 
by σs , then h(σt , σs) = −∞ . In addition, we need a cost 
function, denoted by δ , for the deletion of a character of 
S′ and for the deletion of a leaf of T according to the label 
of the leaf. So, formally, an instance of the optimization 
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variant of PQ-Tree Alignment is (T , S′, h, δ, dT , dS) . 
The score of a derivation µ , denoted by µ.score , is the 
sum of scores of all operations (deletions from the tree, 
deletions from the string and substitutions) in µ . Now, 
instead of deciding whether there exists a one-to-one 
mapping that yields a derivation of T to S′ , we can search 
for the one-to-one mapping that yields the best deriva-
tion (if there exists such a derivation), i.e. a one-to-one 
mapping for which µ.score is the highest.

Problem  3 (Optimization PQ-Tree Alignment) Given 
a string S′ of length n, a PQ-tree T with m leaves, dele-
tion bounds dT , dS ∈ N , a substitution scoring function h 
between �S and �T , and a deletion cost function δ , return 
the one-to-one mapping M that yields the highest scor-
ing derivation of T to S′ with up to dT deletions from T 
and up to dS deletions from S′ (if such a mapping exists).

More generally, in our application the string represents 
a genome, which is a lot longer than the strings that can 
be derived from the given PQ-tree T. Thus, a new prob-
lem named PQ-Tree Search is defined (in Problems 4, 
5 below). Intuitively, in PQ-Tree Search the objective is 

to find a substring of a given string S for which PQ-Tree 
Alignment returns true (or returns the best score, in 
the optimization variant).

Formally, an instance of the PQ-Tree Search prob-
lem is a tuple (T , S, h, dT , dS) , where T , h, dT and dS are 
defined as in PQ-Tree Alignment, and S is defined as 
S′ with the exception that the string S representing the 
input genome, can be of any length n (and not bounded 
by m− dT and m+ dS ). The objective of PQ-Tree 
Search is to find a one-to-one mapping M between 
the leaves of T and the characters of a substring S′ of S 
that yields a derivation with up to dT and up to dS dele-
tions from T and S′ , respectively. For 1 ≤ i ≤ j ≤ n , 
S′ = S[i : j] = σi...σj is a substring of S beginning at 
index i and ending at index j (inclusive). The substring 
S′ is a prefix of S if S′ = S[1 : j] and it is a suffix of S if 
S′ = S[i : n] . In addition, we denote σi , the ith character 
of S, by S[i].

Now, we would like to acknowledge in the definition 
of a derivation that a derivation can be to a substring of 
the target string (as it is in the PQ-Tree Search prob-
lem), rather than requiring that the full target string 
is derived, and add some related terms and notations. 
So, for a derivation µ of T to S′ = S[s : e] , the following 

A. .

x11

x4

x1 x2 x3

x7

x5 x6

x10

x8 x9

T

M : (x5, ε) (x6, ε)

reorder the children of x4

smoothing: delete x7

x11

x4

x3 x1 x2

x10

x8 x9

T ′

B. .

S : σ1 σ2 σ1 σ2 σ3 σ4 σ5 σ6 σ3

S′

M : (x3, σ1(3)) (ε, σ2(4)) (x1, σ3(5)) (x2, σ4(6)) (x8, σ5(7)) (x9, σ6(8))

SM : x3 x1 x2 x8 x9

Fig. 3 An illustration of the derivation µ from the PQ‑tree T to the substring S′ of S, where S′ = S[3 : 8] , under the one‑to‑one mapping M ( µ.o ) 
with µ.delT = 2 deletions from the tree and µ.delS = 1 deletions from the string. The start point of the derivation ( µ.s ) is 3. The end point of the 
derivation ( µ.e ) is 8. Notice that SM = F(T ′) and T �2 T

′ , which means that SM ∈ C2(T ) . A The derivation µ applied to T resulting in T ′ : reorder the 
children of x4 , delete leaves according to M (delete x5 and x6 ) and perform smoothing (delete x7 , the parent node of x5 and x6 ). The root of T ( x11 ) 
is the node that µ derives, denoted µ.v . Also, we say that µ is a derivation of x11 . The nodes x5 , x6 and x7 are deleted under µ . The leaves x1, x2, x3, x8 
and x9 are mapped under µ . The nodes x4, x10 and x11 are kept under µ . B The derivation µ applied to S′ resulting in SM : apply substitutions and 
deletions according to M . The substring S′ = S[3 : 8] is the string that µ derives. The character S[4] = S

′
[2] is deleted under µ . The characters 

S[3], S[5], S[6], S[7] and S[8] are mapped under µ
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terms and notations (illustrated in Fig. 3) are given. The 
root of T (denoted rootT ) is the node that µ derives or 
the root of the derivation and it is denoted by µ.v . For 
abbreviation, we say that µ is a derivation of µ.v . The 
substring S′ is the string that µ derives . We name s and 
e the start and end points of the derivation and denote 
them by µ.s and µ.e , respectively. The one-to-one map-
ping that yields µ is denoted by µ.o . The number of dele-
tions from the tree is denoted by µ.delT . The number of 
deletions from the string is denoted by µ.delS . In addi-
tion, if x is a leaf node in T and (x, σs(ℓ)) ∈ µ.o , then x is 
mapped to S[ℓ] under µ . The character S[ℓ] is said to be 
deleted under µ if (ε, σs(ℓ)) ∈ µ.o . If x ∈ T (µ.v) is a leaf 
for which (x, ε) ∈ µ.o , then x is deleted under µ . For an 
internal node x of T, if every leaf in T(x) is deleted under 
µ , then x is deleted under µ , and otherwise x is kept under 
µ . Notice that in PQ-Tree Alignment all the deriva-
tions have the start point 1 ( s = 1 ) and the end point m 
( e = m ). Given a node x and the numbers of deletions 
kT and kS of a derivation, the length of the derived string 
S′ can be calculated using the following length function: 
L(x, kT , kS)

.
= span(x)− kT + kS.

We define two versions of the PQ-Tree Search prob-
lem: a decision version (Problem 4) and an optimisation 
version (Problem 5).

Problem 4 (Decision PQ-Tree Search) Given a string S 
of length n, a PQ-tree T with m leaves, deletion bounds 
dT , dS ∈ N , and a boolean substitution function h 
between �S and �T , decide if there is a one-to-one map-
ping M that yields a derivation of T to a substring S′ of 
S with up to dT and up to dS deletions from T and S′ , 
respectively.

Problem  5 Given a string S of length n, a PQ-tree T 
with m leaves, deletion bounds dT , dS ∈ N , a substitution 
scoring function h between �S and �T , and a deletion 
cost function δ , return the one-to-one mapping M that 
yields the highest scoring derivation of T to a substring S′ 
of S with up to dT deletions from T and up to dS deletions 
from S′ (if such a mapping exists).

A parameterized algorithm
In this section we develop a dynamic programming (DP) 
algorithm to solve the optimization variant of PQ-Tree 
Search (Problem 5). Our algorithm receives as input an 
instance of PQ-Tree Search (T , S, h, dT , dS) , where h is 
a substitution scoring function. Our default assumption 
is that deletions are not penalized, and therefore δ (the 
deletion cost function) is not given as input. The case 
where deletions are penalized is described in Sect.  2 of 

Additional file  1. The output of the algorithm is a one-
to-one mapping, M , that yields the best (highest scoring) 
derivation of T to a substring of S with up to dT deletions 
from T and up to dS deletions from the substring, and the 
score of that derivation. With a minor modification, the 
output can be extended to include a one-to-one map-
ping for every substring of S and the derivations that they 
yield.

Brief overview
On a high level, our algorithm consists of three compo-
nents: the main algorithm, and two other algorithms that 
are used as procedures by the main algorithm. Apart 
from an initialization phase, the crux of the main algo-
rithm is a loop that traverses the given PQ-tree, T. For 
each internal node x, it calls one of the two other algo-
rithms: P-mapping (given in " P-node mapping: the 
algorithm" section) and Q-mapping. These algorithms 
find and return the best derivations from the subtree of 
T rooted in x, T(x), to substrings of S, based on the type 
of x (P-node or Q-node). So, the main algorithm solves 
PQ-Tree Alignment for all substrings of S that start at 
a specific index. Then, the scores of the derivations are 
stored in the DP table. The outline of the algorithm is 
exemplified in Fig. 4.

We now give a brief informal description of the main 
ideas behind our P-mapping and Q-mapping algorithms. 
Our P-mapping algorithm is inspired by an algorithm 
described by van Bevern et  al. [43] to solve the Job 
Interval Selection problem. Our problem differs 
from theirs mainly in its control of deletions. Intuitively, 
in the P-mapping algorithm we consider the task at hand 
as a packing problem, where every child of x is a set of 
intervals, each corresponding to a different substring. 
The objective is to pack non-overlapping intervals such 
that for every child of x at most one interval is packed. 
Then, the algorithm greedily selects a child x′ of x and 
decides either to pack one of its intervals (and which 
one) or to pack none (in which case x′ is deleted). The 
Q-mapping algorithm is similar to the classical problem 
of sequence alignment with bounded gaps and therefore 
will not be elaborated in the paper. It is deferred to the 
supplementary material (see Sect. 1, Additional file 1).

In the following sections, we describe the main algo-
rithm ("The main algorithm" section) and the P-mapping 
algorithm ("P-node mapping" section). Afterwards, the 
time complexity of the algorithm is analyzed and com-
pared to that of a naïve algorithm ("Complexity analysis 
of the PQ-tree search aalgorithm" section). The modifi-
cations necessary for penalizing deletions are deferred 
to the supplementary material (see Sect.  2, Additional 
file 1).
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The main algorithm
We now delve into more technical details. The algorithm 
(whose pseudocode is given in 1) constructs a 4-dimen-
sional DP table A of size m′

× n× dT + 1× dS + 1 , 
where m′

= m+mp +mq is the number of nodes in T. 
The purpose of an entry of the DP table, A[x, i, kT , kS] , 
is to hold the highest score of a derivation of the sub-
tree T(x) to a substring S′ of S starting at index i with kT 
deletions from T(x) and kS deletions from S′ . Note that 
we abuse notation and use a node x of T also as an index 
for the DP table entries that refer to x. If no such deri-
vation exists, A[x, i, kT , kS] = −∞ . Addressing A with 
some of its indices given as dots, e.g. A[x, i, ·, ·] , refers 

to the subtable of A that is comprised of all entries of A 
whose first two indices are x and i. Some entries of the 
DP table define illegal derivations, namely, derivations 
for which the number of deletions are inconsistent with 
the start index i, the derived node and S. For example, 
such are derivations that have more deletions from the 
string than there are characters in the derived string. 
These entries are called invalid entries and their value 
is defined as −∞ throughout the algorithm. Formally, 
an entry A[x, i, kT , kS] is invalid if one of the following is 
true: kT > span(x) , kS > L(x, kT , kS) , E(x, i, kS , kT ) > n , 
or L(x, kT , kS) < 0.

Algorithm 1: PQ-Tree Search
Input: T, S, h, dT , dS
Output: The score of a best derivation of T to a substring of S with up to dT and dS

deletions from T and S, respectively
1 Build A with dimensions m × n× dT + 1× dS + 1 and initial value −∞;
2 foreach node x of T in postorder do
3 for i = 1 to n do
4 if x is a Leaf then

//Initialization
5 for kS = 0 to dS do
6 A[x, i, 1, kS ] ← 0;
7 A[x, i, 0, kS ] ← max

i =i,...,i+kS

h(x, S[i ]);

8 end
9 end

10 e ← E(x, i, 0, dS);
11 if x is a P-node then
12 A[x, i, ·, ·] ←

P-Mapping(x, S[i, e], {A[x , i , ·, ·] : x ∈ children(x), i ≤ i ≤ e}, dT , dS);
13 end
14 if x is a Q-node then
15 A[x, i, ·, ·] ←

Q-Mapping(x, S[i, e], {A[x , i , ·, ·] : x ∈ children(x), i ≤ i ≤ e}, dT , dS);
16 end
17 end
18 end
19 return max

0≤kT ≤dT
0≤kS≤dS

1≤i≤(n−(span(rootT )−dT )+1)

A[rootT , i, kT , kS ];

 

The algorithm first initializes the entries of A that are 
meant to hold scores of derivations of the leaves of T to 
every possible substring of S using the following rule. For 
every 0 ≤ kS ≤ dS and every x ∈ leaves(rootT ) , do: 

1 A[x, i, 1, kS] = 0

2 A[x, i, 0, kS] = max
i′ = i, ..., i + kS

h(x, S[i′])

We remark that this initialization rule can be replaced by 
initializing A[x, i, 0, 0] with h(x, S[i]) and for every kT  = 0 
and kS  = 0 initializing A[x, i, kT , kS] with −∞ . Nonethe-
less, we use the former initialization rule because it does 
not change the time complexity of the algorithm while 
helping keep notations and proofs simpler.

After the initialization, all other entries of A are filled 
as follows. Go over the internal nodes of T in postorder. 
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For every internal node x, go in ascending order over 
every index i, that can be a start index for the substring of 
S derived from T(x) (the possible values of i are explained 
in the next paragraph). For every x and i, use the algo-
rithm for Q-mapping or P-mapping according to the 
type of x. Both algorithms receive the same input: a sub-
string S′ of S, the node x, its children x1, . . . , xγ , the col-
lection of possible derivations of the children (denoted by 
D ), which have already been computed and stored in A 
(as will be explained ahead) and the deletion arguments 
dT , dS . Intuitively, the substring S′ is the longest substring 
of S starting at index i that can be derived from T(x) given 
dT and dS . After being called, both algorithms return a 
set of derivations of T(x) to a prefix of S′ = S[i : e] and 
their scores. The set holds the highest scoring derivation 
for every E(x, i, dT , 0) ≤ e ≤ E(x, i, 0, dS) and for every 
legal deletion combination 0 ≤ kT ≤ dT , 0 ≤ kS ≤ dS.

Next, we explain the possible values of i and the 
definition of S′ more formally. To this end, recall 
the length function given in "Preliminaries" sec-
tion, L(x, kT , kS)

.
= span(x)− kT + kS . Thus, on the 

one hand, a substring of maximum length is obtained 
when there are no deletions from the tree and dS dele-
tions from the string. Hence, S′ = S[i : E(x, i, 0, dS)] . 
On the other hand, a shortest substring is obtained 
when there are dT deletions from the tree and none 
from the string. Then, the length of the substring is 

L(x, dT , 0) = span(x)− dT . Hence, the index i runs 
between 1 and n− (span(x)− dT )+ 1.

We now turn to address the aforementioned input col-
lection D in more detail. Formally, it contains the best 
scoring derivations of every child x′ of x to every sub-
string of S′ with up to dT and dS deletions from the tree 
and string, respectively. It is produced from the entries 
A[x′, i′, kT , kS] (where each entry gives one derivation) for 
all kT and kS , and all i′ between i and the end index of S′ , 
i.e. i ≤ i′ ≤ E(x, i, 0, dS) . For the efficiency of the Q-map-
ping and P-mapping algorithms, the derivations in D are 
grouped by their root ( µ.v ) and arranged in descending 
order with respect to their end point ( µ.e ). This does not 
increase the time complexity of the algorithm, as this 
ordering is received by previous calls to the Q-mapping 
and P-mapping algorithms.

In the final stage of the main algorithm, when the 
DP table is full, the score of a best derivation is the 
maximum of {A[rootT , i, kT , kS] : kT ≤ dT , kS ≤ dS , 
1 ≤ i ≤ n− (span(rootT )− kT )+ 1} . We remark that 
by tracing back through A the one-to-one mapping that 
yielded this derivation can be found.

P‑node mapping
Before describing the P-mapping algorithm, we set up 
some useful terminology.

Fig. 4 The outline of the algorithm that solves PQ-Tree Search. A During initialization the best derivations of the leaves of T are computed. The cell 
with two arrows marks the substitution between D and U. B PQ-Tree alignmenT is solved for each substring of the target string S and the subtrees 
rooted in each internal node of T. C In this example, there are two derivations from the root of the PQ‑tree; One is to the substring from index 1 to 6 
and the other is to the entire string (if the character U is deleted from the string)
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P‑node mapping: terminology
We first define the notion of a partial derivation. In 
the P-mapping algorithm, the derivation of the input 
node x is built by considering subsets U of its children. 
With respect to such a subset U, a derivation µ of x 
is built as if x had only the children in U, and is called 
a partial derivation. Formally, µ is a partial derivation 
of a node x if µ.v = x and there is a subset of children 
U ′

⊆ children(x) such that the two following conditions 
are true. First, for every u ∈ U ′ all the leaves in T(u) are 
neither mapped nor deleted under µ - that is, there is 
no mapping pair (ℓ, y) ∈ µ.o such that ℓ ∈ leaves(u) . 
Second, for every v ∈ children(x) \ U ′ the leaves in T(v) 
are either mapped or deleted under µ . For every u ∈ U ′ , 
we say that u is ignored under µ . Notice that any deri-
vation is a partial derivation, where the set of ignored 
nodes ( U ′ above) is empty. Since all derivations that 
are computed in a single call to the P-mapping algo-
rithm have the same start point i, it can be omitted (for 
brevity) from the end point function: thus, we denote 
EI (x, kT , kS)

.
= L(x, kT , kS) . Also, for a set U of nodes, 

we define L(U , kT , kS)
.
=

∑

x∈U span(x)+ kS − kT and 
accordingly EI (U , kT , kS)

.
= L(U , kT , kS).

We now define certain collections of derivations with 
common properties (such as having the same numbers of 
deletions and end point).

Definition 2 The collection of all the derivations of 
every node u ∈ U  to suffixes of S′[1 : EI (U , kT , kS)] with 
exactly kT deletions from the tree and exactly kS deletions 
from the string is denoted by D(U , kT , kS).

Definition 3 The collection of all the best derivations 
from the nodes in U to suffixes of S′[1 : EI (U , kT , kS)] 
with up to kT deletions from the tree and up to kS dele-
tions from the string is denoted by D≤(U , kT , kS) . Specifi-
cally, for every node u ∈ U  , k ′T ≤ kT and k ′S ≤ kS , the set 
D≤(U , kT , kS) holds only one highest scoring derivation 
of u to a suffix of S′[1 : EI (U , kT , kS)] with k ′T and k ′S dele-
tions from the tree and string, respectively.

It is important to distinguish between these two 
definitions. First, the derivations in D(U , kT , kS) have 
exactly kT and kS deletions, while the derivations in 
D≤(U , kT , kS) have up to kT and kS deletions. Second, in 
D(U , kT , kS) there can be several derivations that differ 
only in their score and in the one-to-one mapping that 
yields them, while in D≤(U , kT , kS) , there is only one der-
ivation for every node u ∈ U  and deletion combination 
pair (k ′T , k

′

S) . Note that the end points of all of the deriva-
tions are equal.

Definition 2 is used for describing the content of an 
entry of the DP table, where the focus is on the collection 

of all the derivations of x to S′ with exactly kT and kS 
deletions, D({x}, kT , kS) . For simplicity, the abbreviation 
D(u, kT , kS) = D({u}, kT , kS) is used. In every step of the 
P-mapping algorithm, a different set of derivations of the 
children of x is examined, thus, Definition 3 is used for 
U ⊆ children(x) . In addition, the set of derivations D that 
is received as input to the algorithms can be described 
using Definition 3 as can be seen in Eq.  1 below. In 
this equation, the union is over all U ⊆ children(x) 
because in this way the derivations of all the children 
of x with every possible end point are obtained (in con-
trast to having only U = children(x) , which results in 
the derivations of all the children of x with the end point 
EI (children(x), kT , kS)).

In the P-mapping algorithm for C ⊆ children(x) , the 
notation x(C) is used to indicate that the node x is consid-
ered as if its only children are the nodes in C (the nodes 
in children(x) \ C are ignored). Consequentially, the span 
of x(C) is defined as span(x(C)) .

=

∑

c∈C span(c) , and 
the set D(x(C), kT , kS) (in Definition 2 where U = {x(C)} ) 
now refers to a set of partial derivations. To use x(C) to 
describe the base cases of the algorithm, let us define x(∅) 
( x(C) for C = ∅ ) as a tree with no labeled leaves to map.

P‑node mapping: the algorithm
Recall that the input consists of an internal P-node x, a 
string S′ , bounds on the number of deletions from the 
tree T and the string S′ , dT and dS , respectively, and a set 
of derivations D (see Eq. 1). The output of the algorithm 
is 
⋃

0≤kT≤dT

⋃

0≤kS≤dS
arg max µ∈D(x,kT ,kS)

µ.score , which 
is the collection of the best scoring derivations of x to 
every possible prefix of S′ having up to dT and dS dele-
tions from the tree and string, respectively. Thus, there 
are O(dTdS) derivations in the output.

The algorithm (whose pseudocode is given in 2) con-
structs a 3-dimensional DP table P , which has an 
entry for every 0 ≤ kT ≤ dT , 0 ≤ kS ≤ dS and subset 
C ⊆ children(x) . The purpose of an entry P[C , kT , kS] 
is to hold the best score of a partial derivation in 
D(x(C), kT , kS) , i.e. a partial derivation rooted in x(C) to a 
prefix of S′ with exactly kT deletions from the tree and kS 
deletions from the string. The children of x that are not in 
C are ignored (as defined in "P-node mapping: terminol-
ogy" section) under the partial derivation stored by the 
DP table entry P[C , kT , kS] , thus they are neither deleted 
nor counted in the number of deletions from the tree, kT . 
(They will be accounted for in the computation of other 
entries of P .) Similarly to the main algorithm, some of the 
entries of P are invalid, and their value is defined as −∞ . 

(1)D =

⋃

U⊆children(x)

⋃

kT≤dT

⋃

kS≤dS

D≤(U , kT , kS)
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Formally, an entry P[C , kT , kS] is invalid if one of the fol-
lowing is true: kT >

∑

c∈C span(c) , kS > L(x(C), kT , kS) , 
L(x(C), kT , kS) > len(S′) , or L(x(C), kT , kS) < 0 . Every 
entry P[C , kT , kS] for which L(x(C), kT , kS) = 0 and 
kS = 0 or for which C = ∅ and kT = 0 is initialized with 
0. The first set of entries captures the case in which the 
derived substring is the empty string and thus no charac-
ter can be deleted from it, i.e. kS must equal 0. The second 
set of entries captures the case in which all the children 
of x are ignored, thus the value of kT must be 0.

of T(x), it must be mapped under some derivation µ′ of 
one of the children of x that are in C. Thus, we receive the 
second case of the recursion rule.

We remark that the case of a node deletion is captured 
by the initialization and that adding the option of delet-
ing a node in the recursion rule is therefore redundant.

Once the entire DP table is filled, a derivation of 
maximum score for every end point and deletion num-
bers combination can be found in P[children(x), ·, ·] . 

Algorithm 2: P-Mapping
Input: x, S ,D, dT , dS
Output: A best derivation of x to every prefix of S

1 γ ← |children(x)|;
2 Build P with dimensions 2γ × dT + 1× dS + 1;
3 for size = 0 to γ do
4 foreach C ⊆ children(x) s.t. |C| = size do
5 for kS = 0 to dS do
6 for kT = 0 to dT do
7 if (L(x(C), kT , kS) = 0 and kS = 0) or (size = 0 and kT = 0) then

//Initialization
8 P[C, kT , kS ] ← 0;
9 else

10 Compute P[C, kT , kS ] according to Eq. (2);
11 end
12 end
13 end
14 end
15 end
16 return P[children(x), ·, ·] ;

 
 

After the initialization, the remaining entries of P are 
calculated using the recursion rule in Eq.  2 below. The 
order of computation is ascending with respect to the 
size of the subsets C of the children of x, and for a given 
C ⊆ children(x) , the order is ascending with respect to 
the number of deletions from both tree and string.

Intuitively, every entry P[C , kT , kS] defines some index e′ 
of S′ that is the end point of every partial derivation in 
D(x(C), kT , kS) . Thus, S′[e′] must be a part of any partial 
derivation µ ∈ D(x(C), kT , kS) , so, either S′[e′] is deleted 
under µ or it is mapped under µ . The former option is 
captured by the first case of the recursion rule. If S′[e′] is 
mapped under µ , then due to the hierarchical structure 

(2)

P[C , kT , kS ]

= max







P[C , kT , kS − 1]

max
µ∈D≤(C ,kT ,kS )

P[C \ {µ.v}, kT − µ.delT , kS − µ.delS ] + µ.score

Traversing the said subtable in a specific order guaran-
tees the output derivations are ordered with respect to 
their end point without further calculations.

Complexity analysis of the PQ‑Tree Search algorithm
In this section we compare the time complexity of the 
main algorithm (in "The main algorithm" section) to the 
naïve solution for PQ-Tree Search. The complexities of 
the two algorithms described before as well as the com-
plexity of the Q-mapping algorithm are given in the fol-
lowings lemmas. Lemma 1 and Lemma 2 are proven in 
"Time and space complexity of the PQ-tree search algo-
rithm" section, and Lemma 3 is proven in Sect.  1.3 of 
Additional file 1.

Lemma 1 The algorithm in "The main algorithm" 
section takes O(nγdT

2dS
2(mp2

γ
+mq)) time and 

O(dTdS(mn+ 2γ )) space, where γ is the maximum degree 
of a node in T.
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Lemma 2 The P-mapping algorithm takes 
O(dT

2dS
2γ 2γ ) time and O(dTdS2

γ ) space.

Lemma 3 The Q-mapping algorithm takes O(dT
2dS

2γ ) 
time and O(dTdSγ ) space.

From Lemma 1 it is proven that PQ-Tree Search has 
an FPT solution with the parameter γ (Theorem 1).

Theorem 1 PQ-Tree Search with parameter γ is FPT. 
Particularly, it has an FPT algorithm that runs in O∗(2γ ) 
time1.

The naïve solution for PQ-Tree Search is to solve 
sequence alignment with bounded gaps for every sub-
string of S versus every string S′ ∈ C(T ) , so the naïve 
solution takes O(2mq (γ !)mpnm(dT + dS)dTdS) time. (A 
full description of the naïve algorithm and its complex-
ity is given in Sect. 4 of Additional file 1.) Therefore, we 
conclude that the time complexity of our algorithm is 
substantially better, as exemplified by considering two 
complementary cases. One, when there are only P-nodes 
in T (i.e. mp = O(m) ), the naïve algorithm is super-expo-
nential in γ , and even worse, exponential in m, while 
ours is exponential only in γ , and hence polynomial for 
any γ that is constant (or even logarithmic in the input 
size). Second, when there are only Q-nodes in T (i.e. 
mq = O(m) ), the naïve algorithm is exponential while 
ours is polynomial.

Methods and datasets
Dataset and gene cluster generation. 1487 fully 
sequenced prokaryotic strains with COG ID annotations 
(see Additional file  2) were downloaded from GenBank 
(NCBI; ver 10/2012). Among these strains, 471 genomes 
included a total of 933 plasmids.

The gene clusters were generated using the tool 
CSBFinder-S [44]. CSBFinder-S was applied to all 
the genomes in the dataset after removing their plas-
mids, using parameters q = 1 (a colinear gene cluster is 
required to appear in at least one genome) and k = 0 (no 
insertions are allowed in a colinear gene cluster), result-
ing in 595,708 colinear gene clusters. Next, ignoring 
strand and gene order information, colinear gene clusters 
that contain the exact same COGs were united to form 
the generalized set of gene clusters. The resulting gene 
clusters were then filtered to 26,270 gene clusters that 
appear in more than 30 genomes.

Generation of PQ-Trees. The generation of PQ-trees 
was performed using a program [45] that implements the 

algorithm described in [28] for the construction of a PQ-
tree from a list of strings comprised from the same set of 
characters. In the case where a character appeared more 
than once in a training string, the PQ-tree with a mini-
mum sized consistent set was chosen. The generated PQ-
trees varied in size and complexity. The length of their 
frontier ranged between 4 and 31, and the size of their 
consistent set ranged between 4 and 362, 880.

Implementation and performance. PQFinder is imple-
mented in Java 1.8. The runs were performed on an Intel 
Xeon X5680 machine with 192 GB RAM. The time it 
took to run all plasmid genomes against one PQ-tree 
ranged between 5.85 seconds (for a PQ-tree with a con-
sistent set of size 4) and 181.5 seconds (for a PQ-tree 
with a consistent set of size 362, 880). In total it took an 
hour and 47 minutes to run each one of the 779 PQ-trees 
against each one of the 933 plasmids.

Substitution scoring function. The substitution scor-
ing function reflects the distance between each pair of 
COGs, that is computed based on sentences describing 
the functional annotation of the COGs (e.g., “ABC-type 
sugar transport system, ATPase component”). The “Bag 
of Words model” was employed, where the functional 
description of each COG is represented by a sparse vec-
tor that is normalized to have a unit Euclidean norm. 
First, each COG description was tokenized and the 
occurrences of tokens in each description was counted 
and normalized using tf-idf term weighting. Then, the 
cosine similarity between each two vectors was com-
puted, resulting in similarity scores ranging between 0 
and 1. The sentences describing COGs are short, there-
fore each word largely influences the score, even after 
the tf-idf term weighting. Therefore, words that do not 
describe protein functions that were found in the top 30 
most common words in the description of all COGs were 
used as stop-words. Two COGs with the same COG IDs 
were set to have a score of 1.1, and the substitution score 
between a gene with no COG annotation to any other 
COG was set to be − 0.1. Two COGs with a zero score 
were penalized to have a score of -0.2 and the deletion of 
a COG from the query PQ-tree or the target string was 
set to have a cost of zero.

Enrichment analysis. For each of the four variants in 
Fig. 5C, a hypergeometric test was performed to measure 
the enrichment of the corresponding variant in one of the 
classes in which it appears. A total of 10 p-values were 
computed and adjusted using the Bonferroni correction; 
two p-values were found significant ( < 0.05 ), reported in 
"Results" section.

1 The notation O* is used to hide factors polynomial in the input size.
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Specificity score. We define a specificity score for a 
PQ-tree T of a gene cluster named S-score, where a 
more specific tree yields a higher S-score. Let T̃  be the 
least specific PQ-tree that could have been generated 
for the genes of the gene cluster based on which T was 
constructed. Namely, a PQ-tree that allows all permuta-
tions of said genes, has height 1 and is rooted in a P-node 
whose children (being the leaves of T̃  ) are the leaves of T. 
The S-score of T is defined as |C(T̃ )|

|C(T )|
 . For a gene cluster of 

permutations (i.e. there are no duplications), the compu-
tation of |C(T)| is as described in Eq. 3, where the set of 
P-nodes in T is denoted by T.p.

For a gene cluster that has duplications, the set C(T) is 
generated to learn its size. Let a(ℓ,T ) denote the num-
ber of appearances of the label ℓ in the leaves of T and 
let labels(T ) denote the set of all the distinct labels of 
the leaves of T. So, the formula for |C(T̃ )| is as in Eq. 4. 
Clearly, for T with no duplications |C(T̃ )| = |F(T )|!.

Results
Chromosomal gene orders rearranged in plasmids
The labeling of each internal node of a PQ-tree as P or 
Q, is learned during the construction of the tree, based 
on some interrogation of the gene orders from which 
the PQ-tree is trained [28]. As a result, the set of strings 
that can be derived from a PQ-tree T, consists of two 
parts: (1) all the strings representing the known gene 

(3)|C(T )| = 2mq
·

∏

x∈T .p

|children(x)|!

(4)|C(T̃ )| =
|F(T )|!

∏

ℓ∈labels(T ) a(ℓ,T )!

orders from which T was constructed, and (2) additional 
strings, denoted tree-guided rearrangements, that do not 
appear in the set of gene orders constructing T, but can 
be obtained via rearrangement operations that are con-
strained by T. Thus, the tree-guided rearrangements con-
serve the internal topology properties of the gene cluster, 
as learned from the corresponding gene orders during 
the construction of T, such that colinear dependencies 
among genes and between sub-operons are preserved in 
the inferred gene orders.

In this section, we used the PQ-trees constructed from 
chromosomal gene clusters, to examine whether tree-
guided rearrangements can be found in plasmids. The 
objective was to discover gene orders in plasmids that 
abide by a PQ-tree representing a chromosomal gene 
cluster, and differ from all the gene orders participat-
ing in the construction of the PQ-tree. PQ-trees that are 
constructed from gene clusters that have only one gene 
order or gene clusters with less than four COGs can-
not generate gene orders that differ from the ones par-
ticipating in their construction. Therefore, only 779 out 
of 26,270 chromosomal gene clusters were used for the 
construction of query PQ-trees (the generation of the 
chromosomal gene clusters is detailed in Sect. Methods 
and datasets). Using our tool PQFinder that implements 
the algorithm proposed for solving the PQ-Tree Search 
problem, the query PQ-trees were run against all plasmid 
genomes. This benchmark was run conservatively with-
out allowing substitutions or deletions from the PQ-tree 
or from the target string. 380 of the query gene clusters 
were found in at least one plasmid. The instances of these 
gene clusters in plasmids are provided in the Supplemen-
tary Materials in [2] as a session file that can be viewed 
using the tool CSBFinder-S [44].

Table 1 Top ranking PQ‑trees for which tree‑guided rearrangements were found in plasmids

a Square brackets represent a Q-node; round brackets represent a P-node. Numbers indicate the respective COG IDs
b This column indicates the number of genomes harboring plasmid instances of the respective PQ-tree. The number in brackets indicates the number of genomes 
harboring a tree-guided gene rearrangement of the corresponding gene cluster. The full table can be found in the supplementary material (see Additional file 1: 
Table S1)

PQ‑Treea S‑score #  Genomesb Functional Category

1 [[0683 [[0411 0410] [0559 4177]]] 0583] 22.5 5 (2) Amino acid transport

2 (1609 [1653 1175 0395] 3839) 10.0 10 (2) Carbohydrate transport

3 [[1538 [3696 0845]] [0642 0745]] 7.5 7 (1) Heavy metal efflux

4 [[2115 1070] [4213 [1129 4214]]] 7.5 1 (1) Carbohydrate transport

5 [1960 [[2011 1135] [2141 1464]]] 7.5 3 (1) Amino acid transport

6 [[0596 0599] [[3485 3485] 0015]] 7.5 9 (1) Metabolism

7 [[[1129 1172 1172] 1879] 3254] 7.5 6 (1) Carbohydrate transport

8 (1609 1869 [[1129 1172] 1879] 0524) 7.5 1 (1) Carbohydrate transport

9 (0683 [0559 4177] [0411 0410] 0318) 7.5 1 (1) Amino acid transport

10 (3839 0673 [[0395 1175] 1653]) 5.0 10 (1) Carbohydrate transport
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Tree-guided rearrangements were found among 
instances of 29 chromosomal gene clusters. The PQ-
trees corresponding to these gene clusters were sorted by 
a decreasing S-score, where higher scores are given to a 
more specific tree (details in "Methods and datasets" sec-
tion). In this setting, the higher the S-score, the smaller 
the number of possible gene orders that can be derived 
from the respective PQ-tree. Interestingly, 21 out of these 
29 gene clusters code for transporters, namely 20 import-
ers (ABC-type transport systems) and one exporter 
(efflux pump). The 10 top ranking results are presented 
in Table 1.

We selected the third top-ranking PQ-tree in Table  1 
for further analysis. This PQ-tree was constructed from 
seven gene orders of a gene cluster that encodes a heavy 
metal efflux pump. This gene cluster was found in the 
chromosomes of 79 genomes (represented by the seven 
distinct gene orders mentioned above) and in the plas-
mids of seven genomes. The instance of the chromosomal 
gene cluster identified as a tree-guided rearrangement 
in plasmids was found in the strain Cupriavidus metal-
lidurans CH34, isolated from an environment polluted 
with high concentrations of several heavy metals. This 
strain contains two large plasmids that confer resistance 
to a large number of heavy metals such as zinc, cadmium, 

copper, cobalt, lead, mercury, nickel and chromium. We 
hypothesize that the rearrangement event could have 
been caused by a heavy metal stress [46]. In the following 
section we will focus on this PQ-tree to further study its 
different variants in plasmids.

Finding approximate instances of an RND efflux pump
The heavy metal efflux pump examined in the previous 
section (corresponding to the third top-ranking PQ-tree 
in Table  1), was used as a PQFinder query and re-run 
against all the plasmids in our dataset in order to dis-
cover approximate instances of this gene cluster, pos-
sibly encoding remotely related variations of the efflux 
pump it encodes. This time, in order to increase sensitiv-
ity, a semantic substitution scoring function (described 
in Sect. Methods and datasets) was used, and the argu-
ments were set to dT = 1 (up to one deletion from the 
tree, representing missing genes) and dS = 3 (up to 
three deletions from the plasmid, representing intrud-
ing genes). An instance of a gene cluster is accepted if 
it was derived from the corresponding PQ-tree with a 
score that is higher than 0.75 of the highest possible score 
attainable by the query. This search resulted in the detec-
tion of approximate instances of the query gene cluster in 
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Fig. 5 A A PQ‑tree of a heavy metal RND efflux pump, corresponding to the third top scoring result in Table 1. B An illustration of an RND efflux 
pump consisting of an outer‑membrane protein (OMP), an inner membrane protein (IMP), and a periplasmic membrane fusion protein (MFP) 
that connects the other two proteins. In addition, a two‑component regulatory system consisting of a sensor/histidine kinase (HK) and response 
regulator (RR) enhances the transcription of the efflux pump genes. C Representative gene sequences of the three different RND efflux pumps 
found in plasmids (additional gene insertions and deletions may be present among the various instances of these pumps.) (1) A Czc‑like heavy 
metal efflux pump, (2) A Czc‑like heavy metal efflux pump with a missing OMP gene, (3) A Cus‑like heavy metal efflux pump, exemplifying an 
inserted gene (CusF), (4) An Acr‑like multidrug efflux pump. Additional details can be found in the text. D The presence‑absence map of the three 
types of efflux pumps found in the plasmids of different genomes. The rows correspond to the rows in C, the columns correspond to the genomes 
in which instances were found, organized according to their taxonomic classes. A black cell indicates that the corresponding efflux pump is present 
in the plasmids of the genome. The labels below the map indicate the classes α,β , γ , δ‑Proteobacteria and Acidobacteriia
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the plasmids of 24 genomes; These results are displayed 
in Figs. 5, 6, and Additional file 1: Figure S1.

Heavy metal efflux pumps are involved in the resist-
ance of bacteria to a wide range of toxic metal ions [47] 
and they belong to the resistance-nodulation-cell division 
(RND) family. In Gram-negative bacteria, RND pumps 
exist in a tripartite form, comprised from an outer-mem-
brane protein (OMP), an inner membrane protein (IMP), 
and a periplasmic membrane fusion protein (MFP) that 
connects the other two proteins. In some cases, the genes 
of the RND pump are flanked with two regulatory genes 
that encode the factors of a two-component regulatory 
system comprising a sensor/histidine kinase (HK) and 
response regulator (RR) (Fig. 5B). This regulatory system 
responds to the presence of a substrate, and consequently 
enhances the expression of the efflux pump genes.

The PQ-tree of this gene cluster (Fig.  5A) shows that 
the COGs encoding the IMP and MFP proteins always 
appear as an adjacent pair, the OMP COG is always adja-
cent to this IMP-MFP pair, and the HK and RR COGs 
appear as a pair downstream or upstream to the other 
COGs. COG3696, which encodes the IMP protein, is 
annotated as a heavy metal efflux pump protein, while 
the other COGs are common to all RND efflux pumps. 
Therefore, it is very likely that the respective gene cluster 
corresponds to a heavy metal RND pump. The absence of 
an additional periplasmic protein likely indicates that this 
gene cluster encodes a Czc-like efflux pump that exports 
divalent metals such as the cobalt, zinc and cadmium 
exporter in Cupriavidus metallidurans [47] (Fig. 5C(1)).

PQFinder discovered instances of this gene cluster in 
the plasmids of 12 genomes (Fig.  5C(1) and D), and it 
is significantly enriched in the β-proteobacteria class 
(hypergeometric p-value= 1.09× 10−5 , Bonferroni cor-
rected p-value = 1.09× 10−4 ). In addition, three other 
variants of RND pumps were found as instances of the 
query gene cluster (Fig. 5C(2–4)). The plasmids of three 
genomes contained instances that were missing the COG 
corresponding to the OMP gene CzcC (Fig. 5C(2)). This 
could be caused by a low quality sequencing or assembly 
of these plasmids. An alternative possible explanation is 
that a Czc-like efflux pump can still be functional without 
CzcC; a previous study showed that the deletion of CzcC 
resulted in the loss of cadmium and cobalt resistance, but 
most of the zinc resistance was retained [47].

Some instances identified by the query, found in 
the plasmids of six genomes, seem to encode a differ-
ent heavy metal efflux pump (Figs.  5C(3), 6). This vari-
ant includes all COGs from the query, in addition to 
an intruding COG that encodes a periplasmic protein 
(CusF). This protein is a predicted copper usher that 
facilitates access of periplasmic copper towards the heavy 
metal efflux pump. Indeed, the genomic region of Cus-
like efflux pumps that export monovalent metals, such as 
the silver and copper exporter in Escherichia coli, include 
this periplasmic protein, in contrast to the Czc-like 
efflux pump [47]. This variant was found in the plasmids 
of six bacterial genomes belonging to the class γ-pro-
teobacteria (Fig.  5D). This gene cluster is significantly 
enriched in the γ-proteobacteria class (hypergeometric 

Fig. 6 Approximate plasmid instances of the query PQ‑tree in Fig. 5A that include an insertion of the gene CusF (COG5569), as detected by 
PQFinder. These instances correspond to representative (3) from Fig. 5C (CusS‑CusR‑CusC‑CusF‑CusB‑CusA). The instances are displayed using 
the graphical interface of the tool CSBFinder‑S [44]. COG‑to‑gene mapping: COG0642:CusS, COG0745:CusR, COG1538:CusC, COG5569:CusF, 
COG0845:CusB, COG3969:CusA. “X” indicates a gene with no COG annotation. Note that the DNA sequence of Klebsiella pneumoniae MGH 78578 
was updated by the NCBI on Oct 9, 2019, and since then the gene CusA (COG3696) is identified in the corresponding plasmid (Accession ID 
NC_009649). Instances of additional variants of this gene cluster query can be found in Additional file 1: Figure S1
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p-value= 2.13× 10−4 , Bonferroni corrected p-value = 
2.13× 10−3 ). Surprisingly, all of these strains, except for 
one, are annotated as human or animal pathogens. Inter-
estingly, previous studies suggest that the host immune 
system exploits excess copper to poison invading patho-
gens [48], which can explain why these pathogens evolved 
copper efflux pumps.

Another variant of the pump, appearing in five 
genomes (Fig. 5C(4) and D), resulted from a substitution 
of the query IMP gene (COG3696) by a different IMP 
gene (COG0841) belonging to the multidrug efflux pump 
AcrAB-TolC. The AcrAB-TolC system, mainly studied in 
Escherichia coli, transports a diverse array of compounds 
with little chemical similarity [49]. AcrAB-TolC is an 
example of an intrinsic non-specific efflux pump, which 
is widespread in the chromosomes of Gram-negative 
bacteria, and likely evolved as a general response to envi-
ronmental toxins [50]. In this case, the query gene cluster 
and the identified variant share all COGs, except for the 
COGs encoding the IMP genes. The differing COGs are 
responsible for substrate recognition, which naturally dif-
fers between the two pumps, as one pump exports heavy 
metal while the other exports multiple drugs. When con-
sidering the functional annotation of these two COGs, 
we see that the query metal efflux pump COG encoding 
the IMP gene is annotated as “Cu/Ag efflux pump CusA”, 
while in the multidrug efflux pump the COG encoding 

the IMP gene is annotated as “Multidrug efflux pump 
subunit AcrB”. Thus, in spite of the difference in substrate 
specificity, the semantic similarity measure employed by 
PQFinder was able to reflect their functional similarity 
and allowed the substitution between them, while confer-
ring to the structure of the PQ-tree.

PQ‑tree search is NP‑hard
In this section we prove Theorem  2 by describing a 
reduction from the Job Interval Selection problem 
(JISP) to PQ-Tree Search. This reduction also proves 
that PQ-Tree Alignment is NP-hard (Theorem 3).

Theorem 2 PQ-Tree Search is NP-hard.

Theorem 3 PQ-Tree Alignment is NP-hard.

Since its initial definition by Nakajima and Hakimi [51], 
JISP has seen several equivalent definitions [43, 52–54]. 
We use the following formulation for JISP k based on 
colors. Given γ k-tuples of intervals on the real line, 
where the intervals of every k-tuple have a different color 
i ( 1 ≤ i ≤ γ ), select exactly one interval of each color 
(k-tuple) such that no two intervals intersect. The nota-
tion I ij  is used to denote the interval that starts at sij , ends 
at fij (i.e. the interval [sij , fij] ) and has the color i (i.e. it is a 
part of the ith k-tuple).

A.
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I26
I13
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root
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Fig. 7 A The input of the reduction—a JiSP3 instance J with intervals of length 2. B The output of the reduction—a PQ-Tree Search instance 
(T , S, h, dT , dS)
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JISP3 was shown to be NP-complete by Keil [52]. 
Crama et al. [54] showed that JISP3 is NP-complete even 
if all intervals are of length 2. We use these results to 
show that PQ-Tree Search is NP-hard.

The reduction. Let J be an instance of JISP3 where all 
intervals have a length of two. It is easy to see that shift-
ing all intervals by some constant does not change the 
problem. Hence, assume that the leftmost starting inter-
val starts at 1. Let L be the rightmost ending point of an 
interval, so the focus can be only on the segment [1, L] 
of the real line. Now, an instance of PQ-Tree Search 
(T , S, h, dT , dS) is constructed (an illustrated example is 
given in Fig. 7 below):

• The PQ‑tree T : The root node, rootT , is a P-node with 
3L− 2− 3γ children: x1, · · · ,xγ , y1, · · · ,y3L−2−4γ . 
The children of rootT are defined as follows: for every 
color 1 ≤ i ≤ γ , create a Q-node xi with four children 
xsi , x

a
i , x

b
i , x

f
i  ; for every index 1 ≤ i ≤ 3L− 2− 3γ , 

create a leaf yi.
• The string S : Define S = σ1σaσbσ2σaσb · · · σaσbσL.
• The substitution function h : For every interval of 

the color i, I ij = [sij , fij] , the function h returns True 
for the following pairs: (xsi , σsij ) , (x

f
i , σfij ) , (x

a
i , σa) 

and (xbi , σb) . In addition, every leaf yr can be substi-
tuted by every character of S, namely for every index 
1 ≤ r ≤ 3L− 2− 3γ and for every s ∈ {a, b, 1, · · · , L} 
the function h returns True for the pair (yr , σs) . For 
every other pair h returns False. For the optimization 
version of the problem, define a substitution scoring 
function h′ , such that h′(u, v) = 1 if h(u, v) = True 
and h′(u, v) = −∞ if h(u, v) = False.

• Number of deletions: Define dT = 0 and dS = 0 , i.e. 
deletions are forbidden from both tree and string.

An example of the reduction is shown in Fig. 7. The JISP3 
instance J is a collection of two 3-tuples (one blue and one 
red) where each interval is of length 2 (Fig. 7A). Running 
the reduction algorithm on J yields the PQ-Tree Search 
instance in Fig. 7B. The pairs that can be substituted (i.e. 
the pairs for which h returns True) are given by the lines 
connecting the leaves of the PQ-tree and the characters 
of the string S. The nodes and substitutable pairs created 
due to the blue and red intervals in the JISP3 instance are 
marked in blue and red, respectively. The substitutable 
pairs containing a y node are marked in gray. Note that 
the colors given in Fig. 7B are not a part of the PQ-Tree 
Search instance, and are given for convenience.

Notice that in the reduction, the number of deletions 
is zero and the height of the tree is 2. Thus, these param-
eters cannot be used to design an FPT algorithm. In addi-
tion, notice that though the output of the reduction is 
referred as an instance of PQ-Tree Search, it is also an 

instance of PQ-Tree Alignment. Ahead the reduction 
is proven for PQ-Tree Search, but the proof for PQ-
Tree Alignment is the same.

Proof Correctness Let J be an instance of JISP3, and let 
(T , S, h, dT , dS) be the output of the reduction on this 
instance. We prove that there exists a collection of inter-
vals that is a solution for J if and only if there exists a one-
to-one mapping that is a solution to (T , S, h, dT , dS).

One direction. Suppose that there exists a solution to the 
output instance of PQ-Tree Search of the reduction, 
(T , S, h, dT , dS) . This solution is a one-to-one mapping M : 
for every 1 ≤ i ≤ γ , a set of pairs of the form (xji , σk(ℓ)) 
for j ∈ {s, f , a, b} , and for every 1 ≤ r ≤ 3L− 2− 3γ , 
pairs of the form (yr , σk(ℓ)) where k ∈ {1, · · · , L, a, b} and 
1 ≤ ℓ ≤ 3L− 2 . By the definition of PQ-Tree Search, 
each xji , yr and σk(ℓ) appear in exactly one pair. Consider-
ing the mappings of the children of a node xi , they must 
be the following: (xsi , σk(ℓ)) , (x

a
i , σa(ℓ+ 1)) , (xbi , σb(ℓ+ 2)) 

and (xfi , σk+1(ℓ+ 3)) . To see this, observe that a node xai  
must be mapped to σa , because it is the only character by 
which it can be substituted under h. In the same way, a 
node xbi  must be mapped to σb . Because dT = 0 , dS = 0 
and due to the properties of a Q-node, once xsi is mapped 
to the character in index ℓ (i.e. (xsi , σ(ℓ)) ∈ M ), xai  must 
be mapped to the character in index ℓ+ 1 or in index 
ℓ− 1 (i.e. the adjacent character to the one to which xsi 
is mapped), then xbi  must be mapped to the character in 
index ℓ+ 2 or ℓ− 2 , respectively, and xfi  to ℓ+ 3 or ℓ− 3 , 
respectively. Since σa is always the character preced-
ing σb in S, xbi  must be mapped to an index larger by one 
than the index mapped to xai  . Hence, the children of the 
Q-node xi are mapped from left to right.

Now, let us derive a solution for the original JISP3 
instance from the solution to PQ-Tree Search. For 
every 3-tuple of color 1 ≤ i ≤ γ , where (xsi , σk(ℓ)) ∈ M , 
choose the interval I ik = [k , k + 1] from the 3-tuple 
of color i. For example, if a part of the solution for the 
PQ-Tree Search instance in Fig.  7B is {(xs1, σ1(1)), 
(xa1 , σa(2)), (x

b
1, σb(3)), (x

f
1, σ2(4))} ⊂ M , then I11 is the 

interval chosen for the first color (blue) in the derived 
solution for the JISP3 instance in Fig.  7.A. Note that Ik 
is indeed one of the intervals of color i, due to the defini-
tion of h, h(xsi , σk) = True and h(xfi , σk+1) = True if and 
only if there is an interval of color i starting at k and end-
ing at k + 1 . Thanks to M being a one-to-one mapping, 
the intervals do not intersect, and for every color there is 
only one interval chosen.

Second Direction. Let us prove that if there is a solution 
for the original instance of JISP3 J, then there is a solution 
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for (T , S, h, dT , dS) . Let I = {I1j1 , ..., I
γ
jγ
} be a solution of J 

such that I iji = [siji , fiji ] is the interval chosen for the 
3-tuple of color i. First, the solution for the PQ-Tree 
Search instance (T , S, h, dT , dS) is constructed. For 
every 1 ≤ i ≤ γ , insert the following pairs into M : 
(xsi , σsiji (3siji − 2)) , (xai , σa(3siji − 1)) , (xbi , σb(3siji)) , and 
(x

f
i , σfiji

(3fiji − 2)) . For example, if I22 is the interval cho-
sen from the second (red) 3-tuple in the solution of the 
JISP3 instance in Fig. 7.A, then the solution for the PQ-
Tree Search instance in Fig.  7B includes the pairs 
{(xs2, σ2(4)), (x

a
2 , σa(5)), (x

b
2, σb(6)), (x

f
2, σ3(7))} . Observe 

that only one pair was inserted for every leaf of T, and 
since no two intervals intersect, every index of S appears 
in only one pair in M . Hence, a one-to-one mapping 
between 4γ leaves of T and 4γ indices of S was defined, 
and 3L− 4γ − 2 additional pairs need to be inserted to 
M in order to construct a solution for the PQ-Tree 
Search instance. According to h, every node yr 
( 1 ≤ r ≤ 3L− 2− 3γ ) can be mapped to every character 
σk , so arbitrarily insert the pairs (yr , σkr (ℓr)) to M , such 
that no index or node appear in more than one pair. (It 
can be done because there are 3L− 4γ − 2 y nodes and 
after mapping the 4 children of every one of the γ xi 
nodes, 3L− 4γ − 2 characters of S are left without a 
mapping). Thus, a one-to-one mapping M between all 
the leaves of T and all the indices of S (i.e. no deletions 
from S and T) was defined, and it is left to prove that S 
can be derived from T under M.

The children of a Q-node xi from left to right are: 
xsi , x

a
i , x

b
i , x

f
i  , and so, because dT = 0 and dS = 0 (no dele-

tions from both tree and string), they have to be mapped 
to consecutive indices of S; this is indeed the case accord-
ing to our definition of M . The mapping of every yr is 
obviously also legal. Finally, rootT is a P-node, so its chil-
dren can be arranged in any order, and they are. This 
completes the proof of correctness of the reduction. �

This concludes the proof of Theorem 2.

Correctness of our algorithms
In this section we prove the correctness of the PQ-Tree 
Search algorithm ("Correctness of the main algorithm" 
section) and the P-mapping algorithm ("Correctness of 
the P-node mapping algorithm" section). First, some defi-
nitions that are used in the proofs are given.

Addition and removal of a derivation. Given a par-
tial derivation µ , which derives an internal node x, let us 
define the removal and addition of another derivation η : 
remove(µ, η) and add(µ, η) . To this end, we say that η is 
the derivation of x′ under µ if x′ = η.v ∈ children(µ.v) 

and η.o ⊆ µ.o , i.e. the one-to-one mapping that yields η is 
a subset of the one-to-one mapping that yields µ.

Operation 1 The operation remove(µ, η) is defined only 
if η is the derivation of η.v under µ and if either η.e = µ.e 
or η.s = µ.s is true. The operation returns a new partial 
derivation µ′ of µ.v that ignores the subtree T (η.v) . If 
η.e = µ.e , then µ′ derives the string S[µ.s : η.s − 1] , and 
if η.s = µ.s , then µ′ derives the string S[η.e + 1 : µ.e] . 
In any case the number of deletions from the tree is 
µ′.delT = µ.delT − η.delT and from the string it is 
µ′.delS = µ.delS − η.delS . Furthermore, µ.o \ η.o is the 
one-to-one mapping that yields µ′.

Operation 2 The operation add(µ, η) is defined only 
if either η.s = µ.e + 1 or η.e = µ.s − 1 is true and if 
η.v ∈ children(x) and it is ignored under µ . The opera-
tion returns a new partial derivation µ′ of µ.v . The deri-
vation of η.v under µ′ is η , and the mapping or deletion 
of every other leaf or character in the string is defined 
the same as it was in µ . Consequentially, if η.s = µ.e + 1 , 
then µ′ derives the string S[µ.s : η.e] , and if η.e = µ.s − 1 , 
then µ′ derives the string S[η.s : µ.e] . In any case, 
µ′.delT = µ.delT + η.delT , µ′.delS = µ.delS + η.delS and 
the one-to-one mapping that yields µ′ is µ.o ∪ η.o.

Addition and removal of a deleted character. Given 
a partial derivation µ , which derives a string S, and an 
index i of S let us define the removal and addition of a 
deleted character: removeDel(µ, i) and addDel(µ, i).

Operation 3 The operation removeDel(µ, i) is defined 
only if i = µ.e or i = µ.s , and if S[i] is deleted under 
µ . The operation returns a partial derivation µ′ with 
µ.delS − 1 deletions from the string. If i = µ.e , then µ′ 
derives the string S[µ.s,µ.e − 1] , and if i = µ.s , then µ′ 
derives the string S[µ.s + 1,µ.e] . The one-to-one map-
ping that yields µ′ is µ.o \ {(ε, S[i](i))}.

Operation 4 The operation addDel(µ, i) is defined 
only if i = µ.e + 1 or i = µ.s − 1 . The operation returns 
a partial derivation µ′ with µ.delS + 1 deletions from 
the string. If i = µ.e + 1 , then µ′ derives the string 
S[µ.s,µ.e + 1] , and if i = µ.s − 1 , then µ′ derives the 
string S[µ.s − 1,µ.e] . The one-to-one mapping that yields 
µ′ is µ.o ∪ {(ε, S[i](i))}.

Correctness of the main algorithm
In this section we prove the correctness of the PQ-Tree 
Search algorithm presented in "The main algorithm" 
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section by proving Lemma 4. In this proof, the correct-
ness of the Q-mapping algorithm (described in Sect.  1 
of Additional file  1) and of the P-mapping algorithm 
(described in "P-node mapping: the algorithm" sec-
tion) is assumed. In addition, the set of all derivations to 
S[i,E(x, i, kT , kS)] rooted in x that have exactly kT dele-
tions from the tree and exactly kS deletions from the 
string is denoted by DM(x, i, kT , kS) . Similarly to the nota-
tion in Definition 2, the DM(x, i, kT , kS) notation is used 
to represent the set of derivations whose score might be 
in A[x, i, kT , kS].

Lemma 4 At the end of the algorithm every entry 
A[x, i, kT , kS] of the DP table A holds the highest score of 
a derivation of S[i,E(x, i, kT , kS)] rooted in x that has kS 
deletions from the string and kT deletions from the tree, 
i.e. A[x, i, kT , kS] = maxµ∈DM(x,i,kT ,kS) µ.score

Proof We prove Lemma 4 by induction on the entries 
of A in the order described in the algorithm. Namely, 
for two entries A[x1, i1, kT1 , kS1 ] and A[x2, i2, kT2 , kS2 ] , 
A[x1, i1, kT1 , kS1 ] < A[x2, i2, kT2 , kS2 ] if and only if x1 
appears before x2 in the postorder of T or both x1 = x2 
and i1 < i2 . If x1 = x2 and i1 = i2 , then the order between 
the entries is chosen arbitrarily.

Base Case. The base case of the algorithm is the initializa-
tion of the DP table, where the entries A[x, i, kT , kS] for 
x ∈ leaves(root) and kT ∈ {0, 1} are computed. When 
kT = 0 , there are no deletions from the tree. So, x must 
be mapped to some character S[ℓ] ( i ≤ ℓ ≤ E(x, i, 0, kS) ). 
In this version of the algorithm the deletion of a char-
acter does not change the score of the derivation, so the 
maximal score of a derivation in DM(x, i, 0, kS) is the 
maximum score of a mapping of x to some character S[ℓ] 
( i ≤ ℓ ≤ E(x, i, 0, kS) ), which is the initialization value of 
the entry A[x, i, 0, kS] . When kT = 1 , there is one deletion 
from the tree. The derived subtree T(x) has one leaf, x, 
and so it must be the deleted leaf. All characters in the 
derived string, S[i : E(x, i, 1, kS)] , must also be deleted. 
Deletions do not add to the score of the derivation, and 
so all the derivations in DM(x, i, 1, kS) have a score of 0, 
which is the initialization value of A[x, i, 1, kS].

Induction Assumption. Assume that every 
entry A[x′, i′, k ′T , k

′

S] such that A[x′, i′, k ′T , k
′

S] 
< A[x, i, kT , kS] holds the best score of a deri-
vation from the set DM(x′, i′, k ′T , k

′

S) . Namely, 
A[x′, i′, k ′

T
, k ′

S
] = maxµ∈DM (x′ ,i′ ,k ′

T
,k ′
S
) µ.score = OPT (x′, i′, k ′

T
, k ′

S
).

Induction Step. For every internal node x and possi-
ble start index i, the algorithm fills the DP table entry 
A[x, i, kT , kS] according to the values returned from the 

Q-mapping and P-mapping algorithms based on the 
type of x. The correctness of the P-mapping algorithm 
is proven in Section Correctness of the P-node mapping 
algorithm, and the correctness of the Q-mapping algo-
rithm is proven in Section 1.2 of Additional file 1. Hence, 
it is only necessary to prove that the input the algo-
rithms expect to receive is sent correctly from the main 
algorithm.

Both the Q-mapping and P-mapping algorithms expect 
to receive the internal node which should be the root of 
all the output derivations, a substring S′ of S, the dele-
tion bounds dT and dS , and a collection of the best scor-
ing derivations of every child of x to every substring 
of S′ with up to dT and dS deletions from the tree and 
string, respectively. By definition an entry in A[x, i, ·, ·] 
concerns the derivations of x with a start point i. The 
end point of the longest derivation of those derivations 
is E(x, i, 0, dS) . Hence, the internal node sent to the 
Q-mapping or P-mapping algorithm is x and the sub-
string S′ equals S[i,E(x, i, 0, dS)] . The deletion bounds dT 
and dS are given as input to the main algorithm. Lastly, 
the best derivations of the children of x are stored in 
A . Because a node x′ ∈ children(x) appears before x in 
the postorder of T, then for every i′, k ′T , k

′

S , it holds that 
A[x′, i′, k ′T , k

′

S] < A[x, i, kT , kS] , and from the induc-
tion assumption A[x′, i′, k ′T , k

′

S] = OPT (x′, i′, k ′T , k
′

S) . So, 
indeed the expected input to the Q-mapping and P-map-
ping algorithms is correct. This completes the proof. �

Correctness of the P‑node mapping algorithm
In this section we prove the correctness of the P-mapping 
algorithm presented in "P-node mapping: the algorithm" 
section by proving Lemma 5.

Lemma 5 At the end of the algorithm every entry of 
the DP table, P[C , kT , kS] , holds the best score for a 
partial derivation of x(C) to a prefix of S′ with kT dele-
tions from the tree and kS deletions from the string, i.e. 
P[C , kT , kS] = maxµ∈D(x(C),kT ,kS)

µ.score

Proof We prove Lemma 5 by induction on the entries 
of P in the order described in the algorithm. Namely, 
for two entries P[C1, kT1 , kS1 ] and P[C2, kT2 , kS2 ] , 
P[C1, kT1 , kS1 ] < P[C2, kT2 , kS2 ] if and only if

• |C1| < |C2| , or
• |C1| = |C2| and kS1 < kS2 , or
• |C1| = |C2| and kS1 = kS2 and kT1 < kT2
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If C1  = C2 , |C1| = |C2| , kS1 = kS2 and kT1 = kT2 are all 
satisfied, then the order between the entries is chosen 
arbitrarily.
Base Cases. There are two types of base cases, as 
described in the initialization of the DP table. 

1 L(x(C), kT , kS) = 0 and kS = 0 : Let µ be a deriva-
tion of x(C) with kT and kS deletions. By definition, 
µ derives an empty string, i.e. there are no charac-
ters to map to the leaves of the subtrees rooted in the 
nodes in C. Hence, every child of x that is considered 
(the nodes in C) must be deleted under µ . All the 
nodes in C can be deleted if the sum of their spans 
is equal to the allowed number of deletions in µ (that 
is, kT ). From the definition of L(x(C), kT , kS) = 0 
and the fact that kS = 0 , we obtain that indeed 
kT =

∑

c∈C span(c) . Every child node of x that is 
kept under µ adds to the score of the derivation of 
x, but there are none in this case. In addition, every 
deletion from the subtree T(x) adds nothing to the 
score (in the penalty-free version of the algorithm). 
Hence, the score of µ must equal 0.

2 C = ∅ and kT = 0 : In this case all of the chil-
dren of x are ignored, so there are no leaves 
to map. Hence, every character of the derived 
string should be deleted. Note that the derived 
string is S′[1 : EI (x

(C), kT , kS)] , and its length 
is L(x(C), kT , kS) =

∑

c∈C
span(c)− kT + kS

=

∑

c∈∅
span(c)− 0+ kS = kS . So, the number of 

deletions from the string in this case is exactly the 
number needed to delete all the characters in the 
derived string.

Induction Assumption. Assume that every 
table entry P[C ′, k ′T , k

′

S] such that P[C ′, k ′T , k
′

S] 
< P[C , kT , kS] holds the best score of a deri-
vation in D(C ′, k ′T , k

′

S) . Namely, P[C ′, k ′T , k
′

S] 
= maxµ∈D(C ′,k ′T ,k

′

S)
µ.score = OPT (C ′, k ′T , k

′

S).
Induction Step. Towards the proof of the step, we prove 
the following Eq. 5:

 

(5)

OPT (C ,kT , kS) = max(OPT (C , kT , kS − 1), max
µ∈D≤(C ,kT ,kS )

OPT (C \ {µ.v}, kT − µ.delT , kS − µ.delS)+ µ.score)

≤:  Let µ∗
∈ D(x(C), kT , kS) be a derivation 

such that µ∗.score = OPT (C , kT , kS) , and let 
ec = EI (x

(C), kT , kS) . By definition, µ∗ is a derivation 
of x(C) to the string S′[1 : ec] . In a derivation every 
character of the derived string is either deleted or it 
is a part of a substring derived from one of the chil-
dren of x. So, either S′[ec] is deleted under µ∗ , or it is 
mapped under some derivation of a child of x(C) , to 
a substring S′[i : ec] (for an index 0 < i ≤ ec ). First, 
if the former is true, then by removing the deletion 
of S′[ec] from µ∗ ( removeDel(µ∗,EI (x

(C), kT , kS)) ) 
a derivation µ′

∈ D(x(C), kT , kS − 1) is 
obtained. The derivation µ′ derives the string 
S′[1 : EI (x

(C), kT , kS − 1)] = S′[1 : ec − 1] . So, the 
following Eq. 6 is true. 

 Note that even if there is a penalty cost for dele-
tions, the cost for the deletion of S′[ec] (i.e. −�(S′[ec]) ) 
is constant in this setting. So, for two derivations 
η, η′ ∈ D(x(C), kT , kS − 1) if η.score ≤ η′.score then 
η.score −�(S′[ec]) ≤ η′.score −�(S′[ec]) . Hence, 
the conclusion from Eq.  6 is still true. Second, if the 
latter is true, then there is a node y ∈ C for which 
there is a derivation µy ∈ D such that µy.e = ec 
and µ.y is the derivation of y under µ∗ . For µ∗ to 
be a legal derivation, µy must be in D≤(C , kT , kS) . 
Hence, µy.score ≤ maxµ∈D≤(C ,kT ,kS) µ.score . Fur-
thermore, by removing µy from µ∗ , remove(µ∗,µ.y) , 
the obtained partial derivation, µ′ , is of x(C\{y}) to 
S′[1 : µy.s − 1] with kT − µy.delT deletions from 
the tree and kS − µy.delS from the string. Thus, 
µ′

∈ D(x(C\{y}), kT − µy.delT , kS − µy.delS) , and so 
µ′.score ≤ OPT (C \ {y}, kT − µy.delT , kS − µy.delS)  . 
Note that indeed 
µy.s = 1+ EI (x

(C\{y}), kT − µy.delT , kS − µy.delS) , as can 
be seen in the following Eq. 7. 

(6)

µ∗
.score = µ′

.score

≤ OPT (C , kT , kS − 1)

≤ max(OPT (C , kT , kS − 1),

max
µ∈D≤(C ,kT ,kS )

OPT (C \ {µ.v}, kT − µ.delT , kS − µ.delS)+ µ.score)
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 By combining our conclusions about µy and µ′ together, 
we obtain the following Eq. 8. 

≥:  Let µ∗ be a derivation such that Eq. 9 holds, and let 
ec = EI (x

(C), kT , kS) . 

 So, either µ∗.score = OPT (C , kT , kS − 1) , or 
µ∗.score = max

µ∈D≤(C ,kT ,kS)
 OPT (C \ {µ.v}, 

kT − µ.delT , kS − µ.delS)+ µ.score . First, if the former is 
true, let η ∈ D(x(C), kT , kS − 1) be a derivation with 
η.score = OPT (C , kT , kS − 1) . By definition, η derives the 
substring S′[1 : EI (x

(C), kT , kS − 1)] . Adding to η the dele-
tion of S′[ec] , addDel(η, ec) , results in a derivation η′ of 
x(C) to the string S′[1 : ec] with kT deletions from the tree 
and kS deletions from the string. The string S′[1 : ec] is 
equal to the concatenation of S′[1 : EI (x

(C), kT , kS − 1)] 
and S′[ec] . So, η′ ∈ D(x(C), kT , kS) , and thus 
η′.score ≤ OPT (C , kT , kS) . The derivation η′ was con-
structed such that µ∗.score = η′.score , so 
µ∗.score ≤ OPT (C , kT , kS) . Second, if the latter is true, 
then let 
η∗ = arg max µ∈D≤(C ,kT ,kS)

OPT (C \ {µ.v}, kT − µ.delT ,

kS − µ.delS)+ µ.score . Adding η∗ to a partial derivation 
η ∈ D(x(C\{η

∗.v}), kT − η∗.delT , kS − η∗.delS) , add(η, η∗) , 
results in a partial derivation, η′ , with 
kT − η∗.delT + η∗.delT = kT deletions from the tree and 
kS − η∗.delS + η∗.delS = kS deletions from the string, 
that takes into account the children of x that are in 
C \ {η∗.v} ∪ {η∗.v} = C . It is a legal partial derivation 
since η∗ derives the node η∗.v that is not in C \ {η∗.v} to a 
string that does not intersect with the string derived by η . 
The string that is derived by η is S′[η.s : η.e] and it does 
not intersect with the string derived by η∗ ( S′[η∗.s : η∗.e] ). 
That is because η.e + 1 = η∗.s , as can be seen similarly to 

(7)

µy.s = ec − L(y,µy.delT ,µy.delS)+ 1

=

∑

c∈C

span(c)+ kS − kT − (span(y)+ µy.delS − µy.delT )+ 1

=

∑

c∈C\{y}

span(c)+ kS − µy.delS − (kT − µy.delT )+ 1

= EI (x
(C\{y})

, kT − µy.delT , kS − µy.delS)+ 1

(8)

µ∗
.score = µ′

.score + µy.score

≤ OPT (C \ {y}, kT − µy.delT , kS − µy.delS)

+ max
µ∈D≤(C ,kT ,kS )

µ.score ≤ max
µ∈D≤(C ,kT ,kS )

OPT (C \ {µ.v}, kT − µ.delT , kS − µ.delS)+ µ.score

≤ max(OPT (C , kT , kS − 1), max
µ∈D≤(C ,kT ,kS )

OPT (C \ {µ.v}, kT − µ.delT , kS − µ.delS)+ µ.score)

(9)
µ∗

.score = max(OPT (C , kT , kS − 1), max
µ∈D≤(C ,kT ,kS )

OPT (C \ {µ.v}, kT − µ.delT , kS − µ.delS)+ µ.score)

Eq.  7. So, η′ ∈ D(x(C), kT , kS) , and thus 
η′.score ≤ OPT (C , kT , kS) . The partial derivation η′ was 
constructed such that µ∗.score = η′.score , so 
µ∗.score ≤ OPT (C , kT , kS).

 From the induction assumption, P[C , kT , kS − 1]

= OPT (C , kT , kS − 1) and for every µ ∈ D≤(C , kT , kS) , 
P[C \ {µ.v}, kT − µ.delT , kS − µ.delS] = OPT (C \ {µ.v},

kT − µ.delT , kS − µ.delS) . Thus, from Eq.  5, it follows 
that P[C , kT , kS] = OPT (C , kT , kS) . This completes the 
proof. �

Time and Space Complexity of the PQ‑Tree Search 
Algorithm
In this section the complexity of the main algorithm for 
PQ-Tree Search as well as the complexity of the P-map-
ping algorithm are proven.

Time and Space Complexity of the Main Algorithm
Here we prove Lemma 1.

Proof The number of leaves in the PQ-tree T is m, 
hence there are O(m) nodes in the tree, i.e the size of the 
first dimension of the DP table, A , is O(m). In the algo-
rithm description ("P-node mapping" section) a bound 
for the possible start indices of substrings derived from 
nodes in T is given (for a node x, the start index i runs 
between 1 and n− (span(x)− dT )+ 1 ). The node with 
the largest span in T is the root which has a span of m. 
The root is mapped to the longest substring when there 
are dS deletions from the string. Hence, the size of the 
second dimension of A is �(n− (m+ dS)+ 1) = �(n) 
(given that dS << n ). The nodes with the smallest spans 
are the leaves, which have a span of 1, hence the size of 
the second dimension of A is O(n). The third and fourth 
dimensions of A are of size dT + 1 and dS + 1 , respec-
tively. In total, the DP table A is of size O(dTdSmn).

In the initialization step O(dSmn) entries of A are com-
puted in O(dS) time each. This holds because there are 
m leaves and O(n) start indices for every string of length 
kS ≤ dS , and it takes O(dS) time to compute the max 
function. There are also O((dT − 1)dSmn) entries of 
A that are computed in O(1) time each. These are the 
entries initialized with the 0 and −∞ values. This results 
in a O((dT + dS)dSmn) time initialization step which 
can be reduced to O(dTdSmn) by using the replace-
ment initialization rule mentioned in " P-node map-
ping" section, though they are both negligible. The 
P-mapping algorithm is called for every P-node in T 
and every possible start index i, i.e. the P-mapping algo-
rithm is called O(nmp) times. Similarly, the Q-map-
ping algorithm is called O(nmq) times. Thus, it takes 
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O(n (mp · Time(P-mapping)+mq · Time(Q-mapping))) 
time to fill the DP table. In the final stage of the 
algorithm the maximum over the entries cor-
responding to every combination of dele-
tion numbers and start index ( 0 ≤ kT ≤ dT , 
0 ≤ kS ≤ dS , 1 ≤ i ≤ n− (span(x)− dT )+ 1 ) is com-
puted. So, it takes O(dTdSn) time to find a derivation 
with maximum score. Tracing back through the DP table 
to find the actual mapping does not increase the time 
complexity.

From Lemma 2, the P-mapping algorithm takes 
O(γ 2γ dT

2dS
2) time and O(dTdS2

γ ) space, 
and from Lemma 3, the Q-mapping algo-
rithm takes O(γdT

2dS
2) time and O(dTdSγ ) 

space. Thus, in total, our algorithm runs in 
O(n(mp · γ 2

γ dT
2dS

2
+mq · γdT

2dS
2)) = O(nγdT

2dS
2(mp · 2

γ
+mq)) 

time. Adding to the space required for the main DP 
table the space required for the P-mapping algo-
rithm (the space needed for the Q-mapping algo-
rithm is insignificant with respect to the P-mapping 
algorithm) results in a total space complexity of 
O(dTdSmn)+ O(dTdS2

γ ) = O(dTdS(mn+ 2γ )) . This 
completes the proof. �

Time and Space Complexity of the P‑Node Mapping 
Algorithm
Here we prove Lemma 2.

Proof The most space consuming part of the algorithm 
is the 3-dimensional DP table. The first dimension, C, can 
be any subset of the set children(x) , and therefore it is of 
size 2|children(x)| = 2γ . The size of the second and third 
dimensions (i.e. kT and kS ) are dT + 1 and dS + 1 , respec-
tively. Hence, the space of the DP algorithm is O(dTdS2

γ )

.

The algorithm has three parts: initialization, filling the 
DP table, and returning the derivations in the required 
order. The most time consuming calculation required in 
the initialization is the calculation of L(x(C), kT , kS) . It 
requires summing the spans of all nodes in C. This cal-
culation will also be required in the second part of the 
algorithm. To avoid the repetitive calculations, it is per-
formed once for every (C , kT , kS) tuple and the results are 
saved. This requires O(dTdS2

|children(x)|) = O(dtdS2
γ ) 

space (for this is the number of such tuples). Each value 
is calculated in O(|children(x)|) = O(γ ) time. Hence, 
the calculation of all the L(x(C), kT , kS) values (and thus 
all the EI (x(C), kT , kS) values) takes O(dTdSγ 2

γ ) time 
and O(dTdS2

γ ) space. The second part of the algo-
rithm is done by calculating the value of every entry in 

the O(dTdS2
γ ) entries of P , using the recursion rule in 

Eq. 2. The first line among the rule takes O(1) time, since 
it involves looking in another entry of P and basic com-
putations. The second line of the rule involves going over 
all derivations µ ∈ D≤(C , kT , kS) . Namely, going over 
all derivations with a specific end point, which derives 
a node in C and has no more than a specific number of 
deletions from the tree and string (i.e. µ.e = EI (C , kT , kS) , 
µ.v ∈ C , µ.delT ≤ kT and µ.delS ≤ kS ). The number of 
deletions from the tree and string are bounded by dT and 
dS , respectively, and the number of nodes in C is bounded 
by the number of children of x, γ . Hence, the time to cal-
culate one entry of P is O(dTdSγ ) . In total, the second 
part of the algorithm takes O(dT

2dS
2γ 2γ ) time. Finally, 

to construct the returned set of derivations, the algo-
rithm goes over every deletion combination kT , kS once, 
i.e. it takes O(dTdS) time. In total, the algorithm takes 
O(dT

2
dS

2γ 2γ )+ O(dTdSγ 2
γ )+ O(dTdS) = O(dT

2
dS

2γ 2γ ) time. �

Conclusions
In this paper, we defined two new problems in compara-
tive genomics, denoted PQ-Tree Search and PQ-Tree 
Alignment, where the second is a sub-problem of the 
first. Both problems take as input a PQ-tree T represent-
ing the known gene orders of a gene cluster of interest, 
a gene-to-gene substitution scoring function h, integer 
arguments dT and dS , and a sequence of genes S. The 
objective in PQ-Tree Search is to identify an approxi-
mate instance S′ of the gene cluster, such that S′ is a sub-
string of S. The objective of PQ-Tree Alignment is to 
determine whether S′ is an approximate instance of the 
gene cluster; An approximate instance could vary from 
the known gene orders by genome rearrangements that 
are constrained by T, by gene substitutions that are gov-
erned by h, and by gene deletions and insertions that are 
bounded from above by dT and dS , respectively.

We proved that the PQ-Tree Search and the PQ-
Tree Alignment problems are NP-hard and proposed a 
parameterized algorithm that solves PQ-Tree Search in 
O∗(2γ ) time by solving PQ-Tree Alignment for every 
substring of S. The parameter γ is the maximum degree 
of a node in T and O∗ is used to hide factors polynomial 
in the input size.

The proposed algorithm was implemented as a publicly 
available tool and harnessed to search for tree-guided 
rearrangements of chromosomal gene clusters in plas-
mids. We identified 29 chromosomal gene clusters that 
are rearranged in plasmids, where the rearrangements 
are guided by the corresponding PQ-tree. A tree-guided 
rearrangement event of one of these gene clusters, coding 
for a heavy metal efflux pump, was detected in a bacterial 
strain that was isolated from an environment polluted 
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with several heavy metals. Thus, a future extension of 
this study could explore whether similar gene cluster 
rearrangement events are correlated with environmental 
stress or other bacterial adaptations.

The said gene cluster was further analysed to charac-
terize its approximate instances in plasmids. An interest-
ing variant of the analysed gene cluster, found among its 
approximate instances, corresponds to a copper efflux 
pump. It was found mainly in pathogenic bacteria, and 
likely constitutes a bacterial defense mechanism against 
the host immune response. These results exemplify how 
our proposed tool PQFinder can be harnessed to find 
meaningful variations of known biological systems that 
are conserved as gene clusters, and to explore their func-
tion and evolution.

Another interesting approach to perform a compara-
tive analysis of gene clusters in chromosomes versus 
plasmids could theoretically be based on the alignment 
of PQ-trees that represent the respective gene clusters. 
However, this will require de-novo discovery of gene 
clusters in both chromosomes and plasmids—a task that 
is more challenging in plasmids than in chromosomes for 
the following two reasons. First, as it is more difficult to 
assemble plasmids than to assemble chromosomes, some 
of the plasmids may not be accurately reconstructed [11]. 
Second, the plasmid gene pool is more diverse and less 
conserved than the gene pool of chromosomes [55]. This 
motivated us to identify gene clusters in chromosomes 
and then to search for approximate tree-guided rear-
rangements of these gene clusters in plasmids.

One of the downsides to using PQ-trees to represent 
gene clusters is that very rare gene orders taken into 
account in the tree construction could greatly increase 
the number of allowed rearrangements and thus substan-
tially lower the specificity of the PQ-tree. Thus, a natu-
ral continuation of our research would be to increase the 
specificity of the model by considering a stochastic vari-
ation of PQ-Tree Search and PQ-Tree Alignment. 
Namely, defining a PQ-tree in which the internal nodes 
hold the probability of each rearrangement, and adjust-
ing the algorithms for PQ-Tree Search and PQ-Tree 
Alignment accordingly. In addition, future extensions 
of this work could also aim to increase the sensitivity 
of the model by incorporating gene orientation, and by 
taking into account gene duplications and gene-fusion 
events, which are typical events in gene cluster evolution.
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