
Yu et al. Algorithms Mol Biol (2021) 16:12
https://doi.org/10.1186/s13015-021-00189-2

RESEARCH

Using Robinson-Foulds supertrees
in divide-and-conquer phylogeny estimation
Xilin Yu1*, Thien Le2, Sarah A. Christensen3, Erin K. Molloy3 and Tandy Warnow3

Abstract

One of the Grand Challenges in Science is the construction of the Tree of Life, an evolutionary tree containing several
million species, spanning all life on earth. However, the construction of the Tree of Life is enormously computation-
ally challenging, as all the current most accurate methods are either heuristics for NP-hard optimization problems or
Bayesian MCMC methods that sample from tree space. One of the most promising approaches for improving scalabil-
ity and accuracy for phylogeny estimation uses divide-and-conquer: a set of species is divided into overlapping sub-
sets, trees are constructed on the subsets, and then merged together using a “supertree method”. Here, we present
Exact-RFS-2, the first polynomial-time algorithm to find an optimal supertree of two trees, using the Robinson-Foulds
Supertree (RFS) criterion (a major approach in supertree estimation that is related to maximum likelihood supertrees),
and we prove that finding the RFS of three input trees is NP-hard. Exact-RFS-2 is available in open source form on
Github at https:// github. com/ yuxil in51/ Greed yRFS.

Keywords: Supertrees, Divide-and-conquer, Phylogeny estimation

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco
mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi cdoma in/
zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Supertree construction (i.e., the combination of a collec-
tion of trees, each on a potentially different subset of the
species, into a tree on the full set of species) is a natu-
ral algorithmic problem that has important applications
to computational biology; see [1] for a 2004 book on the
subject and [2–9] for some of the recent papers on this
subject. Supertree methods are particularly important for
large-scale phylogeny estimation, where it can be used
as a final step in a divide-and-conquer pipeline [10]: the
species set is divided into two or more overlapping sub-
sets, unrooted leaf-labelled trees are constructed (pos-
sibly recursively) on each subset, and then these subset
trees are combined into a tree on the full dataset, using
the selected supertree method. Furthermore, provided
that optimal supertrees are computed, divide-and-con-
quer pipelines can be provably statistically consistent

under stochastic models of evolution: i.e., as the amount
of input data (e.g., sequence lengths when estimating
gene trees, or number of gene trees when estimating spe-
cies trees) increases, the probability that the true tree is
returned converges to 1 [11, 12].

Unfortunately, the most accurate supertree methods
are typically local-search heuristics for NP-hard optimi-
zation problems [2, 3, 7, 13–17], and are computationally
intensive on large datasets. However, divide-and-con-
quer strategies, especially recursive ones, may only need
to apply supertree methods to two trees at a time, and
hence the computational complexity of supertree esti-
mation given two trees is of interest. One optimization
problem where optimal supertrees can be found on two
trees is the NP-hard Maximum Agreement Supertree
(SMAST) problem (also known as the Agreement Super-
tree Taxon Removal problem), which removes a mini-
mum number of leaves so that the reduced trees have
an agreement supertree [4, 6]. Similarly, the Maximum
Compatible Supertree (SMCT) problem, which removes
a minimum number of leaves so that the reduced trees
have a compatibility supertree [18, 19], can also be solved

Open Access

Algorithms for
Molecular Biology

*Correspondence: yuxilin51@gmail.com
1 Amazon AWS, Seattle, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-7717-3514
https://github.com/yuxilin51/GreedyRFS
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-021-00189-2&domain=pdf

Page 2 of 18Yu et al. Algorithms Mol Biol (2021) 16:12

in polynomial time on two trees (and note that SMAST
and SMCT are identical when the input trees are fully
resolved). Because SMAST and SMCT remove taxa,
methods for these optimization problems are not true
supertree methods, because they do not return a tree on
the entire set of taxa. However, solutions to SMAST and
SMCT could potentially be used as constraints for other
supertree methods, where the deleted leaves are added
into the computed SMAST or SMCT trees, so as to opti-
mize the desired criterion.

When restricting to methods that return trees on the
full set of taxa, much less seems to be understood about
finding supertrees on two trees. However, if the two input
trees are compatible (i.e., there is a supertree that equals
or refines each tree when restricted to the respective leaf
set), then finding that compatibility supertree is solvable
in polynomial time, using (for example) the well-known
BUILD algorithm [20], but more efficient algorithms
exist (e.g., [19, 21]).

Since compatibility is a strong requirement (rarely seen
in biological datasets), optimization problems are more
relevant. One optimization problem worth discussing is
the Maximum Agreement Supertree Edge Contraction
problem (which takes as input a set of rooted trees and
seeks a minimum number of edges to collapse so that an
agreement supertree exists). This problem is NP-hard,
but the decision problem can be solved in O((2k)pkn2)
time when the input has k trees and p is the allowed num-
ber of number of edges to be collapsed [4]. Note that the
algorithm for MAST-EC proposed by [4] may be expo-
nential even for two trees, when the number of edges that
must be collapsed is �(n) (e.g., imagine two caterpillar
trees, where one is obtained from the other by moving
the left-most leaf to the rightmost position).

In sum, while supertree methods are important and
well studied, when restricted to the major optimiza-
tion problems that do not remove taxa, polynomial time
methods do not seem to be available, even for the spe-
cial case where the input contains just two trees. This
restriction has consequences for large-scale phylogeny
estimation, as without good supertree methods, divide-
and-conquer pipelines are not guaranteed to be statis-
tically consistent, are not fast, and do not have good
scalability [12].

In this paper we examine the well-known Robinson-
Foulds Supertree (RFS) problem [22], which seeks a
supertree that minimizes the total Robinson-Foulds
[23] distance to the input trees. Although RFS is NP-
hard [24], it has several desirable properties: it is closely
related to maximum likelihood supertrees [25] and, as
shown very recently, has good theoretical performance
for species tree estimation in the presence of gene dupli-
cation and loss [26]. Because of its importance, there

are several methods for RFS supertrees, including Plu-
MiST [5], MulRF [27], and FastRFS [28]. A comparison
between FastRFS and other supertree methods (MRL [2],
ASTRAL, ASTRID [29], PluMiST, and MulRF) on simu-
lated and biological supertree datasets showed that Fas-
tRFS matched or improved on the other methods with
respect to topological accuracy and RFS criterion scores
[28]. Hence, FastRFS is currently the leading method for
the RFS optimization problem.

The main contributions of this paper are:

• We present Exact-2-RFS, a polynomial time algo-
rithm for the Robinson-Foulds Supertree (RFS) of
two trees, which establishes that RFS is solvable in
O(n2|X |) time for two trees, where n is the number of
leaves and X is the set of shared leaves (Theorem 1).
We also show that RFS is NP-hard for three or more
trees (Lemma 5).

• We prove that divide-and-conquer pipelines using
Exact-RFS-2 are statistically consistent methods for
phylogenetic tree estimation (both gene trees and
species trees) under standard evolutionary models
(Theorem 2).

• We establish the relationships between RFS and
other supertree problems (Sect. 2.1), showing that it
is equivalent to some other problems but not to all.

The remainder of the paper is organized as follows. In
Sect. 1, we provide terminology and define the optimiza-
tion problems we consider. We present the Exact-RFS-2
algorithm and establish theory related to the algorithm
in Sect. 2. We conclude in Sect. 3 with a summary of
our results and a discussion regarding future research
directions.

Terminology and problem statements
We let [N] = {1, 2, . . . ,N } and A = {Ti | i ∈ [N]} denote
the input to a supertree problem, where each Ti is a
phylogenetic tree on leaf set L(Ti) = Si ⊆ S (where L(t)
denotes the leaf set of t) and the output is a tree T where
L(T) is the set of all species that appear as a leaf in at least
one tree in A , which we will assume is all of S. We use the
standard supertree terminology, and refer to the trees in
A as “source trees” and the set A as a “profile”. For a tree
T, let V(T) and E(T) denote the set of vertices and edges
of T, respectively.

Robinson-Foulds Supertree Each edge e in a tree T
defines a bipartition πe := [A|B] of the leaf set, and each
tree is defined by the set C(T) := {πe | e ∈ E(T)} . The
Robinson-Foulds distance [23] (also called the bipartition
distance) between trees T and T ′ with the same leaf set is
RF(T ,T ′) := |C(T)\C(T ′)| + |C(T ′)\C(T)| . We extend
the definition of RF distance to allow for T and T ′ to have

Page 3 of 18Yu et al. Algorithms Mol Biol (2021) 16:12

different leaf sets as follows: RF(T ,T ′) := RF(T |X ,T
′|X) ,

where X is the shared leaf set and t|X denotes the homeo-
morphic subtree of t induced by X. Letting TS denote the
set of all phylogenetic trees such that L(T) = S and T B

S
denote the binary trees in TS , then a Robinson-Foulds
supertree [22] of a profile A is a binary tree

We let RF(T ,A) :=
∑

i∈[N] RF(T ,Ti) denote the RFS
score of T with respect to profile A . Thus, the Robinson-
Foulds Supertree problem takes as input the profile A
and seeks a Robinson-Foulds (RF) supertree for A , which
we denote by RFS(A).

Split Fit Supertree The Split Fit (SF) Supertree prob-
lem was introduced in [30], and is based on optimizing
the number of shared splits (i.e., bipartitions) between
the supertree and the source trees. For two trees T, T ′
with the same leaf set, the split support is the number
of shared bipartitions, i.e., SF(T ,T ′) := |C(T) ∩ C(T ′)| .
For trees with different leaf sets, we restrict them to the
shared leaf set before calculating the split support. The
Split Fit supertree for a profile A of source trees, denoted
SFS(A), is a tree TSFS ∈ T B

S such that

Thus, the split support score of T with respect to A is
SF(T ,A) :=

∑
i∈[N] SF(T ,Ti) . The Split Fit Supertree

(SFS) problem takes as input the profile A and seeks a
Split Fit supertree (the supertree with the maximum split
support score), which we denote by SFS(A).

Nomenclature for variants of RFS and SFS problems

• The relaxed versions of the problems where we do
not require the output to be binary (i.e., we allow
T ∈ TS) are named Relax—RFS and Relax—SFS.

• We append “-N” to the name to indicate that we
assume there are N source trees. If no number is
specified then the number of source trees is uncon-
strained.

• We append “-B” to the name to indicate that the
source trees are required to be binary; hence, we
indicate that the source trees are allowed to be non-
binary by not appending - B.

Thus, the RFS problem with two binary input trees is
RFS-2-B and the relaxed SFS problem with three (not
necessarily binary) input trees is Relax—SFS-3.

Other notation For any v ∈ V (T) , we let NT (v) denote
the set of neighbors of v in T. A tree T ′ is a refinement
of T iff T can be obtained from T ′ by contracting a set

TRFS = argmin
T∈T B

S

∑

i∈[N]

RF(T ,Ti).

TSFS = argmax
T∈T B

S

∑

i∈[N]

SF(T ,Ti).

of edges. Two bipartitions π1 and π2 of the same leaf set
are said to be compatible if and only if there exists a tree
T such that πi ∈ C(T), i = 1, 2 . A bipartition π = [A|B]
restricted to a subset R is π |R = [A ∩ R|B ∩ R] . For a
graph G and a set F of vertices or edges, we use G + F
to represent the graph obtained from adding the set F of
vertices or edges to G, and G − F is defined for deletions,
similarly.

Theoretical results
In this section we establish the main theoretical results,
including the relationship between supertree problems
(Sect. 2.1), the proof that RFS for 3 trees is NP-hard
(Sect. 2.2), the polynomial time Exact-2-RFS algorithm
(Sect. 2.3), and the use of this algorithm within divide-
and-conquer pipelines for statistically consistent phylog-
eny estimation (Sect. 2.4).

Relationships between supertree problems
This section establishes the relationships between the
different supertree problems. We establish that some
supertree problems have the same optimal solutions, oth-
ers do not, etc. We begin by establishing the equivalence
between the RFSand SFSsupertree problems.

Lemma 1 Given an input set A of source trees, a tree
T ∈ T B

S is an optimal solution for RFS(A) if and only if it
is an optimal solution for SFS(A).

Proof Let T1,T2, . . . ,TN and S1, S2, . . . , SN be defined
as from problem statement of RFS . Let T be any binary
tree of leaf set S. Then T |Si is also binary and thus
|C(T |Si)| = 2|Si| − 3 . For any i ∈ [N] , we have

Taking the sum of the equations over i ∈ [N] , we have

which is a constant (i.e., it does not depend on the tree
T).

RF(T ,Ti)+ 2SF(T ,Ti)

=|C(T |Si)\C(Ti)| + |C(Ti)\C(T |Si)|

+ 2|C(T |Si) ∩ C(Ti)|

=|C(T |Si)\C(Ti) ∪ (C(T |Si) ∩ C(Ti))|

+ |C(Ti)\C(T |Si) ∪ (C(T |Si) ∩ C(Ti))|

=|C(T |Si)| + |C(Ti)|

=2|Si| − 3+ |C(Ti)|.

∑

i∈[N]

[RF(T |Si ,Ti)+ 2SF(T |Si ,Ti)]

=
∑

i∈[N]

(2|Si| − 3+ |C(Ti)|),

Page 4 of 18Yu et al. Algorithms Mol Biol (2021) 16:12

Therefore, for any binary tree T and any profile A of
source trees, the sum of T’s RFS score and twice T’s split
support score is the same, independent of T. This implies
that minimizing the RFS score is the same as maximizing
the split support score. Although this argument depends
on the output tree being binary, it does not depend on
the input trees being binary. Hence, we conclude that RFS
and SFS have the same set of optimal supertrees. �

In contrast with Lemma 1, we will show that Relax—
RFS and Relax—SFS are not equivalent.

Lemma 2 There exist instances of Relax—RFS and Relax
—SFS in which an optimal solution to Relax—RFS is not
an optimal solution to Relax—SFS, and vice-versa.

Proof Let N ≥ 5 be any integer. Let
πi = [1, 2, . . . , i + 1 | i + 2, . . . ,N] for any i ∈ [N − 3] .
Let A = {T1,T2, . . . ,Tn−3} be a profile, where for all
i ∈ [N − 3] , the leaf set of Ti is [N] and Ti contains a single
internal edge defining πi . Let �[N] denote the set of trivial
bipartitions of [N]. Let T be the star tree with leaf set [N]
(i.e., T has no internal edges). We note that C(T) = �[N] .
Let �′ = {πi | i ∈ [N − 3]} (i.e., �′ contains all the non-
trivial bipartitions from the trees in A). Let T ′ be the cat-
erpillar tree on leaf set [N] (i.e., T ′ is formed by taking a
path of length N − 2 with vertices v2, v3, . . . , vN−1 in that
order, and making leaf 1 adjacent to v2 , leaf i adjacent to
vi , and leaf N adjacent to vN−1). We note that T ′ is the
unique tree such that C(T ′) = �[N] ∪�′ and thus a com-
patibility supertree for A.

We will show that (1) T is an optimal solution for Relax
—RFS(A), but not an optimal solution for Relax—SFS

(A), and (2) that T ′ is an optimal solution for Relax—SFS

(A), but not an optimal solution for Relax—RFS(A). (1)
We first show that T is not an optimal solution for Relax
—SFS(A). Since T‘ is a compatibility supertree of trees
in A , it achieves the maximum split support score pos-
sible. In particular, C(T ′) ∩ C(Ti) = �[N] ∪ {πi} and thus
SF(T ′,Ti) = N + 1 for all i ∈ [N − 3] . Overall, the split
support score of T ′ is

Since C(T) ∩ C(Ti) = �[N] , we have

for any N ≥ 5 . Therefore, T is not an optimal solution for
Relax—SFS(A).

(1)

SF(T ′,A) =
∑

i∈[N−3]

SF(T ′,Ti) = (N − 3)(N + 1).

(2)

SF(T ,A) =
∑

i∈[N−3]

SF(T ,Ti) = (N − 3)N < (N − 3)(N + 1)

Next, we show that T is an optimal solution to Relax—
RFS(A). Since |C(T)\C(Ti)| + |C(Ti)\C(T)| = 1 for all
i ∈ [N − 3] , the RFS score of T is

Now consider any tree t = T with leaf set [N], and sup-
pose t contains p bipartitions in �′ and q bipartitions in
2[N]\(�′ ∪�[N]) where p, q ∈ N . Since t = T , at least
one of p and q is nonzero. Therefore,

Since N ≥ 5 and both p and q are non-negative with at
least one of them nonzero, we know the RFS score of t is
strictly greater than that of T. Therefore, T is an optimal
solution to Relax—RFS(A).

For (2), the analysis above already shows that T ′ has the
largest possible split support score. Hence, T ′ is an opti-
mal solution to the relaxed Split Fit Supertree problem.
However, the RFS score for the star tree T is N − 3 and
the RFS score for T ′ is (N − 4)(N − 3) , which is strictly
larger than N − 3 for N > 5 ; hence, T ′ is not an optimal
solution for the relaxed RF supertree problem. �

We show that the Split Fit Supertree problem and the
Asymmetric Median Supertree (AMS) problem, which
was introduced in [31] and which we will present below,
have the same set of optimal solutions and thus the hard-
ness of one implies hardness of another.

The Asymmetric Median Supertree problem takes a
profile A = {T1,T2, . . . ,TN } with leaf sets Si for Ti and
finds a binary tree T ∗ on leaf set S :=

⋃
i∈[N] Si such that

In other words, the asymmetric median supertree T ∗
minimizes the total number of bipartitions that are in
the source trees and not in the supertree (equivalently, it
minimizes the total number of false negatives).

Lemma 3 Given a profile A = {T1,T2, . . . ,TN } of
source trees with leaf sets Si for Ti and S :=

⋃
i∈[N] Si , a

(3)RF(T ,A) =
∑

i∈[N−3]

RF(T ,Ti) = N − 3.

(4)RF(t,A) =
∑

i∈[N−3]

RF(t,Ti)

(5)=
∑

i∈[N−3]

|C(t)\C(Ti)| + |C(Ti)\C(t)|

(6)
=q(N − 3)+ (p− 1)p+ p(N − 3− p)+ (N − 3− p)

(7)=(N − 3)+ q(N − 3)+ p(N − 5).

(8)T ∗ = argmin
T∈TS

∑

i∈[N]

|C(Ti) \ C(T |Si)|.

Page 5 of 18Yu et al. Algorithms Mol Biol (2021) 16:12

tree T ∈ TS is a Split Fit Supertree for A if and only if it is
an Asymmetric Median Supertree for A.

Proof Let FN(T ,A) =
∑

i∈[N] |C(Ti) \ C(T |Si)| be the
total number of false negatives of T with respect to A ,
and we refer to this as the false negative score of T. Then,

Since the sum of the split support score of T and the false
negative score of T is the same, regardless of T, minimiz-
ing the false negative score is the same as maximizing the
split support score. Hence any tree T is an Asymmetric
Median supertree if and only if it is a Split Fit supertree,
for all profiles A . �

Recall that the SMAST and SMCT problems seek trees
that are obtained after deleting minimal numbers of
leaves from the input trees so that an agreement super-
tree or compatible supertree can be constructed from the
reduced input trees. Here, we examine the possibility of
using these output trees as constraint trees on the search
for RFS supertrees, so that the removed taxa could be
introduced into the constraint trees. We show that exact
solutions to the SMAST and SMCT (Maximum Agree-
ment Supertree and Maximum Compatible Supertree)
problems are not directly relevant to solving the Robin-
son-Foulds supertree problem.

Lemma 4 There exists a pair of binary trees T1 and T2
for which some optimal SMAST or SMCT supertree can-
not be extended to any optimal RFS supertree through the
insertion of missing taxa.

Proof Let T1 and T2 be unrooted trees, with T1 given
by the Newick string (A, ((B, x), ((C, y), (D, E)))) and T2
given by (A, (C, (z, (B, (D, E))))). An RFS supertree for
this pair (T1,T2) is given by (A, ((C, y), (z, ((B, x), (D, E))
))), and has total RF distance to T1 and T2 equal to 2.
Note that at least one of A,B,C must be deleted to form
an agreement supertree. Suppose C is deleted. Then
((A, z), ((B, x), (y, (D, E)))) is an optimal SMAST. Observe
that any way of adding C into this tree produces a super-
tree that has total RFS score greater than 2. Hence, for
this pair of input trees, for at least one optimal SMAST
supertree, there is no way to extend that optimal super-
tree into an optimal RFS supertree. The same proof fol-
lows for the SMCT problem, since SMCT and SMAST

(9)

SF(T ,A)+ FN(T ,A) =
∑

i∈[N]

|C(Ti) ∩ C(T |Si)|

+ |C(Ti)\C(T |Si)|

(10)=
∑

i∈[N]

|C(Ti)|.

are identical when the input trees are fully resolved
(binary). �

NP‑hardness results
We establish that some supertree problems are NP-hard.

Lemma 5 RFS-3 , SFS-3, and Relax—SFS-3 are all
NP-hard.

Proof By Lemma 3 and Lemma 1, we know that for any
profile A , the Robinson-Foulds, Split Fit, and Asymmet-
ric Median supertrees all have the same set of optimal
solutions. We also note that the Asymmetric Median
Tree problem was shown to be NP-hard for three trees
[32], which is the same as the Asymmetric Median
Supertree problem when all three trees have the same
set of species. Therefore, SFS-3 and RFS-3 are both NP-
hard. Since refining a tree never decreases its split sup-
port score, SFS-3 trivially reduces to Relax—SFS-3 , and
thus Relax—SFS-3 is also NP-hard. �

Solving RFS and SFS on two binary trees
The main result of this paper is Theorem 1 and the poly-
nomial time algorithm, Exact-RFS-2, for RFS and SFS of
two binary trees.

Theorem 1 Let A = {T1,T2} with Si the leaf set of Ti
(i = 1, 2) and X := S1 ∩ S2. The problems RFS-2-B(A)
and SFS-2-B(A) can be solved in O(n2|X |) time, where
n := max{|S1|, |S2|}.

The proof for Theorem 1 is provided later; here we pre-
sent the algorithm, Exact-RFS-2, which we use to estab-
lish Theorem 1.

The input to Exact-RFS-2 is a pair of binary trees T1 and
T2 . Let X denote the set of shared leaves. At a high level,
Exact-RFS-2 constructs a tree Tinit that has a central node
that is adjacent to every leaf in X and to the root of every
“rooted extra subtree” (a term we define below under
“Additional notation”) so that Tinit contains all the leaves
in S. It then modifies Tinit by repeatedly refining it to add
specific desired bipartitions, to produce an optimal Split
Fit (and optimal Robinson-Foulds) supertree (Fig. 3). The
bipartitions that are added are defined by a maximum
independent set in a bipartite “weighted incompatibility
graph” we compute.

Additional notation Let 2X denote the set of all bipar-
titions of X; any bipartition that splits a single leaf from
the remaining |X | − 1 leaves will be called “trivial” and
the others will be called “non-trivial”. Let C(T1,T2,X)
denote C(T1|X) ∪ C(T2|X) , and let Triv and NonTriv

Page 6 of 18Yu et al. Algorithms Mol Biol (2021) 16:12

denote the sets of trivial and non-trivial bipartitions in
C(T1,T2,X) , respectively. We refer to Ti|X , i = 1, 2 as
backbone trees (Fig. 2). Recall that we suppress degree-
two vertices when restricting a tree Ti to a subset X of the
leaves; hence, every edge e in Ti|X will correspond to an
edge or a path in T (see Fig. 1 for an example). We will let
P(e) denote the path associated to edge e ∈ Ti|X , and let
w(e) := |P(e)| (the number of edges in P(e)). Finally, for
π ∈ C(Ti|X) , we define ei(π) to be the edge that induces
π in Ti|X (Fig. 1).

The next concept we introduce is the set of extra sub-
trees, which are rooted subtrees of T1 and T2 , formed
by deleting X and all the edges and vertices on paths
between vertices in X (i.e., we delete Ti|X from Ti). Each
component in Ti − Ti|X is called an extra subtree of
Ti , and the extra subtree t is naturally seen as rooted at
the unique vertex r(t) that is adjacent to a vertex in Ti|X .
Thus, Extra(Ti) = {t | t is a component in Ti − Ti|X }.
Note that if X contains the leaves of Ti then there are no
extra subtrees associated to Ti for X.

We can now define the initial tree Tinit computed by
Exact-RFS-2: Tinit has a center node that is adjacent
to every x ∈ X and also to the root r(t) for every extra

subtree t ∈ Extra(T1) ∪ Extra(T2) . Note that Tinit has a
leaf for every element in S, and that Tinit|Si is a contrac-
tion of Ti , formed by collapsing all the edges in the back-
bone tree Ti|X.

We say that an extra subtree t is attached to edge
e ∈ E(Ti|X) if the root of t is adjacent to an internal node
of P(e), and we let T R(e) denote the set of such extra sub-
trees attached to edge e. Similarly, if π ∈ C(T1,T2,X) , we
let T R

∗(π) refer to the set of extra subtrees that attach to
edges in a backbone tree that induce π in either T1|X or
T2|X . For example, if both trees T1 and T2 contribute extra
subtrees to π , then T R

∗(π) :=
⋃

i∈[2] T R(ei(π)).

For any Q ⊆ X , we let BP i(Q) denote the set of bipar-
titions in C(Ti|X) that have one side being a strict sub-
set of Q, and we let T RS i(Q) denote the set of extra
subtrees associated with these bipartitions. In other
words, BP i(Q) := {[A|B] ∈ C(Ti|X) | A � Q or B � Q} ,
and T RS i(Q) :=

⋃
π∈BP i(Q) T R(ei(π)). Intui-

tively, T RS i(Q) denotes the set of extra subtrees
in Ti that are “on the side of Q”. Note that for any
π = [A|B] ∈ C(Ti|X) , BP i(A) ∪ BP i(B) is the set of
bipartitions in C(Ti|X) that are compatible with π .
Finally, let BP(Q) = BP1(Q) ∪ BP2(Q), and T RS(Q)

(a): T1

v1
v2 v3 v4

l1

l2

l3 l4 l5
l6

l7

a1 a2

a3 a4 a5

a6

e

(b): T2

l1

l2

l3l4
l5

l6

l7

b1

b2

b3

b4

b5 b6

e′

Fig. 1 T1 and T2 (depicted in (a) and (b), respectively) have an overlapping leaf set X = {l1, l2, . . . , l7} . Each of a1, . . . , a6 and b1, . . . , b6 can represent
a multi-leaf extra subtree. For e ∈ T1|X as shown, P(e) is the path from v1 to v4 , so w(e) = 3 . Using indices to represent the shared leaves, let
π = [12|34567] ; then e1(π) = e and e2(π) = e′ . T R(e) = {a1, a2} , T R(e′) = {b2} , so T R

∗(π) = {a1, a2, b2} . Let A = {1, 2, 3} , B = {4, 5, 6, 7} .
Ignoring the trivial bipartitions, we have BP(A) = {[12|34567]} and BP(B) = {[1234|567], [12345|67], [12346|57]} . T RS(A) = {a1, a2, b1, b2} and
T RS(B) = {a6, b4, b5, b6}

(a): T1|X

e1 e2 e3 e4

l1

l2 l6

l7

l3 l4 l5

(b): T2|X

e5 e6 e7 e8

l1

l2
l4 l3 l6

l5

l7

(c): incompatibility graph

π1

π2

π3

π4

π5

π6

π7

π8

Fig. 2 We show (a) T1|X , (b) T2|X , and (c) their incompatibility graph, based on the trees T1 and T2 in Fig. 1 (without the trivial bipartitions). Each πi is
the bipartition induced by ei , and the weights for π1, . . . ,π8 are 3, 4, 1, 1, 2, 2, 2, 3, in that order. We note that π1 and π5 are the same bipartition, but
they have different weights as they are induced by different edges; similarly for π3 and π7 . The maximum weight independent set in this graph has
all the isolated vertices (π1,π3,π5,π7) and also π2,π8 , and so has total weight 15

Page 7 of 18Yu et al. Algorithms Mol Biol (2021) 16:12

= T RS1(Q) ∪ T RS2(Q). We give an example for these
terms in Fig. 1.

The incompatibility graph of a set of trees, each on the
same set of leaves, has one vertex for each bipartition in
any tree (and note that bipartitions can appear more than
once) and edges between bipartitions if they are incom-
patible (see [32]). We compute a weighted incompat-
ibility graph for the pair of trees T1|X and T2|X , in which
the weight of the vertex corresponding to bipartition π

in �1 and the score contributed by bipartitions in �2 ;
thus, the split support score of T with respect to T1,T2 is
p1(T)+ p2(T).

As we will show, the two scores can be maximized
independently and we can use this observation to refine
Tinit so that it achieves the optimal total score.

Overview of Exact-RFS-2

Algorithm 1 Exact-RFS-2: Computing a Robinson-Foulds supertree of two trees
(see Figure 3)

Input: two binary trees T1, T2 with leaf sets S1 and S2 where S1 ∩ S2 = X �= ∅
Output: a binary supertree T on leaf set S = S1 ∪ S2 that maximizes the split support score

1: compute C(T1|X) and C(T2|X)
2: for each π = [A|B] ∈ C(T1, T2, X) do
3: for i ∈ [2] do
4: compute T R(ei(π)), w(ei(π))
5: compute BP(A), BP(B), T RS(A), T RS(B), and T R∗(π),
6: construct T as a star tree with leaf set X and center vertex v̂ and with the root of each t ∈ Extra(T1) ∪

Extra(T2) connected to v̂ by an edge � let Tinit = T
7: construct the weighted incompatibility graph G of T1|X and T2|X
8: compute the maximum weight independent set I∗ in G
9: let I be the set of bipartitions associated with vertices in I∗

10: for each π = [{a}|B] ∈ Triv do
11: detach all extra subtrees in T R∗(π) from v̂ and attach them onto (v̂, a) such that T R(e1(π)) are attached

first with their ordering matching their attachments on e1(π) and T R(e2(π)) are attached to the right of all
subtrees in T R(e1(π)) with the ordering of them also matching their attachments on e2(π)

� let T̃ = T after for loop
12: H(v̂) = NonTriv, set sv(π) = v̂ for all π ∈ NonTriv
13: for each π ∈ NonTriv ∩ I (in any order) do
14: T ← Refine(T, π,H, sv) � let T∗ = T after for loop
15: arbitrarily refine T to make it a binary tree
16: return T

appearing in tree Ti|X is w(ei(π)) , as defined previously.
Thus, if a bipartition is common to the two trees, it pro-
duces two vertices in the weighted incompatibility graph,
and each vertex has its own weight (Fig. 2).

We divide C = C(T1) ∪ C(T2) into two sets:
�1 = {[A|B] ∈ C | A ∩ X �= ∅ and B ∩ X �= ∅} , and
�2 = {[A|B] ∈ C | A ∩ X = ∅ or B ∩ X = ∅} . Intuitively,
�1 is the set of bipartitions from the input trees that are
induced by edges in the minimal subtree of T1 or T2 span-
ning X, and �2 are all the other input tree bipartitions.
We define p1(·) and p2(·) on trees T ∈ TS by:

Note that p1(T) and p2(T) decompose the split sup-
port score of T into the score contributed by bipartitions

p1(T) =
∑

i∈[2]

|C(T |Si) ∩ C(Ti) ∩�1|,

p2(T) =
∑

i∈[2]

|C(T |Si) ∩ C(Ti) ∩�2|.

Exact-RFS-2 (Algorithm 1) has four phases. In the
pre-processing phase (lines 1–5), it computes the weight
function w and the mappings T R, T R

∗,BP , and T RS
for use in latter parts of Algorithm 1 and Algorithm 2. In
the initial construction phase (line 6), it constructs a tree
Tinit (as described earlier), and we note that Tinit maxi-
mizes p2(·) score (Lemma 7). In the refinement phase
(lines 7–14), it refines Tinit so that it attains the maximum
p1(·) score, without changing the p2(·) score. In the last
phase (line 15), it arbitrarily refines T to make it binary.
The refinement phase begins with the construction of a
weighted incompatibility graph G of T1|X and T2|X (see
Fig. 2). It then finds a maximum weight independent set
of G that defines a set I ⊆ C(T1,T2,X) of compatible
bipartitions of X. Finally, it uses these bipartitions of X
in I to refine Tinit to achieve the optimal p1(·) score, by
repeatedly applying Algorithm 2 for each π ∈ I (and we
note that the order does not matter). See Fig. 3 for an
example of Exact-RFS-2 given two input source trees.

Page 8 of 18Yu et al. Algorithms Mol Biol (2021) 16:12

(a): Tinit: star with leaf set
X and all extra subtrees

attached to center

l1

l2

l3
l4 l5

l6

l7
a1
a2
a3
a4a5a6 b1 b2

b3
b4
b5
b6

(b): T̃ : after adding all Triv
to T |X

l1

l2

l3
l4 l5

l6

l7
a1
a2
a3
a4 a5 b2

b3
b4
b5
b6

b1 a6

(c): After adding
π2 = [123|4567]

va vb
l1

l2

l3
l4 l5

l6

l7

a1 a2 b2 a3 a4 a5 b3 b4 b5 b6

b1 a6

(d): After adding
π8 = [12346|57]

l1

l2

l3
l4

l5

l6

l7

a1 a2 b2 a3 a4 a5 b3 b4

b5 b6

b1

a6

(e): After adding
π1 = π5 = [12|34567]

l1

l2

l3 l4
l5

l6

l7

a1 a2 b2 a3 a4 a5 b3 b4

b5 b6

b1 a6

(f): After adding
π3 = π7 = [1234|567]

l1

l2

l3 l4
l5

l6

l7

a1 a2 b2 a3 a4 a5 b3 b4

b5 b6

b1 a6

Fig. 3 Algorithm 1 working on T1 and T2 from Fig. 1 as source trees; the indices of leaves in X = {l1, l2, . . . , l7} represent the leaves and the notation
of π1, . . . ,π8 is from Fig. 2. In (a)–(f), the p1(·) score of the trees are 14, 16, 20, 23, 27, 29, in that order. We explain how the algorithm obtains the tree
in c from T̃ by adding π2 = [123|4567] to the backbone of T̃ . Let A = {l1, l2, l3} and B = {l4, l5, l6, l7} . The center vertex c of T̃ is split into two vertices
va , vb with an edge between them. Then all neighbors of c between c and A are made adjacent to va while the neighbors between c and B are made
adjacent to vb . All neighbors of c which are roots of extra subtrees are moved around such that all extra subtrees in T R

∗(π2) are attached onto
(va , vb) ; all extra subtrees in T RS(A) = {a1, a2, b2} are attached to va and all extra subtrees in T RS(B) = {b4, b5, b6} are attached to vb . We note
that in this step, b3 can attach to either va or vb because it is not in T RS(A) or T RS(B) . However, when obtaining the tree in d from c, b3 can only
attach to the left side because for A′ = {l1, l2, l3, l4, l6} , [124|3567] ∈ BP(A′) and thus b3 ∈ T RS(A′)

Page 9 of 18Yu et al. Algorithms Mol Biol (2021) 16:12

Algorithm 2 Refine
Input: a tree T on leaf set S, a nontrivial bipartition π = [A|B] of X, two data structures H and sv
Output: a tree T ′ which is a refinement of T such that for both i = 1, 2, C(T ′|Si

) = C(T |Si
) ∪ {π′ ∈

C(Ti) | π′|X = π}
1: v ← sv(π)
2: T ′ ← T + va + vb + (va, vb)
3: compute NA := {u ∈ NT (v) | ∃a ∈ A s.t. u can reach a in T − v} and NB := {u ∈ NT (v) | ∃b ∈ B

s.t. u can reach b in T − v}.
4: for each u ∈ NA ∪ NB do
5: if u ∈ NA then connect u to va
6: else connect u to vb
7: detach all extra subtrees in T R∗(π) from v and attach them onto (va, vb) such that T R(e1(π)) are attached

first with their ordering matching their attachments on e1(π) and T R(e2(π)) are attached to the right of all
subtrees in T R(e1(π)) with the ordering of them also matching their attachments on e2(π)

8: for each t ∈ T RS(A) do
9: if t is attached to v, detach it and attach to va

10: for each t ∈ T RS(B) do
11: if t is attached to v, detach it and attach to vb

12: for each remaining extra subtree attached to v do
13: detach it from v and attach it to either va or vb
14: H(va) ← ∅, H(vb) ← ∅
15: for each π′ ∈ H(v) do
16: if π′ ∈ BP(A) then
17: sv(π′) = va, H(va) ← H(va) ∪ {π′}
18: else if π′ ∈ BP(B) then
19: sv(π′) = vb, H(vb) ← H(vb) ∪ {π′}
20: else
21: discard π′

22: return T ′ = T ′ − v

• those that root extra subtrees in T RS(B) are made
adjacent to vb

• the remaining vertices can be made adjacent to either
va or vb

Algorithms 1 and 2 also use two data structures
(functions) H and sv: (1) For a given node v ∈ V (T) ,
H(v) ⊆ C(T1,T2,X) is the set of bipartitions of X that
can be added to T |X by refining T |X at v, and (2) Given
π ∈ C(T1,T2,X) , sv(π) = v means ∃T ′ , a refinement of T
at v, so that C(T ′|X) = C(T |X) ∪ {π}.

Formal proofs We start the formal theory and proofs
with a natural relationship between edges in restricted
trees and restricted bipartitions.

Lemma 6 Let T ∈ TS and let π = [A|B] ∈ C(T) be a
bipartition induced by e ∈ E(T) . Let R ⊆ S .

1 If R ∩ A = ∅ or R ∩ B = ∅ , then e /∈ P(e′) for any
e′ ∈ E(T |R).

2 If R ∩ A �= ∅ and R ∩ B �= ∅ , then for any
π ′ ∈ C(T |R) induced by e′ ∈ E(T |R) , π |R = π ′ if and
only if e ∈ P(e′).

Algorithm 2 refines the given tree T on leaf set S
with bipartitions on X from C(T1,T2,X) \ C(T |X) .
Given bipartition π = [A|B] on X, Algo-
rithm 2 produces a refinement T ′ of T such that
C(T ′|Si) = C(T |Si) ∪ {π ′ ∈ C(Ti) | π

′|X = π} for both
i = 1, 2 . To do this, we first find the unique vertex v such
that no component of T − v has leaves from both A and
B. We create two new vertices va and vb with an edge
between them. We divide the neighbor set of v into three
sets: NA is the set of neighbors that split v from leaves in
A, NB is the set of neighbors that split v from leaves in
B, and Nother contains the remaining neighbors. Then,
we make vertices in NA adjacent to va and vertices in NB
adjacent to vb . We note that Nother = ∅ if X = S and thus
there are no extra subtrees. In the case where X = S ,
Nother contains the roots of the extra subtrees adjacent to
v and we handle them in four different cases to make T ′
include the desired bipartitions:

• those vertices that root extra subtrees in T R
∗(π) are

moved onto the edge (va, vb) (by subdividing the edge
to create new vertices, and then making these verti-
ces adjacent to the new vertices)

• those vertices that root extra subtrees in T RS(A) are
made adjacent to va

Page 10 of 18Yu et al. Algorithms Mol Biol (2021) 16:12

Proof Let TR be the minimal subtree of T that spans R.
It follows that the leaf set of TR is R and T |R is obtained
from TR by suppressing all degree-two vertices.

(Proof of 1) We first claim that if R ∩ A = ∅ or R ∩ B = ∅ ,
then e /∈ E(TR) . Assume by way of contradiction that
e ∈ E(TR) . There are then two non-empty components in
TR − e . Since e induces [A|B] in T, the two components in
TR − e have leaf sets R ∩ A and R ∩ B , which contradicts
the assumption that one intersection is empty. Therefore,
e /∈ E(TR) . Furthermore, every edge e′ ∈ E(T |R) comes
from a path in TR . Since e /∈ E(TR) , then e /∈ P(e′) for any
e′ ∈ E(T |R).

(Proof of 2) If R ∩ A �= ∅ and R ∩ B �= ∅ , then e is required
to connect R ∩ A with R ∩ B in T (since e connects A with
B). Thus, e is in any subtree of T spanning R; in particular,
e ∈ E(TR) . Fix any π ′ ∈ C(T |R) induced by e′ ∈ E(T |R) .
Note that the bipartition induced by P(e′) in TR equals the
bipartition induced by e′ in T |R , i.e., π ′ . For one direction
of the proof, suppose e ∈ P(e′) . Because internal vertices
of P(e′) in TR are not adjacent to any leaves, the biparti-
tion induced by the path P(e′) in TR equals the bipartition
induced by any of its edges (and hence, in particular, by
e). Since e induces [A|B] in T, it induces [R ∩ A|R ∩ B] in
TR . Then π ′ = [R ∩ A|R ∩ B] = π |R . On the other hand,
if π |R = π ′ , then π ′ induces [R ∩ A|R ∩ B] in T |R . It fol-
lows that P(e′) also induces [R ∩ A|R ∩ B] in TR . Suppose
e ∈ P(e∗) for some edge e∗ ∈ E(T |R) such that e∗ �= e′ .
Then, by the previous argument, πe∗ = [R ∩ A|R ∩ B] ,
which contradicts the assumption that e∗ and e′ are differ-
ent edges. Therefore, e ∈ P(e′).

�

Lemma 7 formally states that the tree Tinit we build in
line 6 of Exact-RFS-2 (Algorithm 1) maximizes the p2(·)
score.

Lemma 7 For any tree T ∈ TS , p2(T) ≤ |�2|. In par-
ticular, let Tinit be the tree defined in line 6 of Algorithm 1.
Then, p2(Tinit) = |�2|.

Proof Since T1 and T2 have different leaf sets, C(T1)
and C(T2) are disjoint. Since �2 ⊆ C(T1) ∪ C(T2) ,
C(T1) ∩�2 and C(T2) ∩�2 form a disjoint

decomposition of �2 . By definition of p2(·) , for any tree
T of leaf set S,

Fix any π = [A|B] ∈ �2 . Suppose π ∈ C(Ti) and is
induced by e ∈ E(Ti) for some i ∈ [2] . By definition of �2 ,
either A ∩ X = ∅ or B ∩ X = ∅ . By Lemma 6, e /∈ P(e′)
for any backbone edge e′ ∈ E(Ti|X) . Therefore, either e
is an internal edge in an extra subtree in Extra(Ti) , or e
connects one extra subtree in Extra(Ti) to the backbone
tree. In either case, the construction of Tinit ensures
that e is also present in Tinit|Si and thus π ∈ C(Tinit|Si) .
Therefore, each bipartition π ∈ �2 contributes 1 to
|C(Tinit|Si) ∩ C(Ti) ∩�2| for exactly one index i ∈ [2] and
thus it contributes 1 to p2(Tinit) . Hence, p2(Tinit) = |�2| .
�

We define the function w∗ : 2X → N≥0 as follows:

For any set F of bipartitions, we let w∗(F) =
∑

π∈F w
∗(π).

Lemma 8 shows that w∗(π) represents the maximum
potential increase in p1(·) as a result of adding biparti-
tion π to T |X . The proof of Lemma 8 follows the idea that
for any bipartition π of X, there are at most w∗(π) edges
in either T1 or T2 whose induced bipartitions become π
when restricted to X. Therefore, by only adding π to T |X ,
at most w∗(π) more bipartitions get included in C(T |S1)
or C(T |S2) so that they contribute to the increase of
p1(T).

Lemma 8 Let π = [A|B] be a bipartition of X where
X ⊆ S . Let T ∈ TS be any tree with leaf set S such that
π /∈ C(T |X) but π is compatible with C(T |X) . Let T ′ be a
refinement of T such that for all π ′ ∈ C(T ′|Si)\C(T |Si) for
some i ∈ [2] , π ′|X = π . Then, p1(T ′)− p1(T) ≤ w∗(π).

Proof By definition of p1(·),

p2(T) =
∑

i∈[2]

|C(T |Si) ∩ C(Ti) ∩�2|

≤
∑

i∈[2]

|C(Ti) ∩�2| = |�2|.

w∗(π) =

0 if π �∈ C(T1,T2,X),
w(e1(π)) if π ∈ C(T1|X) \ C(T2|X),
w(e2(π)) if π ∈ C(T2|X) \ C(T1|X),�

i∈[2] w(ei(π)) else.

Page 11 of 18Yu et al. Algorithms Mol Biol (2021) 16:12

Therefore, we only need to prove that

We perform a case analysis, as follows: Case (1):
π /∈ C(T1,T2,X) , Case (2): π ∈ C(T1|X)�C(T2|X) , and
Case (3): π ∈ C(T1|X) ∩ C(T2|X).

Case 1): Let π /∈ C(T1,T2,X) . We recall that
w∗(π) = 0 . Assume for contradiction that there exists
a bipartition π ′ ∈ (C(T ′|Si)\C(T |Si)) ∩ C(Ti) ∩�1
for some i ∈ [2] . Since π /∈ C(T1,T2,X) and π ′|X = π ,
π ′ /∈ C(Ti) for any i ∈ [2] . This contradicts the fact that
π ′ ∈ C(Ti) for some i ∈ [2] . Therefore, the assump-
tion that there exists such a bipartition π ′ is wrong and ∑

i∈[2] |(C(T
′|Si)\C(T |Si)) ∩ C(Ti) ∩�1| = 0 ≤ w∗(π).

Case 2): Let π ∈ C(T1|X)�C(T2|X) . We can assume
without loss of generality that π ∈ C(T1|X)\
C(T2|X) since the other possibility is sym-
metrical. Then, we have w∗(π) = w(e1(π)) . Let
π ′ ∈ (C(T ′|Si)\C(T |Si)) ∩ C(Ti) ∩�1 for some i ∈ [2] .
Then we have π ′|X = π by assumption of the lemma.
Since π /∈ C(T2|X) , by Lemma 6, we have π ′ /∈ C(T2) and
thus π ′ ∈ C(T1) . By Lemma 6, the edge that induces π ′ in
T1 is an edge on P(e1(π)) . Since there are w(e1(π)) edges
on P(e1(π)) , there are at most w(e1(π)) distinct biparti-
tions π ′ , proving the claim.

Case 3): Let π ∈ C(T1|X) ∩ C(T2|X) . Then we
have w∗(π) = w(e1(π))+ w(e2(π)) . Fix any
π ′ ∈ (C(T ′|Si)\C(T |Si)) ∩ C(Ti) ∩�1 for any
i ∈ [2] . Since π ′ ∈ C(Ti) and π ′|X = π ∈ C(Ti|X) , by
Lemma 6, the edge e′ that induces π ′ is an edge on
P(ei(π)) . Since there are w(ei(π)) edges on P(ei(π)) ,
there are at most w(ei(π)) distinct bipartitions π ′ in
(C(T ′|Si)\C(T |Si)) ∩ C(Ti) ∩�1 . Therefore, for any
i ∈ [2],

Taking sum of the inequalities over i ∈ [2] , we have

p1(T
′)− p1(T) =

∑

i∈[2]

|C(T ′|Si) ∩ C(Ti) ∩�1|

−
∑

i∈[2]

|C(T |Si) ∩ C(Ti) ∩�1|

=
∑

i∈[2]

|(C(T ′|Si)\C(T |Si)) ∩ C(Ti) ∩�1|.

∑

i∈[2]

|(C(T ′|Si)\C(T |Si)) ∩ C(Ti) ∩�1| ≤ w∗(π).

|(C(T ′|Si)\C(T |Si)) ∩ C(Ti) ∩�1| ≤ w(ei(π)).

�

Lemma 9 For any compatible set F of bipartitions on X
where X ⊆ S , let T ∈ TS be any tree with leaf set S such
that C(T |X) = F . Then p1(T) ≤ w∗(F).

The proof of Lemma 9 is straightforward, and uses
Lemma 8 repeatedly by adding the compatible biparti-
tions to the tree in any selected order.

Proposition 1 Let T̃ be the tree constructed after line
11 of Algorithm 1, then p1(T̃) = w∗(Triv).

The proof naturally follows by construction (Line 8 of
Algorithm 1), and implies that the algorithm adds the
trivial bipartitions of X (which are all in I) to T |X so that
p1(T) reaches the full potential of adding those trivial
bipartitions.

Lemma 10 will show that the auxiliary data structures
of Algorithm 1 and 2 are maintaining the desired infor-
mation and that the algorithm can split the vertex and
perform the detaching and reattaching of the extra sub-
trees correctly. These invariants are important to the
proof of Lemma 11.

Lemma 10 At any stage of the Algorithm 1 after line
12, we have the following invariants of T and the auxil-
iary data structures H and sv:

1 For any bipartition π ∈ NonTriv , sv(π) is the vertex
to split to add π to C(T |X) . For any internal vertex v,
the set of bipartitions H(v) ⊆ NonTriv is the set of
bipartitions which can be added to C(T |X) by split-
ting v.

2 For any π = [A|B] ∈ H(v) , for all t ∈ T R
∗(π) , the

root of t is a neighbor of v.
3 For any π = [A|B] ∈ C(T |X) induced by edge e, let

Comp(A) and Comp(B) be the components contain-
ing the leaves of A and B in T |X − e , respectively.
Then,

(a) all t ∈ T RS(A) are attached to an edge or a
vertex in Comp(A)

∑

i∈[2]

|(C(T ′|Si)\C(T |Si)) ∩ C(Ti) ∩�1|

≤ w(e1(π))+ w(e2(π)) = w
∗(π).

Page 12 of 18Yu et al. Algorithms Mol Biol (2021) 16:12

(b) all t ∈ T RS(B) are attached to an edge or a
vertex in Comp(B).

Proof We prove the invariants by induction on the
number of refinement steps k performed on T. When
k = 0 , we have T = T̃ and T |X is a star with leaf set X and
center vertex v̂ . Thus all bipartitions in NonTriv are com-
patible with C(T |X) . For any π ∈ NonTriv , the center
vertex v̂ is the vertex to refine in T |X in order to add π to
C(T |X) . Therefore, it is correct that sv(π) = v̂ for every
π ∈ NonTriv and H(v̂) = NonTriv . The roots of all extra
subtrees in T R

∗(π) for any π ∈ NonTriv are all neighbors
of v̂ , so invariant 2 also holds. We note that at this point,
C(T |X) = Triv . For any trivial bipartition π ∈ C(T |X) ,
let π = [{a}|B] . It is easy to see that since a is a leaf,
T RS i({a}) = ∅ and T RS i(B) = Extra(Ti)\T R(ei(π))
for both i ∈ [2] . Then T RS({a}) = ∅ and
T RS(B) = (Extra(T1) ∪ Extra(T2))\T R

∗(π) . Therefore,
invariant 3(a) trivially holds as T RS({a}) = ∅.

Since Comp({a}) is the vertex a, Comp(B) is the rest of the
star of T |X excluding a and the edge (a, ṽ) between a and
center vertex ṽ . Since T RS(B) does not include T R

∗(π)
(which are the only extra subtrees attached to edge (a, ṽ)),
all extra subtrees in T RS(B) are attached to an edge or
a vertex in Comp(B), and so invariant 3(b) holds. This
proves invariant 3 and thus concludes our proof for the
base case

Assume that all invariants hold after any k ′ < k steps
of refinement. Let π = [A|B] be the bipartition to add
in the kth refinement step. We will show that after the
kth refinement step, i.e., one execution of Algorithm 2,
the invariants still hold for the resulting tree T ′ . Since
v = sv(π) at the beginning of Algorithm 2, π can be
added to C(T |X) by splitting v. We can divide the set of
neighbors of v in T |X into NA ∪ NB such that NA (or NB
respectively) consists of neighbors of v that can reach
vertices of A (or B) but not B (or A) in T |X − v . Then, the
algorithm correctly finds NA and NB and connects NA to
va and NB to vb so the new edge (va, vb) induces the bipar-
tition π = [A|B] in T |X . For any vertex u other than v
and any bipartition π ′ ∈ H(u) , the invariants 1 and 2 still
hold after Algorithm 2 as we do not change H(u), sv(π ′) ,
or the extra subtrees attached to u. For any bipartition
π ′ ∈ H(v) such that π ′ �= π , if π ′ is not compatible with
π , then it cannot be added to C(T ′|X) since π is added, so
the algorithm correctly discards π ′ and does not add it to
H(va) or H(vb) . If π ′ is compatible with π , we will show
that the invariants 1 and 2 still hold for π ′.

Fix any π ′ = [A′|B′] ∈ H(v) s.t. π ′ �= π and π ′ is compat-
ible with π . One of A′ and B′ must be a subset of one side

of [A|B]. Assume without loss of generality that A′ ⊆ A
(other cases are symmetric), so that B ⊆ B′ . In this case,
Algorithm 2 adds π ′ to H(va) and sets sv(π) = va . We
will show that this step preserves the invariants. Since
π ′ ∈ H(v) , before adding π we also could have split v to
add π ′ to C(T |X) . Then there exists a division of neighbors
of v in T |X into NA′ and NB′ such that NA′ (or NB′ , respec-
tively) consists of neighbors of v that can reach vertices of
A′ (or B′) in T |X − v . It is easy to see that NA′ ⊆ NA and
NB ⊆ NB′ . Since NA ∪ NB = NA′ ∪ NB′ = NT |X (v) , we
have NA\NA′ = NB′ \NB . Since the algorithm connects
all vertices in NB are to vb in T ′ while vertices in NB′ \NB
are connected to va , NB′ \NB ∪ {vb} is the set of all neigh-
bors of va that can reach leaves of B′ in T ′|X − va . Then
NT ′ |X (va) = NA ∪ {vb} = NA′ ∪ (NA\NA′ ∪ {vb}) = NA′ ∪ (NB′ \NB ∪ vb)
implies that NA′ and NB′ \NB ∪ {vb} gives a division of
neighbors of va such that NA′ are the neighbors that can
reach leaves of A′ in T ′|X − va and NB′ \NB ∪ {vb} are the
neighbors that can reach leaves of B′ in T ′|X − va . Such
a division proves that va is the correct vertex to refine in
T ′|X to add π ′ to C(T ′|X) after the kth refinement. There-
fore, invariant 1 holds with respect to π ′ . Since π ′ ∈ H(v)
before adding π , we also have for all t ∈ T R

∗(π ′) , the
root of t is a neighbor of v before adding π . Since A′ ⊆ A ,
π ′ ∈ BP(A) and thus T R

∗(π) ⊆ T RS(A) . Then, Algo-
rithm 2 correctly attaches roots of all trees in T R

∗(π ′) to
va . Therefore invariant 2 holds for π ′.

We have shown that invariants 1 and 2 hold for the tree
T ′ with the auxiliary data structures H and sv. Next, we
show that invariant 3 holds. Since π is the only biparti-
tion in C(T ′|X) that is not in C(T |X) , we only need to
show two things: i) for any π ′ ∈ C(T |X) , the invariant
3 still holds, ii) invariant 3 holds for π . We first show i).
Fix π ′ = [A′|B′] ∈ C(T |X) . Since π is compatible with π ′ ,
one of A′ and B′ must be a subset of one of A and B. We
assume without loss of generality that A′ ⊆ A . Therefore,
B ⊆ B′ . Let Comp(A′) and Comp(B′) be the components
containing the leaves of A′ and B′ in T |X − e′ , where
e′ induces π ′ . Since Comp(A′) is unchanged after the
refinement, invariant 3(a) is trivially true. Since B ⊆ B′ ,
Comp(B) is a subgraph of Comp(B′) and v ∈ Comp(B′) .
During the refinement, v is split into va and vb , both of
which are still part of Comp(B′) . Since all t ∈ T RS(B)
are attached to an edge or a vertex in Comp(B′) before
refinement and any extra subtree attached to v before is
now on either va , or vb , or (va, vb) , all of which are part of
Comp(B′) , they are all still attached to an edge or a vertex
in Comp(B′) . Thus, the invariant 3 holds with respect to
π ′.

For ii), we show invariant 3(a) holds for π and 3(b) follows
the same argument. For any extra subtree in t ∈ T RS(A) ,

Page 13 of 18Yu et al. Algorithms Mol Biol (2021) 16:12

if it was attached to v before refinement, then it is now
attached to va , which is in Comp(A). If it was not attached
to v before refinement, then let NB be as defined from
Algorithm 2. For any bipartition π ′ = [A′|B′] induced by
(v, u) where u ∈ NB . We know that (v,u) ∈ Comp(B) and
thus either A′ ⊆ B or B′ ⊆ B . Assume without loss of gen-
erality that B′ ⊆ B . Then we have BP(B′) ∪ {π ′} ⊆ BP(B)
and thus T RS(B′) ∪ T R

∗(π ′) ⊆ T RS(B) . We note that
T RS(A) and T RS(B) are disjoint. Since t ∈ T RS(A) ,
we know t /∈ T RS(B) , then t /∈ T RS(B′) ∪ T RS

∗(π ′) .
Let Comp(A′) and Comp(B′) be the components contain-
ing the leaves of A′ and B′ in T |X − (v,u) , respectively.
Then Comp(A′) contains v and Comp(B′) contains u.
Since t /∈ T R

∗(π ′) , it cannot be attached to (v, u). Also
by the invariant 3 with respect to π ′ , t is not attached
to any vertex or edge in Comp(B′) . Since this is true for
every neighbor of v in NB , t /∈ Comp(B) as Comp(B) con-
sists of only edges connecting v to a neighbor u ∈ NB and
the component containing u. Since t was not attached
to v before the refinement, t is not attached to (va, vb) or
Comp(B) after the refinement, then t must be attached to
some edge or vertex in Comp(A). This proves invariant
3(a) for π and thus the inductive proof. �

Lemma 11 Let T be a supertree computed within Algo-
rithm 1 at line 14 immediately before a refinement step.
Let π = [A|B] ∈ NonTriv ∩ I . Let T ′ be a refinement of
T obtained from running Algorithm 2 with supertree T,
bipartition π , and the auxiliary data structures H and sv.
Then, p1(T ′)− p1(T) = w∗(π).

The idea for the proof of Lemma 11 is that for any non-
trivial bipartition π ∈ I of X to be added to T |X , Algo-
rithm 2 is able to split the vertex correctly and move
extra subtrees around in a way such that each biparti-
tion in T1 or T2 that is induced by an edge in P(e1(π)) or
P(e2(π)) , which is not in T |S1 or T |S2 before the refine-
ment, becomes present in T |S1 or T |S2 after the refine-
ment. Since there are exactly w∗(π) such bipartitions,
they increase p1(·) by w∗(π) . Now we give the formal
proof.

Proof Since I corresponds to an independent set in
the incompatibility graph G, all bipartitions in I are
compatible. Since C(T |X) ⊆ Triv ∪ (NonTriv ∩ I) = I ,
π ∈ NonTriv ∩ I must be compatible with C(T |X) , then
there is a vertex to split to add π to C(T |X) . By invariant
1 of Lemma 10, v = sv(π) is the vertex to split to add π to
T |X and thus Algorithm 2 correctly splits v into va and vb
and connects them to appropriate neighbors such that in
T ′|X , (va, vb) induces π.

We abbreviate e1(π) and e2(π) by e1 and e2 . We num-
ber the extra subtrees attached to e1 as t1, t2, . . . , tp ,
where p = w(e1)− 1 and t1 is the closest to A in T1 .
Similarly, we number the extra subtrees attached to e2
as t ′1, t

′
2, . . . , t

′
q , where q = w(e2)− 1 and t ′1 is the clos-

est to A in T2 . For any set T of trees, let L(T) denote the
union of the leaf set of trees in T . We note that if ei exists,
Extra(Ti) = T RS i(A) ∪ T RS i(B) ∪ T R(ei) . Thus,
A ∪ L(T RS i(A)) ∪ L(T R(ei)) ∪ L(T RS i(B)) ∪ B = Si
for i ∈ [2] . For each k ∈ [w(e1)] , we define

and for each k ∈ [w(e2)] , we define

We know that for each k ∈ [w(e1)],

Thus, for any k ∈ [w(e1)] , πk is the bipartition induced
by the kth edge on P(e1) in T1 , where the edges are num-
bered from the side of A. Therefore, πk ∈ C(T1) for any
k ∈ [w(e1)] . Similarly, π ′

k ∈ C(T2) for any k ∈ [w(e2)].

Since for any k ∈ [w(e1)] , Ak ∩ X = A �= ∅ and
(S1\Ak) ∩ X = B �= ∅ , we have πk |X = π and
πk ∈ �1 . Similarly, for each k ∈ [w(e2)] , π ′

k ∈ �1
and π ′

k |X = π . We also know that since π /∈ C(T |X) ,
by Lemma 6, πk /∈ C(T |S1) for any k ∈ [w(e1)] and
π ′
k /∈ C(T |S2) for any k ∈ [w(e2)] . We claim that

πk ∈ C(T ′|S1) for all k ∈ [w(e1)] and π ′
k ∈ C(T ′|S2) for

all k ∈ [w(e2)] . Then assuming the claim is true, we have
|C(T ′|S1) ∩ C(T1) ∩�1| − |C(T |S1) ∩ C(T1) ∩�1| = w(e1)
and |C(T ′|S2) ∩ C(T2) ∩�1| − |C(T |S2) ∩ C(T2) ∩�1| = w(e2) ,
and thus p1(T ′)− p1(T) = w(e1)+ w(e2) = w∗(π).

Now we only need to prove the claim. Fix k ∈ [w(e1)] , we
will show that πk ∈ C(T ′|S1) . The claim of π ′

k ∈ C(T ′|S2)
for any k ∈ [w(e2)] follows by symmetry. By invariant 2
of Lemma 10, we know that all extra subtrees of T R(e1)
were attached to v at the beginning of Algorithm 2 and
thus the algorithm attaches them all onto (va, vb) in
the order of t1, t2, . . . , tp , such that t1 is closest to A.
Let the attaching vertex of ti onto (va, vb) be ui for any
i ∈ [w(e1)] . Then we note P((va, vb)) is the path from va
to u1,u2, . . . ,up and then to vb . For any t ∈ T RS1(A) , by
invariant 3 of Lemma 10, t is attached to Comp(A), the

Ak :=

k−1⋃

i=1

L(ti) ∪ L(T RS1(A)) ∪ A, πk := [Ak |S1\Ak],

A′
k :=

k−1⋃

i=1

L(t ′i) ∪ L(T RS2(A)) ∪ A, π ′
k := [A′

k |S2\A
′
k].

S1\Ak =

p⋃

i=k

L(ti) ∪ L(T RS1(B)) ∪ B.

Page 14 of 18Yu et al. Algorithms Mol Biol (2021) 16:12

component containing A in T ′|X − (va, vb) . Therefore,
if we delete any edge of P((va, vb)) from T ′ , t is in the
same component as A. Similarly, for any t ∈ T RS1(B) ,
t is in the same component as B if we delete any
edge of P((va, vb)) from T. In particular, consider
T ′|S1 − (uk−1,uk) . The component containing uk−1 and
A contains all of T RS1(A) and {ti | i ∈ [k − 1]} , thus the
leafset of that component is

Therefore, the edge (uk−1,uk) induces the bipartition
[Ak |S1\Ak] in T ′|S1 . Hence, πk ∈ C(T ′|S1) as desired. �

Proposition 2 Let G be the weighted incompatibility
graph on T1|X and T2|X , and let I be the set of biparti-
tions associated with vertices in I∗ , which is a maximum
weight independent set of G. Let F be any compatible
subset of C(T1,T2,X) . Then w∗(I) ≥ w∗(F).

Proof We extend the weight function of vertices in
G and let weight(U) denote the total weight of any
set U of vertices of G. For any compatible subset of
bipartitions F ⊆ C(T1,T2,X) , let V(F) be the set of
vertices of G associated with the bipartitions in F.
We first claim that w∗(F) = weight(V (F)) . For each
π ∈ C(T1|X) ∩ C(T2|X) , there are two vertices associated
with it in G with a total weight of w(e1(π))+ w(e2(π)) ,
which is exactly w∗(π) . For each π ∈ C(Ti|X)\C(Tj|X)
for i, j ∈ [2] and i = j , let vπ be the only vertex for π
in G, then weight(vπ) = w(ei(π)) = w∗(π) . Since
C(T1,T2,X) = (C(T1|X) ∩ C(T2|X) ∪ (C(T1|X)�C(T2|X)) ,
we have shown that the w∗(π) = weight(V ({π}))
for any π ∈ C(T1,T2,X) . Then taking the sum over
all π ∈ F , we have w∗(F) = weight(V (F)) . Since
V (I) = I∗ , we have w∗(I) = weight(V (I)) = weight(I∗) .
Fix any compatible subset F of C(T1,T2,X) . Let
F ′ = F\(C(T1|X) ∩ C(T2|X)) . Then we have

Since F is compatible, F ′ ∪ (C(T1|X) ∩ C(T2|X)) is also
compatible, and thus V (F ′ ∪ (C(T1|X) ∩ C(T2|X)))
is an independent set in G. Therefore,
weight(V (F ′ ∪ (C(T1|X) ∩ C(T2|X)))) ≤ weight(I∗) ,
since I∗ is a maximum weight inde-
pendent set in G. We conclude that
w
∗(F) ≤ weight(V (F ′ ∪ (C(T1|X) ∩ C(T2|X))))

≤ weight(I∗) = w
∗(I) . �

A ∪ L(T RS1(A)) ∪

k−1⋃

i=1

L(ti) = Ak .

w∗(F) =w∗(F ′)+ w∗(F ∩ C(T1|X) ∩ C(T2|X))

≤w∗(F ′)+ w∗(C(T1|X) ∩ C(T2|X))

=w∗(F ′ ∪ (C(T1|X) ∩ C(T2|X)))

=weight(V (F ′ ∪ (C(T1|X) ∩ C(T2|X)))).

We now restate and prove Theorem 1:
Theorem 1 Let A = {T1,T2} with Si the leaf set of Ti

(i = 1, 2) and X := S1 ∩ S2 . The problems RFS-2-B(A)
and SFS-2-B(A) can be solved in O(n2|X |) time, where
n := max{|S1|, |S2|}.

Proof First we claim that p1(T ∗) ≥ p1(T) for any tree
T ∈ TS , where T ∗ is defined as from line 14 of Algo-
rithm 1. Fix arbitrary T ∈ TS and let F = C(T |X) . Then by
Lemma 9, p1(T) ≤ w∗(F) . We know that w∗(π) = 0 for
any π /∈ C(T1,T2,X) , so w∗(F) = w∗(F ∩ C(T1,T2,X))
and thus p1(T) ≤ w∗(F ∩ C(T1,T2,X)) . Since
F ∩ C(T1,T2,X) is a compatible subset of
C(T1,T2,X) , we have w∗(F ∩ C(T1,T2,X)) ≤ w∗(I)
by Proposition 2. Then p1(T) ≤ w∗(I) . Since
Triv ⊆ C(T1|X) ∩ C(T2|X) ⊆ I , we have
I = (NonTriv ∩ I) ∪ (Triv ∩ I) = (NonTriv ∩ I) ∪ Triv.
Therefore, by Proposition 1 and Lemma 11, we have

Therefore, p1(T ∗) = w∗(I) ≥ p1(T).

From Lemma 7 and the fact that a refinement of a tree
never decreases p1(·) and p2(·) , we also know that
p2(T

∗) ≥ p2(Tinit) ≥ p2(T) for any tree T ∈ TS . Since for
any T ∈ TS , SF(T ,A) = p1(T)+ p2(T) , T ∗ achieves the
maximum split support score with respect to A among
all trees in TS . Thus, T ∗ is a solution to Relax—SFS-2-B
(Corollary 1). If T ∗ is not binary, Algorithm 1 arbitrarily
resolves every high degree node in T ∗ until it is a binary
tree and then returns a tree that achieves the maximum
split support score among all binary trees of leaf set S.

We give the running time analysis for Algorithm 1 to
complete the proof of Theorem 1. First we analyze the
running time of Algorithm 2, i.e., one refinement step.
Dividing the neighbors of v and connecting them to va
and vb appropriately in lines 3− 6 take O(|X |2) time. We
can do a depth-first-search in T |X − v from every neigh-
bor u of v and check in O(|X|) time if any newly discov-
ered vertex is in A or B and connect u to va or vb accord-
ingly. Moving extra subtrees in T R

∗(π) in line 7 takes
O(n) time as Ti has at most n leafs and thus there are O(n)
extra subtrees in total, so |T R

∗(π)| is O(n). Lines 8− 13
take O(n) time as the mappings are pre-calculated and
there are again O(n) extra subtrees to be moved. Updat-
ing the data structures in lines 15− 21 takes O(|X |2) time
as there are at most O(|X|) bipartitions in H(v) and each
of the containment conditions is checkable in O(|X|)

p1(T
∗) = p1(T̃)+

∑

π∈NonTriv∩I

w
∗(π)

= w
∗(Triv)+ w

∗(NonTriv ∩ I)

= w
∗(I).

Page 15 of 18Yu et al. Algorithms Mol Biol (2021) 16:12

time by checking whether one side of π ′ is a subset of one
side of π (assuming that labels of leaves in both sides of
the bipartitions are stored as pre-processed sorted lists
instead of sets). The rest of the algorithm takes constant
time. Overall, Algorithm 2 runs in O(n+ |X |2) time.

Next we analyze the running time for Algorithm 1, i.e.,
Exact-RFS-2. Computing C(T1|X) and C(T2|X) in line
1 takes O(n2 + n|X |2) time as we need to compute πe|X
for all e ∈ E(T1) ∪ E(T2) and then take the union. There
are O(n) edges in E(T1) ∪ E(T2) . Computing πe|X for
each edge takes O(n) time by running DFS on Ti − e to
obtain πe and then taking intersection of both sides of
πe with X, separately. Together it takes O(n2) time. Tak-
ing union of the bipartitions takes O(n|X |2) time as there
are O(n) bipartitions to add and whenever we add a new
bipartition, it needs to be compared to the O(|X|) dis-
tinct existing ones in the set. Since all bipartitions have
size O(|X|), the comparison can be done in O(|X|) time
(if each of them is represented by two sorted lists instead
of two sets). In this step, we can always maintain a set of
edges in Ti for each bipartition π ∈ C(T1,T2,X) such that
πe|X = π.

Lines 2− 5 compute the mappings and values we need in
latter part of the algorithm. We analyze the running time
for each π = [A|B] ∈ C(T1,T2,X) first. We can compute
the path P(ei(π)) by assembling the set of edges associ-
ated with π in Ti from the last step into a path. This takes
O(n2) time by counting the times any vertex appear as an
end vertex in the set of edges. The two vertices appear-
ing once are the end vertices of the path while those
appearing twice are internal vertices of the path. Then
w(ei(π)) = |P(ei(π))| can be found in constant time.
Then we can find T R(ei(π)) by DFS in Ti − v for every
internal node v of P(ei(π)) , starting the search from the
unique neighbor u of v such that u does not appear in
the path. This takes O(n) time. We compute BP i(A) and
BP i(B) by iterating over O(|X|) bipartitions in C(Ti|X)
and check if one side of any bipartition is a subset of A or
B in O(|X|) time, this takes O(|X |2) time together. Next,
we compute T RS i(A) (or T RS i(B)) by taking unions
of extra subtrees in T R(ei(π)) for any π ∈ BP i(A) (or
BP i(B)) in O(n) time. Extra subtrees are uniquely iden-
tified by their roots and T R(ei(π)) is disjoint from the
set of extra subtrees associated with other edges, so
taking union of at most O(n) extra subtrees takes O(n)
time. Therefore, all the mappings and values can be
computed in O(n2) time for each bipartition and thus it
takes O(n2|X |) time overall. With all the extra subtrees

calculated for each partition, we can compute Extra(Ti)
in O(n2) time.

Constructing Tinit in line 6 takes O(n) time. Line 7 con-
structs an incompatibility graph with O(|X|) vertices
and O(|X |2) edges in O(|X |3) time as compatibility of
any pair of bipartitions of size O(|X|) can be checked in
O(|X|) time. For line 8, we can reduce Maximum Weight
Independent Set to Minimum Cut problem in a directed
graph with a dummy source and sink. Then the Minimum
Cut problem can be solved by a standard Maximum Flow
Algorithm. Since the best Maximum Flow algorithm runs
in O(|V||E|) time and the graph has O(|X|) vertices and
O(|X |2) edges, this line runs in O(|X |3) time. Line 10-11
essentially runs line 7 of Algorithm 2 O(|X|) times using a
total of O(n|X|) time. Line 12 initiates the data structure
H and sv in O(|X|) time. Lines 13− 14 run Algorithm 2
O(|X|) times with a total of O(n|X | + |X |3) time. Since
|X | ≤ n , |X |3 ≤ n|X |2 ≤ n2|X | , and thus, the overall run-
ning time of the algorithm is dominated by the running
time of lines 2− 5 , which is O(n2|X |).

�

Corollary 1 Let A = {T1,T2} with Si the leaf set of Ti
(i = 1, 2) and X := S1 ∩ S2 . Relax—SFS-2-B can be solved
in O(n2|X |) time, where n := max{|S1|, |S2|}.

Using Exact‑RFS‑2 in Divide‑and‑Conquer methods
Here we present a divide-and-conquer method for phy-
logeny estimation, which uses the Exact-RFS-2 algorithm
in combination with DACTAL [11], a prior divide-and-
conquer framework.

Let � be a model of evolution (e.g., GTR) for which
statistically consistent methods exist, and we have some
data (e.g., sequences) generated by the model and wish to
construct a tree. We construct an initial estimate of the
tree, and we select an edge e in the tree. The deletion of
e and its endpoints creates four subtrees, and we let P be
the set of the p nearest leaves to e taken from each sub-
tree (including all leaves that tie for closest in each sub-
tree). We define the subsets be A ∪ P and B ∪ P , where
πe = [A|B]), and we re-estimate trees on these subsets
and then combine the trees together using Exact-RFS-2.
We call this the DACTAL-Exact-RFS-2 pipeline, due to
its similarity to the DACTAL pipeline [11]. The DAC-
TAL pipeline differs from the DACTAL-Exact-RFS-2
pipeline only in that it computes four trees (each con-
taining the set P and otherwise being leaf-disjoint) and
then combines the overlapping subset trees using the

Page 16 of 18Yu et al. Algorithms Mol Biol (2021) 16:12

Strict Consensus Merger technique, and was proven sta-
tistically consistent when the subset trees are computed
using statistically consistent methods.

Before we prove that DACTAL-Exact-RFS-2 can ena-
ble statistically consistent pipelines, we begin with some
definitions. Given a tree T and an internal edge e in T, the
deletion of the edge e and its endpoints defines four sub-
trees. A short quartet around e is a set of four leaves,
one from each subtree, selected to be closest to the edge.
Note that due to ties, there can be multiple short quartets
around some edges. The set of short quartets for a tree T
is the set of all short quartets around the edges of T. The
short quartet trees of T is the set of quartet trees on short
quartets induced by T. It is well known that the short quar-
tet trees of a tree T define T, and furthermore T can be
computed from this set in polynomial time [33–35].

Lemma 12 Let T be a binary tree on leaf set S and let
A,B ⊆ S . Let TA = T |A and TB = T |B (i.e., TA and TB are
induced subtrees). If every short quartet tree is induced
in TA or in TB , then T is the unique compatibility super-
tree for TA and TB and Exact-2-RFS(TA,TB) = T .

Proof Because TA and TB are induced subtrees of T, it
follows that T is a compatibility supertree for TA and TB .
Furthermore, because every short quartet tree appears
in at least one of these trees, T is the unique compat-
ibility supertree for TA and TB (by results from [34, 35],
mentioned above). Finally, because T is a compatibility
supertree, the RFS score of T with respect to TA,TB is 0,
which is the best possible. Since Exact-2-RFS solves the
RFS problem on two binary trees, Exact-2-RFS returns T
given input TA and TB . �

Thus, Exact-2-RFS is guaranteed to return the true tree
when given two correct trees that have sufficient overlap
(in that all short quartets are included). We continue with
proving that these pipelines are statistically consistent.

Theorem 2 The DACTAL-Exact-RFS-2 pipeline is
a statistically consistent method for estimating the
unrooted tree topology under any model � for which sta-
tistically consistent unrooted tree topology estimation
methods exist.

Proof The proof is very similar to the proof given for
the original DACTAL pipeline in [11]. Let � be the sto-
chastic evolution model. To establish statistical consist-
ency of the DACTAL-Exact-RFS-2 pipeline (see above),
we need to prove that as the amount of data increases the
unrooted tree topology that is returned by the pipeline
converge to the true unrooted tree topology. That is, we

will show that for any ǫ > 0 , there is an amount of data
so that the probability of returning the true tree topology
given that amount of data is at least 1− ǫ . Hence, let F
be the method used to compute the starting tree, let G
be the method used to compute the subset trees, and let
ǫ > 0 be given. Because F is statistically consistent under
� , it follows that there is an amount of data so that the
starting tree computed by F will have the true tree topol-
ogy T with probability at least 1− ǫ/2 . Now consider the
decomposition into two sets produced by the algorithm
produced by deleting edge e, applied to a tree with the
true unrooted tree topology. Note that for any p ≥ 1 , all
the leaves appearing in any short quartet around e are
placed in the set P. Now, subset trees are computed using
G on A ∪ P and B ∪ P , where πe = [A|B] , which we will
refer to as TA and TB , respectively. Since G is statistically
consistent, for a large enough amount of data, TA and TB
will have the true tree topology on their leaf sets (T |L(TA)
and T |L(TB) , respectively) with probability at least 1− ǫ/2 .
When TA and TB are equal to the true trees on their leaf
sets, then every short quartet tree of T is in TA or TB , so
that by Lemma 12, T is the only compatibility supertree
for TA and TB . Thus, under these conditions, Exact-2-
RFS(TA,TB) returns T. Hence, for a large enough amount
of data, Exact-2-RFS(TA,TB) returns T with probability at
least 1− ǫ , completing our proof. �

Hence, DACTAL+Exact-2-RFS is statistically consist-
ent under all standard molecular sequence evolution
models and also under the MSC+GTR model [36, 37]
where gene trees evolve within species trees under the
multi-species coalescent model (which addresses gene
tree discordance due to incomplete lineage sorting [38])
and then sequences evolve down each gene tree under
the GTR model.

Note that all that is needed to guarantee that the pipe-
line is statistically consistent is that the method F used
to compute the starting tree and the method G used to
compute the subset trees be statistically consistent. How-
ever, for the sake of improving empirical performance, F
should be fast so that it can run on the full dataset but
G can be more freely chosen, since it will only be run on
smaller datasets. Indeed, the user can specify the size of
the subsets that are analyzed, with smaller datasets ena-
bling the use of more computationally intensive meth-
ods. Thus, when estimating gene trees under the GTR
[39] sequence evolution model, F could be a fast dis-
tance-based method, such as neighbor joining [40] and
G could be maximum likelihood, and when estimating
species trees under the MSC+GTR model, then F could
be ASTRID [29] or ASTRAL [41] (both polynomial time
methods that are statistically consistent) while G could be

Page 17 of 18Yu et al. Algorithms Mol Biol (2021) 16:12

an expensive method, such as StarBeast2 [42], a Bayes-
ian method for co-estimating gene trees and species trees
under the MSC+GTR model.

When empirical performance is the main objective and
statistical consistency is not a requirement, then other
options are available. For example, although heuristics
for maximum likelihood are not provably statistically
consistent (since they are not guaranteed to find optimal
solutions), they can be highly accurate in practice. There-
fore, when estimating trees under the GTR [39] model,
F could be a distance-based method, such as neighbor
joining [40], and G could be a good maximum likelihood
heuristic, such as RAxML [43] or IQ-TREE 2 [?].

Conclusions
The main contribution of this paper is Exact-2-RFS, a
polynomial time algorithm for the Robinson-Foulds
Supertree (RFS) of two binary trees. We established
equivalence between RFS and some other supertree
problems, while also showing that solving the RFS of
three or more trees is NP-hard. Finally, showed that this
approach can be used in a divide-and-conquer pipeline
to enable statistically consistent phylogeny estimation
under sequence evolution models (e.g., GTR [39] and the
hierarchical MSC+GTR model [37]).

This study advances the theoretical understanding of
several established supertree problems, showing that
supertree methods have the theoretical potential to be
useful in phylogeny estimation on large datasets. Some
prior studies (e.g., [11, 44]) have evaluated supertree
methods in the context of divide-and-conquer phylog-
eny estimation, which is an approach championed by
Wilkinson [10]. Hence, a valuable direction for future
work would evaluate these and other supertree methods
in order to evaluate the utility and benefits of using such
approaches on biological datasets.

Acknowledgements
This research was supported in part by the US National Science Founda-
tion by Grants 1535977, 1513629, and 1458652 to TW, by the NSF Graduate
Research Fellowship DGE-1144245 to EKM, and by the Ira and Debra Cohen
Fellowship at the University of Illinois at Urbana-Champaign to EKM and SAC.
This research was performed while Xilin Yu, Sarah Christensen, and Erin K.
Molloy were graduate students and while Thien Le was an undergraduate
student in the Department of Computer Science at the University of Illinois
Urbana-Champaign.

Authors’ contributions
TW conceived of the project; XY, SAC, EKM, and TW proved the theorems; XY
and TL implemented the algorithm; XY and TW wrote the paper; XY made the
figures. All authors read and approved the final manuscript.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1 Amazon AWS, Seattle, USA. 2 Department of EECS, Massachusetts Institute
of Technology, Cambridge, USA. 3 Computer Science Department, University
of Illinois at Urbana-Champaign, Urbana, USA.

Received: 25 January 2021 Accepted: 5 June 2021

References
 1. Bininda-Emonds OR. Phylogenetic supertrees: combining information to

reveal the tree of life. Berlin: Springer; 2004.
 2. Nguyen N, Mirarab S, Warnow T. MRL and SuperFine+MRL: new super-

tree methods. Algorith Mol Biol. 2012;7(1):3.
 3. Swenson MS, Suri R, Linder CR, Warnow T. An experimental study of Quar-

tets MaxCut and other supertree methods. Algorith Mol Biol. 2011;6(1):7.
 4. Fernández-Baca D, Guillemot S, Shutters B, Vakati S. Fixed-parameter

algorithms for finding agreement supertrees. SIAM J Comput.
2015;44(2):384–410.

 5. Kupczok A. Split-based computation of majority-rule supertrees. BMC
Evol Biol. 2011;11(1):205.

 6. Guillemot S, Berry V. Fixed-parameter tractability of the maximum
agreement supertree problem. IEEE/ACM Trans Comput Biol Bioinform.
2010;7(2):342–53.

 7. Fleischauer M, Böcker S. Bad Clade Deletion supertrees: a fast and accu-
rate supertree algorithm. Mol Biol Evol. 2017;34(9):2408–21.

 8. Cotton JA, Wilkinson M. Majority-rule supertrees. Syst Biol.
2007;56(3):445–52.

 9. De Oliveira Martins L, Mallo D, Posada D. A Bayesian supertree model for
genome-wide species tree reconstruction. Syst Biol. 2016;65(3):397–416.

 10. Wilkinson M, Cotton JA. Supertree methods for building the tree of life:
divide-and-conquer approaches to large phylogenetic problems. In: Hod-
kinson, T.R., Parnell, J.A.N. (eds.) Reconstructing the Tree of Life: Taxonomy
and Systematics of Large and Species Rich Taxa. Boca Raton: CRC Press;
2007, p. 61–75. Systematics Association special volume 72.

 11. Nelesen S, Liu K, Wang L-S, Linder CR, Warnow T. DACTAL: divide-
and-conquer trees (almost) without alignments. Bioinformatics.
2012;28(12):274–82 (Special issue for ISMB 2012).

 12. Warnow T. Divide-and-conquer tree estimation: opportunities and chal-
lenges. In: Bioinformatics and phylogenetics: seminal contributions of
Bernard Moret. Berlin: Springer; 2019, p. 121–50.

 13. Baum BR. Combining trees as a way of combining data sets for phylo-
genetic inference, and the desirability of combining gene trees. Taxon.
1992;41:3–10.

 14. Ragan MA. Phylogenetic inference based on matrix representation of
trees. Mol Phylogenet Evol. 1992;1(1):53–8.

 15. Semple C, Steel M. A supertree method for rooted trees. Discrete Appl
Math. 2000;105(1–3):147–58.

 16. Page RD. Modified mincut supertrees. In: Proceedings WABI (international
workshop on algorithms in bioinformatics). Berlin: Springer; 2002, p.
537–51.

 17. Snir S, Rao S. Quartets MaxCut: a divide and conquer quartets algorithm.
IEEE/ACM Trans Comput Biol Bioinform. 2010;7(4):704–18.

 18. Berry V, Nicolas F. Maximum agreement and compatible supertrees. In:
Annual symposium on combinatorial pattern matching. Springer; 2004,
p. 205–19.

 19. Berry V, Nicolas F. Improved parameterized complexity of the maximum
agreement subtree and maximum compatible tree problems. IEEE/ACM
Trans Comput Biol Bioinform. 2006;3(3):289–302.

 20. Aho AV, Sagiv Y, Szymanski TG, Ullman JD. Inferring a tree from lowest
common ancestors with an application to the optimization of relational
expressions. SIAM J Comput. 1981;10(3):405–21.

 21. Baste J, Paul C, Sau I, Scornavacca C. Efficient FPT algorithms for
(strict) compatibility of unrooted phylogenetic trees. Bull Math Biol.
2017;79(4):920–38.

 22. Bansal MS, Burleigh JG, Eulenstein O, Fernández-Baca D. Robinson-Foulds
supertrees. Algorith Mol Biol. 2010;5(1):18.

 23. Robinson DF, Foulds LR. Comparison of phylogenetic trees. Math Biosci.
1981;53(1–2):131–47.

Page 18 of 18Yu et al. Algorithms Mol Biol (2021) 16:12

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

 24. McMorris F, Steel MA. The complexity of the median procedure for binary
trees. In: New approaches in classification and data analysis. Berlin:
Springer; 1994, p. 136–40.

 25. Steel M, Rodrigo A. Maximum likelihood supertrees. Syst Biol.
2008;57(2):243–50.

 26. Molloy EK, Warnow T. FastMulRFS: fast and accurate species tree estima-
tion under generic gene duplication and loss models. Bioinformatics
(2020). To appear, special issue for ISMB 2020; preprint. https:// www. biorx
iv. org/ conte nt/ 10. 1101/ 83555 3v3. full.

 27. Chaudhary R, Fernández-Baca D, Burleigh JG. MulRF: a software package
for phylogenetic analysis using multi-copy gene trees. Bioinformatics.
2014;31(3):432–3.

 28. Vachaspati P, Warnow T. FastRFS: fast and accurate Robinson-Foulds
Supertrees using constrained exact optimization. Bioinformatics.
2016;33(5):631–9.

 29. Vachaspati P, Warnow T. ASTRID: accurate species trees from internode
distances. BMC Genomics. 2015;16(10):3.

 30. Wilkinson M, Cotton JA, Creevey C, Eulenstein O, Harris SR, Lapointe F-J,
Levasseur C, McInerney JO, Pisani D, Thorley JL. The shape of supertrees
to come: tree shape related properties of fourteen supertree methods.
Syst Biol. 2005;54(3):419–31.

 31. Warnow T. Computational phylogenetics: an introduction to designing
methods for phylogeny estimation. Cambridge: Cambridge University
Press; 2017.

 32. Phillips C, Warnow TJ. The asymmetric median tree—a new model for
building consensus trees. Discrete Appl Math. 1996;71(1–3):311–35.

 33. Erdős P, Steel MA, Szekely LA, Warnow TJ. Local quartet splits of a binary
tree infer all quartet splits via one dyadic inference rule. Comput Artif
Intell. 1997;16(2):217–27.

 34. Erdős PL, Steel MA, Székely LA, Warnow TJ. A few logs suffice to build
(almost) all trees (I). Random Struct Algorith. 1999;14(2):153–84.

 35. Erdös PL, Steel MA, Székely LA, Warnow TJ. A few logs suffice to build
(almost) all trees (II). Theor Comput Sci. 1999;221(1–2):77–118.

 36. Warnow T. Concatenation analyses in the presence of incomplete lineage
sorting. PLoS Curr Tree Life. 2015. https:// doi. org/ 10. 1371/ curre nts. tol.
8d41a c0f13 d1abe df4c4 a59f5 d17b1 f7.

 37. Roch S, Nute M, Warnow T. Long-branch attraction in species tree
estimation: inconsistency of partitioned likelihood and topology-based
summary methods. Syst Biol. 2018;68(2):281–97. https:// doi. org/ 10. 1093/
sysbio/ syy061.

 38. Maddison WP. Gene trees in species trees. Syst Biol. 1997;46(3):523–36.
 39. Tavaré S. Some probabilistic and statistical problems in the analysis of

DNA sequences. In: Miura RM, editor. Lectures on mathematics in the life
sciences-DNA sequences, vol. 17. Providence, RI: American Mathematical
Society; 1986. p. 57–86.

 40. Saitou N, Nei M. The neighbor-joining method: a new method for recon-
structing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–25.

 41. Mirarab S, Reaz R, Bayzid MS, Zimmermann T, Swenson MS, Warnow
T. ASTRAL: genome-scale coalescent-based species tree estimation.
Bioinformatics. 2014;30(17):541–8 (Special issue for ECCB (European
Conference on Computational Biology), 2014).

 42. Ogilvie HA, Heled J, Xie D, Drummond AJ. Computational performance
and statistical accuracy of *BEAST and comparisons with other methods.
Syst Biol. 2016;65(3):381–96.

 43. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-
analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–3.

 44. Yu X, Le T, Christensen S, Molloy EK, Warnow T. Advancing divide-and-
conquer phylogeny estimation. bioRxiv. 2020. https:// doi. org/ 10. 1101/
2020. 05. 16. 099895.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://www.biorxiv.org/content/10.1101/835553v3.full
https://www.biorxiv.org/content/10.1101/835553v3.full
https://doi.org/10.1371/currents.tol.8d41ac0f13d1abedf4c4a59f5d17b1f7
https://doi.org/10.1371/currents.tol.8d41ac0f13d1abedf4c4a59f5d17b1f7
https://doi.org/10.1093/sysbio/syy061
https://doi.org/10.1093/sysbio/syy061
https://doi.org/10.1101/2020.05.16.099895
https://doi.org/10.1101/2020.05.16.099895

	Using Robinson-Foulds supertrees in divide-and-conquer phylogeny estimation
	Abstract
	Introduction
	Terminology and problem statements
	Theoretical results
	Relationships between supertree problems
	NP-hardness results
	Solving RFS and SFS on two binary trees
	Using Exact-RFS-2 in Divide-and-Conquer methods

	Conclusions
	Acknowledgements
	References

