
Zimerman et al. Algorithms Mol Biol (2021) 16:16
https://doi.org/10.1186/s13015-021-00190-9

RESEARCH

Approximate search for known gene clusters
in new genomes using PQ-trees
Galia R. Zimerman, Dina Svetlitsky, Meirav Zehavi* and Michal Ziv‑Ukelson*

Abstract

Gene clusters are groups of genes that are co‑locally conserved across various genomes, not necessarily in the same
order. Their discovery and analysis is valuable in tasks such as gene annotation and prediction of gene interactions,
and in the study of genome organization and evolution. The discovery of conserved gene clusters in a given set of
genomes is a well studied problem, but with the rapid sequencing of prokaryotic genomes a new problem is inspired.
Namely, given an already known gene cluster that was discovered and studied in one genomic dataset, to identify
all the instances of the gene cluster in a given new genomic sequence. Thus, we define a new problem in compara‑
tive genomics, denoted PQ-Tree Search that takes as input a PQ‑tree T representing the known gene orders of a gene
cluster of interest, a gene‑to‑gene substitution scoring function h, integer arguments dT and dS , and a new sequence
of genes S. The objective is to identify in S approximate new instances of the gene cluster; These instances could vary
from the known gene orders by genome rearrangements that are constrained by T, by gene substitutions that are
governed by h, and by gene deletions and insertions that are bounded from above by dT and dS , respectively. We
prove that PQ-Tree Search is NP‑hard and propose a parameterized algorithm that solves the optimization variant of
PQ-Tree Search in O∗(2γ) time, where γ is the maximum degree of a node in T and O∗ is used to hide factors polyno‑
mial in the input size. The algorithm is implemented as a search tool, denoted PQFinder, and applied to search for
instances of chromosomal gene clusters in plasmids, within a dataset of 1,487 prokaryotic genomes. We report on
29 chromosomal gene clusters that are rearranged in plasmids, where the rearrangements are guided by the corre‑
sponding PQ‑trees. One of these results, coding for a heavy metal efflux pump, is further analysed to exemplify how
PQFinder can be harnessed to reveal interesting new structural variants of known gene clusters.

Keywords: PQ‑tree, Gene cluster, Efflux pump

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco
mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi cdoma in/
zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Recent advances in pyrosequencing techniques, com-
bined with global efforts to study infectious diseases,
yield huge and rapidly-growing databases of microbial
genomes [3, 4]. These big new data statistically empower
genomic-context based approaches to functional analy-
sis: the biological principle underlying such analysis
is that groups of genes that are located close to each
other across many genomes often code for proteins that

interact with one another, suggesting a common func-
tional association. Thus, if the functional association and
annotation of the clustered genes is already known in one
(or more) of the genomes, this information can be used
to infer functional characterization of homologous genes
that are clustered together in another genome.

Groups of genes that are co-locally conserved across
many genomes are denoted gene clusters. The locations
of the group of genes comprising a gene cluster in the
distinct genomes are denoted instances. Gene clusters in
prokaryotic genomes often correspond to (one or several)
operons; those are neighbouring genes that constitute a
single unit of transcription and translation. However, the

Open Access

Algorithms for
Molecular Biology

*Correspondence: meiravze@bgu.ac.il; michaluz@cs.bgu.ac.il
Department of Computer Science, Ben Gurion University of the Negev,
Be’er Sheva, Israel
A conference version of this paper appeared in WABI‑2020 [1]

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-021-00190-9&domain=pdf

Page 2 of 25Zimerman et al. Algorithms Mol Biol (2021) 16:16

order of the genes in the distinct instances of a gene clus-
ter may not be the same.

The discovery (i.e. data-mining) of conserved gene clus-
ters in a given set of genomes is a well studied problem
[5–7]. However, with the rapid sequencing of prokaryotic
genomes a new problem is inspired. Namely, given an
already known gene cluster that was discovered and stud-
ied in one genomic dataset, to identify all the instances of
the gene cluster in a given new genomic sequence.

One exemplary application for this problem is the
search for chromosomal gene clusters in plasmids. Plas-
mids are circular genetic elements that are harbored by
prokaryotic cells where they replicate independently
from the chromosome. They can be transferred horizon-
tally and vertically, and are considered a major driving
force in prokaryotic evolution, providing mutation sup-
ply and constructing new operons with novel functions
[8], for example antibiotic resistance [9]. This motivates
biologists to search for chromosomal gene clusters in
plasmids, and to study structural variations between the
instances of the found gene clusters across the two dis-
tinct replicons. However, in addition to the fact that plas-
mids evolve independently from chromosomes and in
a more rapid pace [10], their sequencing, assembly and
annotation involves a more noisy process [11].

To accommodate all this, the proposed search approach
should be an approximate one, sensitive enough to toler-
ate some amount of genome rearrangements: transposi-
tions and inversions, missing and intruding genes, and
classification of genes with similar function to distinct
orthology groups due to sequence divergence or conver-
gent evolution. Yet, for the sake of specificity and search
efficiency, we consider confining the allowed variations
by two types of biological knowledge: (1) bounding the
allowed rearrangement events considered by the search,

based on some grammatical model trained specifically
from the known gene orders of the gene cluster, and (2)
governing the gene-to-gene substitutions considered by
the search by combining sequence homology with func-
tional-annotation based semantic similarity.

Bounding the allowed rearrangement events. The
PQ-tree [12] is a combinatorial data structure classically
used to represent gene clusters [13]. A PQ-tree of a gene
cluster describes its hierarchical inner structure and the
relations between instances of the cluster succinctly, aids
in filtering meaningful from apparently meaningless clus-
ters, and also gives a natural and meaningful way of visu-
alizing complex clusters. A PQ-tree is a rooted tree with
three types of nodes: P-nodes, Q-nodes and leaves. The
children of a P-node can appear in any order, while the
children of a Q-node must appear in either left-to-right
or right-to-left order. (In the special case when a node
has exactly two children, it does not matter whether it is
labeled as a P-node or a Q-node.) Booth and Lueker [12],
who introduced this data structure, were interested in
representing a set of permutations over a set U, i.e. every
member of U appears exactly once as a label of a leaf in
the PQ-tree. We, on the other hand, allow each member
of U to appear as a label of a leaf in the tree any non-neg-
ative number of times. Therefore, we will henceforth use
the term string rather than permutation when describing
the gene orders derived from a given PQ-tree.

An example of a PQ-tree is given in Fig. 1. It repre-
sents a Phn gene cluster that encodes proteins that uti-
lize phosphonate as a nutritional source of phosphorus
in prokaryotes [14]. The biological assumptions under-
lying the representation of gene clusters as PQ-trees is
that operons evolve via progressive merging of sub-oper-
ons, where the most basic units in this recursive operon

Metabolism

(1)

(2)

(3)

Transport

(4)

(5)

E C D F G H I J K L M

R E D C N G H I J L M

C D E F G H I J K L M

F D C E G H I J K L M

E D C M L K J I H G F

Fig. 1 A gene cluster containing most of the genes of the PhnCDEFGHIJKLMNOP operon [14] and the corresponding PQ‑tree. The Phn operon
encodes proteins that utilize phosphonate as a nutritional source of phosphorus in prokaryotes. The genes PhnCDE encode a phosphonate
transporter, the genes PhnGHIJKLM encode proteins responsible for the conversion of phosphonates to phosphate, and the gene PhnF encodes a
regulator. (1)–(3). The three distinct gene orders found among 47 chromosomal instances of the Phn gene cluster. (4) A PQ‑tree representing the
Phn gene cluster, constructed from its three known gene orders shown in (1)–(3). (5) An example of a Phn gene cluster instance identified by the
PQ‑tree shown in (4), and the one‑to‑one mapping between the leaves of the PQ‑tree and the genes comprising the instance (indicated by the
colored lines). The instance genes are rearranged differently from the gene orders shown in (1)‑(3) and yet can be derived from the PQ‑tree. In this
mapping, gene F is substituted by gene R, gene N is an intruding gene (i.e., deleted from the instance string), and gene K is a missing gene (i.e.,
deleted from the PQ‑tree)

Page 3 of 25Zimerman et al. Algorithms Mol Biol (2021) 16:16

assembly are colinearly conserved sub-operons [15]. In
the case where an operon is assembled from sub-oper-
ons that are colinearly dependent, the conserved gene
order could correspond, e.g., to the order in which the
transcripts of these genes interact in the metabolic path-
way in which they are functionally associated [16]. Thus,
transposition events shuffling the order of the genes
within this sub-operon could reduce its fitness. On the
other hand, inversion events, in which the genes partici-
pating in this sub-operon remain colinearly ordered are
accepted. This case is represented in the PQ-tree by a
Q-node (marked with a rectangle). In the case where an
operon is assembled from sub-operons that are not col-
inearly co-dependent, convergent evolution could yield
various orders of the assembled components [15]. This
case is represented in the PQ-tree by a P-node (marked
with a circle). Learning the internal topology proper-
ties of a gene cluster from its corresponding gene orders
and constructing a query PQ-tree accordingly, could
empower the search to confine the allowed rearrange-
ment operations so that colinear dependencies among
genes and between sub-operons are preserved.

Governing the gene-to-gene substitutions. A pre-
requisite for gene cluster discovery is to determine how
genes relate to each other across all the genomes in the
dataset. In our experiment, genes are represented by
their membership in Clusters of Orthologous Groups
(COGs) [17], where the sequence similarity of two genes
belonging to the same COG serves as a proxy for homol-
ogy. Despite low sequence similarity, genes belonging to
two different COGs could have a similar function, which
would be reflected in the functional description of the
respective COGs. Using methods from natural language
processing [18], we compute for each pair of functional
descriptions a score reflecting their semantic similar-
ity. Combining sequence and functional similarity could
increase the sensitivity of the search and promote the dis-
covery of systems with related functions.

Our contribution and roadmap. We define two new
problems in comparative genomics, denoted PQ-Tree
Search and PQ-Tree Alignment (in "Preliminaries"
section), where the second is a sub-problem of the first.
Both problems take as input a PQ-tree T (the query)
representing the known gene orders of a gene cluster of
interest, a gene-to-gene substitution scoring function h,
integer arguments dT and dS , and a sequence of genes
S (the target). The objective in PQ-Tree Search is to
identify an approximate instance S′ of the gene cluster,
such that S′ is a substring of S. The objective of PQ-Tree
Alignment is to determine whether S′ is an approximate
instance of the gene cluster; An approximate instance
could vary from the known gene orders by genome

rearrangements that are constrained by T, by gene sub-
stitutions that are governed by h, and by gene deletions
and insertions that are bounded from above by dT and
dS , respectively. We prove that both PQ-Tree Search
and PQ-Tree Alignment are NP-hard (Theorems 2, 3 in
"PQ-tree search is NP-hard" section).

We define optimization variants of PQ-Tree Search
and PQ-Tree Alignment (in " Preliminaries" sec-
tion) and propose an algorithm (in "A parameterized
algorithm" section) that solves PQ-Tree Search in
O(nγdT

2dS
2(mp · 2

γ
+mq)) time, where n is the length

of S, mp and mq denote the number of P-nodes and
Q-nodes in T, respectively, and γ denotes the maximum
degree of a node in T. The proposed algorithm for PQ-
Tree Search solves PQ-Tree Alignment for every
substring of S. Thus, in the same time and space com-
plexities, we can also report all approximate instances of
T in S and not only the optimal one.

The algorithm is implemented as a search tool, denoted
PQFinder. The code for the tool as well as all the data
needed to reconstruct the results are publicly avail-
able on GitHub [2]. The tool is applied to search for
instances of chromosomal gene clusters in plasmids,
within a dataset of 1,487 prokaryotic genomes; methods
are given in "Methods and datasets" section. In our pre-
liminary results (in "Results" section), we report on 29
chromosomal gene clusters that are rearranged in plas-
mids, where the rearrangements are guided by the cor-
responding PQ-tree. One of these results, coding for a
heavy metal efflux pump, is further analysed to exemplify
how PQFinder can be harnessed to reveal interesting new
structural variants of known gene clusters.

Previous related works. Permutations on strings
representing gene clusters have been studied earlier by
[19–23]. PQ-trees were previously applied in physical
mapping [24, 25], as well as to other comparative genom-
ics problems [26–28].

In Landau et al. [28] an algorithm was proposed for
representation and detection of gene clusters in multiple
genomes, using PQ-trees: the proposed algorithm com-
putes a PQ-tree of k permutations of length n in O(kn)
time, and it is proven that the computed PQ-tree is the
one with a minimum number of possible rearrangements
of its nodes while still representing all k permutations. In
the same paper, the authors also present a general scheme
to handle gene multiplicity and missing genes in permu-
tations. For every character that appears a times in each
of the k strings, the time complexity for the construction
of the PQ-tree, according to the scheme in that paper, is
multiplied by an O((a!)k) factor.

Page 4 of 25Zimerman et al. Algorithms Mol Biol (2021) 16:16

Additional applications of PQ-trees to genomics were
studied in [29–31], where PQ-trees were considered to
represent and reconstruct ancestral genomes.

However, as far as we know, searching for approxi-
mate instances of a gene cluster that is represented as a
PQ-tree, in a given new string, is a new computational
problem.

Semantic similarity measures between Gene Ontol-
ogy (GO) terms [32] have been previously used in tasks
such as protein function prediction [33, 34], functional
enrichment analysis of gene expression datasets [35, 36],
and protein-protein interaction inference [37, 38]. In the
context of gene cluster analysis, a recent study mined
gene clusters that have common functional associations
among seven amniote genomes, by measuring the GO
term similarity of the respective genes [39]. However,
the Gene Ontology Consortium provides annotations for
only 41 prokaryotic genomes, while the dataset used in
this study consists of 1487 prokaryotic genomes. Trans-
ferring GO annotations from the annotated genomes to
the other genomes in our dataset using gene sequence
similarity would lead to a limited gene coverage. There-
fore, in this study we use COG functional descriptions to
measure semantic similarity between genes.

Preliminaries
Let � be an NP-hard problem. In the framework of
Parameterized Complexity, each instance of � is associ-
ated with a parameter k, and the goal is to confine the
combinatorial explosion in the running time of an algo-
rithm for � to depend only on k. Formally, � is fixed-
parameter tractable (FPT) if any instance (I, k) of � is
solvable in time f (k) · |I |O(1) , where f is an arbitrary
computable function of k. Nowadays, Parameterized
Complexity supplies a rich toolkit to design or refute the
existence of FPT algorithms [40–42].

PQ‑tree: representing the pattern.
The possible reordering of nodes in a PQ-tree may create
many equivalent PQ-trees. In [12] two PQ-trees T and T ′
are defined as equivalent (denoted T ≡ T ′) if one tree can
be obtained by legally reordering the nodes of the other;
namely, randomly permuting the children of a P-node,
and reversing the children of a Q-node. To allow for dele-
tions in the PQ-trees, a generalization of that definition
is given in Definition 1 below. Here, smoothing is a recur-
sive process in which if by deleting leaves from a tree T,
some internal node x of T is left without children, then
x is also deleted, but its deletion is not counted (i.e. only
leaf deletions are counted).

Definition 1 (Quasi-Equivalence Between PQ-Trees)
For any two PQ-trees, T and T ′ , the PQ-tree T is quasi-
equivalent to T ′ with a bound d, denoted T �d T ′ , if T ′
can be obtained from T by (a) randomly permuting the
children of some of the P-nodes of T, (b) reversing the
children of some of the Q-nodes of T, and (c) deleting
up to d leaves from T and applying the corresponding
smoothing. (The order of the operations does not matter.)

Figure 2 shows two equivalent PQ-trees (T1 and T2)
that are each quasi-equivalent with d = 1 to the third
PQ-tree (T3). The frontier of a PQ-tree T, denoted F(T), is
the sequence of labels on the leaves of T read from left to
right. For example, the frontier of the PQ-tree T1 in Fig. 2
is ABCDEFG. It is interesting to consider the set of fron-
tiers of all the equivalent PQ-trees, defined in [12] as a
consistent set and denoted by C(T) = {F(T ′) : T ≡ T ′

} .
Intuitively, C(T) is the set of all leaf label sequences
defined by the PQ-tree structure and obtained by legally
reordering its nodes. Here, we generalize the consist-
ent set definition to allow a bounded number of dele-
tions from T, using quasi-equivalence. Thus, the set

T1

A B C D E F G

T2

D C B A E G F

T3

A B D F E G

Fig. 2 Exemplification of three different PQ‑trees. T2 can be obtained from T1 by reversing the children of a Q‑node (the left child of the root) and
by reordering the children of a P‑node (the right child of the root), so T2 ≡ T1 . The PQ‑tree T3 can be obtained from T1 by deleting one leaf and
permuting the children of the right child of the root, so T1 �1 T3 . Now, T2 �1 T3 can be inferred because the ≡ is an equivalence relation. By the
definition of frontier, F(T1) = ABCDEFG ; F(T2) = DCBAEGF ; F(T3) = ABDFEG

Page 5 of 25Zimerman et al. Algorithms Mol Biol (2021) 16:16

of d-Bounded Quasi-Consistent trees is denoted by
Cd(T) = {F(T ′) : T �d T ′

}.
Clearly C(T) = C0(T) , and so in a setting where d = 0

the former notation is used. For a node x of a PQ-tree T,
the subtree of T rooted in x is denoted by T(x), the set of
leaves in T(x) is denoted by leaves(x) , and the span of x is
denoted by span(x) and defined as |leaves(x)|.

Defining the problems
As a preface for the new problems defined ahead, con-
sider the PQ-Tree Membership problem defined in
Problem 1 below, which stems from the definition of con-
sistent set.

Problem 1 (PQ-Tree Membership) Given a PQ-tree T
and a string S, decide if S ∈ C(T).

When considering applications of PQ-trees to com-
parative genomics, it is important to allow for insertion,
deletion and substitution operations. Thus, a new prob-
lem named PQ-Tree Alignment is defined. In what
follows we give a decision variant of this problem (in
Problem 2), and an optimization variant of this problem
(in Problem 3). PQ-Tree Alignment can be thought
of as an extension of the PQ-Tree Membership prob-
lem that allows insertions, deletions and substitutions of
genes. Then, intuitively, given a PQ-tree T and a string
S′ , the objective is to find a string S′′ such that S′′ ∈ C(T)
and S′′ is the most similar to S′ , where similarity is meas-
ured as a sequence alignment score. To avoid confusion,
the term insertion is not used, and instead two types of
deletions are used: deletions form the PQ-tree and dele-
tions form the string. In addition, in the rest of this paper,
the term substitution is used to encompass both matches
and mismatches between aligned genes.

Formally, an instance of the PQ-Tree Align-
ment problem is a tuple of the form (T , S′, h, dT , dS) ,
where T is a PQ-tree with m leaves, mp P-nodes, mq
Q-nodes, and every leaf x in T has a label label(x)∈ �T ;
S′ = σ1 · · · σn ∈ �n

S is a string of length n represent-
ing a sequence of genes; dT ∈ N specifies the number of
allowed deletions from T; dS ∈ N specifies the number of
allowed deletions from S′ ; and h is a boolean substitution
function, describing the possible substitutions between
the leaf labels of T and the characters of the given string,
S′ . The function h receives a pair (σt , σs) , where σt ∈ �T
is one of the labels of the leaves of T, and σs ∈ �S is one
of the characters of the given string S′ , and returns True if
σt can be replaced with σs , and False, otherwise. Consid-
ering the biological problem at hand, �T and �S are both
sets of genes.

The objective of PQ-Tree Alignment is to find a
one-to-one mapping M between the leaves of T and the
characters of S′ , which comprises a set of pairs each hav-
ing one of three forms: the substitution form, (x, σs(ℓ)) ,
where x is a leaf in T, σs ∈ �S , h(label(x), σs) = True
and ℓ ∈ {1, · · · ,n} is the index of the occurrence of σs in
S′ that is mapped to the leaf x; the character deletion
form, (ε, σs(ℓ)) , which marks the deletion of the charac-
ter σs ∈ �S at index ℓ of S′ ; the leaf deletion form, (x, ε) ,
which marks the deletion of x, a leaf node of T.

Applying the substitutions defined in M to S′ , result-
ing in the string SM , is the process in which for every
(x, σs(ℓ)) ∈ M , the character σs at index ℓ of S′ is deleted
if x = ε , and otherwise substituted by label(x) . This pro-
cess is demonstrated in Fig. 3B. We say that S′ is derived
from T under M with dT deletions from the tree and dS
deletions from the string, if dT is equal to the number of
pairs in M of the leaf deletion form (x, ε) , dS is equal to
the number of pairs in M of the character deletion form
(ε, σ) , and SM ∈ CdT (T) . Thus, by definition, there is a
PQ-tree T ′ such that F(T ′) = SM and T �dT T ′ . Note
that the deletions of the nodes in T to obtain the nodes
in T ′ are determined by M . The conversion of T to T ′ as
defined by the derivation is illustrated in Fig. 3A. The set
of permutations and node deletions performed to obtain
T ′ from T together with the substitutions and deletions
from S′ specified by M is named the derivation µ of T to
S′ . We also say that M yields the derivation µ.

Problem 2 (Decision PQ-Tree Alignment) Given a
string S′ of length n, a PQ-tree T with m leaves, deletion
bounds dT , dS ∈ N , and a boolean substitution function h
between �S and �T , decide if there is a one-to-one map-
ping M that yields a derivation of T to S′ with up to dT
and up to dS deletions from T and S′ , respectively.

Notice that by setting both deletion bounds (dT and
dS) to zero and defining h(σt , σs) = True if and only if
σt = σs , the PQ-Tree Membership problem is obtained
from PQ-Tree Alignment. Also, if n < m− dT or
n > m+ dS , then PQ-Tree Alignment will return false.

To define an optimization version of the PQ-Tree
Alignment problem it is necessary to have a score for
every possible substitution between the characters in �T
and the characters in �S . Hence, for this problem variant
assume that h is a substitution scoring function, that is,
h(σt , σs) for σt ∈ �T , σs ∈ �S is the score for substituting
σs by σt in the derivation, and if σt cannot be substituted
by σs , then h(σt , σs) = −∞ . In addition, we need a cost
function, denoted by δ , for the deletion of a character of
S′ and for the deletion of a leaf of T according to the label
of the leaf. So, formally, an instance of the optimization

Page 6 of 25Zimerman et al. Algorithms Mol Biol (2021) 16:16

variant of PQ-Tree Alignment is (T , S′, h, δ, dT , dS) .
The score of a derivation µ , denoted by µ.score , is the
sum of scores of all operations (deletions from the tree,
deletions from the string and substitutions) in µ . Now,
instead of deciding whether there exists a one-to-one
mapping that yields a derivation of T to S′ , we can search
for the one-to-one mapping that yields the best deriva-
tion (if there exists such a derivation), i.e. a one-to-one
mapping for which µ.score is the highest.

Problem 3 (Optimization PQ-Tree Alignment) Given
a string S′ of length n, a PQ-tree T with m leaves, dele-
tion bounds dT , dS ∈ N , a substitution scoring function h
between �S and �T , and a deletion cost function δ , return
the one-to-one mapping M that yields the highest scor-
ing derivation of T to S′ with up to dT deletions from T
and up to dS deletions from S′ (if such a mapping exists).

More generally, in our application the string represents
a genome, which is a lot longer than the strings that can
be derived from the given PQ-tree T. Thus, a new prob-
lem named PQ-Tree Search is defined (in Problems 4,
5 below). Intuitively, in PQ-Tree Search the objective is

to find a substring of a given string S for which PQ-Tree
Alignment returns true (or returns the best score, in
the optimization variant).

Formally, an instance of the PQ-Tree Search prob-
lem is a tuple (T , S, h, dT , dS) , where T , h, dT and dS are
defined as in PQ-Tree Alignment, and S is defined as
S′ with the exception that the string S representing the
input genome, can be of any length n (and not bounded
by m− dT and m+ dS). The objective of PQ-Tree
Search is to find a one-to-one mapping M between
the leaves of T and the characters of a substring S′ of S
that yields a derivation with up to dT and up to dS dele-
tions from T and S′ , respectively. For 1 ≤ i ≤ j ≤ n ,
S′ = S[i : j] = σi...σj is a substring of S beginning at
index i and ending at index j (inclusive). The substring
S′ is a prefix of S if S′ = S[1 : j] and it is a suffix of S if
S′ = S[i : n] . In addition, we denote σi , the ith character
of S, by S[i].

Now, we would like to acknowledge in the definition
of a derivation that a derivation can be to a substring of
the target string (as it is in the PQ-Tree Search prob-
lem), rather than requiring that the full target string
is derived, and add some related terms and notations.
So, for a derivation µ of T to S′ = S[s : e] , the following

A. .

x11

x4

x1 x2 x3

x7

x5 x6

x10

x8 x9

T

M : (x5, ε) (x6, ε)

reorder the children of x4

smoothing: delete x7

x11

x4

x3 x1 x2

x10

x8 x9

T ′

B. .

S : σ1 σ2 σ1 σ2 σ3 σ4 σ5 σ6 σ3

S′

M : (x3, σ1(3)) (ε, σ2(4)) (x1, σ3(5)) (x2, σ4(6)) (x8, σ5(7)) (x9, σ6(8))

SM : x3 x1 x2 x8 x9

Fig. 3 An illustration of the derivation µ from the PQ‑tree T to the substring S′ of S, where S′ = S[3 : 8] , under the one‑to‑one mapping M (µ.o)
with µ.delT = 2 deletions from the tree and µ.delS = 1 deletions from the string. The start point of the derivation (µ.s) is 3. The end point of the
derivation (µ.e) is 8. Notice that SM = F(T ′) and T �2 T

′ , which means that SM ∈ C2(T) . A The derivation µ applied to T resulting in T ′ : reorder the
children of x4 , delete leaves according to M (delete x5 and x6) and perform smoothing (delete x7 , the parent node of x5 and x6). The root of T (x11)
is the node that µ derives, denoted µ.v . Also, we say that µ is a derivation of x11 . The nodes x5 , x6 and x7 are deleted under µ . The leaves x1, x2, x3, x8
and x9 are mapped under µ . The nodes x4, x10 and x11 are kept under µ . B The derivation µ applied to S′ resulting in SM : apply substitutions and
deletions according to M . The substring S′ = S[3 : 8] is the string that µ derives. The character S[4] = S

′
[2] is deleted under µ . The characters

S[3], S[5], S[6], S[7] and S[8] are mapped under µ

Page 7 of 25Zimerman et al. Algorithms Mol Biol (2021) 16:16

terms and notations (illustrated in Fig. 3) are given. The
root of T (denoted rootT) is the node that µ derives or
the root of the derivation and it is denoted by µ.v . For
abbreviation, we say that µ is a derivation of µ.v . The
substring S′ is the string that µ derives . We name s and
e the start and end points of the derivation and denote
them by µ.s and µ.e , respectively. The one-to-one map-
ping that yields µ is denoted by µ.o . The number of dele-
tions from the tree is denoted by µ.delT . The number of
deletions from the string is denoted by µ.delS . In addi-
tion, if x is a leaf node in T and (x, σs(ℓ)) ∈ µ.o , then x is
mapped to S[ℓ] under µ . The character S[ℓ] is said to be
deleted under µ if (ε, σs(ℓ)) ∈ µ.o . If x ∈ T (µ.v) is a leaf
for which (x, ε) ∈ µ.o , then x is deleted under µ . For an
internal node x of T, if every leaf in T(x) is deleted under
µ , then x is deleted under µ , and otherwise x is kept under
µ . Notice that in PQ-Tree Alignment all the deriva-
tions have the start point 1 (s = 1) and the end point m
(e = m). Given a node x and the numbers of deletions
kT and kS of a derivation, the length of the derived string
S′ can be calculated using the following length function:
L(x, kT , kS)

.
= span(x)− kT + kS.

We define two versions of the PQ-Tree Search prob-
lem: a decision version (Problem 4) and an optimisation
version (Problem 5).

Problem 4 (Decision PQ-Tree Search) Given a string S
of length n, a PQ-tree T with m leaves, deletion bounds
dT , dS ∈ N , and a boolean substitution function h
between �S and �T , decide if there is a one-to-one map-
ping M that yields a derivation of T to a substring S′ of
S with up to dT and up to dS deletions from T and S′ ,
respectively.

Problem 5 Given a string S of length n, a PQ-tree T
with m leaves, deletion bounds dT , dS ∈ N , a substitution
scoring function h between �S and �T , and a deletion
cost function δ , return the one-to-one mapping M that
yields the highest scoring derivation of T to a substring S′
of S with up to dT deletions from T and up to dS deletions
from S′ (if such a mapping exists).

A parameterized algorithm
In this section we develop a dynamic programming (DP)
algorithm to solve the optimization variant of PQ-Tree
Search (Problem 5). Our algorithm receives as input an
instance of PQ-Tree Search (T , S, h, dT , dS) , where h is
a substitution scoring function. Our default assumption
is that deletions are not penalized, and therefore δ (the
deletion cost function) is not given as input. The case
where deletions are penalized is described in Sect. 2 of

Additional file 1. The output of the algorithm is a one-
to-one mapping, M , that yields the best (highest scoring)
derivation of T to a substring of S with up to dT deletions
from T and up to dS deletions from the substring, and the
score of that derivation. With a minor modification, the
output can be extended to include a one-to-one map-
ping for every substring of S and the derivations that they
yield.

Brief overview
On a high level, our algorithm consists of three compo-
nents: the main algorithm, and two other algorithms that
are used as procedures by the main algorithm. Apart
from an initialization phase, the crux of the main algo-
rithm is a loop that traverses the given PQ-tree, T. For
each internal node x, it calls one of the two other algo-
rithms: P-mapping (given in " P-node mapping: the
algorithm" section) and Q-mapping. These algorithms
find and return the best derivations from the subtree of
T rooted in x, T(x), to substrings of S, based on the type
of x (P-node or Q-node). So, the main algorithm solves
PQ-Tree Alignment for all substrings of S that start at
a specific index. Then, the scores of the derivations are
stored in the DP table. The outline of the algorithm is
exemplified in Fig. 4.

We now give a brief informal description of the main
ideas behind our P-mapping and Q-mapping algorithms.
Our P-mapping algorithm is inspired by an algorithm
described by van Bevern et al. [43] to solve the Job
Interval Selection problem. Our problem differs
from theirs mainly in its control of deletions. Intuitively,
in the P-mapping algorithm we consider the task at hand
as a packing problem, where every child of x is a set of
intervals, each corresponding to a different substring.
The objective is to pack non-overlapping intervals such
that for every child of x at most one interval is packed.
Then, the algorithm greedily selects a child x′ of x and
decides either to pack one of its intervals (and which
one) or to pack none (in which case x′ is deleted). The
Q-mapping algorithm is similar to the classical problem
of sequence alignment with bounded gaps and therefore
will not be elaborated in the paper. It is deferred to the
supplementary material (see Sect. 1, Additional file 1).

In the following sections, we describe the main algo-
rithm ("The main algorithm" section) and the P-mapping
algorithm ("P-node mapping" section). Afterwards, the
time complexity of the algorithm is analyzed and com-
pared to that of a naïve algorithm ("Complexity analysis
of the PQ-tree search aalgorithm" section). The modifi-
cations necessary for penalizing deletions are deferred
to the supplementary material (see Sect. 2, Additional
file 1).

Page 8 of 25Zimerman et al. Algorithms Mol Biol (2021) 16:16

The main algorithm
We now delve into more technical details. The algorithm
(whose pseudocode is given in 1) constructs a 4-dimen-
sional DP table A of size m′

× n× dT + 1× dS + 1 ,
where m′

= m+mp +mq is the number of nodes in T.
The purpose of an entry of the DP table, A[x, i, kT , kS] ,
is to hold the highest score of a derivation of the sub-
tree T(x) to a substring S′ of S starting at index i with kT
deletions from T(x) and kS deletions from S′ . Note that
we abuse notation and use a node x of T also as an index
for the DP table entries that refer to x. If no such deri-
vation exists, A[x, i, kT , kS] = −∞ . Addressing A with
some of its indices given as dots, e.g. A[x, i, ·, ·] , refers

to the subtable of A that is comprised of all entries of A
whose first two indices are x and i. Some entries of the
DP table define illegal derivations, namely, derivations
for which the number of deletions are inconsistent with
the start index i, the derived node and S. For example,
such are derivations that have more deletions from the
string than there are characters in the derived string.
These entries are called invalid entries and their value
is defined as −∞ throughout the algorithm. Formally,
an entry A[x, i, kT , kS] is invalid if one of the following is
true: kT > span(x) , kS > L(x, kT , kS) , E(x, i, kS , kT) > n ,
or L(x, kT , kS) < 0.

Algorithm 1: PQ-Tree Search
Input: T, S, h, dT , dS
Output: The score of a best derivation of T to a substring of S with up to dT and dS

deletions from T and S, respectively
1 Build A with dimensions m × n× dT + 1× dS + 1 and initial value −∞;
2 foreach node x of T in postorder do
3 for i = 1 to n do
4 if x is a Leaf then

//Initialization
5 for kS = 0 to dS do
6 A[x, i, 1, kS] ← 0;
7 A[x, i, 0, kS] ← max

i =i,...,i+kS

h(x, S[i]);

8 end
9 end

10 e ← E(x, i, 0, dS);
11 if x is a P-node then
12 A[x, i, ·, ·] ←

P-Mapping(x, S[i, e], {A[x , i , ·, ·] : x ∈ children(x), i ≤ i ≤ e}, dT , dS);
13 end
14 if x is a Q-node then
15 A[x, i, ·, ·] ←

Q-Mapping(x, S[i, e], {A[x , i , ·, ·] : x ∈ children(x), i ≤ i ≤ e}, dT , dS);
16 end
17 end
18 end
19 return max

0≤kT ≤dT
0≤kS≤dS

1≤i≤(n−(span(rootT)−dT)+1)

A[rootT , i, kT , kS];

The algorithm first initializes the entries of A that are
meant to hold scores of derivations of the leaves of T to
every possible substring of S using the following rule. For
every 0 ≤ kS ≤ dS and every x ∈ leaves(rootT) , do:

1 A[x, i, 1, kS] = 0

2 A[x, i, 0, kS] = max
i′ = i, ..., i + kS

h(x, S[i′])

We remark that this initialization rule can be replaced by
initializing A[x, i, 0, 0] with h(x, S[i]) and for every kT = 0
and kS = 0 initializing A[x, i, kT , kS] with −∞ . Nonethe-
less, we use the former initialization rule because it does
not change the time complexity of the algorithm while
helping keep notations and proofs simpler.

After the initialization, all other entries of A are filled
as follows. Go over the internal nodes of T in postorder.

Page 9 of 25Zimerman et al. Algorithms Mol Biol (2021) 16:16

For every internal node x, go in ascending order over
every index i, that can be a start index for the substring of
S derived from T(x) (the possible values of i are explained
in the next paragraph). For every x and i, use the algo-
rithm for Q-mapping or P-mapping according to the
type of x. Both algorithms receive the same input: a sub-
string S′ of S, the node x, its children x1, . . . , xγ , the col-
lection of possible derivations of the children (denoted by
D), which have already been computed and stored in A
(as will be explained ahead) and the deletion arguments
dT , dS . Intuitively, the substring S′ is the longest substring
of S starting at index i that can be derived from T(x) given
dT and dS . After being called, both algorithms return a
set of derivations of T(x) to a prefix of S′ = S[i : e] and
their scores. The set holds the highest scoring derivation
for every E(x, i, dT , 0) ≤ e ≤ E(x, i, 0, dS) and for every
legal deletion combination 0 ≤ kT ≤ dT , 0 ≤ kS ≤ dS.

Next, we explain the possible values of i and the
definition of S′ more formally. To this end, recall
the length function given in "Preliminaries" sec-
tion, L(x, kT , kS)

.
= span(x)− kT + kS . Thus, on the

one hand, a substring of maximum length is obtained
when there are no deletions from the tree and dS dele-
tions from the string. Hence, S′ = S[i : E(x, i, 0, dS)] .
On the other hand, a shortest substring is obtained
when there are dT deletions from the tree and none
from the string. Then, the length of the substring is

L(x, dT , 0) = span(x)− dT . Hence, the index i runs
between 1 and n− (span(x)− dT)+ 1.

We now turn to address the aforementioned input col-
lection D in more detail. Formally, it contains the best
scoring derivations of every child x′ of x to every sub-
string of S′ with up to dT and dS deletions from the tree
and string, respectively. It is produced from the entries
A[x′, i′, kT , kS] (where each entry gives one derivation) for
all kT and kS , and all i′ between i and the end index of S′ ,
i.e. i ≤ i′ ≤ E(x, i, 0, dS) . For the efficiency of the Q-map-
ping and P-mapping algorithms, the derivations in D are
grouped by their root (µ.v) and arranged in descending
order with respect to their end point (µ.e). This does not
increase the time complexity of the algorithm, as this
ordering is received by previous calls to the Q-mapping
and P-mapping algorithms.

In the final stage of the main algorithm, when the
DP table is full, the score of a best derivation is the
maximum of {A[rootT , i, kT , kS] : kT ≤ dT , kS ≤ dS ,
1 ≤ i ≤ n− (span(rootT)− kT)+ 1} . We remark that
by tracing back through A the one-to-one mapping that
yielded this derivation can be found.

P‑node mapping
Before describing the P-mapping algorithm, we set up
some useful terminology.

Fig. 4 The outline of the algorithm that solves PQ-Tree Search. A During initialization the best derivations of the leaves of T are computed. The cell
with two arrows marks the substitution between D and U. B PQ-Tree alignmenT is solved for each substring of the target string S and the subtrees
rooted in each internal node of T. C In this example, there are two derivations from the root of the PQ‑tree; One is to the substring from index 1 to 6
and the other is to the entire string (if the character U is deleted from the string)

Page 10 of 25Zimerman et al. Algorithms Mol Biol (2021) 16:16

P‑node mapping: terminology
We first define the notion of a partial derivation. In
the P-mapping algorithm, the derivation of the input
node x is built by considering subsets U of its children.
With respect to such a subset U, a derivation µ of x
is built as if x had only the children in U, and is called
a partial derivation. Formally, µ is a partial derivation
of a node x if µ.v = x and there is a subset of children
U ′

⊆ children(x) such that the two following conditions
are true. First, for every u ∈ U ′ all the leaves in T(u) are
neither mapped nor deleted under µ - that is, there is
no mapping pair (ℓ, y) ∈ µ.o such that ℓ ∈ leaves(u) .
Second, for every v ∈ children(x) \ U ′ the leaves in T(v)
are either mapped or deleted under µ . For every u ∈ U ′ ,
we say that u is ignored under µ . Notice that any deri-
vation is a partial derivation, where the set of ignored
nodes (U ′ above) is empty. Since all derivations that
are computed in a single call to the P-mapping algo-
rithm have the same start point i, it can be omitted (for
brevity) from the end point function: thus, we denote
EI (x, kT , kS)

.
= L(x, kT , kS) . Also, for a set U of nodes,

we define L(U , kT , kS)
.
=

∑

x∈U span(x)+ kS − kT and
accordingly EI (U , kT , kS)

.
= L(U , kT , kS).

We now define certain collections of derivations with
common properties (such as having the same numbers of
deletions and end point).

Definition 2 The collection of all the derivations of
every node u ∈ U to suffixes of S′[1 : EI (U , kT , kS)] with
exactly kT deletions from the tree and exactly kS deletions
from the string is denoted by D(U , kT , kS).

Definition 3 The collection of all the best derivations
from the nodes in U to suffixes of S′[1 : EI (U , kT , kS)]
with up to kT deletions from the tree and up to kS dele-
tions from the string is denoted by D≤(U , kT , kS) . Specifi-
cally, for every node u ∈ U , k ′T ≤ kT and k ′S ≤ kS , the set
D≤(U , kT , kS) holds only one highest scoring derivation
of u to a suffix of S′[1 : EI (U , kT , kS)] with k ′T and k ′S dele-
tions from the tree and string, respectively.

It is important to distinguish between these two
definitions. First, the derivations in D(U , kT , kS) have
exactly kT and kS deletions, while the derivations in
D≤(U , kT , kS) have up to kT and kS deletions. Second, in
D(U , kT , kS) there can be several derivations that differ
only in their score and in the one-to-one mapping that
yields them, while in D≤(U , kT , kS) , there is only one der-
ivation for every node u ∈ U and deletion combination
pair (k ′T , k

′

S) . Note that the end points of all of the deriva-
tions are equal.

Definition 2 is used for describing the content of an
entry of the DP table, where the focus is on the collection

of all the derivations of x to S′ with exactly kT and kS
deletions, D({x}, kT , kS) . For simplicity, the abbreviation
D(u, kT , kS) = D({u}, kT , kS) is used. In every step of the
P-mapping algorithm, a different set of derivations of the
children of x is examined, thus, Definition 3 is used for
U ⊆ children(x) . In addition, the set of derivations D that
is received as input to the algorithms can be described
using Definition 3 as can be seen in Eq. 1 below. In
this equation, the union is over all U ⊆ children(x)
because in this way the derivations of all the children
of x with every possible end point are obtained (in con-
trast to having only U = children(x) , which results in
the derivations of all the children of x with the end point
EI (children(x), kT , kS)).

In the P-mapping algorithm for C ⊆ children(x) , the
notation x(C) is used to indicate that the node x is consid-
ered as if its only children are the nodes in C (the nodes
in children(x) \ C are ignored). Consequentially, the span
of x(C) is defined as span(x(C)) .

=

∑

c∈C span(c) , and
the set D(x(C), kT , kS) (in Definition 2 where U = {x(C)})
now refers to a set of partial derivations. To use x(C) to
describe the base cases of the algorithm, let us define x(∅)
(x(C) for C = ∅) as a tree with no labeled leaves to map.

P‑node mapping: the algorithm
Recall that the input consists of an internal P-node x, a
string S′ , bounds on the number of deletions from the
tree T and the string S′ , dT and dS , respectively, and a set
of derivations D (see Eq. 1). The output of the algorithm
is
⋃

0≤kT≤dT

⋃

0≤kS≤dS
arg max µ∈D(x,kT ,kS)

µ.score , which
is the collection of the best scoring derivations of x to
every possible prefix of S′ having up to dT and dS dele-
tions from the tree and string, respectively. Thus, there
are O(dTdS) derivations in the output.

The algorithm (whose pseudocode is given in 2) con-
structs a 3-dimensional DP table P , which has an
entry for every 0 ≤ kT ≤ dT , 0 ≤ kS ≤ dS and subset
C ⊆ children(x) . The purpose of an entry P[C , kT , kS]
is to hold the best score of a partial derivation in
D(x(C), kT , kS) , i.e. a partial derivation rooted in x(C) to a
prefix of S′ with exactly kT deletions from the tree and kS
deletions from the string. The children of x that are not in
C are ignored (as defined in "P-node mapping: terminol-
ogy" section) under the partial derivation stored by the
DP table entry P[C , kT , kS] , thus they are neither deleted
nor counted in the number of deletions from the tree, kT .
(They will be accounted for in the computation of other
entries of P .) Similarly to the main algorithm, some of the
entries of P are invalid, and their value is defined as −∞ .

(1)D =

⋃

U⊆children(x)

⋃

kT≤dT

⋃

kS≤dS

D≤(U , kT , kS)

Page 11 of 25Zimerman et al. Algorithms Mol Biol (2021) 16:16

Formally, an entry P[C , kT , kS] is invalid if one of the fol-
lowing is true: kT >

∑

c∈C span(c) , kS > L(x(C), kT , kS) ,
L(x(C), kT , kS) > len(S′) , or L(x(C), kT , kS) < 0 . Every
entry P[C , kT , kS] for which L(x(C), kT , kS) = 0 and
kS = 0 or for which C = ∅ and kT = 0 is initialized with
0. The first set of entries captures the case in which the
derived substring is the empty string and thus no charac-
ter can be deleted from it, i.e. kS must equal 0. The second
set of entries captures the case in which all the children
of x are ignored, thus the value of kT must be 0.

of T(x), it must be mapped under some derivation µ′ of
one of the children of x that are in C. Thus, we receive the
second case of the recursion rule.

We remark that the case of a node deletion is captured
by the initialization and that adding the option of delet-
ing a node in the recursion rule is therefore redundant.

Once the entire DP table is filled, a derivation of
maximum score for every end point and deletion num-
bers combination can be found in P[children(x), ·, ·] .

Algorithm 2: P-Mapping
Input: x, S ,D, dT , dS
Output: A best derivation of x to every prefix of S

1 γ ← |children(x)|;
2 Build P with dimensions 2γ × dT + 1× dS + 1;
3 for size = 0 to γ do
4 foreach C ⊆ children(x) s.t. |C| = size do
5 for kS = 0 to dS do
6 for kT = 0 to dT do
7 if (L(x(C), kT , kS) = 0 and kS = 0) or (size = 0 and kT = 0) then

//Initialization
8 P[C, kT , kS] ← 0;
9 else

10 Compute P[C, kT , kS] according to Eq. (2);
11 end
12 end
13 end
14 end
15 end
16 return P[children(x), ·, ·] ;

After the initialization, the remaining entries of P are
calculated using the recursion rule in Eq. 2 below. The
order of computation is ascending with respect to the
size of the subsets C of the children of x, and for a given
C ⊆ children(x) , the order is ascending with respect to
the number of deletions from both tree and string.

Intuitively, every entry P[C , kT , kS] defines some index e′
of S′ that is the end point of every partial derivation in
D(x(C), kT , kS) . Thus, S′[e′] must be a part of any partial
derivation µ ∈ D(x(C), kT , kS) , so, either S′[e′] is deleted
under µ or it is mapped under µ . The former option is
captured by the first case of the recursion rule. If S′[e′] is
mapped under µ , then due to the hierarchical structure

(2)

P[C , kT , kS]

= max

P[C , kT , kS − 1]

max
µ∈D≤(C ,kT ,kS)

P[C \ {µ.v}, kT − µ.delT , kS − µ.delS] + µ.score

Traversing the said subtable in a specific order guaran-
tees the output derivations are ordered with respect to
their end point without further calculations.

Complexity analysis of the PQ‑Tree Search algorithm
In this section we compare the time complexity of the
main algorithm (in "The main algorithm" section) to the
naïve solution for PQ-Tree Search. The complexities of
the two algorithms described before as well as the com-
plexity of the Q-mapping algorithm are given in the fol-
lowings lemmas. Lemma 1 and Lemma 2 are proven in
"Time and space complexity of the PQ-tree search algo-
rithm" section, and Lemma 3 is proven in Sect. 1.3 of
Additional file 1.

Lemma 1 The algorithm in "The main algorithm"
section takes O(nγdT

2dS
2(mp2

γ
+mq)) time and

O(dTdS(mn+ 2γ)) space, where γ is the maximum degree
of a node in T.

Page 12 of 25Zimerman et al. Algorithms Mol Biol (2021) 16:16

Lemma 2 The P-mapping algorithm takes
O(dT

2dS
2γ 2γ) time and O(dTdS2

γ) space.

Lemma 3 The Q-mapping algorithm takes O(dT
2dS

2γ)
time and O(dTdSγ) space.

From Lemma 1 it is proven that PQ-Tree Search has
an FPT solution with the parameter γ (Theorem 1).

Theorem 1 PQ-Tree Search with parameter γ is FPT.
Particularly, it has an FPT algorithm that runs in O∗(2γ)
time1.

The naïve solution for PQ-Tree Search is to solve
sequence alignment with bounded gaps for every sub-
string of S versus every string S′ ∈ C(T) , so the naïve
solution takes O(2mq (γ !)mpnm(dT + dS)dTdS) time. (A
full description of the naïve algorithm and its complex-
ity is given in Sect. 4 of Additional file 1.) Therefore, we
conclude that the time complexity of our algorithm is
substantially better, as exemplified by considering two
complementary cases. One, when there are only P-nodes
in T (i.e. mp = O(m)), the naïve algorithm is super-expo-
nential in γ , and even worse, exponential in m, while
ours is exponential only in γ , and hence polynomial for
any γ that is constant (or even logarithmic in the input
size). Second, when there are only Q-nodes in T (i.e.
mq = O(m)), the naïve algorithm is exponential while
ours is polynomial.

Methods and datasets
Dataset and gene cluster generation. 1487 fully
sequenced prokaryotic strains with COG ID annotations
(see Additional file 2) were downloaded from GenBank
(NCBI; ver 10/2012). Among these strains, 471 genomes
included a total of 933 plasmids.

The gene clusters were generated using the tool
CSBFinder-S [44]. CSBFinder-S was applied to all
the genomes in the dataset after removing their plas-
mids, using parameters q = 1 (a colinear gene cluster is
required to appear in at least one genome) and k = 0 (no
insertions are allowed in a colinear gene cluster), result-
ing in 595,708 colinear gene clusters. Next, ignoring
strand and gene order information, colinear gene clusters
that contain the exact same COGs were united to form
the generalized set of gene clusters. The resulting gene
clusters were then filtered to 26,270 gene clusters that
appear in more than 30 genomes.

Generation of PQ-Trees. The generation of PQ-trees
was performed using a program [45] that implements the

algorithm described in [28] for the construction of a PQ-
tree from a list of strings comprised from the same set of
characters. In the case where a character appeared more
than once in a training string, the PQ-tree with a mini-
mum sized consistent set was chosen. The generated PQ-
trees varied in size and complexity. The length of their
frontier ranged between 4 and 31, and the size of their
consistent set ranged between 4 and 362, 880.

Implementation and performance. PQFinder is imple-
mented in Java 1.8. The runs were performed on an Intel
Xeon X5680 machine with 192 GB RAM. The time it
took to run all plasmid genomes against one PQ-tree
ranged between 5.85 seconds (for a PQ-tree with a con-
sistent set of size 4) and 181.5 seconds (for a PQ-tree
with a consistent set of size 362, 880). In total it took an
hour and 47 minutes to run each one of the 779 PQ-trees
against each one of the 933 plasmids.

Substitution scoring function. The substitution scor-
ing function reflects the distance between each pair of
COGs, that is computed based on sentences describing
the functional annotation of the COGs (e.g., “ABC-type
sugar transport system, ATPase component”). The “Bag
of Words model” was employed, where the functional
description of each COG is represented by a sparse vec-
tor that is normalized to have a unit Euclidean norm.
First, each COG description was tokenized and the
occurrences of tokens in each description was counted
and normalized using tf-idf term weighting. Then, the
cosine similarity between each two vectors was com-
puted, resulting in similarity scores ranging between 0
and 1. The sentences describing COGs are short, there-
fore each word largely influences the score, even after
the tf-idf term weighting. Therefore, words that do not
describe protein functions that were found in the top 30
most common words in the description of all COGs were
used as stop-words. Two COGs with the same COG IDs
were set to have a score of 1.1, and the substitution score
between a gene with no COG annotation to any other
COG was set to be − 0.1. Two COGs with a zero score
were penalized to have a score of -0.2 and the deletion of
a COG from the query PQ-tree or the target string was
set to have a cost of zero.

Enrichment analysis. For each of the four variants in
Fig. 5C, a hypergeometric test was performed to measure
the enrichment of the corresponding variant in one of the
classes in which it appears. A total of 10 p-values were
computed and adjusted using the Bonferroni correction;
two p-values were found significant (< 0.05), reported in
"Results" section.

1 The notation O* is used to hide factors polynomial in the input size.

Page 13 of 25Zimerman et al. Algorithms Mol Biol (2021) 16:16

Specificity score. We define a specificity score for a
PQ-tree T of a gene cluster named S-score, where a
more specific tree yields a higher S-score. Let T̃ be the
least specific PQ-tree that could have been generated
for the genes of the gene cluster based on which T was
constructed. Namely, a PQ-tree that allows all permuta-
tions of said genes, has height 1 and is rooted in a P-node
whose children (being the leaves of T̃) are the leaves of T.
The S-score of T is defined as |C(T̃)|

|C(T)|
 . For a gene cluster of

permutations (i.e. there are no duplications), the compu-
tation of |C(T)| is as described in Eq. 3, where the set of
P-nodes in T is denoted by T.p.

For a gene cluster that has duplications, the set C(T) is
generated to learn its size. Let a(ℓ,T) denote the num-
ber of appearances of the label ℓ in the leaves of T and
let labels(T) denote the set of all the distinct labels of
the leaves of T. So, the formula for |C(T̃)| is as in Eq. 4.
Clearly, for T with no duplications |C(T̃)| = |F(T)|!.

Results
Chromosomal gene orders rearranged in plasmids
The labeling of each internal node of a PQ-tree as P or
Q, is learned during the construction of the tree, based
on some interrogation of the gene orders from which
the PQ-tree is trained [28]. As a result, the set of strings
that can be derived from a PQ-tree T, consists of two
parts: (1) all the strings representing the known gene

(3)|C(T)| = 2mq
·

∏

x∈T .p

|children(x)|!

(4)|C(T̃)| =
|F(T)|!

∏

ℓ∈labels(T) a(ℓ,T)!

orders from which T was constructed, and (2) additional
strings, denoted tree-guided rearrangements, that do not
appear in the set of gene orders constructing T, but can
be obtained via rearrangement operations that are con-
strained by T. Thus, the tree-guided rearrangements con-
serve the internal topology properties of the gene cluster,
as learned from the corresponding gene orders during
the construction of T, such that colinear dependencies
among genes and between sub-operons are preserved in
the inferred gene orders.

In this section, we used the PQ-trees constructed from
chromosomal gene clusters, to examine whether tree-
guided rearrangements can be found in plasmids. The
objective was to discover gene orders in plasmids that
abide by a PQ-tree representing a chromosomal gene
cluster, and differ from all the gene orders participat-
ing in the construction of the PQ-tree. PQ-trees that are
constructed from gene clusters that have only one gene
order or gene clusters with less than four COGs can-
not generate gene orders that differ from the ones par-
ticipating in their construction. Therefore, only 779 out
of 26,270 chromosomal gene clusters were used for the
construction of query PQ-trees (the generation of the
chromosomal gene clusters is detailed in Sect. Methods
and datasets). Using our tool PQFinder that implements
the algorithm proposed for solving the PQ-Tree Search
problem, the query PQ-trees were run against all plasmid
genomes. This benchmark was run conservatively with-
out allowing substitutions or deletions from the PQ-tree
or from the target string. 380 of the query gene clusters
were found in at least one plasmid. The instances of these
gene clusters in plasmids are provided in the Supplemen-
tary Materials in [2] as a session file that can be viewed
using the tool CSBFinder-S [44].

Table 1 Top ranking PQ‑trees for which tree‑guided rearrangements were found in plasmids

a Square brackets represent a Q-node; round brackets represent a P-node. Numbers indicate the respective COG IDs
b This column indicates the number of genomes harboring plasmid instances of the respective PQ-tree. The number in brackets indicates the number of genomes
harboring a tree-guided gene rearrangement of the corresponding gene cluster. The full table can be found in the supplementary material (see Additional file 1:
Table S1)

PQ‑Treea S‑score # Genomesb Functional Category

1 [[0683 [[0411 0410] [0559 4177]]] 0583] 22.5 5 (2) Amino acid transport

2 (1609 [1653 1175 0395] 3839) 10.0 10 (2) Carbohydrate transport

3 [[1538 [3696 0845]] [0642 0745]] 7.5 7 (1) Heavy metal efflux

4 [[2115 1070] [4213 [1129 4214]]] 7.5 1 (1) Carbohydrate transport

5 [1960 [[2011 1135] [2141 1464]]] 7.5 3 (1) Amino acid transport

6 [[0596 0599] [[3485 3485] 0015]] 7.5 9 (1) Metabolism

7 [[[1129 1172 1172] 1879] 3254] 7.5 6 (1) Carbohydrate transport

8 (1609 1869 [[1129 1172] 1879] 0524) 7.5 1 (1) Carbohydrate transport

9 (0683 [0559 4177] [0411 0410] 0318) 7.5 1 (1) Amino acid transport

10 (3839 0673 [[0395 1175] 1653]) 5.0 10 (1) Carbohydrate transport

Page 14 of 25Zimerman et al. Algorithms Mol Biol (2021) 16:16

Tree-guided rearrangements were found among
instances of 29 chromosomal gene clusters. The PQ-
trees corresponding to these gene clusters were sorted by
a decreasing S-score, where higher scores are given to a
more specific tree (details in "Methods and datasets" sec-
tion). In this setting, the higher the S-score, the smaller
the number of possible gene orders that can be derived
from the respective PQ-tree. Interestingly, 21 out of these
29 gene clusters code for transporters, namely 20 import-
ers (ABC-type transport systems) and one exporter
(efflux pump). The 10 top ranking results are presented
in Table 1.

We selected the third top-ranking PQ-tree in Table 1
for further analysis. This PQ-tree was constructed from
seven gene orders of a gene cluster that encodes a heavy
metal efflux pump. This gene cluster was found in the
chromosomes of 79 genomes (represented by the seven
distinct gene orders mentioned above) and in the plas-
mids of seven genomes. The instance of the chromosomal
gene cluster identified as a tree-guided rearrangement
in plasmids was found in the strain Cupriavidus metal-
lidurans CH34, isolated from an environment polluted
with high concentrations of several heavy metals. This
strain contains two large plasmids that confer resistance
to a large number of heavy metals such as zinc, cadmium,

copper, cobalt, lead, mercury, nickel and chromium. We
hypothesize that the rearrangement event could have
been caused by a heavy metal stress [46]. In the following
section we will focus on this PQ-tree to further study its
different variants in plasmids.

Finding approximate instances of an RND efflux pump
The heavy metal efflux pump examined in the previous
section (corresponding to the third top-ranking PQ-tree
in Table 1), was used as a PQFinder query and re-run
against all the plasmids in our dataset in order to dis-
cover approximate instances of this gene cluster, pos-
sibly encoding remotely related variations of the efflux
pump it encodes. This time, in order to increase sensitiv-
ity, a semantic substitution scoring function (described
in Sect. Methods and datasets) was used, and the argu-
ments were set to dT = 1 (up to one deletion from the
tree, representing missing genes) and dS = 3 (up to
three deletions from the plasmid, representing intrud-
ing genes). An instance of a gene cluster is accepted if
it was derived from the corresponding PQ-tree with a
score that is higher than 0.75 of the highest possible score
attainable by the query. This search resulted in the detec-
tion of approximate instances of the query gene cluster in

EEfffflluuxx PPuummpp

IIMMPPMMFFPPOOMMPP HHKK

RReegguullaattiioonn

RRRR

AA..

CCzzccCC CCzzccBB CCzzccAA CCzzccRR CCzzccSS

CCzzccBB CCzzccAA CCzzccRR CCzzccSS

CCuussSS CCuussRR CCuussCC CCuussFF CCuussBB CCuussAA

AAccrrBB AAccrrAA TToollCC OOmmppRR EEnnvvZZ

((11))

((22))

((33))

((44))

Outer Membrane

Inner Membrane

OMP

MFP

Substrate

HK
RR

Periplasm

Cytoplasm
OMP MFP IMP

MFP

IMP

BB..

CC.. DD..

Fig. 5 A A PQ‑tree of a heavy metal RND efflux pump, corresponding to the third top scoring result in Table 1. B An illustration of an RND efflux
pump consisting of an outer‑membrane protein (OMP), an inner membrane protein (IMP), and a periplasmic membrane fusion protein (MFP)
that connects the other two proteins. In addition, a two‑component regulatory system consisting of a sensor/histidine kinase (HK) and response
regulator (RR) enhances the transcription of the efflux pump genes. C Representative gene sequences of the three different RND efflux pumps
found in plasmids (additional gene insertions and deletions may be present among the various instances of these pumps.) (1) A Czc‑like heavy
metal efflux pump, (2) A Czc‑like heavy metal efflux pump with a missing OMP gene, (3) A Cus‑like heavy metal efflux pump, exemplifying an
inserted gene (CusF), (4) An Acr‑like multidrug efflux pump. Additional details can be found in the text. D The presence‑absence map of the three
types of efflux pumps found in the plasmids of different genomes. The rows correspond to the rows in C, the columns correspond to the genomes
in which instances were found, organized according to their taxonomic classes. A black cell indicates that the corresponding efflux pump is present
in the plasmids of the genome. The labels below the map indicate the classes α,β , γ , δ‑Proteobacteria and Acidobacteriia

Page 15 of 25Zimerman et al. Algorithms Mol Biol (2021) 16:16

the plasmids of 24 genomes; These results are displayed
in Figs. 5, 6, and Additional file 1: Figure S1.

Heavy metal efflux pumps are involved in the resist-
ance of bacteria to a wide range of toxic metal ions [47]
and they belong to the resistance-nodulation-cell division
(RND) family. In Gram-negative bacteria, RND pumps
exist in a tripartite form, comprised from an outer-mem-
brane protein (OMP), an inner membrane protein (IMP),
and a periplasmic membrane fusion protein (MFP) that
connects the other two proteins. In some cases, the genes
of the RND pump are flanked with two regulatory genes
that encode the factors of a two-component regulatory
system comprising a sensor/histidine kinase (HK) and
response regulator (RR) (Fig. 5B). This regulatory system
responds to the presence of a substrate, and consequently
enhances the expression of the efflux pump genes.

The PQ-tree of this gene cluster (Fig. 5A) shows that
the COGs encoding the IMP and MFP proteins always
appear as an adjacent pair, the OMP COG is always adja-
cent to this IMP-MFP pair, and the HK and RR COGs
appear as a pair downstream or upstream to the other
COGs. COG3696, which encodes the IMP protein, is
annotated as a heavy metal efflux pump protein, while
the other COGs are common to all RND efflux pumps.
Therefore, it is very likely that the respective gene cluster
corresponds to a heavy metal RND pump. The absence of
an additional periplasmic protein likely indicates that this
gene cluster encodes a Czc-like efflux pump that exports
divalent metals such as the cobalt, zinc and cadmium
exporter in Cupriavidus metallidurans [47] (Fig. 5C(1)).

PQFinder discovered instances of this gene cluster in
the plasmids of 12 genomes (Fig. 5C(1) and D), and it
is significantly enriched in the β-proteobacteria class
(hypergeometric p-value= 1.09× 10−5 , Bonferroni cor-
rected p-value = 1.09× 10−4). In addition, three other
variants of RND pumps were found as instances of the
query gene cluster (Fig. 5C(2–4)). The plasmids of three
genomes contained instances that were missing the COG
corresponding to the OMP gene CzcC (Fig. 5C(2)). This
could be caused by a low quality sequencing or assembly
of these plasmids. An alternative possible explanation is
that a Czc-like efflux pump can still be functional without
CzcC; a previous study showed that the deletion of CzcC
resulted in the loss of cadmium and cobalt resistance, but
most of the zinc resistance was retained [47].

Some instances identified by the query, found in
the plasmids of six genomes, seem to encode a differ-
ent heavy metal efflux pump (Figs. 5C(3), 6). This vari-
ant includes all COGs from the query, in addition to
an intruding COG that encodes a periplasmic protein
(CusF). This protein is a predicted copper usher that
facilitates access of periplasmic copper towards the heavy
metal efflux pump. Indeed, the genomic region of Cus-
like efflux pumps that export monovalent metals, such as
the silver and copper exporter in Escherichia coli, include
this periplasmic protein, in contrast to the Czc-like
efflux pump [47]. This variant was found in the plasmids
of six bacterial genomes belonging to the class γ-pro-
teobacteria (Fig. 5D). This gene cluster is significantly
enriched in the γ-proteobacteria class (hypergeometric

Fig. 6 Approximate plasmid instances of the query PQ‑tree in Fig. 5A that include an insertion of the gene CusF (COG5569), as detected by
PQFinder. These instances correspond to representative (3) from Fig. 5C (CusS‑CusR‑CusC‑CusF‑CusB‑CusA). The instances are displayed using
the graphical interface of the tool CSBFinder‑S [44]. COG‑to‑gene mapping: COG0642:CusS, COG0745:CusR, COG1538:CusC, COG5569:CusF,
COG0845:CusB, COG3969:CusA. “X” indicates a gene with no COG annotation. Note that the DNA sequence of Klebsiella pneumoniae MGH 78578
was updated by the NCBI on Oct 9, 2019, and since then the gene CusA (COG3696) is identified in the corresponding plasmid (Accession ID
NC_009649). Instances of additional variants of this gene cluster query can be found in Additional file 1: Figure S1

Page 16 of 25Zimerman et al. Algorithms Mol Biol (2021) 16:16

p-value= 2.13× 10−4 , Bonferroni corrected p-value =
2.13× 10−3). Surprisingly, all of these strains, except for
one, are annotated as human or animal pathogens. Inter-
estingly, previous studies suggest that the host immune
system exploits excess copper to poison invading patho-
gens [48], which can explain why these pathogens evolved
copper efflux pumps.

Another variant of the pump, appearing in five
genomes (Fig. 5C(4) and D), resulted from a substitution
of the query IMP gene (COG3696) by a different IMP
gene (COG0841) belonging to the multidrug efflux pump
AcrAB-TolC. The AcrAB-TolC system, mainly studied in
Escherichia coli, transports a diverse array of compounds
with little chemical similarity [49]. AcrAB-TolC is an
example of an intrinsic non-specific efflux pump, which
is widespread in the chromosomes of Gram-negative
bacteria, and likely evolved as a general response to envi-
ronmental toxins [50]. In this case, the query gene cluster
and the identified variant share all COGs, except for the
COGs encoding the IMP genes. The differing COGs are
responsible for substrate recognition, which naturally dif-
fers between the two pumps, as one pump exports heavy
metal while the other exports multiple drugs. When con-
sidering the functional annotation of these two COGs,
we see that the query metal efflux pump COG encoding
the IMP gene is annotated as “Cu/Ag efflux pump CusA”,
while in the multidrug efflux pump the COG encoding

the IMP gene is annotated as “Multidrug efflux pump
subunit AcrB”. Thus, in spite of the difference in substrate
specificity, the semantic similarity measure employed by
PQFinder was able to reflect their functional similarity
and allowed the substitution between them, while confer-
ring to the structure of the PQ-tree.

PQ‑tree search is NP‑hard
In this section we prove Theorem 2 by describing a
reduction from the Job Interval Selection problem
(JISP) to PQ-Tree Search. This reduction also proves
that PQ-Tree Alignment is NP-hard (Theorem 3).

Theorem 2 PQ-Tree Search is NP-hard.

Theorem 3 PQ-Tree Alignment is NP-hard.

Since its initial definition by Nakajima and Hakimi [51],
JISP has seen several equivalent definitions [43, 52–54].
We use the following formulation for JISP k based on
colors. Given γ k-tuples of intervals on the real line,
where the intervals of every k-tuple have a different color
i (1 ≤ i ≤ γ), select exactly one interval of each color
(k-tuple) such that no two intervals intersect. The nota-
tion I ij is used to denote the interval that starts at sij , ends
at fij (i.e. the interval [sij , fij]) and has the color i (i.e. it is a
part of the ith k-tuple).

A.

1 2 3 4 5 6 7 8

I11 I22 I14
I25

I26
I13

B.
root

x1

xs
1 xa

1 xb
1 xf

1

x2

xs
2 xa

2 xb
2 xf

2 y1 . . . y14

σ1 σa σb σ2 σa σb σ3 σa σb σ4 σa σb σ5 σa σb σ6 σa σb σ7 σa σb σ8S :
I1 I2, I3

I4 I5
I6

Fig. 7 A The input of the reduction—a JiSP3 instance J with intervals of length 2. B The output of the reduction—a PQ-Tree Search instance
(T , S, h, dT , dS)

Page 17 of 25Zimerman et al. Algorithms Mol Biol (2021) 16:16

JISP3 was shown to be NP-complete by Keil [52].
Crama et al. [54] showed that JISP3 is NP-complete even
if all intervals are of length 2. We use these results to
show that PQ-Tree Search is NP-hard.

The reduction. Let J be an instance of JISP3 where all
intervals have a length of two. It is easy to see that shift-
ing all intervals by some constant does not change the
problem. Hence, assume that the leftmost starting inter-
val starts at 1. Let L be the rightmost ending point of an
interval, so the focus can be only on the segment [1, L]
of the real line. Now, an instance of PQ-Tree Search
(T , S, h, dT , dS) is constructed (an illustrated example is
given in Fig. 7 below):

• The PQ‑tree T : The root node, rootT , is a P-node with
3L− 2− 3γ children: x1, · · · ,xγ , y1, · · · ,y3L−2−4γ .
The children of rootT are defined as follows: for every
color 1 ≤ i ≤ γ , create a Q-node xi with four children
xsi , x

a
i , x

b
i , x

f
i ; for every index 1 ≤ i ≤ 3L− 2− 3γ ,

create a leaf yi.
• The string S : Define S = σ1σaσbσ2σaσb · · · σaσbσL.
• The substitution function h : For every interval of

the color i, I ij = [sij , fij] , the function h returns True
for the following pairs: (xsi , σsij) , (x

f
i , σfij) , (x

a
i , σa)

and (xbi , σb) . In addition, every leaf yr can be substi-
tuted by every character of S, namely for every index
1 ≤ r ≤ 3L− 2− 3γ and for every s ∈ {a, b, 1, · · · , L}
the function h returns True for the pair (yr , σs) . For
every other pair h returns False. For the optimization
version of the problem, define a substitution scoring
function h′ , such that h′(u, v) = 1 if h(u, v) = True
and h′(u, v) = −∞ if h(u, v) = False.

• Number of deletions: Define dT = 0 and dS = 0 , i.e.
deletions are forbidden from both tree and string.

An example of the reduction is shown in Fig. 7. The JISP3
instance J is a collection of two 3-tuples (one blue and one
red) where each interval is of length 2 (Fig. 7A). Running
the reduction algorithm on J yields the PQ-Tree Search
instance in Fig. 7B. The pairs that can be substituted (i.e.
the pairs for which h returns True) are given by the lines
connecting the leaves of the PQ-tree and the characters
of the string S. The nodes and substitutable pairs created
due to the blue and red intervals in the JISP3 instance are
marked in blue and red, respectively. The substitutable
pairs containing a y node are marked in gray. Note that
the colors given in Fig. 7B are not a part of the PQ-Tree
Search instance, and are given for convenience.

Notice that in the reduction, the number of deletions
is zero and the height of the tree is 2. Thus, these param-
eters cannot be used to design an FPT algorithm. In addi-
tion, notice that though the output of the reduction is
referred as an instance of PQ-Tree Search, it is also an

instance of PQ-Tree Alignment. Ahead the reduction
is proven for PQ-Tree Search, but the proof for PQ-
Tree Alignment is the same.

Proof Correctness Let J be an instance of JISP3, and let
(T , S, h, dT , dS) be the output of the reduction on this
instance. We prove that there exists a collection of inter-
vals that is a solution for J if and only if there exists a one-
to-one mapping that is a solution to (T , S, h, dT , dS).

One direction. Suppose that there exists a solution to the
output instance of PQ-Tree Search of the reduction,
(T , S, h, dT , dS) . This solution is a one-to-one mapping M :
for every 1 ≤ i ≤ γ , a set of pairs of the form (xji , σk(ℓ))
for j ∈ {s, f , a, b} , and for every 1 ≤ r ≤ 3L− 2− 3γ ,
pairs of the form (yr , σk(ℓ)) where k ∈ {1, · · · , L, a, b} and
1 ≤ ℓ ≤ 3L− 2 . By the definition of PQ-Tree Search,
each xji , yr and σk(ℓ) appear in exactly one pair. Consider-
ing the mappings of the children of a node xi , they must
be the following: (xsi , σk(ℓ)) , (x

a
i , σa(ℓ+ 1)) , (xbi , σb(ℓ+ 2))

and (xfi , σk+1(ℓ+ 3)) . To see this, observe that a node xai
must be mapped to σa , because it is the only character by
which it can be substituted under h. In the same way, a
node xbi must be mapped to σb . Because dT = 0 , dS = 0
and due to the properties of a Q-node, once xsi is mapped
to the character in index ℓ (i.e. (xsi , σ(ℓ)) ∈ M), xai must
be mapped to the character in index ℓ+ 1 or in index
ℓ− 1 (i.e. the adjacent character to the one to which xsi
is mapped), then xbi must be mapped to the character in
index ℓ+ 2 or ℓ− 2 , respectively, and xfi to ℓ+ 3 or ℓ− 3 ,
respectively. Since σa is always the character preced-
ing σb in S, xbi must be mapped to an index larger by one
than the index mapped to xai . Hence, the children of the
Q-node xi are mapped from left to right.

Now, let us derive a solution for the original JISP3
instance from the solution to PQ-Tree Search. For
every 3-tuple of color 1 ≤ i ≤ γ , where (xsi , σk(ℓ)) ∈ M ,
choose the interval I ik = [k , k + 1] from the 3-tuple
of color i. For example, if a part of the solution for the
PQ-Tree Search instance in Fig. 7B is {(xs1, σ1(1)),
(xa1 , σa(2)), (x

b
1, σb(3)), (x

f
1, σ2(4))} ⊂ M , then I11 is the

interval chosen for the first color (blue) in the derived
solution for the JISP3 instance in Fig. 7.A. Note that Ik
is indeed one of the intervals of color i, due to the defini-
tion of h, h(xsi , σk) = True and h(xfi , σk+1) = True if and
only if there is an interval of color i starting at k and end-
ing at k + 1 . Thanks to M being a one-to-one mapping,
the intervals do not intersect, and for every color there is
only one interval chosen.

Second Direction. Let us prove that if there is a solution
for the original instance of JISP3 J, then there is a solution

Page 18 of 25Zimerman et al. Algorithms Mol Biol (2021) 16:16

for (T , S, h, dT , dS) . Let I = {I1j1 , ..., I
γ
jγ
} be a solution of J

such that I iji = [siji , fiji] is the interval chosen for the
3-tuple of color i. First, the solution for the PQ-Tree
Search instance (T , S, h, dT , dS) is constructed. For
every 1 ≤ i ≤ γ , insert the following pairs into M :
(xsi , σsiji (3siji − 2)) , (xai , σa(3siji − 1)) , (xbi , σb(3siji)) , and
(x

f
i , σfiji

(3fiji − 2)) . For example, if I22 is the interval cho-
sen from the second (red) 3-tuple in the solution of the
JISP3 instance in Fig. 7.A, then the solution for the PQ-
Tree Search instance in Fig. 7B includes the pairs
{(xs2, σ2(4)), (x

a
2 , σa(5)), (x

b
2, σb(6)), (x

f
2, σ3(7))} . Observe

that only one pair was inserted for every leaf of T, and
since no two intervals intersect, every index of S appears
in only one pair in M . Hence, a one-to-one mapping
between 4γ leaves of T and 4γ indices of S was defined,
and 3L− 4γ − 2 additional pairs need to be inserted to
M in order to construct a solution for the PQ-Tree
Search instance. According to h, every node yr
(1 ≤ r ≤ 3L− 2− 3γ) can be mapped to every character
σk , so arbitrarily insert the pairs (yr , σkr (ℓr)) to M , such
that no index or node appear in more than one pair. (It
can be done because there are 3L− 4γ − 2 y nodes and
after mapping the 4 children of every one of the γ xi
nodes, 3L− 4γ − 2 characters of S are left without a
mapping). Thus, a one-to-one mapping M between all
the leaves of T and all the indices of S (i.e. no deletions
from S and T) was defined, and it is left to prove that S
can be derived from T under M.

The children of a Q-node xi from left to right are:
xsi , x

a
i , x

b
i , x

f
i , and so, because dT = 0 and dS = 0 (no dele-

tions from both tree and string), they have to be mapped
to consecutive indices of S; this is indeed the case accord-
ing to our definition of M . The mapping of every yr is
obviously also legal. Finally, rootT is a P-node, so its chil-
dren can be arranged in any order, and they are. This
completes the proof of correctness of the reduction. �

This concludes the proof of Theorem 2.

Correctness of our algorithms
In this section we prove the correctness of the PQ-Tree
Search algorithm ("Correctness of the main algorithm"
section) and the P-mapping algorithm ("Correctness of
the P-node mapping algorithm" section). First, some defi-
nitions that are used in the proofs are given.

Addition and removal of a derivation. Given a par-
tial derivation µ , which derives an internal node x, let us
define the removal and addition of another derivation η :
remove(µ, η) and add(µ, η) . To this end, we say that η is
the derivation of x′ under µ if x′ = η.v ∈ children(µ.v)

and η.o ⊆ µ.o , i.e. the one-to-one mapping that yields η is
a subset of the one-to-one mapping that yields µ.

Operation 1 The operation remove(µ, η) is defined only
if η is the derivation of η.v under µ and if either η.e = µ.e
or η.s = µ.s is true. The operation returns a new partial
derivation µ′ of µ.v that ignores the subtree T (η.v) . If
η.e = µ.e , then µ′ derives the string S[µ.s : η.s − 1] , and
if η.s = µ.s , then µ′ derives the string S[η.e + 1 : µ.e] .
In any case the number of deletions from the tree is
µ′.delT = µ.delT − η.delT and from the string it is
µ′.delS = µ.delS − η.delS . Furthermore, µ.o \ η.o is the
one-to-one mapping that yields µ′.

Operation 2 The operation add(µ, η) is defined only
if either η.s = µ.e + 1 or η.e = µ.s − 1 is true and if
η.v ∈ children(x) and it is ignored under µ . The opera-
tion returns a new partial derivation µ′ of µ.v . The deri-
vation of η.v under µ′ is η , and the mapping or deletion
of every other leaf or character in the string is defined
the same as it was in µ . Consequentially, if η.s = µ.e + 1 ,
then µ′ derives the string S[µ.s : η.e] , and if η.e = µ.s − 1 ,
then µ′ derives the string S[η.s : µ.e] . In any case,
µ′.delT = µ.delT + η.delT , µ′.delS = µ.delS + η.delS and
the one-to-one mapping that yields µ′ is µ.o ∪ η.o.

Addition and removal of a deleted character. Given
a partial derivation µ , which derives a string S, and an
index i of S let us define the removal and addition of a
deleted character: removeDel(µ, i) and addDel(µ, i).

Operation 3 The operation removeDel(µ, i) is defined
only if i = µ.e or i = µ.s , and if S[i] is deleted under
µ . The operation returns a partial derivation µ′ with
µ.delS − 1 deletions from the string. If i = µ.e , then µ′
derives the string S[µ.s,µ.e − 1] , and if i = µ.s , then µ′
derives the string S[µ.s + 1,µ.e] . The one-to-one map-
ping that yields µ′ is µ.o \ {(ε, Si)}.

Operation 4 The operation addDel(µ, i) is defined
only if i = µ.e + 1 or i = µ.s − 1 . The operation returns
a partial derivation µ′ with µ.delS + 1 deletions from
the string. If i = µ.e + 1 , then µ′ derives the string
S[µ.s,µ.e + 1] , and if i = µ.s − 1 , then µ′ derives the
string S[µ.s − 1,µ.e] . The one-to-one mapping that yields
µ′ is µ.o ∪ {(ε, Si)}.

Correctness of the main algorithm
In this section we prove the correctness of the PQ-Tree
Search algorithm presented in "The main algorithm"

Page 19 of 25Zimerman et al. Algorithms Mol Biol (2021) 16:16

section by proving Lemma 4. In this proof, the correct-
ness of the Q-mapping algorithm (described in Sect. 1
of Additional file 1) and of the P-mapping algorithm
(described in "P-node mapping: the algorithm" sec-
tion) is assumed. In addition, the set of all derivations to
S[i,E(x, i, kT , kS)] rooted in x that have exactly kT dele-
tions from the tree and exactly kS deletions from the
string is denoted by DM(x, i, kT , kS) . Similarly to the nota-
tion in Definition 2, the DM(x, i, kT , kS) notation is used
to represent the set of derivations whose score might be
in A[x, i, kT , kS].

Lemma 4 At the end of the algorithm every entry
A[x, i, kT , kS] of the DP table A holds the highest score of
a derivation of S[i,E(x, i, kT , kS)] rooted in x that has kS
deletions from the string and kT deletions from the tree,
i.e. A[x, i, kT , kS] = maxµ∈DM(x,i,kT ,kS) µ.score

Proof We prove Lemma 4 by induction on the entries
of A in the order described in the algorithm. Namely,
for two entries A[x1, i1, kT1 , kS1] and A[x2, i2, kT2 , kS2] ,
A[x1, i1, kT1 , kS1] < A[x2, i2, kT2 , kS2] if and only if x1
appears before x2 in the postorder of T or both x1 = x2
and i1 < i2 . If x1 = x2 and i1 = i2 , then the order between
the entries is chosen arbitrarily.

Base Case. The base case of the algorithm is the initializa-
tion of the DP table, where the entries A[x, i, kT , kS] for
x ∈ leaves(root) and kT ∈ {0, 1} are computed. When
kT = 0 , there are no deletions from the tree. So, x must
be mapped to some character S[ℓ] (i ≤ ℓ ≤ E(x, i, 0, kS)).
In this version of the algorithm the deletion of a char-
acter does not change the score of the derivation, so the
maximal score of a derivation in DM(x, i, 0, kS) is the
maximum score of a mapping of x to some character S[ℓ]
(i ≤ ℓ ≤ E(x, i, 0, kS)), which is the initialization value of
the entry A[x, i, 0, kS] . When kT = 1 , there is one deletion
from the tree. The derived subtree T(x) has one leaf, x,
and so it must be the deleted leaf. All characters in the
derived string, S[i : E(x, i, 1, kS)] , must also be deleted.
Deletions do not add to the score of the derivation, and
so all the derivations in DM(x, i, 1, kS) have a score of 0,
which is the initialization value of A[x, i, 1, kS].

Induction Assumption. Assume that every
entry A[x′, i′, k ′T , k

′

S] such that A[x′, i′, k ′T , k
′

S]
< A[x, i, kT , kS] holds the best score of a deri-
vation from the set DM(x′, i′, k ′T , k

′

S) . Namely,
A[x′, i′, k ′

T
, k ′

S
] = maxµ∈DM (x′ ,i′ ,k ′

T
,k ′
S
) µ.score = OPT (x′, i′, k ′

T
, k ′

S
).

Induction Step. For every internal node x and possi-
ble start index i, the algorithm fills the DP table entry
A[x, i, kT , kS] according to the values returned from the

Q-mapping and P-mapping algorithms based on the
type of x. The correctness of the P-mapping algorithm
is proven in Section Correctness of the P-node mapping
algorithm, and the correctness of the Q-mapping algo-
rithm is proven in Section 1.2 of Additional file 1. Hence,
it is only necessary to prove that the input the algo-
rithms expect to receive is sent correctly from the main
algorithm.

Both the Q-mapping and P-mapping algorithms expect
to receive the internal node which should be the root of
all the output derivations, a substring S′ of S, the dele-
tion bounds dT and dS , and a collection of the best scor-
ing derivations of every child of x to every substring
of S′ with up to dT and dS deletions from the tree and
string, respectively. By definition an entry in A[x, i, ·, ·]
concerns the derivations of x with a start point i. The
end point of the longest derivation of those derivations
is E(x, i, 0, dS) . Hence, the internal node sent to the
Q-mapping or P-mapping algorithm is x and the sub-
string S′ equals S[i,E(x, i, 0, dS)] . The deletion bounds dT
and dS are given as input to the main algorithm. Lastly,
the best derivations of the children of x are stored in
A . Because a node x′ ∈ children(x) appears before x in
the postorder of T, then for every i′, k ′T , k

′

S , it holds that
A[x′, i′, k ′T , k

′

S] < A[x, i, kT , kS] , and from the induc-
tion assumption A[x′, i′, k ′T , k

′

S] = OPT (x′, i′, k ′T , k
′

S) . So,
indeed the expected input to the Q-mapping and P-map-
ping algorithms is correct. This completes the proof. �

Correctness of the P‑node mapping algorithm
In this section we prove the correctness of the P-mapping
algorithm presented in "P-node mapping: the algorithm"
section by proving Lemma 5.

Lemma 5 At the end of the algorithm every entry of
the DP table, P[C , kT , kS] , holds the best score for a
partial derivation of x(C) to a prefix of S′ with kT dele-
tions from the tree and kS deletions from the string, i.e.
P[C , kT , kS] = maxµ∈D(x(C),kT ,kS)

µ.score

Proof We prove Lemma 5 by induction on the entries
of P in the order described in the algorithm. Namely,
for two entries P[C1, kT1 , kS1] and P[C2, kT2 , kS2] ,
P[C1, kT1 , kS1] < P[C2, kT2 , kS2] if and only if

• |C1| < |C2| , or
• |C1| = |C2| and kS1 < kS2 , or
• |C1| = |C2| and kS1 = kS2 and kT1 < kT2

Page 20 of 25Zimerman et al. Algorithms Mol Biol (2021) 16:16

If C1 = C2 , |C1| = |C2| , kS1 = kS2 and kT1 = kT2 are all
satisfied, then the order between the entries is chosen
arbitrarily.
Base Cases. There are two types of base cases, as
described in the initialization of the DP table.

1 L(x(C), kT , kS) = 0 and kS = 0 : Let µ be a deriva-
tion of x(C) with kT and kS deletions. By definition,
µ derives an empty string, i.e. there are no charac-
ters to map to the leaves of the subtrees rooted in the
nodes in C. Hence, every child of x that is considered
(the nodes in C) must be deleted under µ . All the
nodes in C can be deleted if the sum of their spans
is equal to the allowed number of deletions in µ (that
is, kT). From the definition of L(x(C), kT , kS) = 0
and the fact that kS = 0 , we obtain that indeed
kT =

∑

c∈C span(c) . Every child node of x that is
kept under µ adds to the score of the derivation of
x, but there are none in this case. In addition, every
deletion from the subtree T(x) adds nothing to the
score (in the penalty-free version of the algorithm).
Hence, the score of µ must equal 0.

2 C = ∅ and kT = 0 : In this case all of the chil-
dren of x are ignored, so there are no leaves
to map. Hence, every character of the derived
string should be deleted. Note that the derived
string is S′[1 : EI (x

(C), kT , kS)] , and its length
is L(x(C), kT , kS) =

∑

c∈C
span(c)− kT + kS

=

∑

c∈∅
span(c)− 0+ kS = kS . So, the number of

deletions from the string in this case is exactly the
number needed to delete all the characters in the
derived string.

Induction Assumption. Assume that every
table entry P[C ′, k ′T , k

′

S] such that P[C ′, k ′T , k
′

S]
< P[C , kT , kS] holds the best score of a deri-
vation in D(C ′, k ′T , k

′

S) . Namely, P[C ′, k ′T , k
′

S]
= maxµ∈D(C ′,k ′T ,k

′

S)
µ.score = OPT (C ′, k ′T , k

′

S).
Induction Step. Towards the proof of the step, we prove
the following Eq. 5:

(5)

OPT (C ,kT , kS) = max(OPT (C , kT , kS − 1), max
µ∈D≤(C ,kT ,kS)

OPT (C \ {µ.v}, kT − µ.delT , kS − µ.delS)+ µ.score)

≤: Let µ∗
∈ D(x(C), kT , kS) be a derivation

such that µ∗.score = OPT (C , kT , kS) , and let
ec = EI (x

(C), kT , kS) . By definition, µ∗ is a derivation
of x(C) to the string S′[1 : ec] . In a derivation every
character of the derived string is either deleted or it
is a part of a substring derived from one of the chil-
dren of x. So, either S′[ec] is deleted under µ∗ , or it is
mapped under some derivation of a child of x(C) , to
a substring S′[i : ec] (for an index 0 < i ≤ ec). First,
if the former is true, then by removing the deletion
of S′[ec] from µ∗ (removeDel(µ∗,EI (x

(C), kT , kS)))
a derivation µ′

∈ D(x(C), kT , kS − 1) is
obtained. The derivation µ′ derives the string
S′[1 : EI (x

(C), kT , kS − 1)] = S′[1 : ec − 1] . So, the
following Eq. 6 is true.

 Note that even if there is a penalty cost for dele-
tions, the cost for the deletion of S′[ec] (i.e. −�(S′[ec]))
is constant in this setting. So, for two derivations
η, η′ ∈ D(x(C), kT , kS − 1) if η.score ≤ η′.score then
η.score −�(S′[ec]) ≤ η′.score −�(S′[ec]) . Hence,
the conclusion from Eq. 6 is still true. Second, if the
latter is true, then there is a node y ∈ C for which
there is a derivation µy ∈ D such that µy.e = ec
and µ.y is the derivation of y under µ∗ . For µ∗ to
be a legal derivation, µy must be in D≤(C , kT , kS) .
Hence, µy.score ≤ maxµ∈D≤(C ,kT ,kS) µ.score . Fur-
thermore, by removing µy from µ∗ , remove(µ∗,µ.y) ,
the obtained partial derivation, µ′ , is of x(C\{y}) to
S′[1 : µy.s − 1] with kT − µy.delT deletions from
the tree and kS − µy.delS from the string. Thus,
µ′

∈ D(x(C\{y}), kT − µy.delT , kS − µy.delS) , and so
µ′.score ≤ OPT (C \ {y}, kT − µy.delT , kS − µy.delS) .
Note that indeed
µy.s = 1+ EI (x

(C\{y}), kT − µy.delT , kS − µy.delS) , as can
be seen in the following Eq. 7.

(6)

µ∗
.score = µ′

.score

≤ OPT (C , kT , kS − 1)

≤ max(OPT (C , kT , kS − 1),

max
µ∈D≤(C ,kT ,kS)

OPT (C \ {µ.v}, kT − µ.delT , kS − µ.delS)+ µ.score)

Page 21 of 25Zimerman et al. Algorithms Mol Biol (2021) 16:16

 By combining our conclusions about µy and µ′ together,
we obtain the following Eq. 8.

≥: Let µ∗ be a derivation such that Eq. 9 holds, and let
ec = EI (x

(C), kT , kS) .

 So, either µ∗.score = OPT (C , kT , kS − 1) , or
µ∗.score = max

µ∈D≤(C ,kT ,kS)
 OPT (C \ {µ.v},

kT − µ.delT , kS − µ.delS)+ µ.score . First, if the former is
true, let η ∈ D(x(C), kT , kS − 1) be a derivation with
η.score = OPT (C , kT , kS − 1) . By definition, η derives the
substring S′[1 : EI (x

(C), kT , kS − 1)] . Adding to η the dele-
tion of S′[ec] , addDel(η, ec) , results in a derivation η′ of
x(C) to the string S′[1 : ec] with kT deletions from the tree
and kS deletions from the string. The string S′[1 : ec] is
equal to the concatenation of S′[1 : EI (x

(C), kT , kS − 1)]
and S′[ec] . So, η′ ∈ D(x(C), kT , kS) , and thus
η′.score ≤ OPT (C , kT , kS) . The derivation η′ was con-
structed such that µ∗.score = η′.score , so
µ∗.score ≤ OPT (C , kT , kS) . Second, if the latter is true,
then let
η∗ = arg max µ∈D≤(C ,kT ,kS)

OPT (C \ {µ.v}, kT − µ.delT ,

kS − µ.delS)+ µ.score . Adding η∗ to a partial derivation
η ∈ D(x(C\{η

∗.v}), kT − η∗.delT , kS − η∗.delS) , add(η, η∗) ,
results in a partial derivation, η′ , with
kT − η∗.delT + η∗.delT = kT deletions from the tree and
kS − η∗.delS + η∗.delS = kS deletions from the string,
that takes into account the children of x that are in
C \ {η∗.v} ∪ {η∗.v} = C . It is a legal partial derivation
since η∗ derives the node η∗.v that is not in C \ {η∗.v} to a
string that does not intersect with the string derived by η .
The string that is derived by η is S′[η.s : η.e] and it does
not intersect with the string derived by η∗ (S′[η∗.s : η∗.e]).
That is because η.e + 1 = η∗.s , as can be seen similarly to

(7)

µy.s = ec − L(y,µy.delT ,µy.delS)+ 1

=

∑

c∈C

span(c)+ kS − kT − (span(y)+ µy.delS − µy.delT)+ 1

=

∑

c∈C\{y}

span(c)+ kS − µy.delS − (kT − µy.delT)+ 1

= EI (x
(C\{y})

, kT − µy.delT , kS − µy.delS)+ 1

(8)

µ∗
.score = µ′

.score + µy.score

≤ OPT (C \ {y}, kT − µy.delT , kS − µy.delS)

+ max
µ∈D≤(C ,kT ,kS)

µ.score ≤ max
µ∈D≤(C ,kT ,kS)

OPT (C \ {µ.v}, kT − µ.delT , kS − µ.delS)+ µ.score

≤ max(OPT (C , kT , kS − 1), max
µ∈D≤(C ,kT ,kS)

OPT (C \ {µ.v}, kT − µ.delT , kS − µ.delS)+ µ.score)

(9)
µ∗

.score = max(OPT (C , kT , kS − 1), max
µ∈D≤(C ,kT ,kS)

OPT (C \ {µ.v}, kT − µ.delT , kS − µ.delS)+ µ.score)

Eq. 7. So, η′ ∈ D(x(C), kT , kS) , and thus
η′.score ≤ OPT (C , kT , kS) . The partial derivation η′ was
constructed such that µ∗.score = η′.score , so
µ∗.score ≤ OPT (C , kT , kS).

 From the induction assumption, P[C , kT , kS − 1]

= OPT (C , kT , kS − 1) and for every µ ∈ D≤(C , kT , kS) ,
P[C \ {µ.v}, kT − µ.delT , kS − µ.delS] = OPT (C \ {µ.v},

kT − µ.delT , kS − µ.delS) . Thus, from Eq. 5, it follows
that P[C , kT , kS] = OPT (C , kT , kS) . This completes the
proof. �

Time and Space Complexity of the PQ‑Tree Search
Algorithm
In this section the complexity of the main algorithm for
PQ-Tree Search as well as the complexity of the P-map-
ping algorithm are proven.

Time and Space Complexity of the Main Algorithm
Here we prove Lemma 1.

Proof The number of leaves in the PQ-tree T is m,
hence there are O(m) nodes in the tree, i.e the size of the
first dimension of the DP table, A , is O(m). In the algo-
rithm description ("P-node mapping" section) a bound
for the possible start indices of substrings derived from
nodes in T is given (for a node x, the start index i runs
between 1 and n− (span(x)− dT)+ 1). The node with
the largest span in T is the root which has a span of m.
The root is mapped to the longest substring when there
are dS deletions from the string. Hence, the size of the
second dimension of A is �(n− (m+ dS)+ 1) = �(n)
(given that dS << n). The nodes with the smallest spans
are the leaves, which have a span of 1, hence the size of
the second dimension of A is O(n). The third and fourth
dimensions of A are of size dT + 1 and dS + 1 , respec-
tively. In total, the DP table A is of size O(dTdSmn).

In the initialization step O(dSmn) entries of A are com-
puted in O(dS) time each. This holds because there are
m leaves and O(n) start indices for every string of length
kS ≤ dS , and it takes O(dS) time to compute the max
function. There are also O((dT − 1)dSmn) entries of
A that are computed in O(1) time each. These are the
entries initialized with the 0 and −∞ values. This results
in a O((dT + dS)dSmn) time initialization step which
can be reduced to O(dTdSmn) by using the replace-
ment initialization rule mentioned in " P-node map-
ping" section, though they are both negligible. The
P-mapping algorithm is called for every P-node in T
and every possible start index i, i.e. the P-mapping algo-
rithm is called O(nmp) times. Similarly, the Q-map-
ping algorithm is called O(nmq) times. Thus, it takes

Page 22 of 25Zimerman et al. Algorithms Mol Biol (2021) 16:16

O(n (mp · Time(P-mapping)+mq · Time(Q-mapping)))
time to fill the DP table. In the final stage of the
algorithm the maximum over the entries cor-
responding to every combination of dele-
tion numbers and start index (0 ≤ kT ≤ dT ,
0 ≤ kS ≤ dS , 1 ≤ i ≤ n− (span(x)− dT)+ 1) is com-
puted. So, it takes O(dTdSn) time to find a derivation
with maximum score. Tracing back through the DP table
to find the actual mapping does not increase the time
complexity.

From Lemma 2, the P-mapping algorithm takes
O(γ 2γ dT

2dS
2) time and O(dTdS2

γ) space,
and from Lemma 3, the Q-mapping algo-
rithm takes O(γdT

2dS
2) time and O(dTdSγ)

space. Thus, in total, our algorithm runs in
O(n(mp · γ 2

γ dT
2dS

2
+mq · γdT

2dS
2)) = O(nγdT

2dS
2(mp · 2

γ
+mq))

time. Adding to the space required for the main DP
table the space required for the P-mapping algo-
rithm (the space needed for the Q-mapping algo-
rithm is insignificant with respect to the P-mapping
algorithm) results in a total space complexity of
O(dTdSmn)+ O(dTdS2

γ) = O(dTdS(mn+ 2γ)) . This
completes the proof. �

Time and Space Complexity of the P‑Node Mapping
Algorithm
Here we prove Lemma 2.

Proof The most space consuming part of the algorithm
is the 3-dimensional DP table. The first dimension, C, can
be any subset of the set children(x) , and therefore it is of
size 2|children(x)| = 2γ . The size of the second and third
dimensions (i.e. kT and kS) are dT + 1 and dS + 1 , respec-
tively. Hence, the space of the DP algorithm is O(dTdS2

γ)

.

The algorithm has three parts: initialization, filling the
DP table, and returning the derivations in the required
order. The most time consuming calculation required in
the initialization is the calculation of L(x(C), kT , kS) . It
requires summing the spans of all nodes in C. This cal-
culation will also be required in the second part of the
algorithm. To avoid the repetitive calculations, it is per-
formed once for every (C , kT , kS) tuple and the results are
saved. This requires O(dTdS2

|children(x)|) = O(dtdS2
γ)

space (for this is the number of such tuples). Each value
is calculated in O(|children(x)|) = O(γ) time. Hence,
the calculation of all the L(x(C), kT , kS) values (and thus
all the EI (x(C), kT , kS) values) takes O(dTdSγ 2

γ) time
and O(dTdS2

γ) space. The second part of the algo-
rithm is done by calculating the value of every entry in

the O(dTdS2
γ) entries of P , using the recursion rule in

Eq. 2. The first line among the rule takes O(1) time, since
it involves looking in another entry of P and basic com-
putations. The second line of the rule involves going over
all derivations µ ∈ D≤(C , kT , kS) . Namely, going over
all derivations with a specific end point, which derives
a node in C and has no more than a specific number of
deletions from the tree and string (i.e. µ.e = EI (C , kT , kS) ,
µ.v ∈ C , µ.delT ≤ kT and µ.delS ≤ kS). The number of
deletions from the tree and string are bounded by dT and
dS , respectively, and the number of nodes in C is bounded
by the number of children of x, γ . Hence, the time to cal-
culate one entry of P is O(dTdSγ) . In total, the second
part of the algorithm takes O(dT

2dS
2γ 2γ) time. Finally,

to construct the returned set of derivations, the algo-
rithm goes over every deletion combination kT , kS once,
i.e. it takes O(dTdS) time. In total, the algorithm takes
O(dT

2
dS

2γ 2γ)+ O(dTdSγ 2
γ)+ O(dTdS) = O(dT

2
dS

2γ 2γ) time. �

Conclusions
In this paper, we defined two new problems in compara-
tive genomics, denoted PQ-Tree Search and PQ-Tree
Alignment, where the second is a sub-problem of the
first. Both problems take as input a PQ-tree T represent-
ing the known gene orders of a gene cluster of interest,
a gene-to-gene substitution scoring function h, integer
arguments dT and dS , and a sequence of genes S. The
objective in PQ-Tree Search is to identify an approxi-
mate instance S′ of the gene cluster, such that S′ is a sub-
string of S. The objective of PQ-Tree Alignment is to
determine whether S′ is an approximate instance of the
gene cluster; An approximate instance could vary from
the known gene orders by genome rearrangements that
are constrained by T, by gene substitutions that are gov-
erned by h, and by gene deletions and insertions that are
bounded from above by dT and dS , respectively.

We proved that the PQ-Tree Search and the PQ-
Tree Alignment problems are NP-hard and proposed a
parameterized algorithm that solves PQ-Tree Search in
O∗(2γ) time by solving PQ-Tree Alignment for every
substring of S. The parameter γ is the maximum degree
of a node in T and O∗ is used to hide factors polynomial
in the input size.

The proposed algorithm was implemented as a publicly
available tool and harnessed to search for tree-guided
rearrangements of chromosomal gene clusters in plas-
mids. We identified 29 chromosomal gene clusters that
are rearranged in plasmids, where the rearrangements
are guided by the corresponding PQ-tree. A tree-guided
rearrangement event of one of these gene clusters, coding
for a heavy metal efflux pump, was detected in a bacterial
strain that was isolated from an environment polluted

Page 23 of 25Zimerman et al. Algorithms Mol Biol (2021) 16:16

with several heavy metals. Thus, a future extension of
this study could explore whether similar gene cluster
rearrangement events are correlated with environmental
stress or other bacterial adaptations.

The said gene cluster was further analysed to charac-
terize its approximate instances in plasmids. An interest-
ing variant of the analysed gene cluster, found among its
approximate instances, corresponds to a copper efflux
pump. It was found mainly in pathogenic bacteria, and
likely constitutes a bacterial defense mechanism against
the host immune response. These results exemplify how
our proposed tool PQFinder can be harnessed to find
meaningful variations of known biological systems that
are conserved as gene clusters, and to explore their func-
tion and evolution.

Another interesting approach to perform a compara-
tive analysis of gene clusters in chromosomes versus
plasmids could theoretically be based on the alignment
of PQ-trees that represent the respective gene clusters.
However, this will require de-novo discovery of gene
clusters in both chromosomes and plasmids—a task that
is more challenging in plasmids than in chromosomes for
the following two reasons. First, as it is more difficult to
assemble plasmids than to assemble chromosomes, some
of the plasmids may not be accurately reconstructed [11].
Second, the plasmid gene pool is more diverse and less
conserved than the gene pool of chromosomes [55]. This
motivated us to identify gene clusters in chromosomes
and then to search for approximate tree-guided rear-
rangements of these gene clusters in plasmids.

One of the downsides to using PQ-trees to represent
gene clusters is that very rare gene orders taken into
account in the tree construction could greatly increase
the number of allowed rearrangements and thus substan-
tially lower the specificity of the PQ-tree. Thus, a natu-
ral continuation of our research would be to increase the
specificity of the model by considering a stochastic vari-
ation of PQ-Tree Search and PQ-Tree Alignment.
Namely, defining a PQ-tree in which the internal nodes
hold the probability of each rearrangement, and adjust-
ing the algorithms for PQ-Tree Search and PQ-Tree
Alignment accordingly. In addition, future extensions
of this work could also aim to increase the sensitivity
of the model by incorporating gene orientation, and by
taking into account gene duplications and gene-fusion
events, which are typical events in gene cluster evolution.

Abbreviations
NP‑hard:: Non‑deterministic Polynomial‑time Hard; FPT:: Fixed Parameter
Tractable; JISP:: Job Interval Selection Problem.

Supplementary Information
The online version contains supplementary material available at https:// doi.
org/ 10. 1186/ s13015‑ 021‑ 00190‑9.

Additional file 1. Supplementary material of the paper, including addi‑
tional descriptions, proofs and figures.

Additional file 2. A list of chromosomes and plasmids analysed in the
main text.

Acknowledgements
Many thanks to Lev Gourevitch for his excellent implementation of a PQ‑tree
builder. We also thank the anonymous WABI reviewers for their very helpful
comments.

Authors’ Contributions
MZ and MZU initiated and guided the research. GRZ developed and imple‑
mented the presented algorithms, and participated in the application of the
algorithms to the experimental benchmarks. DS developed the bioinformatic
pipeline and performed the experiments and the data analysis. GRZ and
DS wrote the paper, with guidance by MZ and MZU. All authors read and
approved the final manuscript.

Funding
The research of G.R.Z. was partially supported by the Planning and Budgeting
Committee of the Council for Higher Education in Israel and by the Frankel
Center for Computer Science at Ben Gurion University. The research of G.R.Z.
and M.Z. was partially supported by the Israel Science Foundation (Grant No.
1176/18). The research of G.R.Z., D.S. and M.Z.U. was partially supported by the
Israel Science Foundation (grant no. 939/18).

Availability of data and materials
The code for the PQFinder tool as well as all the data needed to reconstruct
the results in this paper are publicly available on GitHub [2]. Earlier versions of
the paper can be found in [1, 56].

Declarations

 Competing interests
The authors declare that they have no competing interests.

Received: 31 January 2021 Accepted: 5 June 2021

References
 1. Zimerman GR, Svetlitsky D, Zehavi M, Ziv‑Ukelson M. Approximate search

for known gene clusters in new genomes using pq‑trees. In: 20th Inter‑
national workshop on algorithms in bioinformatics (WABI 2020). 2020.
https:// doi. org/ 10. 4230/ LIPIcs. WABI. 2020.1. Schloss Dagstuhl‑Leibniz‑
Zentrum für Informatik. https:// drops. dagst uhl. de/ opus/ vollt exte/ 2020/
12790/

 2. Zimerman GR. The PQFinder tool. www. github. com/ Galia Zim/ PQFin der
 3. Tatusova T, Ciufo S, Fedorov B, O’Neill K, Tolstoy I. Refseq microbial

genomes database: new representation and annotation strategy. Nucleic
Acids Res. 2014;42(D1):553–9. https:// doi. org/ 10. 1093/ nar/ gkt12 74.

 4. Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T, Gabbard JL, Gillespie
JJ, Gough R, Hix D, Kenyon R, et al. Patric, the bacterial bioinformatics
database and analysis resource. Nucleic Acids Res. 2014;42(D1):581–91.
https:// doi. org/ 10. 1093/ nar/ gkt10 99.

 5. Böcker S, Jahn K, Mixtacki J, Stoye J. Computation of median gene
clusters. J Comput Biol. 2009;16(8):1085–99. https:// doi. org/ 10. 1089/ cmb.
2009. 0098.

 6. He X, Goldwasser MH. Identifying conserved gene clusters in the pres‑
ence of homology families. J Comput Biol. 2005;12(6):638–56. https:// doi.
org/ 10. 1089/ cmb. 2005. 12. 638.

https://doi.org/10.1186/s13015-021-00190-9
https://doi.org/10.1186/s13015-021-00190-9
https://doi.org/10.4230/LIPIcs.WABI.2020.1
https://drops.dagstuhl.de/opus/volltexte/2020/12790/
https://drops.dagstuhl.de/opus/volltexte/2020/12790/
http://www.github.com/GaliaZim/PQFinder
https://doi.org/10.1093/nar/gkt1274
https://doi.org/10.1093/nar/gkt1099
https://doi.org/10.1089/cmb.2009.0098
https://doi.org/10.1089/cmb.2009.0098
https://doi.org/10.1089/cmb.2005.12.638
https://doi.org/10.1089/cmb.2005.12.638

Page 24 of 25Zimerman et al. Algorithms Mol Biol (2021) 16:16

 7. Winter S, Jahn K, Wehner S, Kuchenbecker L, Marz M, Stoye J, Böcker
S. Finding approximate gene clusters with gecko 3. Nucleic Acids Res.
2016;44(20):9600–10. https:// doi. org/ 10. 1093/ nar/ gkw843.

 8. Norris V, Merieau A. Plasmids as scribbling pads for operon formation and
propagation. Res Microbiol. 2013;164(7):779–87. https:// doi. org/ 10. 1016/j.
resmic. 2013. 04. 003.

 9. He S, Chandler M, Varani AM, Hickman AB, Dekker JP, Dyda F. Mechanisms
of evolution in high‑consequence drug resistance plasmids. mBio. 2016.
https:// doi. org/ 10. 1128/ mBio. 01987‑ 16.

 10. Eberhard WG. Evolution in bacterial plasmids and levels of selection. Q
Rev Biol. 1990;65(1):3–22. https:// doi. org/ 10. 1086/ 416582.

 11. Orlek A, Stoesser N, Anjum MF, Doumith M, Ellington MJ, Peto T, Crook D,
Woodford N, Walker AS, Phan H, et al. Plasmid classification in an era of
whole‑genome sequencing: application in studies of antibiotic resistance
epidemiology. Front Microbiol. 2017;8:182. https:// doi. org/ 10. 3389/ fmicb.
2017. 00182.

 12. Booth KS, Lueker GS. Testing for the consecutive ones property, interval
graphs, and graph planarity using pq‑tree algorithms. J Comput Syst Sci.
1976;13(3):335–79. https:// doi. org/ 10. 1016/ S0022‑ 0000(76) 80045‑1.

 13. Bergeron A, Gingras Y, Chauve C. Formal models of gene clusters. Bio‑
inform Algorithms Tech Appl. 2008;8:177–202. https:// doi. org/ 10. 1002/
97804 70253 441. ch8.

 14. Metcalf WW, Wanner BL. Evidence for a fourteen‑gene, phnC to
phnP locus for phosphonate metabolism in escherichia coli. Gene.
1993;129(1):27–32. https:// doi. org/ 10. 1016/ 0378‑ 1119(93) 90692‑V.

 15. Fondi M, Emiliani G, Fani R. Origin and evolution of operons and meta‑
bolic pathways. Res Microbiol. 2009;160(7):502–12. https:// doi. org/ 10.
1016/j. resmic. 2009. 05. 001.

 16. Wells JN, Bergendahl LT, Marsh JA. Operon gene order is optimized for
ordered protein complex assembly. Cell Rep. 2016;14(4):679–85. https://
doi. org/ 10. 1016/j. celrep. 2015. 12. 085.

 17. Tatusov RL, Galperin MY, Natale DA, Koonin EV. The cog database: a tool
for genome‑scale analysis of protein functions and evolution. Nucleic
Acids Res. 2000;28(1):33–6. https:// doi. org/ 10. 1093/ nar/ 28.1. 33.

 18. Salton G, Wong A, Yang C‑S. A vector space model for automatic index‑
ing. Commun ACM. 1975;18(11):613–20. https:// doi. org/ 10. 1145/ 361219.
361220.

 19. Bergeron A, Corteel S, Raffinot M (2002) The algorithmic of gene teams.
In: International workshop on algorithms in bioinformatics. Springer. p.
464–476 . https:// doi. org/ 10. 1007/3‑ 540‑ 45784‑4_ 36.

 20. Eres R, Landau G.M, Parida L (2003) A combinatorial approach to
automatic discovery of cluster‑patterns. In: International workshop on
algorithms in bioinformatics. Springer. p. 139–150 . https:// doi. org/ 10.
1007/ 978‑3‑ 540‑ 39763‑2_ 11.

 21. Heber S, Stoye J (2001) Algorithms for finding gene clusters. In: Interna‑
tional workshop on algorithms in bioinformatics. Springer. p. 252–263 .
https:// doi. org/ 10. 1007/3‑ 540‑ 44696‑6_ 20.

 22. Schmidt T, Stoye J (2004) Quadratic time algorithms for finding common
intervals in two and more sequences. In: combinatorial pattern matching.
Springer. p. 347–358 . https:// doi. org/ 10. 1007/ 978‑3‑ 540‑ 27801‑6_ 26.

 23. Uno T, Yagiura M. Fast algorithms to enumerate all common intervals of
two permutations. Algorithmica. 2000;26(2):290–309. https:// doi. org/ 10.
1007/ s0045 39910 014.

 24. Alizadeh F, Karp RM, Weisser DK, Zweig G. Physical mapping of chromo‑
somes using unique probes. J Comput Biol. 1995;2(2):159–84. https:// doi.
org/ 10. 1089/ cmb. 1995.2. 159.

 25. Christof T, Jünger M, Kececioglu J, Mutzel P, Reinelt G. A branch‑and‑cut
approach to physical mapping of chromosomes by unique end‑probes. J
Comput Biol. 1997;4(4):433–47. https:// doi. org/ 10. 1089/ cmb. 1997.4. 433.

 26. Bérard S, Bergeron A, Chauve C, Paul C. Perfect sorting by reversals is not
always difficult. IEEE/ACM Trans Comput Biol Bioinform. 2007;4(1):4–16.
https:// doi. org/ 10. 1145/ 12299 68. 12299 72.

 27. Bergeron A, Mixtacki J, Stoye J (2004) Reversal distance without hurdles
and fortresses. In: annual symposium on combinatorial pattern matching.
Springer. p. 388–399 . https:// doi. org/ 10. 1007/ 978‑3‑ 540‑ 27801‑6_ 29.

 28. Landau GM, Parida L, Weimann O. Gene proximity analysis across whole
genomes via pq trees. J Comput Biol. 2005;12(10):1289–306. https:// doi.
org/ 10. 1089/ cmb. 2005. 12. 1289.

 29. Adam Z, Turmel M, Lemieux C, Sankoff D. Common intervals and sym‑
metric difference in a model‑free phylogenomics, with an application

to streptophyte evolution. J Comput Biol. 2007;14(4):436–45. https:// doi.
org/ 10. 1089/ cmb. 2007. A005.

 30. Bergeron A, Blanchette M, Chateau A, Chauve C (2004) Reconstructing
ancestral gene orders using conserved intervals. In: international work‑
shop on algorithms in bioinformatics. Springer. p. 14–25 . https:// doi. org/
10. 1007/ 978‑3‑ 540‑ 30219‑3_2.

 31. Parida L. Using pq structures for genomic rearrangement phylogeny. J
Comput Biol. 2006;13(10):1685–700. https:// doi. org/ 10. 1089/ cmb. 2006.
13. 1685.

 32. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,
Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unifica‑
tion of biology. Nat Genet. 2000;25(1):25–9.

 33. Radivojac P, Clark WT, Oron TR, Schnoes AM, Wittkop T, Sokolov A, Graim
K, Funk C, Verspoor K, Ben‑Hur A, et al. A large‑scale evaluation of compu‑
tational protein function prediction. Nat Methods. 2013;10(3):221–7.

 34. Jiang Y, Oron TR, Clark WT, Ban‑kapur AR, DAndrea D, Lepore R, Funk
CS, Kahanda I, Verspoor KM, BenHur A, et al. An expanded evaluation of
protein function prediction methods shows an improvement in accuracy.
Genome Biol. 2016;17(1):1–19.

 35. Sevilla JL, Segura V, Podhorski A, Guruceaga E, Mato JM, Martinez‑
Cruz LA, Corrales FJ, Rubio A. Correlation between gene expression
and go semantic similarity. IEEE/ACM Trans Comput Biol Bioinform.
2005;2(4):330–8.

 36. Yang D, Li Y, Xiao H, Liu Q, Zhang M, Zhu J, Ma W, Yao C, Wang J, Wang D,
et al. Gaining confidence in biological interpretation of the microarray
data: the functional consistence of the significant go categories. Bioinfor‑
matics. 2008;24(2):265–71.

 37. Cho Y‑R, Hwang W, Ramanathan M, Zhang A. Semantic integration to
identify overlapping functional modules in protein interaction networks.
BMC Bioinform. 2007;8(1):265.

 38. Zhang S‑B, Tang Q‑R. Protein‑protein interaction inference based on
semantic similarity of gene ontology terms. J Theor Biol. 2016;401:30–7.

 39. Doerr D, Stoye J. A perspective on comparative and functional genomics.
2019;361–372.

 40. Cygan M, Fomin FV, Kowalik L, Lokshtanov D, Marx D, Pilipczuk M,
Pilipczuk M, Saurabh S. Parameterized algorithms. Cham: Springer; 2015.
https:// doi. org/ 10. 1007/ 978‑3‑ 319‑ 21275‑3.

 41. Downey RG, Fellows MR. Fundamentals of parameterized complexity
texts in computer science. Cham: Springer; 2013. https:// doi. org/ 10. 1007/
978‑1‑ 4471‑ 5559‑1.

 42. Fomin FV, Lokshtanov D, Saurabh S, Zehavi M. Kernelization: theory of
parameterized preprocessing. England: Cambridge University Press; 2019.

 43. van Bevern R, Mnich M, Niedermeier R, Weller M. Interval scheduling and
colorful independent sets. J Sched. 2015;18(5):449–69. https:// doi. org/ 10.
1007/ s10951‑ 014‑ 0398‑5.

 44. Svetlitsky D, Dagan T, Ziv‑Ukelson M. Discovery of multi‑operon colinear
syntenic blocks in microbial genomes. Bioinformatics. 2020. https:// doi.
org/ 10. 1093/ bioin forma tics/ btaa5 03.

 45. Gourevitch L. A program for PQ‑tree construction. https:// github. com/
levgou/ pqtre es

 46. Vandecraen J, Chandler M, Aertsen A, Houdt RV. The impact of insertion
sequences on bacterial genome plasticity and adaptability. Crit Rev
Microbiol. 2017;43(6):709–30. https:// doi. org/ 10. 1080/ 10408 41X. 2017.
13036 61 (PMID: 28407717).

 47. Nies DH. Efflux‑mediated heavy metal resistance in prokaryotes. FEMS
Microbiol Rev. 2003;27(2–3):313–39.

 48. Fu Y, Chang F‑MJ, Giedroc DP. Copper transport and trafficking at the
host‑bacterial pathogen interface. Acc Chem Res. 2014;47(12):3605–13.

 49. Du D, Wang Z, James NR, Voss JE, Klimont E, Ohene‑Agyei T, Venter H,
Chiu W, Luisi BF. Structure of the AcrAB‑TolC multidrug efflux pump.
Nature. 2014;509(7501):512–5.

 50. Sulavik MC, Houseweart C, Cramer C, Jiwani N, Murgolo N, Greene J,
DiDomenico B, Shaw KJ, Miller GH, Hare R, et al. Antibiotic susceptibility
profiles of escherichia coli strains lacking multidrug efflux pump genes.
Antimicrob Agents Chemother. 2001;45(4):1126–36. https:// doi. org/ 10.
1128/ AAC. 45.4. 1126‑ 1136. 2001.

 51. Nakajima K, Hakimi SL. Complexity results for scheduling tasks with
discrete starting times. J Algorithms. 1982;3(4):344–61. https:// doi. org/ 10.
1016/ 0196‑ 6774(82) 90030‑X.

https://doi.org/10.1093/nar/gkw843
https://doi.org/10.1016/j.resmic.2013.04.003
https://doi.org/10.1016/j.resmic.2013.04.003
https://doi.org/10.1128/mBio.01987-16
https://doi.org/10.1086/416582
https://doi.org/10.3389/fmicb.2017.00182
https://doi.org/10.3389/fmicb.2017.00182
https://doi.org/10.1016/S0022-0000(76)80045-1
https://doi.org/10.1002/9780470253441.ch8
https://doi.org/10.1002/9780470253441.ch8
https://doi.org/10.1016/0378-1119(93)90692-V
https://doi.org/10.1016/j.resmic.2009.05.001
https://doi.org/10.1016/j.resmic.2009.05.001
https://doi.org/10.1016/j.celrep.2015.12.085
https://doi.org/10.1016/j.celrep.2015.12.085
https://doi.org/10.1093/nar/28.1.33
https://doi.org/10.1145/361219.361220
https://doi.org/10.1145/361219.361220
https://doi.org/10.1007/3-540-45784-4_36
https://doi.org/10.1007/978-3-540-39763-2_11
https://doi.org/10.1007/978-3-540-39763-2_11
https://doi.org/10.1007/3-540-44696-6_20
https://doi.org/10.1007/978-3-540-27801-6_26
https://doi.org/10.1007/s004539910014
https://doi.org/10.1007/s004539910014
https://doi.org/10.1089/cmb.1995.2.159
https://doi.org/10.1089/cmb.1995.2.159
https://doi.org/10.1089/cmb.1997.4.433
https://doi.org/10.1145/1229968.1229972
https://doi.org/10.1007/978-3-540-27801-6_29
https://doi.org/10.1089/cmb.2005.12.1289
https://doi.org/10.1089/cmb.2005.12.1289
https://doi.org/10.1089/cmb.2007.A005
https://doi.org/10.1089/cmb.2007.A005
https://doi.org/10.1007/978-3-540-30219-3_2
https://doi.org/10.1007/978-3-540-30219-3_2
https://doi.org/10.1089/cmb.2006.13.1685
https://doi.org/10.1089/cmb.2006.13.1685
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/s10951-014-0398-5
https://doi.org/10.1007/s10951-014-0398-5
https://doi.org/10.1093/bioinformatics/btaa503
https://doi.org/10.1093/bioinformatics/btaa503
https://github.com/levgou/pqtrees
https://github.com/levgou/pqtrees
https://doi.org/10.1080/1040841X.2017.1303661
https://doi.org/10.1080/1040841X.2017.1303661
https://doi.org/10.1128/AAC.45.4.1126-1136.2001
https://doi.org/10.1128/AAC.45.4.1126-1136.2001
https://doi.org/10.1016/0196-6774(82)90030-X
https://doi.org/10.1016/0196-6774(82)90030-X

Page 25 of 25Zimerman et al. Algorithms Mol Biol (2021) 16:16

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

 52. Keil JM. On the complexity of scheduling tasks with discrete starting
times. Oper Res Lett. 1992;12(5):293–5. https:// doi. org/ 10. 1016/ 0167‑
6377(92) 90087‑J.

 53. Spieksma FC. On the approximability of an interval scheduling problem.
Journal of Scheduling. 1999;2(5):215–27. https:// doi. org/ 10. 1002/ (SICI)
1099‑ 1425(199909/ 10)2: 5¡215:: AID‑ JOS27 ¿3.0. CO;2‑Y.

 54. Spieksma FC, Crama Y. The complexity of scheduling short tasks with
few starting times. Netherlands: Rijksuniversiteit Limburg. Vakgroep
Wiskunde; 1992.

 55. Norman A, Hansen LH, Sørensen SJ. Conjugative plasmids: ves‑
sels of the communal gene pool. Philos Trans R Soc B Biol Sci.
2009;364(1527):2275–89.

 56. Zimerman GR, Svetlitsky D, Zehavi M, Ziv‑Ukelson M. Approximate search
for known gene clusters in new genomes using PQ‑trees. 2020. arXiv:
2007. 03589.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1016/0167-6377(92)90087-J
https://doi.org/10.1016/0167-6377(92)90087-J
https://doi.org/10.1002/(SICI)1099-1425(199909/10)2:5¡215::AID-JOS27¿3.0.CO;2-Y
https://doi.org/10.1002/(SICI)1099-1425(199909/10)2:5¡215::AID-JOS27¿3.0.CO;2-Y
https://arxiv.org/abs/2007.03589
https://arxiv.org/abs/2007.03589

	Approximate search for known gene clusters in new genomes using PQ-trees
	Abstract
	Introduction
	Preliminaries
	PQ-tree: representing the pattern.
	Defining the problems

	A parameterized algorithm
	Brief overview
	The main algorithm
	P-node mapping
	P-node mapping: terminology
	P-node mapping: the algorithm

	Complexity analysis of the PQ-Tree Search algorithm

	Methods and datasets
	Results
	Chromosomal gene orders rearranged in plasmids
	Finding approximate instances of an RND efflux pump

	PQ-tree search is NP-hard
	Correctness of our algorithms
	Correctness of the main algorithm
	Correctness of the P-node mapping algorithm

	Time and Space Complexity of the PQ-Tree Search Algorithm
	Time and Space Complexity of the Main Algorithm
	Time and Space Complexity of the P-Node Mapping Algorithm

	Conclusions
	Acknowledgements
	References

