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Abstract 

Motivation: Simultaneous alignment and folding (SA&F) of RNAs is the indispensable gold standard for inferring the 
structure of non-coding RNAs and their general analysis. The original algorithm, proposed by Sankoff, solves the theo-
retical problem exactly with a complexity of O(n6) in the full energy model. Over the last two decades, several variants 
and improvements of the Sankoff algorithm have been proposed to reduce its extreme complexity by proposing 
simplified energy models or imposing restrictions on the predicted alignments.

Results: Here, we introduce a novel variant of Sankoff’s algorithm that reconciles the simplifications of PMcomp, 
namely moving from the full energy model to a simpler base pair-based model, with the accuracy of the loop-based 
full energy model. Instead of estimating pseudo-energies from unconditional base pair probabilities, our model cal-
culates energies from conditional base pair probabilities that allow to accurately capture structure probabilities, which 
obey a conditional dependency. This model gives rise to the fast and highly accurate novel algorithm Pankov (Proba-
bilistic Sankoff-like simultaneous alignment and folding of RNAs inspired by Markov chains).

Conclusions: Pankov benefits from the speed-up of excluding unreliable base-pairing without compromising 
the loop-based free energy model of the Sankoff’s algorithm. We show that Pankov outperforms its predecessors 
LocARNA and SPARSE in folding quality and is faster than LocARNA.
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Background
In all forms of life, RNAs play essential roles that go 
beyond coding as messenger RNAs for the synthesis of 
proteins. Non-coding RNAs (ncRNAs) directly regulate 
cellular mechanisms, where some are known to be con-
served for billions of years [1]. ncRNAs often have only 
weak sequence conservation, since their (conserved) 
structure crucially determines their function. There-
fore, inferring the conserved secondary structure of 
homologs—most often, based on RNA alignments, is 

central for the discovery and annotation of functional 
RNAs.

RNA structural alignment algorithms can be classified 
depending on whether they fold and align simultaneously 
or in turn [2]. The gold standard for computing reliable 
alignments (and common structures) of RNAs is still the 
simultaneous algorithm proposed by Sankoff in 1985 
[3]. By simultaneously aligning and folding the RNAs, it 
resolves the vicious cycle that reliable RNA alignments 
must consider RNA structures (especially for RNAs of 
medium to low sequence identity [4]), while computa-
tional structure prediction is typically unreliable without 
comparative information. For a pair of RNA sequences, 
the algorithm finds the optimal alignment and two com-
patible secondary structures that minimize the total of 
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sequence-alignment distance score and the free energies 
of the predicted structures. With a run-time complex-
ity of O(n6) and O(n4) for memory, the method requires 
extreme computational resources, such that its appli-
cation is largely restricted to small instances and data 
sets. Efficient alignment algorithms are needed for the 
multiple alignments of the clusters that can be obtained 
from large scale clustering of data from high-throughput 
sequencing experiments [5].

Thus, several approaches have adapted Sankoff’s origi-
nal algorithm to reduce its computational costs. Two 
main lines of the variants can be distinguished. Methods 
like Dynalign [6] and FoldAlign [7] reduce the computa-
tional complexity by heuristic restrictions, e.g. introduc-
ing banding strategies or limiting the maximum size of 
the comparable sub-structures. Since such methods need 
to perform expensive energy computations in the near-
est neighbor model [8], their applications are still limited 
without considering heuristic restrictions that in turn 
could compromise their accuracy.

A highly viable alternative was proposed with the 
PMcomp algorithm [9], which replaces the nearest neigh-
bor energy model with a still accurate probabilistic model. 
This model allows to drastically simplify the algorithms, 
which strongly reduces the computational overhead and 
supports further algorithmic optimizations in PMcomp’s 
successors. For reducing the overhead, PMcomp-type 
algorithms evaluate structures based on base pair proba-
bilities, which are precomputed by McCaskill’s algorithm 
[10] instead of calculating nearest neighbor energy terms. 
Moreover, PMcomp-type algorithms such as LocARNA 
and similar approaches with a probabilistic energy model 
[11–14] further speed up by reducing the search space. 
To this end, LocARNA considers only base-pairs that 
pass a defined probability threshold. This sparsification 
improves over PMcomp’s complexity of O(n6) time and 
O(n4) space, each, by a quadratic factor (resulting in the 
O(n4) time and O(n2) space requirements of LocARNA).

With the algorithm SPARSE [15], we introduced a 
second level of sparsification using loop-closing aware 
recursions to filter based on the joint probability of base-
pairs and associated loop-closing base-pairs. This spar-
sification reduces the time complexity of the alignment 
algorithm to O(n2) , starting from the precomputed prob-
abilities. The joint probabilities were computed based on 
our extension of the McCaskill’s algorithm [16].

We emphasize that all these methods, starting with the 
original Sankoff algorithm, consider only non-crossing 
structures, even if crossing base pairs occur relatively 
frequently in physical structures [17]. This is generally 
justified, since most secondary structures are domi-
nated by non-crossing base pairs; in turn, the limitation 
to non-crossing structures allows dynamic programming 

techniques, which are far more efficient and flexible than 
comparable techniques that consider (even limited forms 
of ) base pair crossings.

In this work, we utilize the joint probabilities in a novel 
way—not only for strong sparsification as in SPARSE but 
as well to evaluate RNA structure more accurately in a 
PMcomp-type algorithm. We start with showing that 
joint (or equivalently, conditional) probabilities allow 
to precisely capture structure probabilities in the near-
est neighbor energy model. This corresponds to the 
exact capture of the nearest neighbor energies them-
selves. Remarkably, while previous work discussed only 
the stacking base-pair helices [18], we cope with all loop 
types. Based on the exact model, we suggest careful sim-
plifications, that allow incorporation of the model into 
alignment and folding (in the variant of the SPARSE algo-
rithm). Based on the novel precise probabilistic model, 
we propose the novel algorithm Pankov with O(n2) time 
complexity. As fundamental novelty over its predeces-
sors, it applies an accurate full-loop energy model for 
evaluating the structures.

Performing an established benchmark, we show that 
Pankov is in practice faster than LocARNA and signifi-
cantly improves structure prediction over both SPARSE 
and LocARNA. Compared to SPARSE, it even improves 
the sequence alignment quality.

Methods
Preliminaries
Basic notations
An RNA sequence A is a string over the alpha-
bet {A,C,G,U} . A base pair a of A is a pair (aL, aR) 
(1 ≤ aL < aR ≤ |A|) such that the respective sequence 
positions are complementary, i.e. AU, GC or GU. A non-
crossing RNA structure S of A, in the following called 
structure, is a set of base pairs, where each two dif-
ferent base pairs (i,  j) and (i′, j′) of S do not cross, i.e. 
i < i′ < j < j′ , and do not share any end, i.e. i, j, i′, and j′ 
are pairwise different. To treat the external bases pairs 
of an RNA structure, we introduce a pseudo-base-pair 
a0 := (0, |A| + 1) , which formally encloses all base pairs 
of A.

Tree structure
A nested RNA secondary structure S can be represented 
as a rooted structure tree, exemplified in Fig. 1a, b, where 
base-pairs are encoded as nodes and the enclosing base-
pairs are the parents of the directly enclosed base-pairs. 
The chi(a ∈ S) function provides the set of children base 
pairs that are directly enclosed by a given base pair  a. 
Thus, the cardinality of chi(a) is zero for hairpin loops 
( a3, a5, a6 in Fig. 1), at least two for multi-loops ( a4 ) and 
one otherwise ( a1, a2 ), which represents stackings, bulges 
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or interior loops. Furthermore, the pseudo base pair a0 
recursively encloses all base pairs of any structure that 
can be formed by A.

Energy and probability of an RNA structure
The energy of a structure S can be estimated using the 
nearest neighbor energy model, which is based on a 
loop-decomposition of the structure, where a loop is 
defined as the substructure defined by a base pair a and 
its enclosed base pairs chi(a) . The energy model provides 
contributions Eloop(a, chi(a)) for such loops, which are 
summed up, i.e.

By assuming a Boltzmann distribution of the structures 
based on the principles of statistical mechanics, there is 
a bijection between energies and probabilities of struc-
tures. Thus, the probability P(S) of the structure S is 
related to its energy E(S) by

based on its loops’ Boltzmann weights (Eq.  3) and the 
partition function Z =

∑

S exp(−E(S)/RT ) , which is 
efficiently computed by McCaskill’s algorithm [10]. If 
inverted, this allows transforming structure probabilities 
back to energies:

(1)E(S) =
∑

a∈S

Eloop(a, chi(a)).

(2)
P(S) = exp (−E(S)/RT )/Z

=
1

Z

∏

a

Zloop(a, chi(a)), with

(3)Zloop(a, chi(a)) = exp(−Eloop(a, chi(a))/RT ),

where Eens = −RT · log(Z) denotes the ensemble energy. 
This notation can be further used to derive the common 
definition of the probability of a base pair a P(a) as

which can be efficiently computed by McCaskill’s 
algorithm.

PMcomp assumes independence of base‑pair probabilities
PMcomp alignment and folding score
The alignment and folding score of PMcomp [9], which is 
assigned to an alignment A and RNA structures SA and 
SB , can be formulated as

The first two terms define the structural component of 
the score that is discussed in the next section. The last 
two terms define the sequence component of the score. σ 
is the base similarity for two matched sequence positions 
iA and iB from sequence A and B, resp., and γ is the gap 
penalty. Nindel is the number of insertions and deletions 
in A.

PMcomp structure scoring model
Here, we focus on the structure component of PMcomp’s 
alignment and folding score, since we want to inves-
tigate how well the probabilistic model reflects the 

(4)E(S) = −RT · log(P(S))+ Eens,

(5)P(a) =
∑

S∋a

P(S),

alignment-scorePMcomp(SA, SB,A)

=
∑

a∈SA
�A

a +
∑

b∈SB
�B

b
+
∑

(iA,iB)∈A
σ(iA, iB)+ Nindelγ .

a b

c

Fig. 1 a, b Illustrations of an exemplary structure S and the respective structure tree. PMcomp energy model is composed of the probabilities 
of base-pairs, shown with plain black arcs and nodes. Pankov energy model additionally incorporates in-loop probabilities of paired base-pairs 
that are illustrated with blue arrows. c Top: PMcomp structure model assume independence between the base-pair probabilities by multiplying 
the probabilities. Bottom: Pankov uses a loop-aware scheme to compute the probability of the structure that is efficiently calculated from 
pre-computed loop-conditional probabilities P(a�a′) based on the parent-child relation of the base-pairs
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thermodynamic energy model. The score of a structure S 
of sequence A normalizes and sums up the log-scores of 
its base pair probabilities, i.e.

Here, base pair probabilities P(a) are normalized via Pmin , 
the minimal probability of a significant base-pair, such 
that less probable base-pairs are unfavored. The loga-
rithm transfers the probabilistic model back to the energy 
space similar to Eq. 4.

Putting the normalization term aside, the PMcomp’s 
structure score contains a notion of structure probability 
(see first log term on the right of Eq. 6), which we denote 
with

Noticeably, base pairing events are assumed to be inde-
pendent, which is in violation with the underlying Near-
est-Neighbor energy model, as we will show next. Thus, 
PMcomp’s structure score does not relate well with the 
energy of the respective structure.

Exact computation of structure probabilities based 
on conditional loop probabilities
Here we prove that the equilibrium probability of a struc-
ture within the ensemble of possible structures can be 
expressed exactly based on conditional loop probabilities. 
This provides the theoretical foundation for discussing 
the Pankov energy model in the subsequent section.

Theorem  1 Let P(S) be the probability of structure S 
and have P(loop(a, chi(a)) | a) as the conditional prob-
ability of the loop in S closed by base-pair a, the following 
equation holds:

Proof
The free energy of the secondary structure S is composed 
of its loop energies Eloop in the nearest-neighbor thermo-
dynamic model (Eq. 1), which implies that its probability 
can be computed from the respective Boltzmann weights 
of loops (Eq. 2). Decomposing the right term of Eq. 8 by the 
partition function Za inside the base-pairs a, i.e.

(6)

scorePMcomp(S) =
∑

a∈S

�A
a

=
∑

a∈S

log (P(a)/Pmin)

= log(
∏

a∈S

P(a))− |S \ {a0}| · log(Pmin).

(7)PPMcomp(S) =
∏

a∈S

P(a).

(8)P(S) =
∏

a

P(loop(a, chi(a)) | a)

we get:

(=∗ ): Every arc but a0 occurs exactly once as a child in the 
numerator product.

(=∗∗ ): a0 encloses all possible structures, thus Za0 = Z . �

Eventually, this work extends and generalizes the 
approach for canonical helices (only stackings) from [18] to 
arbitrary secondary structures.

Pankov structure scoring model
Here, we want to score structures for simultaneous align-
ment and folding based on the derived Eq.  8, i.e. based 
on pre-computed conditional loop probabilities, to better 
reflect the structures’ energy within the overall alignment 
score. Due to the exponential number of possible multi-
loop branchings, a polynomial pre-computation and stor-
ing of respective multi-loop probabilities P(loop(a, chi(a)) 
is not feasible. Thus, we propose an approximation of such 
terms based on pair-in-loop probabilities introduced next.

Approximate loop probabilities using pair‑in‑loop 
probabilities
To handle arbitrary multi-loops (closed by a) with any 
number and composition of children base pairs chi(a) , we 
restrict computation and storage to all parent-child pairs 
a× a′ ∈ chi(a) , i.e. we define the pair-in-loop probability 
P(a′�a) , in the following abbreviated as in-loop probabili-
ties, as

(9)Za =
∑

Sa closed by a

exp(−E(Sa)/RT ),

(10)

∏

a

P(loop(a, chi(a))|a)

=
∏

a

(

∏

a′∈chi(a) Za′

)

· Zloop(a, chi(a))

Za

=

∏

a

∏

a′∈chi(a) Za′
∏

a Za
·
∏

a

Zloop(a, chi(a))

=∗

∏

a′ �=a0
Za′

∏

a Za
·
∏

a

Zloop(a, chi(a))

=∗∗

1

Z

∏

a

Zloop(a, chi(a)) =(Eq.2) P(S).
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where we calculate the joint probabilities of the form 
P(a, a′ ∈ chi(a)) by an extension of McCaskill’s algorithm 
introduced in [16], which can be performed in O(n3) 
time. To this end, the pair-in-loop information is stored 
in additional matrices during the partition function com-
putation without increasing the computational complex-
ity. The probability of a base-pair being external, i.e. being 
enclosed by the pseudo-arc a0 , is also computed and 
stored. Within the following, we discuss how to approxi-
mate loop probabilities from in-loop probabilities.

Pair-in-loop approximation of non-branching-loop prob-
abilities When using pair-in-loop probabilities to 
approximate non-branching loop probabilities, i.e. loops 
with exactly one child base pair, the latter is overesti-
mated since Eq. 11 does not distinguish the loop context 
of the pair. Therefore, also multi-loops contribute to in-
loop probabilities such that it follows

Scoring based on  least stable multi-loop branch An 
alternative approximation would be to assign the least 
probable branch to the whole multi-loop. This can be 
intuited in the energy space as that least stable branch-
ing of the multi-loop dominants formation of the multi-
loop.

Due to the same reasons as for non-branching loops, the 
following relation holds, i.e.

Assuming multi-loop-branch independence. As a 
straightforward approach we assume an independence 

(11)

P(a′�a) = P(a′ ∈ chi(a) | a)

=
P(a, a′ ∈ chi(a))

P(a)

=

∑

S ⊃ {a, a′} ∧ a′ ∈ chi(a) P(S)

P(a)
,

(12)P(a′�a) ≥ P(loop(a, {a′} = chi(a)) | a).

(13)PML-min(loop(a, chi(a)) | a) = min
a′∈chi(a)

P(a′�a).

(14)
PML-min(loop(a, chi(a)) | a) ≥ P(loop(a, chi(a)) | a).

between the multi-loop branches that are conditioned to 
be closed under the same base-pair, i.e.

Weighted overall structure scores
For scoring the structure in the implementation of the 
Pankov alignment algorithm, we assign the ultimate 
scoring scorePankov based on the product of multi-loop 
contributions following Eq. 15, that we designate as the 
Pankov’s probability of structure.

Similar to PMcomp, the probabilities are incorporated on 
the logarithmic scale via the �(a′, a) function, which also 
includes a normalization via the bonus term β . The latter 
term subsequently balances structure and sequence con-
tributions within the alignment scoring.

Pankov alignment approach
The Pankov algorithm keeps track of closing-loop base-
pairs in an efficient manner during dynamic program-
ming computation of the score matrices. The matrices 
are defined similar to the dynamic programming recur-
sions of the SPARSE algorithm [15], which achieve a 
quadratic time complexity for the alignment by exploit-
ing the sparsity of the in-loop probabilities. Thus, 
Pankov uses the following matrices:

• D(a, b) for the scores of matching the two base pairs 
a = (aL, aR) and b = (bL, bR) and aligning the two 
enclosed subsequences;

• Mab(i, k) for storing the maximum score of all pos-
sible alignments and foldings of the subsequences 
A[aL + 1..i] and B[bL + 1..k] that are under the loops 
enclosed by a and b; and

• IA and IB for supporting variability in the helix size 
via deletion and insertion of base-pairs under the 
loops closed by a and b respectively.

The matrix entries can be calculated recursively:

(15)PML-prod(loop(a, chi(a)) | a) =
∏

a′∈chi(a)

P(a′�a).

(16)PPankov(S) =
∏

a∈S

∏

a′∈chi(a)

P(a′�a)

(17)

�(a′, a) = log(P(a′�a))+ β ,

scorePankov(S) =
∑

a∈S

∑

a′∈chi(a)

�(a′, a)

= log(PPankov(S))+ |S \ {a0}| · β
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Here θ is the probability threshold and θ ′ is the corre-
sponding threshold for the joint in-loop probabilities. 
Following PMcomp’s energy model, SPARSE calculates 
�(a, a1) as �a1 (independent of the enclosing base pair 
a)—in Pankov we make use of the full flexibility.

The asymptotic time complexity of the Pankov align-
ment algorithm is O(n2) . Similar to SPARSE, the base 
pairing and joint in-loop probabilities need to be com-
puted only once for each sequence. This is important 
for computing multiple alignments, using a pairwise 
aligner like Pankov in a progressive scheme (e.g. via 
mlocarna tool from the LocARNA software pack-
age). The Pankov implementation of the recursions 
keeps track of both ends of the base-pairs, while in 
SPARSE the tracking is relaxed and M matrices with 
common left-ends are combined for further speed-up, 
although the complexity is not affected. So in practice, 
compared to SPARSE, Pankov’s run-time is slightly 
increased.

Alignment with domain insertion and deletion
The recursions of Pankov can be extended to allow for 
the deletion of an entire branch of one of the two pre-
dicted structures, which is then aligned to a gap in the 
other structure. This is similar to the Dynalign-II sup-
port for the insertion/deletion of domains [19]. Below, 
the additional two cases of Pankov’s M-recursion are 
shown.

D(a, b) = max







Mab(aR − 1, bR − 1)

IabA (aR − 1)

IabB (bR − 1)

Mab(i, k) = max











































































Mab(i − 1, k − 1)+ σ(i, k)

Mab(i, k − 1)+ γ

Mab(i − 1, k)+ γ

max P(a1) ≥ θ

P(b1) ≥ θ

aR1 = i

bR1 = k
P(a1, a) ≥ θ ′

P(b1, b) ≥ θ ′















Mab(aL1-1, b
L
1-1)

+D(a1, b1)

+σ(aL, bL)

+σ(aR, bR)
+�(a, a1)
+�(b, b1)















IabA (i) = max























IabA (i − 1)+ γ

max P(a1) ≥ θ

P(a1, a) ≥ θ ′

aR1 = i





(aL1-a
L+1) · γ

+D(a1, b)
+�(a, a1)





IabB (k) = max























sIabB (k − 1)+ γ

max P(b1) ≥ θ

P(b1, b) ≥ θ ′

bR1 = k





(bL1-b
L+1) · γ

+D(a, b1)
+�(b, b1)





 The cost of deleting/inserting both ends of the enclos-
ing base pairs of the domain, a1 or b1 , is 2γ . The extended 
D matrix entries, i.e. D(a1,−) and D(−, b1) , are ini-
tialized with the cost for the deletion/insertion of the 
enclosed domain. The maximum allowed size of a deleted 
domain is limited by the parameter LD , since arbitrary 
large domain indels are unlikely. This keeps the run-time 
increase moderate and allows to turn off the feature of 
domain insertion/deletion by LD = 0.

Results and discussion
Evaluation of the probabilistic energy models
The evaluation procedure
We evaluated the agreement between the reference 
and the probabilistic free energy models. Having the 
Turner [8] nearest-neighbor full energy model as the 
reference, we compared the performance of PMcomp’s 
base-pair independence model and Pankov’s loop-based 
conditional probability model. The Sankoff-like algo-
rithms maximize (or minimize) the sum of structure and 
sequence alignment scores over the space of possible 
formations of alignments and structure. Hence, a higher 
correlation between the calculated energies of a model 
with the reference free energy values indicates better 
modeling of the structure score, that is expected to per-
form better for the task of RNA simultaneous alignment 
and folding.

We developed an evaluation procedure to measure the 
level of agreement between the probabilistic models and 
the reference energy model with correlation coefficients. 
The procedure performs these steps for an input RNA 
sequence: (i) suboptimal secondary structures are gener-
ated using RNAsubopt method [20], for the range of the 
minimum free energy structure up to 5kcal/mol (-e=5 -s) 
and 500 suboptimals. (ii) for each suboptimal structure, 
the probability or free energy is calculated according to 
the described energy models and structure scores (iii) 
Over the set of suboptimal structures, the Spearman’s 
rank correlation coefficient between the reference RNAs-
ubopt’s free energies and the free energies/scores of the 
models are computed.

Mab(i, k) = max















































































[..]

max P(a1) ≥ θ

P(a1, a) ≥ θ ′

aR1 = i

aR1 − aL1 < LD







Mab(aL1 − 1, k)
+2γ
+D(a1,−)

+�(a, a1)







max P(b1) ≥ θ

P(b1, b) ≥ θ ′

bR1 = k

bR1 − bL1 < LD







Mab(i, bL1 − 1)
+2γ
+D(−, b1)
+�(b, b1)
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The five approximation variants of the probabilistic 
models are evaluated which compute the probability or 
score of a structure. More precisely, these variants are 
computed according to the equations PPMcomp (Eq.  7), 
scorePMcomp (Eq.  6), PPankov using PML-min (Eq.  13), 
PPankov using PML-prod (Eq.  15) and scorePankov using 
PML-prod and β terms (Eq. 17). The structure probabili-
ties are transferred to the energy dimension accord-
ing to Eq.  4. For consistency in the representation, 
the scores were also scaled with a similar scheme. As 
a monotonic function, the energy scale transformation 
does not affect the absolute rank correlations in neither 
of the cases.

The minimal significance probability Pmin in Eq.  6 
was set to 1/(2 · sequence-length) , this is used for the 
PMcomp score scheme of LocARNA. The bonus bal-
ance term β from Eq.  17 was set to 1.5, a bonus of 
zero makes the rank correlation of scorePankov same as 
the rank correlations of PPankov using PML-prod . How-
ever, a non-zero value is needed to balance the total 
alignment score by appropriately shifting the energy. 
The base-pair and conditional in-loop probabilities 
were computed using the extended implementation 
of McCaskill’s algorithm (see methods). The run-time 
complexity for calculating these values for a structure, 
using the precomputed matrices, are linear to the num-
ber of base-pairs in structure (O(|S|)) as well as the 
length of the sequence.

Evaluation of real ncRNAs
The described evaluation procedure was repeated for 
the set of RNA sequences obtained from the RNAstrand 
database (sequence length [30–200] nucleotides, entries 
without ambiguous or spurious characters). Figure  2 
shows the distribution of the rank correlation evaluation 
of the sequences.

To inspect the model agreements in details, we visual-
ized the output on a sample tRNA transcript of RNAs-
trand (ID: SPR_00633) in Fig.  3. An evaluation for the 
top 500 suboptimal structures of lowest free energies is 
shown. As can be seen in Fig.  3, the Pankov’s in-loop-
probability-based models (bottom row of Fig. 3) perform 
best in preserving the reference free energy ranks. It is 
also notable that the energy scaled values are precisely 
scaling back to the range of reference free energies.

The scatter plot for Pankov energy (ML-min) in Fig. 3 
confirms the relation for the probability of multiloops 
that was presented in the methods section (Eq.  14), 
PPankov with a ML-min approximation is bounded by the 
exact probability of the structure such that the approxi-
mated energies are always less than or equal to the refer-
ence energies.

Alignment performance evaluation
We evaluated our implementation of Pankov alignment 
algorithm on the pairwise alignment benchmark set, 
Bralibase 2.1 [21]. For the evaluated methods, the spar-
sification probability thresholds were set similar. Namely, 
LocARNA, SPARSE and Pankov with the minimum 
base-pair probability θ to 0.001 (option-p). For SPARSE 
and Pankov the in-loop probability threshold θ ′ was set 
to 0.0001 (option–prob-basepair-in-loop). The sequence-
structure balance term β of Pankov’s score (Eq. 17) was 
set to 1.5, the chosen among the values 1, 1.5, 2 and 2.5 
posing a fair balance for the average of sequence and 
structure scores. The Matthews Correlation Coefficient 
(MCC) performance was stable for β ’s value of 1.5 and 
larger values (Additional file 1: Figure S1).

Figure 4a, b show the performance comparison in term 
of sequence alignment quality sum-of-pairs-score (SPS) 
and structure prediction quality by Matthews Correlation 
Coefficient (MCC) [22]. To mediate the Bralibase curve 
“dent” effect [23], the visualization was done for sequence 
pairs of sequence identity (SI) between 30 to 80% to avoid 
a curve dent around SI-80 that seems to be mainly caused 
by enforcing a continuous curve over a quasi-heterogene-
ous distribution. Entries with a higher SI are not of par-
ticular interest, as they mostly perform fine also using the 
structure-unaware alignment algorithms. Furthermore, 
the dashed curves in Fig.  4 correspond to the subset of 
the benchmark by excluding the three ribosomal and 
tRNAs families. These families are shown to be moder-
ately overrepresented in the Braliabase and could over-
weight in the overall performance, especially on lower 
sequence identity range [23].

In the aspect of execution time, Pankov is overall faster 
than LocARNA and slower than SPARSE since Pankov 
implements the exact loop-closing track of the alignment 
recursions (see methods). Our implementation of Pankov 

Fig. 2 The distribution of rank correlation for evaluating the energy 
models over around 500 RNA sequences from RNAstrand database. 
Spearman’s rank correlations are computed for each sequence, 
between the reference and the models’ approximations of the 
suboptimal energies
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Fig. 3 Evaluation of the agreement between the structure probabilistic and scoring models with the reference energies for a tRNA transcript. Each 
dot corresponds to a suboptimal structure of the tRNA. The structures are sorted according to reference free energy in the x-axis, computed by 
Vienna package RNAsubopt tool. The probabilities and scores are scaled to the energy dimension (Eq. 4). Annotated correlations of each panel are 
the Spearman’s correlation coefficients between the x and y axes. Each correlation corresponds to an individual entry within the corresponding 
distributions that are shown as violin plots in Fig. 2

a b

Fig. 4 Comparison of the alignment performance on the Bralibase 2.1 pairwise benchmark set K2. a The sequence-level quality is measured 
as sum-of-pairs-score (SPS) by comparing the alignment edges of the reference and predicted alignments. b The structure prediction quality is 
measured as Matthews Correlation Coefficient (MCC) by comparing the base-pairs of the reference structure with the predicted structures. The solid 
lines depict all families and the dashed lines depict the subset without tRNA and the two rRNA families
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had an average run time of 1.8 seconds on Bralibase K2 
instances, when running on a AMD Opteron 2.1 GHz 
processor; this compares to respective average run times 
of 3.9 and 0.7 seconds of LocARNA and SPARSE. As can 
be seen in Fig. 4, Pankov considerably improves structure 
prediction over both SPARSE and LocARNA. Compared 
to its predecessor SPARSE, it even improves the sequence 
alignment quality.

Family‑wise analysis
We further compared the performance of SPARSE and 
Pankov in a family-wise manner, to find out which fami-
lies benefit most from the incorporation of a more accu-
rate energy model. Fig.  5 illustrates the difference ( � ) 
between quality metrics of SPARSE and Pankov which 
are averaged per family for Bralibase K2 entries with an 
SI less than 80%. The majority of families gain in the term 
of structure prediction from Pankov’s accurate energy 
model. Furthermore, IRES_HCV and the riboswitch 
families yybP-ykoY, Cobalamin and glycine (gcvT) have 
an improved sequence alignment quality (SPS) as well. A 
couple of families performed worse on average in struc-
ture prediction metric using the more accurate energy 
model of Pankov. Overall these families tend to be short 
and accommodate simple non-branching structures, 
according to Rfam’s reference structures.

The effect of domain indel feature
The possibility of deleting or inserting an entire domain 
(i.e. a branch of the structure tree) is beyond the origi-
nal Sankoff’s algorithm. In Sankoff’s model the structures 
are constrained to have the same branching topology. 
The Pankov extended version with domain indel sup-
port ( LD = 70 ) had about 80% increase of the runtime. 
On the other side, the average alignment quality metrics 
(both SPS and MCC) are mainly improved or remained 
unchanged (Additional file 1: Figure S2).

Conclusion
Sankoff’s algorithm is the reference standard for simulta-
neous alignment and folding (SA&F) of RNAs. While the 
theoretical work integrates the full loop-based nearest-
neighbor energy model, the derived algorithms mostly 
implement a simplified or limited structure energy mod-
els or restrict on the alignment and structure formation 
possibilities, to reduce the high computational complex-
ity. PMcomp proposed a probabilistic light-weight energy 
model. This empowers the PMcomp-like methods to 
strongly reduce the computational overhead of the exact 
thermodynamic folding details and allows further algo-
rithmic optimizations and sparsification based on the 
equilibrium probability of the base-pairs.

Here we showed that PMcomp’s energy model assumes 
a level of independence between the base-pairing events, 
which violates the underlying nearest neighbor energy 
model. To solve this issue, we demonstrated an exact way 
to compute the probability of an RNA secondary struc-
ture from the decomposed loop-probabilities. To circum-
vent the computational complexity of multi-loop cases, 
we introduced an energy model to accurately approxi-
mate this loop decomposition in an efficient way using 
the precomputed in-loop probabilities. Our proposed 
energy model takes care of the nearest-neighbor ther-
modynamic rule. It was further empirically validated that 
the novel model has a much closer agreement with the 
full-loop energy model, based on the dataset of real non-
coding RNAs. Using this energy model, we proposed the 
Pankov algorithm for pairwise simultaneous alignment 
and folding of RNAs. Benchmark results show that the 
implementation of Pankov outperforms its predecessors 
on predicting the secondary structure from the pairs of 
homologous RNAs.

The concept of conditional and joint in-loop probabili-
ties has some parallels to the production rules of Sto-
chastic Context-Free Grammars (SCFG) that can encode 
base-pair relations differently [24], they have also been 
used to solve the SA&F problem [25]. The overhead of 
treating various nucleotides separately during the align-
ment procedure is similar to the invocation of the full 

Fig. 5 Family-wise performance analysis on the Bralibase 2.1 pairwise 
benchmark set K2. (X-axis) The average difference between the 
Pankov and SPARSE for the sequence alignment quality metric SPS 
is computed per RNA family. (Y-axis) Similar to the X-axis but for the 
structure prediction metric MCC. Families with extreme differences 
are labeled. Pankov uses the superior estimation of the energy 
model while SPARSE applies PMcomp’s model (see Fig. 2). Pankov’s 
alignments gain in term of structure prediction for the majority of 
families



Page 10 of 11Miladi et al. Algorithms Mol Biol           (2020) 15:19 

loop-based energy model, which restrains the imple-
mentation towards using simplified grammars that may 
not benefit from the power of thermodynamic rules. In 
our proposed model, the probabilistic terms are obtained 
from the thermodynamic partition function, so the prob-
abilistic transition rules are straightforward and do not 
need to deal with individual types and combinations of 
nucleotides separately.

Pankov, to the best of authors’ knowledge, is the first 
SA&F method that dissociates the loop computation 
details from the alignment and prediction step to effi-
ciently solve the target problem without substantially 
compromising the power of underlying thermodynamic 
rules.

Supplementary information
Supplementary information accompanies this paper at https ://doi.
org/10.1186/s1301 5-020-00179 -w.

Additional file 1: Fig. S1. Evaluation of the bonus score effect on the 
combination of sequence and structure score for the alignment of Brali-
base dataset. The Matthews Correlation Coefficient (MCC) performance 
is stable for β’s value of 1.5 and larger values. Fig. S2. (A) Family-wise 
performance analysis of the benchmark set with and without enabling 
the option domain insertion and deletion. (B) An example of Pankov 
predicted structures by aligning two TPP (THI element) riboswitches. Cor-
rectly alignment columns are colored. The light green bases are predicted 
by Pankov and SPARSE, while the dark green and cyan regions are only 
predicted by Pankov. The highlighted stem-loop is deleted as a domain 
in the Pankov’s prediction. The cyan nucleotides have more than 97% 
sequence conservation according to the Rfam family TPP (RF00059), a.k.a. 
THI-box riboswitch, and can only be aligned once the domain insertion-
deletion option is enabled.
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