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Abstract 

One of the Grand Challenges in Science is the construction of the Tree of Life, an evolutionary tree containing several 
million species, spanning all life on earth. However, the construction of the Tree of Life is enormously computation-
ally challenging, as all the current most accurate methods are either heuristics for NP-hard optimization problems or 
Bayesian MCMC methods that sample from tree space. One of the most promising approaches for improving scalabil-
ity and accuracy for phylogeny estimation uses divide-and-conquer: a set of species is divided into overlapping sub-
sets, trees are constructed on the subsets, and then merged together using a “supertree method”. Here, we present 
Exact-RFS-2, the first polynomial-time algorithm to find an optimal supertree of two trees, using the Robinson-Foulds 
Supertree (RFS) criterion (a major approach in supertree estimation that is related to maximum likelihood supertrees), 
and we prove that finding the RFS of three input trees is NP-hard. Exact-RFS-2 is available in open source form on 
Github at https:// github. com/ yuxil in51/ Greed yRFS.
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Introduction
Supertree construction (i.e., the combination of a collec-
tion of trees, each on a potentially different subset of the 
species, into a tree on the full set of species) is a natu-
ral algorithmic problem that has important applications 
to computational biology; see [1] for a 2004 book on the 
subject and [2–9] for some of the recent papers on this 
subject. Supertree methods are particularly important for 
large-scale phylogeny estimation, where it can be used 
as a final step in a divide-and-conquer pipeline [10]: the 
species set is divided into two or more overlapping sub-
sets, unrooted leaf-labelled trees are constructed (pos-
sibly recursively) on each subset, and then these subset 
trees are combined into a tree on the full dataset, using 
the selected supertree method. Furthermore, provided 
that optimal supertrees are computed, divide-and-con-
quer pipelines can be provably statistically consistent 

under stochastic models of evolution: i.e., as the amount 
of input data (e.g., sequence lengths when estimating 
gene trees, or number of gene trees when estimating spe-
cies trees) increases, the probability that the true tree is 
returned converges to 1 [11, 12].

Unfortunately, the most accurate supertree methods 
are typically local-search heuristics for NP-hard optimi-
zation problems [2, 3, 7, 13–17], and are computationally 
intensive on large datasets. However, divide-and-con-
quer strategies, especially recursive ones, may only need 
to apply supertree methods to two trees at a time, and 
hence the computational complexity of supertree esti-
mation given two trees is of interest. One optimization 
problem where optimal supertrees can be found on two 
trees is the NP-hard Maximum Agreement Supertree 
(SMAST) problem (also known as the Agreement Super-
tree Taxon Removal problem), which removes a mini-
mum number of leaves so that the reduced trees have 
an agreement supertree [4, 6]. Similarly, the Maximum 
Compatible Supertree (SMCT) problem, which removes 
a minimum number of leaves so that the reduced trees 
have a compatibility supertree [18, 19], can also be solved 
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in polynomial time on two trees (and note that SMAST 
and SMCT are identical when the input trees are fully 
resolved). Because SMAST and SMCT remove taxa, 
methods for these optimization problems are not true 
supertree methods, because they do not return a tree on 
the entire set of taxa. However, solutions to SMAST and 
SMCT could potentially be used as constraints for other 
supertree methods, where the deleted leaves are added 
into the computed SMAST or SMCT trees, so as to opti-
mize the desired criterion.

When restricting to methods that return trees on the 
full set of taxa, much less seems to be understood about 
finding supertrees on two trees. However, if the two input 
trees are compatible (i.e., there is a supertree that equals 
or refines each tree when restricted to the respective leaf 
set), then finding that compatibility supertree is solvable 
in polynomial time, using (for example) the well-known 
BUILD algorithm [20], but more efficient algorithms 
exist (e.g., [19, 21]).

Since compatibility is a strong requirement (rarely seen 
in biological datasets), optimization problems are more 
relevant. One optimization problem worth discussing is 
the Maximum Agreement Supertree Edge Contraction 
problem (which takes as input a set of rooted trees and 
seeks a minimum number of edges to collapse so that an 
agreement supertree exists). This problem is NP-hard, 
but the decision problem can be solved in O((2k)pkn2) 
time when the input has k trees and p is the allowed num-
ber of number of edges to be collapsed [4]. Note that the 
algorithm for MAST-EC proposed by [4] may be expo-
nential even for two trees, when the number of edges that 
must be collapsed is �(n) (e.g., imagine two caterpillar 
trees, where one is obtained from the other by moving 
the left-most leaf to the rightmost position).

In sum, while supertree methods are important and 
well studied, when restricted to the major optimiza-
tion problems that do not remove taxa, polynomial time 
methods do not seem to be available, even for the spe-
cial case where the input contains just two trees. This 
restriction has consequences for large-scale phylogeny 
estimation, as without good supertree methods, divide-
and-conquer pipelines are not guaranteed to be statis-
tically consistent, are not fast, and do not have good 
scalability [12].

In this paper we examine the well-known Robinson-
Foulds Supertree (RFS) problem [22], which seeks a 
supertree that minimizes the total Robinson-Foulds 
[23] distance to the input trees. Although RFS is NP-
hard [24], it has several desirable properties: it is closely 
related to maximum likelihood supertrees [25] and, as 
shown very recently, has good theoretical performance 
for species tree estimation in the presence of gene dupli-
cation and loss [26]. Because of its importance, there 

are several methods for RFS supertrees, including Plu-
MiST [5], MulRF [27], and FastRFS [28]. A comparison 
between FastRFS and other supertree methods (MRL [2], 
ASTRAL, ASTRID [29], PluMiST, and MulRF) on simu-
lated and biological supertree datasets showed that Fas-
tRFS matched or improved on the other methods with 
respect to topological accuracy and RFS criterion scores 
[28]. Hence, FastRFS is currently the leading method for 
the RFS optimization problem.

The main contributions of this paper are:

• We present Exact-2-RFS, a polynomial time algo-
rithm for the Robinson-Foulds Supertree (RFS) of 
two trees, which establishes that RFS is solvable in 
O(n2|X |) time for two trees, where n is the number of 
leaves and X is the set of shared leaves (Theorem 1). 
We also show that RFS is NP-hard for three or more 
trees (Lemma 5).

• We prove that divide-and-conquer pipelines using 
Exact-RFS-2 are statistically consistent methods for 
phylogenetic tree estimation (both gene trees and 
species trees) under standard evolutionary models 
(Theorem 2).

• We establish the relationships between RFS and 
other supertree problems (Sect. 2.1), showing that it 
is equivalent to some other problems but not to all.

The remainder of the paper is organized as follows. In 
Sect. 1, we provide terminology and define the optimiza-
tion problems we consider. We present the Exact-RFS-2 
algorithm and establish theory related to the algorithm 
in Sect.  2. We conclude in Sect.  3 with a summary of 
our results and a discussion regarding future research 
directions.

Terminology and problem statements
We let [N ] = {1, 2, . . . ,N } and A = {Ti | i ∈ [N ]} denote 
the input to a supertree problem, where each Ti is a 
phylogenetic tree on leaf set L(Ti) = Si ⊆ S (where L(t) 
denotes the leaf set of t) and the output is a tree T where 
L(T) is the set of all species that appear as a leaf in at least 
one tree in A , which we will assume is all of S. We use the 
standard supertree terminology, and refer to the trees in 
A as “source trees” and the set A as a “profile”. For a tree 
T, let V(T) and E(T) denote the set of vertices and edges 
of T, respectively.

Robinson-Foulds Supertree Each edge e in a tree T 
defines a bipartition πe := [A|B] of the leaf set, and each 
tree is defined by the set C(T ) := {πe | e ∈ E(T )} . The 
Robinson-Foulds distance [23] (also called the bipartition 
distance) between trees T and T ′ with the same leaf set is 
RF(T ,T ′) := |C(T )\C(T ′)| + |C(T ′)\C(T )| . We extend 
the definition of RF distance to allow for T and T ′ to have 
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different leaf sets as follows: RF(T ,T ′) := RF(T |X ,T
′|X ) , 

where X is the shared leaf set and t|X denotes the homeo-
morphic subtree of t induced by X. Letting TS denote the 
set of all phylogenetic trees such that L(T ) = S and T B

S  
denote the binary trees in TS , then a Robinson-Foulds 
supertree [22] of a profile A is a binary tree

We let RF(T ,A) :=
∑

i∈[N ] RF(T ,Ti) denote the RFS 
score of T with respect to profile A . Thus, the Robinson-
Foulds Supertree problem takes as input the profile A 
and seeks a Robinson-Foulds (RF) supertree for A , which 
we denote by RFS(A).

Split Fit Supertree The Split Fit (SF) Supertree prob-
lem was introduced in [30], and is based on optimizing 
the number of shared splits (i.e., bipartitions) between 
the supertree and the source trees. For two trees T, T ′ 
with the same leaf set, the split support is the number 
of shared bipartitions, i.e., SF(T ,T ′) := |C(T ) ∩ C(T ′)| . 
For trees with different leaf sets, we restrict them to the 
shared leaf set before calculating the split support. The 
Split Fit supertree for a profile A of source trees, denoted 
SFS(A ), is a tree TSFS ∈ T B

S  such that

Thus, the split support score of T with respect to A is 
SF(T ,A) :=

∑
i∈[N ] SF(T ,Ti) . The Split Fit Supertree 

(SFS) problem takes as input the profile A and seeks a 
Split Fit supertree (the supertree with the maximum split 
support score), which we denote by SFS(A).

Nomenclature for variants of RFS and SFS problems

• The relaxed versions of the problems where we do 
not require the output to be binary (i.e., we allow 
T ∈ TS ) are named Relax—RFS  and Relax—SFS.

• We append “-N” to the name to indicate that we 
assume there are N source trees. If no number is 
specified then the number of source trees is uncon-
strained.

• We append “-B” to the name to indicate that the 
source trees are required to be binary; hence, we 
indicate that the source trees are allowed to be non-
binary by not appending - B.

Thus, the RFS problem with two binary input trees is 
RFS-2-B  and the relaxed SFS problem with three (not 
necessarily binary) input trees is Relax—SFS-3.

Other notation For any v ∈ V (T ) , we let NT (v) denote 
the set of neighbors of v in T. A tree T ′ is a refinement 
of T iff T can be obtained from T ′ by contracting a set 

TRFS = argmin
T∈T B

S

∑

i∈[N ]

RF(T ,Ti).

TSFS = argmax
T∈T B

S

∑

i∈[N ]

SF(T ,Ti).

of edges. Two bipartitions π1 and π2 of the same leaf set 
are said to be compatible if and only if there exists a tree 
T such that πi ∈ C(T ), i = 1, 2 . A bipartition π = [A|B] 
restricted to a subset R is π |R = [A ∩ R|B ∩ R] . For a 
graph G and a set F of vertices or edges, we use G + F  
to represent the graph obtained from adding the set F of 
vertices or edges to G, and G − F  is defined for deletions, 
similarly.

Theoretical results
In this section we establish the main theoretical results, 
including the relationship between supertree problems 
(Sect.  2.1), the proof that RFS for 3 trees is NP-hard 
(Sect.  2.2), the polynomial time Exact-2-RFS algorithm 
(Sect.  2.3), and the use of this algorithm within divide-
and-conquer pipelines for statistically consistent phylog-
eny estimation (Sect. 2.4).

Relationships between supertree problems
This section establishes the relationships between the 
different supertree problems. We establish that some 
supertree problems have the same optimal solutions, oth-
ers do not, etc. We begin by establishing the equivalence 
between the RFSand SFSsupertree problems.

Lemma 1 Given an input set A of source trees, a tree 
T ∈ T B

S  is an optimal solution for RFS(A) if and only if it 
is an optimal solution for SFS(A).

Proof Let T1,T2, . . . ,TN and S1, S2, . . . , SN be defined 
as from problem statement of RFS . Let T be any binary 
tree of leaf set S. Then T |Si is also binary and thus 
|C(T |Si)| = 2|Si| − 3 . For any i ∈ [N ] , we have

Taking the sum of the equations over i ∈ [N ] , we have

which is a constant (i.e., it does not depend on the tree 
T).

RF(T ,Ti)+ 2SF(T ,Ti)

=|C(T |Si)\C(Ti)| + |C(Ti)\C(T |Si)|

+ 2|C(T |Si) ∩ C(Ti)|

=|C(T |Si)\C(Ti) ∪ (C(T |Si) ∩ C(Ti))|

+ |C(Ti)\C(T |Si) ∪ (C(T |Si) ∩ C(Ti))|

=|C(T |Si)| + |C(Ti)|

=2|Si| − 3+ |C(Ti)|.

∑

i∈[N ]

[RF(T |Si ,Ti)+ 2SF(T |Si ,Ti)]

=
∑

i∈[N ]

(2|Si| − 3+ |C(Ti)|),
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Therefore, for any binary tree T and any profile A of 
source trees, the sum of T’s RFS score and twice T’s split 
support score is the same, independent of T. This implies 
that minimizing the RFS score is the same as maximizing 
the split support score. Although this argument depends 
on the output tree being binary, it does not depend on 
the input trees being binary. Hence, we conclude that RFS 
and SFS have the same set of optimal supertrees. �

In contrast with Lemma 1, we will show that Relax—
RFS  and Relax—SFS  are not equivalent.

Lemma 2 There exist instances of Relax—RFS and Relax
—SFS in which an optimal solution to Relax—RFS is not 
an optimal solution to Relax—SFS, and vice-versa.

Proof Let N ≥ 5 be any integer. Let 
πi = [1, 2, . . . , i + 1 | i + 2, . . . ,N ] for any i ∈ [N − 3] . 
Let A = {T1,T2, . . . ,Tn−3} be a profile, where for all 
i ∈ [N − 3] , the leaf set of Ti is [N] and Ti contains a single 
internal edge defining πi . Let �[N ] denote the set of trivial 
bipartitions of [N]. Let T be the star tree with leaf set [N] 
(i.e., T has no internal edges). We note that C(T ) = �[N ] . 
Let �′ = {πi | i ∈ [N − 3]} (i.e., �′ contains all the non-
trivial bipartitions from the trees in A ). Let T ′ be the cat-
erpillar tree on leaf set [N] (i.e., T ′ is formed by taking a 
path of length N − 2 with vertices v2, v3, . . . , vN−1 in that 
order, and making leaf 1 adjacent to v2 , leaf i adjacent to 
vi , and leaf N adjacent to vN−1 ). We note that T ′ is the 
unique tree such that C(T ′) = �[N ] ∪�′ and thus a com-
patibility supertree for A.

We will show that (1) T is an optimal solution for Relax
—RFS(A ), but not an optimal solution for Relax—SFS

(A ), and (2) that T ′ is an optimal solution for Relax—SFS

(A ), but not an optimal solution for Relax—RFS(A ). (1) 
We first show that T is not an optimal solution for Relax
—SFS(A ). Since T‘ is a compatibility supertree of trees 
in A , it achieves the maximum split support score pos-
sible. In particular, C(T ′) ∩ C(Ti) = �[N ] ∪ {πi} and thus 
SF(T ′,Ti) = N + 1 for all i ∈ [N − 3] . Overall, the split 
support score of T ′ is

Since C(T ) ∩ C(Ti) = �[N ] , we have

for any N ≥ 5 . Therefore, T is not an optimal solution for 
Relax—SFS(A).

(1)

SF(T ′,A) =
∑

i∈[N−3]

SF(T ′,Ti) = (N − 3)(N + 1).

(2)

SF(T ,A) =
∑

i∈[N−3]

SF(T ,Ti) = (N − 3)N < (N − 3)(N + 1)

Next, we show that T is an optimal solution to Relax—
RFS(A ). Since |C(T )\C(Ti)| + |C(Ti)\C(T )| = 1 for all 
i ∈ [N − 3] , the RFS score of T is

Now consider any tree t  = T  with leaf set [N], and sup-
pose t contains p bipartitions in �′ and q bipartitions in 
2[N ]\(�′ ∪�[N ]) where p, q ∈ N . Since t  = T  , at least 
one of p and q is nonzero. Therefore,

Since N ≥ 5 and both p and q are non-negative with at 
least one of them nonzero, we know the RFS score of t is 
strictly greater than that of T. Therefore, T is an optimal 
solution to Relax—RFS(A).

For (2), the analysis above already shows that T ′ has the 
largest possible split support score. Hence, T ′ is an opti-
mal solution to the relaxed Split Fit Supertree problem. 
However, the RFS score for the star tree T is N − 3 and 
the RFS score for T ′ is (N − 4)(N − 3) , which is strictly 
larger than N − 3 for N > 5 ; hence, T ′ is not an optimal 
solution for the relaxed RF supertree problem. �

We show that the Split Fit Supertree problem and the 
Asymmetric Median Supertree ( AMS ) problem, which 
was introduced in [31] and which we will present below, 
have the same set of optimal solutions and thus the hard-
ness of one implies hardness of another.

The Asymmetric Median Supertree problem takes a 
profile A = {T1,T2, . . . ,TN } with leaf sets Si for Ti and 
finds a binary tree T ∗ on leaf set S :=

⋃
i∈[N ] Si such that

In other words, the asymmetric median supertree T ∗ 
minimizes the total number of bipartitions that are in 
the source trees and not in the supertree (equivalently, it 
minimizes the total number of false negatives).

Lemma 3 Given a profile A = {T1,T2, . . . ,TN }  of 
source trees with leaf sets Si  for Ti  and S :=

⋃
i∈[N ] Si , a 

(3)RF(T ,A) =
∑

i∈[N−3]

RF(T ,Ti) = N − 3.

(4)RF(t,A) =
∑

i∈[N−3]

RF(t,Ti)

(5)=
∑

i∈[N−3]

|C(t)\C(Ti)| + |C(Ti)\C(t)|

(6)
=q(N − 3)+ (p− 1)p+ p(N − 3− p)+ (N − 3− p)

(7)=(N − 3)+ q(N − 3)+ p(N − 5).

(8)T ∗ = argmin
T∈TS

∑

i∈[N ]

|C(Ti) \ C(T |Si)|.
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tree T ∈ TS  is a Split Fit Supertree for A  if and only if it is 
an Asymmetric Median Supertree for A.

Proof Let FN(T ,A) =
∑

i∈[N ] |C(Ti) \ C(T |Si)| be the 
total number of false negatives of T with respect to A , 
and we refer to this as the false negative score of T. Then,

Since the sum of the split support score of T and the false 
negative score of T is the same, regardless of T, minimiz-
ing the false negative score is the same as maximizing the 
split support score. Hence any tree T is an Asymmetric 
Median supertree if and only if it is a Split Fit supertree, 
for all profiles A . �

Recall that the SMAST and SMCT problems seek trees 
that are obtained after deleting minimal numbers of 
leaves from the input trees so that an agreement super-
tree or compatible supertree can be constructed from the 
reduced input trees. Here, we examine the possibility of 
using these output trees as constraint trees on the search 
for RFS supertrees, so that the removed taxa could be 
introduced into the constraint trees. We show that exact 
solutions to the SMAST and SMCT (Maximum Agree-
ment Supertree and Maximum Compatible Supertree) 
problems are not directly relevant to solving the Robin-
son-Foulds supertree problem.

Lemma 4 There exists a pair of binary trees T1  and T2   
for which some optimal SMAST or SMCT supertree can-
not be extended to any optimal RFS supertree through the 
insertion of missing taxa.

Proof Let T1 and T2 be unrooted trees, with T1 given 
by the Newick string (A,  ((B, x),  ((C, y),  (D, E)))) and T2 
given by (A,  (C,  (z,  (B,  (D,  E))))). An RFS supertree for 
this pair (T1,T2) is given by (A, ((C, y), (z, ((B, x), (D, E))
))),   and has total RF distance to T1 and T2 equal to 2. 
Note that at least one of A,B,C must be deleted to form 
an agreement supertree. Suppose C is deleted. Then 
((A, z), ((B, x), (y, (D, E)))) is an optimal SMAST. Observe 
that any way of adding C into this tree produces a super-
tree that has total RFS score greater than 2. Hence, for 
this pair of input trees, for at least one optimal SMAST 
supertree, there is no way to extend that optimal super-
tree into an optimal RFS supertree. The same proof fol-
lows for the SMCT problem, since SMCT and SMAST 

(9)

SF(T ,A)+ FN(T ,A) =
∑

i∈[N ]

|C(Ti) ∩ C(T |Si)|

+ |C(Ti)\C(T |Si)|

(10)=
∑

i∈[N ]

|C(Ti)|.

are identical when the input trees are fully resolved 
(binary). �

NP‑hardness results
We establish that some supertree problems are NP-hard.

Lemma 5 RFS-3 , SFS-3, and Relax—SFS-3 are all 
NP-hard.

Proof By Lemma 3 and Lemma 1, we know that for any 
profile A , the Robinson-Foulds, Split Fit, and Asymmet-
ric Median supertrees all have the same set of optimal 
solutions. We also note that the Asymmetric Median 
Tree problem was shown to be NP-hard for three trees 
[32], which is the same as the Asymmetric Median 
Supertree problem when all three trees have the same 
set of species. Therefore, SFS-3  and RFS-3  are both NP-
hard. Since refining a tree never decreases its split sup-
port score, SFS-3 trivially reduces to Relax—SFS-3 , and 
thus Relax—SFS-3 is also NP-hard. �

Solving RFS and SFS on two binary trees
The main result of this paper is Theorem 1 and the poly-
nomial time algorithm, Exact-RFS-2, for RFS and SFS of 
two binary trees.

Theorem 1 Let A = {T1,T2}  with Si  the leaf set of Ti 
( i = 1, 2) and X := S1 ∩ S2. The problems RFS-2-B(A)  
and SFS-2-B(A) can be solved in O(n2|X |)  time, where 
n := max{|S1|, |S2|}.

The proof for Theorem 1 is provided later; here we pre-
sent the algorithm, Exact-RFS-2, which we use to estab-
lish Theorem 1.

The input to Exact-RFS-2 is a pair of binary trees T1 and 
T2 . Let X denote the set of shared leaves. At a high level, 
Exact-RFS-2 constructs a tree Tinit that has a central node 
that is adjacent to every leaf in X and to the root of every 
“rooted extra subtree” (a term we define below under 
“Additional notation”) so that Tinit contains all the leaves 
in S. It then modifies Tinit by repeatedly refining it to add 
specific desired bipartitions, to produce an optimal Split 
Fit (and optimal Robinson-Foulds) supertree (Fig. 3). The 
bipartitions that are added are defined by a maximum 
independent set in a bipartite “weighted incompatibility 
graph” we compute.

Additional notation Let 2X denote the set of all bipar-
titions of X; any bipartition that splits a single leaf from 
the remaining |X | − 1 leaves will be called “trivial” and 
the others will be called “non-trivial”. Let C(T1,T2,X) 
denote C(T1|X ) ∪ C(T2|X ) , and let Triv and NonTriv 
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denote the sets of trivial and non-trivial bipartitions in 
C(T1,T2,X) , respectively. We refer to Ti|X , i = 1, 2 as 
backbone trees (Fig. 2). Recall that we suppress degree-
two vertices when restricting a tree Ti to a subset X of the 
leaves; hence, every edge e in Ti|X will correspond to an 
edge or a path in T (see Fig. 1 for an example). We will let 
P(e) denote the path associated to edge e ∈ Ti|X , and let 
w(e) := |P(e)| (the number of edges in P(e)). Finally, for 
π ∈ C(Ti|X ) , we define ei(π) to be the edge that induces 
π in Ti|X (Fig. 1).

The next concept we introduce is the set of extra sub-
trees, which are rooted subtrees of T1 and T2 , formed 
by deleting X and all the edges and vertices on paths 
between vertices in X (i.e., we delete Ti|X from Ti ). Each 
component in Ti − Ti|X is called an extra subtree of 
Ti , and the extra subtree t is naturally seen as rooted at 
the unique vertex r(t) that is adjacent to a vertex in Ti|X . 
Thus, Extra(Ti) = {t | t is a component in Ti − Ti|X }. 
Note that if X contains the leaves of Ti then there are no 
extra subtrees associated to Ti for X.

We can now define the initial tree Tinit computed by 
Exact-RFS-2: Tinit has a center node that is adjacent 
to every x ∈ X and also to the root r(t) for every extra 

subtree t ∈ Extra(T1) ∪ Extra(T2) . Note that Tinit has a 
leaf for every element in S, and that Tinit|Si is a contrac-
tion of Ti , formed by collapsing all the edges in the back-
bone tree Ti|X.

We say that an extra subtree t is attached to edge 
e ∈ E(Ti|X ) if the root of t is adjacent to an internal node 
of P(e), and we let T R(e) denote the set of such extra sub-
trees attached to edge e. Similarly, if π ∈ C(T1,T2,X) , we 
let T R

∗(π) refer to the set of extra subtrees that attach to 
edges in a backbone tree that induce π in either T1|X or 
T2|X . For example, if both trees T1 and T2 contribute extra 
subtrees to π , then T R

∗(π) :=
⋃

i∈[2] T R(ei(π)).

For any Q ⊆ X , we let BP i(Q) denote the set of bipar-
titions in C(Ti|X ) that have one side being a strict sub-
set of Q, and we let T RS i(Q) denote the set of extra 
subtrees associated with these bipartitions. In other 
words, BP i(Q) := {[A|B] ∈ C(Ti|X ) | A � Q or B � Q} , 
and T RS i(Q) :=

⋃
π∈BP i(Q) T R(ei(π)). Intui-

tively, T RS i(Q) denotes the set of extra subtrees 
in Ti that are “on the side of Q”. Note that for any 
π = [A|B] ∈ C(Ti|X ) , BP i(A) ∪ BP i(B) is the set of 
bipartitions in C(Ti|X ) that are compatible with π . 
Finally, let BP(Q) = BP1(Q) ∪ BP2(Q), and T RS(Q)

(a): T1

v1
v2 v3 v4

l1

l2

l3 l4 l5
l6

l7

a1 a2

a3 a4 a5

a6

e

(b): T2

l1

l2

l3l4
l5

l6

l7

b1

b2

b3

b4

b5 b6

e′

Fig. 1 T1 and T2 (depicted in (a) and (b), respectively) have an overlapping leaf set X = {l1, l2, . . . , l7} . Each of a1, . . . , a6 and b1, . . . , b6 can represent 
a multi-leaf extra subtree. For e ∈ T1|X as shown, P(e) is the path from v1 to v4 , so w(e) = 3 . Using indices to represent the shared leaves, let 
π = [12|34567] ; then e1(π) = e and e2(π) = e′ . T R(e) = {a1, a2} , T R(e′) = {b2} , so T R

∗(π) = {a1, a2, b2} . Let A = {1, 2, 3} , B = {4, 5, 6, 7} . 
Ignoring the trivial bipartitions, we have BP(A) = {[12|34567]} and BP(B) = {[1234|567], [12345|67], [12346|57]} . T RS(A) = {a1, a2, b1, b2} and 
T RS(B) = {a6, b4, b5, b6}

(a): T1|X

e1 e2 e3 e4

l1

l2 l6

l7

l3 l4 l5

(b): T2|X

e5 e6 e7 e8

l1

l2
l4 l3 l6

l5

l7

(c): incompatibility graph

π1

π2

π3

π4

π5

π6

π7

π8

Fig. 2 We show (a) T1|X , (b) T2|X , and (c) their incompatibility graph, based on the trees T1 and T2 in Fig. 1 (without the trivial bipartitions). Each πi is 
the bipartition induced by ei , and the weights for π1, . . . ,π8 are 3, 4, 1, 1, 2, 2, 2, 3, in that order. We note that π1 and π5 are the same bipartition, but 
they have different weights as they are induced by different edges; similarly for π3 and π7 . The maximum weight independent set in this graph has 
all the isolated vertices ( π1,π3,π5,π7 ) and also π2,π8 , and so has total weight 15
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= T RS1(Q) ∪ T RS2(Q). We give an example for these 
terms in Fig. 1.

The incompatibility graph of a set of trees, each on the 
same set of leaves, has one vertex for each bipartition in 
any tree (and note that bipartitions can appear more than 
once) and edges between bipartitions if they are incom-
patible (see [32]). We compute a weighted incompat-
ibility graph for the pair of trees T1|X and T2|X , in which 
the weight of the vertex corresponding to bipartition π 

in �1 and the score contributed by bipartitions in �2 ; 
thus, the split support score of T with respect to T1,T2 is 
p1(T )+ p2(T ).

As we will show, the two scores can be maximized 
independently and we can use this observation to refine 
Tinit so that it achieves the optimal total score.

Overview of Exact-RFS-2 

Algorithm 1 Exact-RFS-2: Computing a Robinson-Foulds supertree of two trees
(see Figure 3)

Input: two binary trees T1, T2 with leaf sets S1 and S2 where S1 ∩ S2 = X �= ∅
Output: a binary supertree T on leaf set S = S1 ∪ S2 that maximizes the split support score

1: compute C(T1|X) and C(T2|X)
2: for each π = [A|B] ∈ C(T1, T2, X) do
3: for i ∈ [2] do
4: compute T R(ei(π)), w(ei(π))
5: compute BP(A), BP(B), T RS(A), T RS(B), and T R∗(π),
6: construct T as a star tree with leaf set X and center vertex v̂ and with the root of each t ∈ Extra(T1) ∪

Extra(T2) connected to v̂ by an edge � let Tinit = T
7: construct the weighted incompatibility graph G of T1|X and T2|X
8: compute the maximum weight independent set I∗ in G
9: let I be the set of bipartitions associated with vertices in I∗

10: for each π = [{a}|B] ∈ Triv do
11: detach all extra subtrees in T R∗(π) from v̂ and attach them onto (v̂, a) such that T R(e1(π)) are attached

first with their ordering matching their attachments on e1(π) and T R(e2(π)) are attached to the right of all
subtrees in T R(e1(π)) with the ordering of them also matching their attachments on e2(π)

� let T̃ = T after for loop
12: H(v̂) = NonTriv, set sv(π) = v̂ for all π ∈ NonTriv
13: for each π ∈ NonTriv ∩ I (in any order) do
14: T ← Refine(T, π,H, sv) � let T∗ = T after for loop
15: arbitrarily refine T to make it a binary tree
16: return T

appearing in tree Ti|X is w(ei(π)) , as defined previously. 
Thus, if a bipartition is common to the two trees, it pro-
duces two vertices in the weighted incompatibility graph, 
and each vertex has its own weight (Fig. 2).

We divide C = C(T1) ∪ C(T2) into two sets: 
�1 = {[A|B] ∈ C | A ∩ X �= ∅ and B ∩ X �= ∅} , and 
�2 = {[A|B] ∈ C | A ∩ X = ∅ or B ∩ X = ∅} . Intuitively, 
�1 is the set of bipartitions from the input trees that are 
induced by edges in the minimal subtree of T1 or T2 span-
ning X, and �2 are all the other input tree bipartitions. 
We define p1(·) and p2(·) on trees T ∈ TS by:

Note that p1(T ) and p2(T ) decompose the split sup-
port score of T into the score contributed by bipartitions 

p1(T ) =
∑

i∈[2]

|C(T |Si) ∩ C(Ti) ∩�1|,

p2(T ) =
∑

i∈[2]

|C(T |Si) ∩ C(Ti) ∩�2|.

Exact-RFS-2 (Algorithm  1) has four phases. In the 
pre-processing phase (lines 1–5), it computes the weight 
function w and the mappings T R, T R

∗,BP , and T RS 
for use in latter parts of Algorithm 1 and Algorithm 2. In 
the initial construction phase (line 6), it constructs a tree 
Tinit (as described earlier), and we note that Tinit maxi-
mizes p2(·) score (Lemma 7). In the refinement phase 
(lines 7–14), it refines Tinit so that it attains the maximum 
p1(·) score, without changing the p2(·) score. In the last 
phase (line 15), it arbitrarily refines T to make it binary. 
The refinement phase begins with the construction of a 
weighted incompatibility graph G of T1|X and T2|X (see 
Fig. 2). It then finds a maximum weight independent set 
of G that defines a set I ⊆ C(T1,T2,X) of compatible 
bipartitions of X. Finally, it uses these bipartitions of X 
in I to refine Tinit to achieve the optimal p1(·) score, by 
repeatedly applying Algorithm 2 for each π ∈ I (and we 
note that the order does not matter). See Fig.  3 for an 
example of Exact-RFS-2 given two input source trees.
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(a): Tinit: star with leaf set
X and all extra subtrees

attached to center
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b4
b5
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(b): T̃ : after adding all Triv
to T |X
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(c): After adding
π2 = [123|4567]

va vb
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a1 a2 b2 a3 a4 a5 b3 b4 b5 b6
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(d): After adding
π8 = [12346|57]
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(e): After adding
π1 = π5 = [12|34567]

l1

l2

l3 l4
l5

l6

l7

a1 a2 b2 a3 a4 a5 b3 b4

b5 b6

b1 a6

(f): After adding
π3 = π7 = [1234|567]

l1

l2

l3 l4
l5

l6

l7

a1 a2 b2 a3 a4 a5 b3 b4

b5 b6

b1 a6

Fig. 3 Algorithm 1 working on T1 and T2 from Fig. 1 as source trees; the indices of leaves in X = {l1, l2, . . . , l7} represent the leaves and the notation 
of π1, . . . ,π8 is from Fig. 2. In (a)–(f), the p1(·) score of the trees are 14, 16, 20, 23, 27, 29, in that order. We explain how the algorithm obtains the tree 
in c from T̃  by adding π2 = [123|4567] to the backbone of T̃  . Let A = {l1, l2, l3} and B = {l4, l5, l6, l7} . The center vertex c of T̃  is split into two vertices 
va , vb with an edge between them. Then all neighbors of c between c and A are made adjacent to va while the neighbors between c and B are made 
adjacent to vb . All neighbors of c which are roots of extra subtrees are moved around such that all extra subtrees in T R

∗(π2) are attached onto 
(va , vb) ; all extra subtrees in T RS(A) = {a1, a2, b2} are attached to va and all extra subtrees in T RS(B) = {b4, b5, b6} are attached to vb . We note 
that in this step, b3 can attach to either va or vb because it is not in T RS(A) or T RS(B) . However, when obtaining the tree in d from c, b3 can only 
attach to the left side because for A′ = {l1, l2, l3, l4, l6} , [124|3567] ∈ BP(A′) and thus b3 ∈ T RS(A′)
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Algorithm 2 Refine
Input: a tree T on leaf set S, a nontrivial bipartition π = [A|B] of X, two data structures H and sv
Output: a tree T ′ which is a refinement of T such that for both i = 1, 2, C(T ′|Si

) = C(T |Si
) ∪ {π′ ∈

C(Ti) | π′|X = π}
1: v ← sv(π)
2: T ′ ← T + va + vb + (va, vb)
3: compute NA := {u ∈ NT (v) | ∃a ∈ A s.t. u can reach a in T − v} and NB := {u ∈ NT (v) | ∃b ∈ B

s.t. u can reach b in T − v}.
4: for each u ∈ NA ∪ NB do
5: if u ∈ NA then connect u to va
6: else connect u to vb
7: detach all extra subtrees in T R∗(π) from v and attach them onto (va, vb) such that T R(e1(π)) are attached

first with their ordering matching their attachments on e1(π) and T R(e2(π)) are attached to the right of all
subtrees in T R(e1(π)) with the ordering of them also matching their attachments on e2(π)

8: for each t ∈ T RS(A) do
9: if t is attached to v, detach it and attach to va

10: for each t ∈ T RS(B) do
11: if t is attached to v, detach it and attach to vb

12: for each remaining extra subtree attached to v do
13: detach it from v and attach it to either va or vb
14: H(va) ← ∅, H(vb) ← ∅
15: for each π′ ∈ H(v) do
16: if π′ ∈ BP(A) then
17: sv(π′) = va, H(va) ← H(va) ∪ {π′}
18: else if π′ ∈ BP(B) then
19: sv(π′) = vb, H(vb) ← H(vb) ∪ {π′}
20: else
21: discard π′

22: return T ′ = T ′ − v

 

• those that root extra subtrees in T RS(B) are made 
adjacent to vb

• the remaining vertices can be made adjacent to either 
va or vb

Algorithms 1 and 2 also use two data structures 
(functions) H and sv: (1) For a given node v ∈ V (T ) , 
H(v) ⊆ C(T1,T2,X) is the set of bipartitions of X that 
can be added to T |X by refining T |X at v, and (2) Given 
π ∈ C(T1,T2,X) , sv(π) = v means ∃T ′ , a refinement of T 
at v, so that C(T ′|X ) = C(T |X ) ∪ {π}.

Formal proofs We start the formal theory and proofs 
with a natural relationship between edges in restricted 
trees and restricted bipartitions.

Lemma 6 Let T ∈ TS  and let π = [A|B] ∈ C(T )  be a 
bipartition induced by e ∈ E(T ) . Let R ⊆ S . 

1 If R ∩ A = ∅ or R ∩ B = ∅ , then e /∈ P(e′) for any 
e′ ∈ E(T |R).

2 If R ∩ A �= ∅ and R ∩ B �= ∅ , then for any 
π ′ ∈ C(T |R) induced by e′ ∈ E(T |R) , π |R = π ′ if and 
only if e ∈ P(e′).

Algorithm  2 refines the given tree T on leaf set S 
with bipartitions on X from C(T1,T2,X) \ C(T |X ) . 
Given bipartition π = [A|B] on X, Algo-
rithm  2 produces a refinement T ′ of T such that 
C(T ′|Si) = C(T |Si) ∪ {π ′ ∈ C(Ti) | π

′|X = π} for both 
i = 1, 2 . To do this, we first find the unique vertex v such 
that no component of T − v has leaves from both A and 
B. We create two new vertices va and vb with an edge 
between them. We divide the neighbor set of v into three 
sets: NA is the set of neighbors that split v from leaves in 
A, NB is the set of neighbors that split v from leaves in 
B, and Nother contains the remaining neighbors. Then, 
we make vertices in NA adjacent to va and vertices in NB 
adjacent to vb . We note that Nother = ∅ if X = S and thus 
there are no extra subtrees. In the case where X  = S , 
Nother contains the roots of the extra subtrees adjacent to 
v and we handle them in four different cases to make T ′ 
include the desired bipartitions:

• those vertices that root extra subtrees in T R
∗(π) are 

moved onto the edge (va, vb) (by subdividing the edge 
to create new vertices, and then making these verti-
ces adjacent to the new vertices)

• those vertices that root extra subtrees in T RS(A) are 
made adjacent to va



Page 10 of 18Yu et al. Algorithms Mol Biol           (2021) 16:12 

Proof Let TR be the minimal subtree of T that spans R. 
It follows that the leaf set of TR is R and T |R is obtained 
from TR by suppressing all degree-two vertices.

(Proof of 1) We first claim that if R ∩ A = ∅ or R ∩ B = ∅ , 
then e /∈ E(TR) . Assume by way of contradiction that 
e ∈ E(TR) . There are then two non-empty components in 
TR − e . Since e induces [A|B] in T, the two components in 
TR − e have leaf sets R ∩ A and R ∩ B , which contradicts 
the assumption that one intersection is empty. Therefore, 
e /∈ E(TR) . Furthermore, every edge e′ ∈ E(T |R) comes 
from a path in TR . Since e /∈ E(TR) , then e /∈ P(e′) for any 
e′ ∈ E(T |R).

(Proof of 2) If R ∩ A �= ∅ and R ∩ B �= ∅ , then e is required 
to connect R ∩ A with R ∩ B in T (since e connects A with 
B). Thus, e is in any subtree of T spanning R; in particular, 
e ∈ E(TR) . Fix any π ′ ∈ C(T |R) induced by e′ ∈ E(T |R) . 
Note that the bipartition induced by P(e′) in TR equals the 
bipartition induced by e′ in T |R , i.e., π ′ . For one direction 
of the proof, suppose e ∈ P(e′) . Because internal vertices 
of P(e′) in TR are not adjacent to any leaves, the biparti-
tion induced by the path P(e′) in TR equals the bipartition 
induced by any of its edges (and hence, in particular, by 
e). Since e induces [A|B] in T, it induces [R ∩ A|R ∩ B] in 
TR . Then π ′ = [R ∩ A|R ∩ B] = π |R . On the other hand, 
if π |R = π ′ , then π ′ induces [R ∩ A|R ∩ B] in T |R . It fol-
lows that P(e′) also induces [R ∩ A|R ∩ B] in TR . Suppose 
e ∈ P(e∗) for some edge e∗ ∈ E(T |R) such that e∗ �= e′ . 
Then, by the previous argument, πe∗ = [R ∩ A|R ∩ B] , 
which contradicts the assumption that e∗ and e′ are differ-
ent edges. Therefore, e ∈ P(e′).

�

Lemma 7 formally states that the tree Tinit we build in 
line 6 of Exact-RFS-2 (Algorithm 1) maximizes the p2(·) 
score.

Lemma 7 For any tree T ∈ TS , p2(T ) ≤ |�2|. In par-
ticular, let Tinit  be the tree defined in line 6 of Algorithm 1. 
Then, p2(Tinit) = |�2|.

Proof Since T1 and T2 have different leaf sets, C(T1) 
and C(T2) are disjoint. Since �2 ⊆ C(T1) ∪ C(T2) , 
C(T1) ∩�2 and C(T2) ∩�2 form a disjoint 

decomposition of �2 . By definition of p2(·) , for any tree 
T of leaf set S,

Fix any π = [A|B] ∈ �2 . Suppose π ∈ C(Ti) and is 
induced by e ∈ E(Ti) for some i ∈ [2] . By definition of �2 , 
either A ∩ X = ∅ or B ∩ X = ∅ . By Lemma 6, e /∈ P(e′) 
for any backbone edge e′ ∈ E(Ti|X ) . Therefore, either e 
is an internal edge in an extra subtree in Extra(Ti) , or e 
connects one extra subtree in Extra(Ti) to the backbone 
tree. In either case, the construction of Tinit ensures 
that e is also present in Tinit|Si and thus π ∈ C(Tinit|Si) . 
Therefore, each bipartition π ∈ �2 contributes 1 to 
|C(Tinit|Si) ∩ C(Ti) ∩�2| for exactly one index i ∈ [2] and 
thus it contributes 1 to p2(Tinit) . Hence, p2(Tinit) = |�2| . 
�

We define the function w∗ : 2X → N≥0 as follows:

For any set F of bipartitions, we let w∗(F) =
∑

π∈F w
∗(π).

Lemma 8 shows that w∗(π) represents the maximum 
potential increase in p1(·) as a result of adding biparti-
tion π to T |X . The proof of Lemma 8 follows the idea that 
for any bipartition π of X, there are at most w∗(π) edges 
in either T1 or T2 whose induced bipartitions become π 
when restricted to X. Therefore, by only adding π to T |X , 
at most w∗(π) more bipartitions get included in C(T |S1) 
or C(T |S2) so that they contribute to the increase of 
p1(T ).

Lemma 8 Let π = [A|B] be a bipartition of X where 
X ⊆ S . Let T ∈ TS be any tree with leaf set S such that 
π /∈ C(T |X ) but π is compatible with C(T |X ) . Let T ′ be a 
refinement of T such that for all π ′ ∈ C(T ′|Si)\C(T |Si) for 
some i ∈ [2] , π ′|X = π . Then, p1(T ′)− p1(T ) ≤ w∗(π).

Proof By definition of p1(·),

p2(T ) =
∑

i∈[2]

|C(T |Si) ∩ C(Ti) ∩�2|

≤
∑

i∈[2]

|C(Ti) ∩�2| = |�2|.

w∗(π) =






0 if π �∈ C(T1,T2,X),
w(e1(π)) if π ∈ C(T1|X ) \ C(T2|X ),
w(e2(π)) if π ∈ C(T2|X ) \ C(T1|X ),�

i∈[2] w(ei(π)) else.
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Therefore, we only need to prove that

We perform a case analysis, as follows: Case (1): 
π /∈ C(T1,T2,X) , Case (2): π ∈ C(T1|X )�C(T2|X ) , and 
Case (3): π ∈ C(T1|X ) ∩ C(T2|X ).

Case 1): Let π /∈ C(T1,T2,X) . We recall that 
w∗(π) = 0 . Assume for contradiction that there exists 
a bipartition π ′ ∈ (C(T ′|Si)\C(T |Si)) ∩ C(Ti) ∩�1 
for some i ∈ [2] . Since π /∈ C(T1,T2,X) and π ′|X = π , 
π ′ /∈ C(Ti) for any i ∈ [2] . This contradicts the fact that 
π ′ ∈ C(Ti) for some i ∈ [2] . Therefore, the assump-
tion that there exists such a bipartition π ′ is wrong and ∑

i∈[2] |(C(T
′|Si)\C(T |Si)) ∩ C(Ti) ∩�1| = 0 ≤ w∗(π).

Case 2): Let π ∈ C(T1|X )�C(T2|X ) . We can assume 
without loss of generality that π ∈ C(T1|X )\ 
C(T2|X ) since the other possibility is sym-
metrical. Then, we have w∗(π) = w(e1(π)) . Let 
π ′ ∈ (C(T ′|Si)\C(T |Si)) ∩ C(Ti) ∩�1 for some i ∈ [2] . 
Then we have π ′|X = π by assumption of the lemma. 
Since π /∈ C(T2|X ) , by Lemma 6, we have π ′ /∈ C(T2) and 
thus π ′ ∈ C(T1) . By Lemma 6, the edge that induces π ′ in 
T1 is an edge on P(e1(π)) . Since there are w(e1(π)) edges 
on P(e1(π)) , there are at most w(e1(π)) distinct biparti-
tions π ′ , proving the claim.

Case 3): Let π ∈ C(T1|X ) ∩ C(T2|X ) . Then we 
have w∗(π) = w(e1(π))+ w(e2(π)) . Fix any 
π ′ ∈ (C(T ′|Si)\C(T |Si)) ∩ C(Ti) ∩�1 for any 
i ∈ [2] . Since π ′ ∈ C(Ti) and π ′|X = π ∈ C(Ti|X ) , by 
Lemma 6, the edge e′ that induces π ′ is an edge on 
P(ei(π)) . Since there are w(ei(π)) edges on P(ei(π)) , 
there are at most w(ei(π)) distinct bipartitions π ′ in 
(C(T ′|Si)\C(T |Si)) ∩ C(Ti) ∩�1 . Therefore, for any 
i ∈ [2],

Taking sum of the inequalities over i ∈ [2] , we have

p1(T
′)− p1(T ) =

∑

i∈[2]

|C(T ′|Si ) ∩ C(Ti) ∩�1|

−
∑

i∈[2]

|C(T |Si ) ∩ C(Ti) ∩�1|

=
∑

i∈[2]

|(C(T ′|Si )\C(T |Si )) ∩ C(Ti) ∩�1|.

∑

i∈[2]

|(C(T ′|Si)\C(T |Si)) ∩ C(Ti) ∩�1| ≤ w∗(π).

|(C(T ′|Si)\C(T |Si)) ∩ C(Ti) ∩�1| ≤ w(ei(π)).

�

Lemma 9 For any compatible set F of bipartitions on X 
where X ⊆ S , let T ∈ TS be any tree with leaf set S such 
that C(T |X ) = F  . Then p1(T ) ≤ w∗(F).

The proof of Lemma 9 is straightforward, and uses 
Lemma 8 repeatedly by adding the compatible biparti-
tions to the tree in any selected order.

Proposition 1 Let T̃  be the tree constructed after line 
11 of Algorithm 1, then p1(T̃ ) = w∗(Triv).

The proof naturally follows by construction (Line 8 of 
Algorithm  1), and implies that the algorithm adds the 
trivial bipartitions of X (which are all in I) to T |X so that 
p1(T ) reaches the full potential of adding those trivial 
bipartitions.

Lemma 10 will show that the auxiliary data structures 
of Algorithm 1 and 2 are maintaining the desired infor-
mation and that the algorithm can split the vertex and 
perform the detaching and reattaching of the extra sub-
trees correctly. These invariants are important to the 
proof of Lemma 11.

Lemma 10 At any stage of the Algorithm  1 after line 
12, we have the following invariants of T and the auxil-
iary data structures H and sv: 

1 For any bipartition π ∈ NonTriv , sv(π) is the vertex 
to split to add π to C(T |X ) . For any internal vertex v, 
the set of bipartitions H(v) ⊆ NonTriv is the set of 
bipartitions which can be added to C(T |X ) by split-
ting v.

2 For any π = [A|B] ∈ H(v) , for all t ∈ T R
∗(π) , the 

root of t is a neighbor of v.
3 For any π = [A|B] ∈ C(T |X ) induced by edge e, let 

Comp(A) and Comp(B) be the components contain-
ing the leaves of A and B in T |X − e , respectively. 
Then, 

(a) all t ∈ T RS(A) are attached to an edge or a 
vertex in Comp(A)

∑

i∈[2]

|(C(T ′|Si)\C(T |Si)) ∩ C(Ti) ∩�1|

≤ w(e1(π))+ w(e2(π)) = w
∗(π).
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(b) all t ∈ T RS(B) are attached to an edge or a 
vertex in Comp(B).

Proof We prove the invariants by induction on the 
number of refinement steps k performed on T. When 
k = 0 , we have T = T̃  and T |X is a star with leaf set X and 
center vertex v̂ . Thus all bipartitions in NonTriv are com-
patible with C(T |X ) . For any π ∈ NonTriv , the center 
vertex v̂ is the vertex to refine in T |X in order to add π to 
C(T |X ) . Therefore, it is correct that sv(π) = v̂ for every 
π ∈ NonTriv and H(v̂) = NonTriv . The roots of all extra 
subtrees in T R

∗(π) for any π ∈ NonTriv are all neighbors 
of v̂ , so invariant 2 also holds. We note that at this point, 
C(T |X ) = Triv . For any trivial bipartition π ∈ C(T |X ) , 
let π = [{a}|B] . It is easy to see that since a is a leaf, 
T RS i({a}) = ∅ and T RS i(B) = Extra(Ti)\T R(ei(π)) 
for both i ∈ [2] . Then T RS({a}) = ∅ and 
T RS(B) = (Extra(T1) ∪ Extra(T2))\T R

∗(π) . Therefore, 
invariant 3(a) trivially holds as T RS({a}) = ∅.

Since Comp({a}) is the vertex a, Comp(B) is the rest of the 
star of T |X excluding a and the edge (a, ṽ) between a and 
center vertex ṽ . Since T RS(B) does not include T R

∗(π) 
(which are the only extra subtrees attached to edge (a, ṽ) ), 
all extra subtrees in T RS(B) are attached to an edge or 
a vertex in Comp(B), and so invariant 3(b) holds. This 
proves invariant 3 and thus concludes our proof for the 
base case

Assume that all invariants hold after any k ′ < k steps 
of refinement. Let π = [A|B] be the bipartition to add 
in the kth refinement step. We will show that after the 
kth refinement step, i.e., one execution of Algorithm  2, 
the invariants still hold for the resulting tree T ′ . Since 
v = sv(π) at the beginning of Algorithm  2, π can be 
added to C(T |X ) by splitting v. We can divide the set of 
neighbors of v in T |X into NA ∪ NB such that NA (or NB 
respectively) consists of neighbors of v that can reach 
vertices of A (or B) but not B (or A) in T |X − v . Then, the 
algorithm correctly finds NA and NB and connects NA to 
va and NB to vb so the new edge (va, vb) induces the bipar-
tition π = [A|B] in T |X . For any vertex u other than v 
and any bipartition π ′ ∈ H(u) , the invariants 1 and 2 still 
hold after Algorithm 2 as we do not change H(u), sv(π ′) , 
or the extra subtrees attached to u. For any bipartition 
π ′ ∈ H(v) such that π ′ �= π , if π ′ is not compatible with 
π , then it cannot be added to C(T ′|X ) since π is added, so 
the algorithm correctly discards π ′ and does not add it to 
H(va) or H(vb) . If π ′ is compatible with π , we will show 
that the invariants 1 and 2 still hold for π ′.

Fix any π ′ = [A′|B′] ∈ H(v) s.t. π ′ �= π and π ′ is compat-
ible with π . One of A′ and B′ must be a subset of one side 

of [A|B]. Assume without loss of generality that A′ ⊆ A 
(other cases are symmetric), so that B ⊆ B′ . In this case, 
Algorithm  2 adds π ′ to H(va) and sets sv(π) = va . We 
will show that this step preserves the invariants. Since 
π ′ ∈ H(v) , before adding π we also could have split v to 
add π ′ to C(T |X ) . Then there exists a division of neighbors 
of v in T |X into NA′ and NB′ such that NA′ (or NB′ , respec-
tively) consists of neighbors of v that can reach vertices of 
A′ (or B′ ) in T |X − v . It is easy to see that NA′ ⊆ NA and 
NB ⊆ NB′ . Since NA ∪ NB = NA′ ∪ NB′ = NT |X (v) , we 
have NA\NA′ = NB′ \NB . Since the algorithm connects 
all vertices in NB are to vb in T ′ while vertices in NB′ \NB 
are connected to va , NB′ \NB ∪ {vb} is the set of all neigh-
bors of va that can reach leaves of B′ in T ′|X − va . Then 
NT ′ |X (va) = NA ∪ {vb} = NA′ ∪ (NA\NA′ ∪ {vb}) = NA′ ∪ (NB′ \NB ∪ vb) 
implies that NA′ and NB′ \NB ∪ {vb} gives a division of 
neighbors of va such that NA′ are the neighbors that can 
reach leaves of A′ in T ′|X − va and NB′ \NB ∪ {vb} are the 
neighbors that can reach leaves of B′ in T ′|X − va . Such 
a division proves that va is the correct vertex to refine in 
T ′|X to add π ′ to C(T ′|X ) after the kth refinement. There-
fore, invariant 1 holds with respect to π ′ . Since π ′ ∈ H(v) 
before adding π , we also have for all t ∈ T R

∗(π ′) , the 
root of t is a neighbor of v before adding π . Since A′ ⊆ A , 
π ′ ∈ BP(A) and thus T R

∗(π) ⊆ T RS(A) . Then, Algo-
rithm 2 correctly attaches roots of all trees in T R

∗(π ′) to 
va . Therefore invariant 2 holds for π ′.

We have shown that invariants 1 and 2 hold for the tree 
T ′ with the auxiliary data structures H and sv. Next, we 
show that invariant 3 holds. Since π is the only biparti-
tion in C(T ′|X ) that is not in C(T |X ) , we only need to 
show two things: i) for any π ′ ∈ C(T |X ) , the invariant 
3 still holds, ii) invariant 3 holds for π . We first show i). 
Fix π ′ = [A′|B′] ∈ C(T |X ) . Since π is compatible with π ′ , 
one of A′ and B′ must be a subset of one of A and B. We 
assume without loss of generality that A′ ⊆ A . Therefore, 
B ⊆ B′ . Let Comp(A′) and Comp(B′) be the components 
containing the leaves of A′ and B′ in T |X − e′ , where 
e′ induces π ′ . Since Comp(A′) is unchanged after the 
refinement, invariant 3(a) is trivially true. Since B ⊆ B′ , 
Comp(B) is a subgraph of Comp(B′) and v ∈ Comp(B′) . 
During the refinement, v is split into va and vb , both of 
which are still part of Comp(B′) . Since all t ∈ T RS(B) 
are attached to an edge or a vertex in Comp(B′) before 
refinement and any extra subtree attached to v before is 
now on either va , or vb , or (va, vb) , all of which are part of 
Comp(B′) , they are all still attached to an edge or a vertex 
in Comp(B′) . Thus, the invariant 3 holds with respect to 
π ′.

For ii), we show invariant 3(a) holds for π and 3(b) follows 
the same argument. For any extra subtree in t ∈ T RS(A) , 
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if it was attached to v before refinement, then it is now 
attached to va , which is in Comp(A). If it was not attached 
to v before refinement, then let NB be as defined from 
Algorithm 2. For any bipartition π ′ = [A′|B′] induced by 
(v, u) where u ∈ NB . We know that (v,u) ∈ Comp(B) and 
thus either A′ ⊆ B or B′ ⊆ B . Assume without loss of gen-
erality that B′ ⊆ B . Then we have BP(B′) ∪ {π ′} ⊆ BP(B) 
and thus T RS(B′) ∪ T R

∗(π ′) ⊆ T RS(B) . We note that 
T RS(A) and T RS(B) are disjoint. Since t ∈ T RS(A) , 
we know t /∈ T RS(B) , then t /∈ T RS(B′) ∪ T RS

∗(π ′) . 
Let Comp(A′) and Comp(B′) be the components contain-
ing the leaves of A′ and B′ in T |X − (v,u) , respectively. 
Then Comp(A′) contains v and Comp(B′) contains u. 
Since t /∈ T R

∗(π ′) , it cannot be attached to (v, u). Also 
by the invariant 3 with respect to π ′ , t is not attached 
to any vertex or edge in Comp(B′) . Since this is true for 
every neighbor of v in NB , t /∈ Comp(B) as Comp(B) con-
sists of only edges connecting v to a neighbor u ∈ NB and 
the component containing u. Since t was not attached 
to v before the refinement, t is not attached to (va, vb) or 
Comp(B) after the refinement, then t must be attached to 
some edge or vertex in Comp(A). This proves invariant 
3(a) for π and thus the inductive proof. �

Lemma 11 Let T be a supertree computed within Algo-
rithm 1 at line 14 immediately before a refinement step. 
Let π = [A|B] ∈ NonTriv ∩ I . Let T ′ be a refinement of 
T obtained from running Algorithm 2 with supertree T, 
bipartition π , and the auxiliary data structures H and sv. 
Then, p1(T ′)− p1(T ) = w∗(π).

The idea for the proof of Lemma 11 is that for any non-
trivial bipartition π ∈ I of X to be added to T |X , Algo-
rithm  2 is able to split the vertex correctly and move 
extra subtrees around in a way such that each biparti-
tion in T1 or T2 that is induced by an edge in P(e1(π)) or 
P(e2(π)) , which is not in T |S1 or T |S2 before the refine-
ment, becomes present in T |S1 or T |S2 after the refine-
ment. Since there are exactly w∗(π) such bipartitions, 
they increase p1(·) by w∗(π) . Now we give the formal 
proof.

Proof Since I corresponds to an independent set in 
the incompatibility graph G, all bipartitions in I are 
compatible. Since C(T |X ) ⊆ Triv ∪ (NonTriv ∩ I) = I , 
π ∈ NonTriv ∩ I must be compatible with C(T |X ) , then 
there is a vertex to split to add π to C(T |X ) . By invariant 
1 of Lemma 10, v = sv(π) is the vertex to split to add π to 
T |X and thus Algorithm 2 correctly splits v into va and vb 
and connects them to appropriate neighbors such that in 
T ′|X , (va, vb) induces π.

We abbreviate e1(π) and e2(π) by e1 and e2 . We num-
ber the extra subtrees attached to e1 as t1, t2, . . . , tp , 
where p = w(e1)− 1 and t1 is the closest to A in T1 . 
Similarly, we number the extra subtrees attached to e2 
as t ′1, t

′
2, . . . , t

′
q , where q = w(e2)− 1 and t ′1 is the clos-

est to A in T2 . For any set T  of trees, let L(T ) denote the 
union of the leaf set of trees in T  . We note that if ei exists, 
Extra(Ti) = T RS i(A) ∪ T RS i(B) ∪ T R(ei) . Thus, 
A ∪ L(T RS i(A)) ∪ L(T R(ei)) ∪ L(T RS i(B)) ∪ B = Si 
for i ∈ [2] . For each k ∈ [w(e1)] , we define

and for each k ∈ [w(e2)] , we define

We know that for each k ∈ [w(e1)],

Thus, for any k ∈ [w(e1)] , πk is the bipartition induced 
by the kth edge on P(e1) in T1 , where the edges are num-
bered from the side of A. Therefore, πk ∈ C(T1) for any 
k ∈ [w(e1)] . Similarly, π ′

k ∈ C(T2) for any k ∈ [w(e2)].

Since for any k ∈ [w(e1)] , Ak ∩ X = A �= ∅ and 
(S1\Ak) ∩ X = B �= ∅ , we have πk |X = π and 
πk ∈ �1 . Similarly, for each k ∈ [w(e2)] , π ′

k ∈ �1 
and π ′

k |X = π . We also know that since π /∈ C(T |X ) , 
by Lemma 6, πk /∈ C(T |S1) for any k ∈ [w(e1)] and 
π ′
k /∈ C(T |S2) for any k ∈ [w(e2)] . We claim that 

πk ∈ C(T ′|S1) for all k ∈ [w(e1)] and π ′
k ∈ C(T ′|S2) for 

all k ∈ [w(e2)] . Then assuming the claim is true, we have 
|C(T ′|S1) ∩ C(T1) ∩�1| − |C(T |S1) ∩ C(T1) ∩�1| = w(e1) 
and |C(T ′|S2) ∩ C(T2) ∩�1| − |C(T |S2) ∩ C(T2) ∩�1| = w(e2) , 
and thus p1(T ′)− p1(T ) = w(e1)+ w(e2) = w∗(π).

Now we only need to prove the claim. Fix k ∈ [w(e1)] , we 
will show that πk ∈ C(T ′|S1) . The claim of π ′

k ∈ C(T ′|S2) 
for any k ∈ [w(e2)] follows by symmetry. By invariant 2 
of Lemma 10, we know that all extra subtrees of T R(e1) 
were attached to v at the beginning of Algorithm 2 and 
thus the algorithm attaches them all onto (va, vb) in 
the order of t1, t2, . . . , tp , such that t1 is closest to A. 
Let the attaching vertex of ti onto (va, vb) be ui for any 
i ∈ [w(e1)] . Then we note P((va, vb)) is the path from va 
to u1,u2, . . . ,up and then to vb . For any t ∈ T RS1(A) , by 
invariant 3 of Lemma 10, t is attached to Comp(A), the 

Ak :=

k−1⋃

i=1

L(ti) ∪ L(T RS1(A)) ∪ A, πk := [Ak |S1\Ak ],

A′
k :=

k−1⋃

i=1

L(t ′i) ∪ L(T RS2(A)) ∪ A, π ′
k := [A′

k |S2\A
′
k ].

S1\Ak =

p⋃

i=k

L(ti) ∪ L(T RS1(B)) ∪ B.
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component containing A in T ′|X − (va, vb) . Therefore, 
if we delete any edge of P((va, vb)) from T ′ , t is in the 
same component as A. Similarly, for any t ∈ T RS1(B) , 
t is in the same component as B if we delete any 
edge of P((va, vb)) from T. In particular, consider 
T ′|S1 − (uk−1,uk) . The component containing uk−1 and 
A contains all of T RS1(A) and {ti | i ∈ [k − 1]} , thus the 
leafset of that component is

Therefore, the edge (uk−1,uk) induces the bipartition 
[Ak |S1\Ak ] in T ′|S1 . Hence, πk ∈ C(T ′|S1) as desired. �

Proposition 2 Let G be the weighted incompatibility 
graph on T1|X and T2|X , and let I be the set of biparti-
tions associated with vertices in I∗ , which is a maximum 
weight independent set of G. Let F be any compatible 
subset of C(T1,T2,X) . Then w∗(I) ≥ w∗(F).

Proof We extend the weight function of vertices in 
G and let weight(U) denote the total weight of any 
set U of vertices of G. For any compatible subset of 
bipartitions F ⊆ C(T1,T2,X) , let V(F) be the set of 
vertices of G associated with the bipartitions in F. 
We first claim that w∗(F) = weight(V (F)) . For each 
π ∈ C(T1|X ) ∩ C(T2|X ) , there are two vertices associated 
with it in G with a total weight of w(e1(π))+ w(e2(π)) , 
which is exactly w∗(π) . For each π ∈ C(Ti|X )\C(Tj|X ) 
for i, j ∈ [2] and i  = j , let vπ be the only vertex for π 
in G, then weight(vπ ) = w(ei(π)) = w∗(π) . Since 
C(T1,T2,X) = (C(T1|X ) ∩ C(T2|X ) ∪ (C(T1|X )�C(T2|X )) , 
we have shown that the w∗(π) = weight(V ({π})) 
for any π ∈ C(T1,T2,X) . Then taking the sum over 
all π ∈ F  , we have w∗(F) = weight(V (F)) . Since 
V (I) = I∗ , we have w∗(I) = weight(V (I)) = weight(I∗) . 
Fix any compatible subset F of C(T1,T2,X) . Let 
F ′ = F\(C(T1|X ) ∩ C(T2|X )) . Then we have

Since F is compatible, F ′ ∪ (C(T1|X ) ∩ C(T2|X )) is also 
compatible, and thus V (F ′ ∪ (C(T1|X ) ∩ C(T2|X ))) 
is an independent set in G. Therefore, 
weight(V (F ′ ∪ (C(T1|X ) ∩ C(T2|X )))) ≤ weight(I∗)  , 
since I∗ is a maximum weight inde-
pendent set in G. We conclude that 
w
∗(F) ≤ weight(V (F ′ ∪ (C(T1|X ) ∩ C(T2|X ))))

≤ weight(I∗) = w
∗(I) . �

A ∪ L(T RS1(A)) ∪

k−1⋃

i=1

L(ti) = Ak .

w∗(F) =w∗(F ′)+ w∗(F ∩ C(T1|X ) ∩ C(T2|X ))

≤w∗(F ′)+ w∗(C(T1|X ) ∩ C(T2|X ))

=w∗(F ′ ∪ (C(T1|X ) ∩ C(T2|X )))

=weight(V (F ′ ∪ (C(T1|X ) ∩ C(T2|X )))).

We now restate and prove Theorem 1:
Theorem  1 Let A = {T1,T2} with Si the leaf set of Ti 

( i = 1, 2 ) and X := S1 ∩ S2 . The problems RFS-2-B(A ) 
and SFS-2-B(A ) can be solved in O(n2|X |) time, where 
n := max{|S1|, |S2|}.

Proof First we claim that p1(T ∗) ≥ p1(T ) for any tree 
T ∈ TS , where T ∗ is defined as from line 14 of Algo-
rithm 1. Fix arbitrary T ∈ TS and let F = C(T |X ) . Then by 
Lemma 9, p1(T ) ≤ w∗(F) . We know that w∗(π) = 0 for 
any π /∈ C(T1,T2,X) , so w∗(F) = w∗(F ∩ C(T1,T2,X)) 
and thus p1(T ) ≤ w∗(F ∩ C(T1,T2,X)) . Since 
F ∩ C(T1,T2,X) is a compatible subset of 
C(T1,T2,X) , we have w∗(F ∩ C(T1,T2,X)) ≤ w∗(I) 
by Proposition 2. Then p1(T ) ≤ w∗(I) . Since 
Triv ⊆ C(T1|X ) ∩ C(T2|X ) ⊆ I , we have 
I = (NonTriv ∩ I) ∪ (Triv ∩ I) = (NonTriv ∩ I) ∪ Triv. 
Therefore, by Proposition 1 and Lemma 11, we have

Therefore, p1(T ∗) = w∗(I) ≥ p1(T ).

From Lemma 7 and the fact that a refinement of a tree 
never decreases p1(·) and p2(·) , we also know that 
p2(T

∗) ≥ p2(Tinit) ≥ p2(T ) for any tree T ∈ TS . Since for 
any T ∈ TS , SF(T ,A) = p1(T )+ p2(T ) , T ∗ achieves the 
maximum split support score with respect to A among 
all trees in TS . Thus, T ∗ is a solution to Relax—SFS-2-B 
(Corollary 1). If T ∗ is not binary, Algorithm 1 arbitrarily 
resolves every high degree node in T ∗ until it is a binary 
tree and then returns a tree that achieves the maximum 
split support score among all binary trees of leaf set S.

We give the running time analysis for Algorithm  1 to 
complete the proof of Theorem  1. First we analyze the 
running time of Algorithm  2, i.e., one refinement step. 
Dividing the neighbors of v and connecting them to va 
and vb appropriately in lines 3− 6 take O(|X |2) time. We 
can do a depth-first-search in T |X − v from every neigh-
bor u of v and check in O(|X|) time if any newly discov-
ered vertex is in A or B and connect u to va or vb accord-
ingly. Moving extra subtrees in T R

∗(π) in line 7 takes 
O(n) time as Ti has at most n leafs and thus there are O(n) 
extra subtrees in total, so |T R

∗(π)| is O(n). Lines 8− 13 
take O(n) time as the mappings are pre-calculated and 
there are again O(n) extra subtrees to be moved. Updat-
ing the data structures in lines 15− 21 takes O(|X |2) time 
as there are at most O(|X|) bipartitions in H(v) and each 
of the containment conditions is checkable in O(|X|) 

p1(T
∗) = p1(T̃ )+

∑

π∈NonTriv∩I

w
∗(π)

= w
∗(Triv)+ w

∗(NonTriv ∩ I)

= w
∗(I).
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time by checking whether one side of π ′ is a subset of one 
side of π (assuming that labels of leaves in both sides of 
the bipartitions are stored as pre-processed sorted lists 
instead of sets). The rest of the algorithm takes constant 
time. Overall, Algorithm 2 runs in O(n+ |X |2) time.

Next we analyze the running time for Algorithm  1, i.e., 
Exact-RFS-2. Computing C(T1|X ) and C(T2|X ) in line 
1 takes O(n2 + n|X |2) time as we need to compute πe|X 
for all e ∈ E(T1) ∪ E(T2) and then take the union. There 
are O(n) edges in E(T1) ∪ E(T2) . Computing πe|X for 
each edge takes O(n) time by running DFS on Ti − e to 
obtain πe and then taking intersection of both sides of 
πe with X, separately. Together it takes O(n2) time. Tak-
ing union of the bipartitions takes O(n|X |2) time as there 
are O(n) bipartitions to add and whenever we add a new 
bipartition, it needs to be compared to the O(|X|) dis-
tinct existing ones in the set. Since all bipartitions have 
size O(|X|), the comparison can be done in O(|X|) time 
(if each of them is represented by two sorted lists instead 
of two sets). In this step, we can always maintain a set of 
edges in Ti for each bipartition π ∈ C(T1,T2,X) such that 
πe|X = π.

Lines 2− 5 compute the mappings and values we need in 
latter part of the algorithm. We analyze the running time 
for each π = [A|B] ∈ C(T1,T2,X) first. We can compute 
the path P(ei(π)) by assembling the set of edges associ-
ated with π in Ti from the last step into a path. This takes 
O(n2) time by counting the times any vertex appear as an 
end vertex in the set of edges. The two vertices appear-
ing once are the end vertices of the path while those 
appearing twice are internal vertices of the path. Then 
w(ei(π)) = |P(ei(π))| can be found in constant time. 
Then we can find T R(ei(π)) by DFS in Ti − v for every 
internal node v of P(ei(π)) , starting the search from the 
unique neighbor u of v such that u does not appear in 
the path. This takes O(n) time. We compute BP i(A) and 
BP i(B) by iterating over O(|X|) bipartitions in C(Ti|X ) 
and check if one side of any bipartition is a subset of A or 
B in O(|X|) time, this takes O(|X |2) time together. Next, 
we compute T RS i(A) (or T RS i(B) ) by taking unions 
of extra subtrees in T R(ei(π)) for any π ∈ BP i(A) (or 
BP i(B) ) in O(n) time. Extra subtrees are uniquely iden-
tified by their roots and T R(ei(π)) is disjoint from the 
set of extra subtrees associated with other edges, so 
taking union of at most O(n) extra subtrees takes O(n) 
time. Therefore, all the mappings and values can be 
computed in O(n2) time for each bipartition and thus it 
takes O(n2|X |) time overall. With all the extra subtrees 

calculated for each partition, we can compute Extra(Ti) 
in O(n2) time.

Constructing Tinit in line 6 takes O(n) time. Line 7 con-
structs an incompatibility graph with O(|X|) vertices 
and O(|X |2) edges in O(|X |3) time as compatibility of 
any pair of bipartitions of size O(|X|) can be checked in 
O(|X|) time. For line 8, we can reduce Maximum Weight 
Independent Set to Minimum Cut problem in a directed 
graph with a dummy source and sink. Then the Minimum 
Cut problem can be solved by a standard Maximum Flow 
Algorithm. Since the best Maximum Flow algorithm runs 
in O(|V||E|) time and the graph has O(|X|) vertices and 
O(|X |2) edges, this line runs in O(|X |3) time. Line 10-11 
essentially runs line 7 of Algorithm 2 O(|X|) times using a 
total of O(n|X|) time. Line 12 initiates the data structure 
H and sv in O(|X|) time. Lines 13− 14 run Algorithm 2 
O(|X|) times with a total of O(n|X | + |X |3) time. Since 
|X | ≤ n , |X |3 ≤ n|X |2 ≤ n2|X | , and thus, the overall run-
ning time of the algorithm is dominated by the running 
time of lines 2− 5 , which is O(n2|X |).

�

Corollary 1 Let A = {T1,T2} with Si the leaf set of Ti 
( i = 1, 2 ) and X := S1 ∩ S2 . Relax—SFS-2-B can be solved 
in O(n2|X |) time, where n := max{|S1|, |S2|}.

Using Exact‑RFS‑2 in Divide‑and‑Conquer methods
Here we present a divide-and-conquer method for phy-
logeny estimation, which uses the Exact-RFS-2 algorithm 
in combination with DACTAL [11], a prior divide-and-
conquer framework.

Let � be a model of evolution (e.g., GTR) for which 
statistically consistent methods exist, and we have some 
data (e.g., sequences) generated by the model and wish to 
construct a tree. We construct an initial estimate of the 
tree, and we select an edge e in the tree. The deletion of 
e and its endpoints creates four subtrees, and we let P be 
the set of the p nearest leaves to e taken from each sub-
tree (including all leaves that tie for closest in each sub-
tree). We define the subsets be A ∪ P and B ∪ P , where 
πe = [A|B] ), and we re-estimate trees on these subsets 
and then combine the trees together using Exact-RFS-2. 
We call this the DACTAL-Exact-RFS-2 pipeline, due to 
its similarity to the DACTAL pipeline [11]. The DAC-
TAL pipeline differs from the DACTAL-Exact-RFS-2 
pipeline only in that it computes four trees (each con-
taining the set P and otherwise being leaf-disjoint) and 
then combines the overlapping subset trees using the 
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Strict Consensus Merger technique, and was proven sta-
tistically consistent when the subset trees are computed 
using statistically consistent methods.

Before we prove that DACTAL-Exact-RFS-2 can ena-
ble statistically consistent pipelines, we begin with some 
definitions. Given a tree T and an internal edge e in T, the 
deletion of the edge e and its endpoints defines four sub-
trees. A short quartet around e is a set of four leaves, 
one from each subtree, selected to be closest to the edge. 
Note that due to ties, there can be multiple short quartets 
around some edges. The set of short quartets for a tree T 
is the set of all short quartets around the edges of T. The 
short quartet trees of T is the set of quartet trees on short 
quartets induced by T. It is well known that the short quar-
tet trees of a tree T define T, and furthermore T can be 
computed from this set in polynomial time [33–35].

Lemma 12 Let T be a binary tree on leaf set S and let 
A,B ⊆ S . Let TA = T |A and TB = T |B (i.e., TA and TB are 
induced subtrees). If every short quartet tree is induced 
in TA or in TB , then T is the unique compatibility super-
tree for TA and TB and Exact-2-RFS(TA,TB) = T .

Proof Because TA and TB are induced subtrees of T, it 
follows that T is a compatibility supertree for TA and TB . 
Furthermore, because every short quartet tree appears 
in at least one of these trees, T is the unique compat-
ibility supertree for TA and TB (by results from [34, 35], 
mentioned above). Finally, because T is a compatibility 
supertree, the RFS score of T with respect to TA,TB is 0, 
which is the best possible. Since Exact-2-RFS solves the 
RFS problem on two binary trees, Exact-2-RFS returns T 
given input TA and TB . �

Thus, Exact-2-RFS is guaranteed to return the true tree 
when given two correct trees that have sufficient overlap 
(in that all short quartets are included). We continue with 
proving that these pipelines are statistically consistent.

Theorem  2 The DACTAL-Exact-RFS-2 pipeline is 
a statistically consistent method for estimating the 
unrooted tree topology under any model � for which sta-
tistically consistent unrooted tree topology estimation 
methods exist.

Proof The proof is very similar to the proof given for 
the original DACTAL pipeline in [11]. Let � be the sto-
chastic evolution model. To establish statistical consist-
ency of the DACTAL-Exact-RFS-2 pipeline (see above), 
we need to prove that as the amount of data increases the 
unrooted tree topology that is returned by the pipeline 
converge to the true unrooted tree topology. That is, we 

will show that for any ǫ > 0 , there is an amount of data 
so that the probability of returning the true tree topology 
given that amount of data is at least 1− ǫ . Hence, let F 
be the method used to compute the starting tree, let G 
be the method used to compute the subset trees, and let 
ǫ > 0 be given. Because F is statistically consistent under 
� , it follows that there is an amount of data so that the 
starting tree computed by F will have the true tree topol-
ogy T with probability at least 1− ǫ/2 . Now consider the 
decomposition into two sets produced by the algorithm 
produced by deleting edge e, applied to a tree with the 
true unrooted tree topology. Note that for any p ≥ 1 , all 
the leaves appearing in any short quartet around e are 
placed in the set P. Now, subset trees are computed using 
G on A ∪ P and B ∪ P , where πe = [A|B] , which we will 
refer to as TA and TB , respectively. Since G is statistically 
consistent, for a large enough amount of data, TA and TB 
will have the true tree topology on their leaf sets ( T |L(TA) 
and T |L(TB) , respectively) with probability at least 1− ǫ/2 . 
When TA and TB are equal to the true trees on their leaf 
sets, then every short quartet tree of T is in TA or TB , so 
that by Lemma 12, T is the only compatibility supertree 
for TA and TB . Thus, under these conditions, Exact-2-
RFS(TA,TB ) returns T. Hence, for a large enough amount 
of data, Exact-2-RFS(TA,TB ) returns T with probability at 
least 1− ǫ , completing our proof. �

Hence, DACTAL+Exact-2-RFS is statistically consist-
ent under all standard molecular sequence evolution 
models and also under the MSC+GTR model [36, 37] 
where gene trees evolve within species trees under the 
multi-species coalescent model (which addresses gene 
tree discordance due to incomplete lineage sorting [38]) 
and then sequences evolve down each gene tree under 
the GTR model.

Note that all that is needed to guarantee that the pipe-
line is statistically consistent is that the method F used 
to compute the starting tree and the method G used to 
compute the subset trees be statistically consistent. How-
ever, for the sake of improving empirical performance, F 
should be fast so that it can run on the full dataset but 
G can be more freely chosen, since it will only be run on 
smaller datasets. Indeed, the user can specify the size of 
the subsets that are analyzed, with smaller datasets ena-
bling the use of more computationally intensive meth-
ods. Thus, when estimating gene trees under the GTR 
[39] sequence evolution model, F could be a fast dis-
tance-based method, such as neighbor joining [40] and 
G could be maximum likelihood, and when estimating 
species trees under the MSC+GTR model, then F could 
be ASTRID [29] or ASTRAL [41] (both polynomial time 
methods that are statistically consistent) while G could be 
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an expensive method, such as StarBeast2 [42], a Bayes-
ian method for co-estimating gene trees and species trees 
under the MSC+GTR model.

When empirical performance is the main objective and 
statistical consistency is not a requirement, then other 
options are available. For example, although heuristics 
for maximum likelihood are not provably statistically 
consistent (since they are not guaranteed to find optimal 
solutions), they can be highly accurate in practice. There-
fore, when estimating trees under the GTR [39] model, 
F could be a distance-based method, such as neighbor 
joining [40], and G could be a good maximum likelihood 
heuristic, such as RAxML [43] or IQ-TREE 2 [?].

Conclusions
The main contribution of this paper is Exact-2-RFS, a 
polynomial time algorithm for the Robinson-Foulds 
Supertree (RFS) of two binary trees. We established 
equivalence between RFS and some other supertree 
problems, while also showing that solving the RFS of 
three or more trees is NP-hard. Finally, showed that this 
approach can be used in a divide-and-conquer pipeline 
to enable statistically consistent phylogeny estimation 
under sequence evolution models (e.g., GTR [39] and the 
hierarchical MSC+GTR model [37]).

This study advances the theoretical understanding of 
several established supertree problems, showing that 
supertree methods have the theoretical potential to be 
useful in phylogeny estimation on large datasets. Some 
prior studies (e.g., [11, 44]) have evaluated supertree 
methods in the context of divide-and-conquer phylog-
eny estimation, which is an approach championed by 
Wilkinson [10]. Hence, a valuable direction for future 
work would evaluate these and other supertree methods 
in order to evaluate the utility and benefits of using such 
approaches on biological datasets.
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