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Abstract 

Background: The history of gene families—which are equivalent to event-labeled gene trees—can to some extent 
be reconstructed from empirically estimated evolutionary event-relations containing pairs of orthologous, paralogous 
or xenologous genes. The question then arises as whether inferred event-labeled gene trees are “biologically feasible” 
which is the case if one can find a species tree with which the gene tree can be reconciled in a time-consistent way.

Results: In this contribution, we consider event-labeled gene trees that contain speciations, duplications as well as 
horizontal gene transfer (HGT) and we assume that the species tree is unknown. Although many problems become 
NP-hard as soon as HGT and time-consistency are involved, we show, in contrast, that the problem of finding a time-
consistent species tree for a given event-labeled gene can be solved in polynomial-time. We provide a cubic-time 
algorithm to decide whether a “time-consistent” species tree for a given event-labeled gene tree exists and, in the 
affirmative case, to construct the species tree within the same time-complexity.

Keywords: Tree reconciliation, Gene evolution, Species evolution, Horizontal gene transfer, Time-consistency, 
Polynomial-time algorithm
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Background
Genes collectively form the organism’s genomes and can 
be viewed as “atomic” units whose evolutionary history 
forms a tree. The history of species, which is also a tree, 
and the history of their genes is intimately linked, since 
the gene trees evolve along the species tree. A detailed 
evolutionary scenario, therefore, consists of a gene tree, 
a species tree and a reconciliation map µ that describes 
how the gene tree is embedded into the species tree.

A reconciliation map assigns vertices of the gene tree 
to the vertices or edges in the species in such a way that 
(partial) ancestor relations given by the genes are pre-
served by the map µ . This gives rise to three important 
events that may act on the genes through evolution: spe-
ciation, duplication, and horizontal gene transfer (HGT) 

[1, 2]. Inner vertices of the species tree represent spe-
ciation events. Hence, vertices of the gene tree that are 
mapped to inner vertices in the species tree underlay a 
speciation event and are transmitted from the parent spe-
cies into the daughter species. If two copies from a single 
ancestral gene are formed and reside in the same species, 
then a duplication event happened. Contrary, if one of 
the copies of a gene “jumps” into a different branch of the 
species tree, then a HGT event happened. The latter can 
be annotated in the gene tree by associating a label to the 
edge that points from the horizontal transfer event to the 
transferred copy [3–7]. Since both HGT and duplication 
events occur in between different speciation events, such 
vertices of the gene trees are usually mapped to the edges 
of the species tree. The events speciation, duplication, 
and HGT classify pairs of genes as orthologs, paralogs 
and xenologs, respectively [2].

To some extent, these relations can be estimated 
directly from sequence data using a variety of algorithmic 
approaches that are based on the pairwise best match 
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criterion [8–11] and hence do not require any a priori 
knowledge of the topology of either the gene tree or the 
species tree. Practical workflows for orthology assign-
ment directly use pairwise best matches as an initial 
estimate of orthologous gene pairs. Many of the com-
monly used methods for orthology-identification, such 
as OrthoMCL [12], ProteinOrtho [13, 14], OMA [15], 
or eggNOG [16], belong to this class, see also [17, 18]. 
While best match heuristics have been very successful 
as approximations of the orthology relation [19, 20], no 
comparable approach to extract the xenology relations 
directly from (dis)similarity data has been devised to-
date. Nevertheless, there are several methods to detect 
xenologs in a genome that use sequence features rather 
than phylogenetic reconstructions, see e.g. [21–26].

Provided that such event-relations are available, one 
can infer the history of event-labeled gene trees without 
HGT [27–32] or with HGT [5, 7, 33]. Moreover, depend-
ing on the quality and biological feasibility of the recon-
structed event-labeled gene trees, a species trees can also 
be reconstructed [3, 34, 35]. This line of research, in par-
ticular, has been very successful for the reconstruction 
of event-labeled gene trees and species trees based solely 
on the information of orthologous and paralogous gene 
pairs [36]. Note that in practice, inferred event-relations 
are likely to contain errors. However, characterizing rela-
tions that correspond to a valid history is a crucial step 
in devising error-correction algorithms, as this may lead 
to practical heuristic approaches to modify noisy event-
relations into valid ones.

In this paper, we assume that the gene tree T and the 
types of evolutionary events on T are known. For an 
event-labeled gene tree to be biologically feasible there 
must be a putative “true” history that can explain the 
inferred gene tree. However, in practice it is not possi-
ble to observe the entire evolutionary history as e.g. gene 
losses eradicate the entire information on parts of the his-
tory. Therefore, the problem of determining whether an 
event-labeled gene tree is biologically feasible is reduced 
to the problem of finding a valid reconciliation map, 
also known as DTL-scenario [37–39]. The aim is then to 
find the unknown species tree S and reconciliation map 
between T and S, if one exists. Not all event-labeled gene 
trees T, however, are biologically feasible in the sense that 
that there exists a species tree S such that T can be recon-
ciled with S. In the absence of HGT, biologically feasibil-
ity can be characterized in terms of “informative” triplets 
(rooted binary trees on three leaves) that are displayed by 
the gene trees [35]. In the presence of HGT, such triplets 
give at least necessary conditions for a gene tree being 
biologically feasible [3].

A particular difficulty that occurs in the presence of 
HGT is that gene trees with HGT must be mapped to 

species trees only in such a way that genes do not travel 
back in time. To be more precise, the ancestor ordering 
of the vertices in a species tree give rise to a relative tim-
ing information of the species within the species trees. 
Within this context, speciation and duplication events 
can be considered as a vertical evolution, that is, the 
genetic material is transferred “forward in time”. In con-
trast, HGT literally yield horizontal evolution, that is, 
genetic material is transferred such that a gene and its 
transferred copy coexist. Nøjgaard et  al. [4] introduced 
an axiomatic framework for time-consistent reconcilia-
tion maps and characterize for given event-labeled gene 
trees T and a given species tree S whether there exists a 
time-consistent reconciliation map or not. This charac-
terization resulted in an O(|V | log |W |)-time algorithm 
to construct a time-consistent reconciliation map if one 
exists, where V and W are the vertex sets of T and S, 
respectively.

However, one of the crucial open questions that were 
left open within this context is as follows: For a given 
event-labeled gene tree that contains speciation and 
duplication vertices and HGT edges, does there exist a 
polynomial-time algorithm to reconstruct the unknown 
species tree together with a time-consistent reconciliation 
map, if one exists?

In this contribution, we show that the answer to this 
problem is affirmative and provide an O(n3) time algo-
rithm, with n being the number of leaves of T, that allows 
us to verify whether there is a time-consistent species 
S for the event-labeled gene tree and, in the affirmative 
case, to construct S.

We note in passing that there could be exponentially 
many species trees, for each of them there may be a time-
consistent reconciliation map or not for a given event-
labeled gene tree. Moreover, many types of reconciliation 
problems become NP-hard as soon as HGT and time-
consistency are involved, see e.g. [37, 40–46]. In contrast, 
we show that the problem of finding a time-consistent 
species tree for a given event-labeled gene tree can be 
solved in polynomial-time.

This paper is organized as follows. We first provide a 
short survey of preliminary results that have been estab-
lised so far and therein, provide the concepts and basic 
notation we need including important results on gene 
and species tree, reconciliation maps and time-consist-
ency. We then proceed in Section "Gene tree consist-
ency" (GTC) to formally introduce the problem of finding 
a time-consistent species for a given event-labeled gene 
tree. As a main result, we will see that it suffices to start 
with a fully unresolved species tree that can then be step-
wisely extended to a binary species tree to obtain a solu-
tion to the GTC problem, provided a solution exists. In 
Section "An algorithm for the GTC problem", we provide 
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a solution to the GTC problem. For the design of this 
algorithm, we will utilize an auxiliary directed graph 
A(T , S) based on a given event-labeled gene tree T and 
a given species tree S. This type of graph was established 
in [4]. The authors showed that there is time-consistent 
map between T and S if and only if A(T , S) is acyclic. 
Our algorithm either reconstructs a species tree S based 
on the informative triplets that are displayed by the gene 
trees and that makes this graph A(T , S) eventually acyclic 
or that returns that no solution exists. The strategy of our 
algorithm is to construct A(T , S) starting with S being a 
fully unresolved species tree and stepwisely resolve this 
tree in a way that it “agrees” with the informative triplets 
and reduces the cycles in A(T , S).

Since the material is rather extensive (many of the 
proofs use elementary graph theory but are very techni-
cal) we subdivided the presentation in a main narrative 
text explaining the main results and a second techni-
cal part (see Appendix: “Proof of results”) collecting the 
proofs of the main results as well as additional technical 
results.

Short survey of existing results
Notation and basic definitions
Unless stated otherwise, all graphs in this work are 
assumed to be directed without explicit mention. 
For a graph G, the subgraph induced by X ⊆ V (G) 
is denoted G[X]. For a subset Q ⊆ V (G) , we write 
G − Q = G[V (G) \ Q] . We will write (a, b) and ab for the 
edges that link a, b ∈ V (G) of directed, resp., undirected 
graphs.

All trees in this work are rooted and edges are directed 
away from the root. Given a tree T, a vertex v ∈ V (T ) is 
a leaf if v has out-degree 0, and an internal vertex oth-
erwise. We write L(T ) to denote the set of leaves of T. 
A star tree is a tree with only one internal vertex that is 
adjacent to the leaves.

We write x �T y if y lies on the unique path from the 
root to x, in which case y is called an ancestor of x and 
x is called a descendant of y. We may also write y �T x 
instead of x �T y . We use x ≺T y for x �T y and x  = y . 
In the latter case, y is a strict ancestor of x. If x �T y or 
y �T x the vertices x and y are comparable and, other-
wise, incomparable. If (x,  y) is an edge in T, and thus, 
y ≺T x , then x is the parent of y and y the child of x. We 
denote with ch(x) the set of all children of x. It will be 
convenient for the discussion below to extend the ances-
tor relation �T on V to the union of the edge and vertex 
sets of T. More precisely, for a vertex x ∈ V (T ) and an 
edge e = (u, v) ∈ E(T ) we put x ≺T e if and only if x �T v 
and e ≺T x if and only if u �T x . For edges e = (u, v) and 
f = (a, b) in T we put e �T f  if and only if v �T b.

For a subset X ⊆ V (T ) , the lowest common ances-
tor lcaT (X) is the unique �T-minimal vertex that is 
an ancestor of all vertices in X in T. For simplicity, we 
often write lcaT (x, y) instead of lcaT ({x, y}).

A vertex is binary if it has 2 children, and T is binary 
if all its internal vertices are binary. A cherry is an inter-
nal vertex whose children are all leaves (note that a 
cherry may have more than two children). A tree T is 
almost binary if its only non-binary vertices are cher-
ries. For v ∈ V (T ) , we write T(v) to denote the sub-
tree of T rooted at v (i.e. the tree induced by v and its 
descendants).

A rooted triplet, or triplet for short, is a binary tree with 
three leaves. We write ab|c to denote the unique triplet 
on leaf set {a, b, c} in which the root is lca(a, c) = lca(b, c) . 
We say that a tree T displays a triplet ab|c if a, b, c ∈ L(T ) 
and lcaT (a, b) ≺ lcaT (a, c) = lcaT (b, c) . We write rt(T) to 
denote the set of rooted triplets that T displays. Given a 
set of triplets R, we say that T displays R if R ⊆ rt(T ) . A 
set of triplets R is compatible, if there is a tree that dis-
plays R. We also say that T agrees with R if, for every 
ab|c ∈ R , ac|b /∈ rt(T ) and bc|a /∈ rt(T ).

Remark 1 The term “agree” is more general than the 
term “display” and “compatible”, i.e., if T displays R (and 
thus, R is compatible), then T must agree with R. The con-
verse, however, is not always true. To see this, consider 
the star tree T , i.e., rt(T ) = ∅ , and let R = {ab|c, bc|a} . It 
is easy to verify that R is incompatible since there cannot 
be any tree that displays both triplets in R. However, the 
set R agrees with T.

We will consider rooted trees T = (V ,E) from which 
particular edges are removed. Let ET ⊆ E and consider 
the forest T

E
:=(V ,E \ ET ) . We can preserve the order 

�T for all vertices within one connected component of 
T
E

 and define �T
E

 as follows: x �T
E
y iff x �T y and x, y 

are in same connected component of T
E

 . Since each con-
nected component T ′ of T

E
 is a tree, the ordering �T

E
 

also implies a root ρT ′ for each T ′ , that is, x �T
E
ρT ′ for 

all x ∈ V (T ′) . If L(T
E
) is the leaf set of T

E
 , we define 

LT
E
(x) = {y ∈ L(T

E
) | y �T

E
x} as the set of leaves in T

E
 

that are reachable from x. Hence, all y ∈ LT
E
(x) must be 

contained in the same connected component of T
E

 . We 
say that the forest T

E
 displays a triplet r, if r is displayed 

by one of its connected components. Moreover, rt(T
E
) 

denotes the set of all triplets that are displayed by the for-
est T

E
.

The restriction T |X of T to X ⊆ L(T ) , is the tree with 
leaf set X that is obtained from T by first taking the mini-
mal subtree of T with leaf set X and then suppressing all 
vertices of degree two with the exception of the root of 
T |X.
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Gene and species trees
Let Ŵ and � be a set of genes and a set of species, respec-
tively. Moreover, we assume we know the gene-spe-
cies association, i.e., a surjective map σ : Ŵ → � . A 
species tree is a tree S such that L(S) ⊆ � . A gene tree is 
a tree T such that L(T ) ⊆ Ŵ . Note that σ(l) is defined 
for every leaf l ∈ L(T ) . We extend σ to vertices of T 
and put σT (v) = {σ(l) : l ∈ L(T (v))} . We may drop the 
T subscript whenever there is no risk of confusion. For 
ET ⊆ E , the σ notation also extends to σT

E
 , i.e. we write 

σT
E
(u):={σ(l) : :l ∈ LT

E
(u)} . We emphasize that spe-

cies and gene trees need not to be binary, which are used 
here to model incomplete knowledge of the exact gene 
phylogenies.

Given a gene tree T, we assume knowledge of a labe-
ling function t : V (T ) ∪ E(T ) → {⊙, s, d, t} ∪ {0, 1} . 
We require that t(v) ∈ {⊙, s, d, t} for all v ∈ V (T ) and 
t(e) ∈ {0, 1} for all e ∈ E(T ) . Each symbol represents a 
different vertex type: ⊙ are leaves, s are speciations, d are 
duplications and t indicates vertices from which a hori-
zontal gene transfer started. Edges labeled by 1 represent 
horizontal transfers and edges labeled by 0 represent 
vertical descent. Here, we always assume that only edges 
(x, y) for which t(x) = t might be labeled as transfer edge; 
t(x, y) = 1 . We let ET = {e ∈ E(T ) : t(e) = 1} be the set 
of transfer edges. We also require that t(u) = ⊙ if and 
only if u ∈ L(T ).

We write (T ; t, σ) to denote a gene tree T labeled by t 
having gene-species mapping σ.

In what follows we will only consider labeled gene trees 
(T ; t, σ) that satisfy the following three axioms: 

(O1)  Every internal vertex v has out-degree at least 2.
(O2)  Every transfer vertex x has at least one transfer 

edge e = (x, v) labeled t(e) = 1 , and at least one 
non-transfer edge f = (x,w) labeled t(f ) = 0;

(O3)  (a) If x ∈ V (T ) is a speciation vertex with chil-
dren v1, . . . , vk , k ≥ 2 , then σT

E
(vi) ∩ σT

E
(vj) = ∅ , 

1 ≤ i < j ≤ k;

  (b) If (x, y) ∈ ET , then σT
E
(x) ∩ σT

E
(y) = ∅.

These conditions are also called “observability-axioms” 
and are exhaustively discussed in [3] and [4]. We repeat 
here shortly the arguments to justify Condition (O1–O3). 
Usually the considered labeled gene trees are obtained 
from genomic sequence data. Condition (O1) ensures that 
every inner vertex leaves a historical trace in the sense that 
there are at least two children that have survived. If this 
were not the case, we would have no evidence that vertex v 

ever exist. Condition (O2) ensures that for an HGT event 
a historical trace remains of both the transferred and the 
non-transferred copy. Furthermore, there is no clear evi-
dence for a speciation vertex v if it does not “separate” line-
ages, which is ensured by Condition (O3.a). Finally (O3.b) 
is a simple consequence of the fact that if a transfer edge 
(x, y) in the gene tree occurred, then the species X and Y 
that contain x and y, respectively, cannot be ancestors of 
each other, as otherwise, the species X and Y would not 
coexist (cf. [4, Prop. 1]).

We emphasize that Lemma 1 in [4] states that the leaf 
set L1, . . . , Lk of the connected components T1, . . . ,Tk of 
T
E

 forms a partition of L(T), which directly implies that 
σT

E
(x)  = ∅ for all x ∈ V (T ).

Remark 2 In what follows we always assume that a spe-
cies tree satisfies (O1). This condition is used to ensure 
that every species tree is a so-called phylogenetic tree 
[47].

However, as it is possible that gene duplications and 
losses predate the first speciation event, we may model 
the species tree S as a planted tree, that is, there is an 
additional vertex x ≻ ρS = lca(L(S)) with unique child 
ρS . However, for our technical results below, this planted 
root is not of further importance.

By slight abuse of notation and to keep the upcoming 
proofs simple, we still call ρS = lca(L(S)) the root of S and 
the parent of ρS in S, the planted root of S.

Reconciliation maps and speciation triplets
The “embedding” of the gene tree into the species tree 
is formalized by a reconciliation map from (T ; t, σ) to S, 
that is, a map µ : V (T ) → V (S) ∪ E(S) that satisfies the 
following constraints for all x ∈ V (T ) : 

(M1)  Leaf constraint. If x ∈ Ŵ , then µ(x) = σ(x).
(M2)  Event constraint.

 
(i) If t(x) = s , then µ(x) = lcaS(σT

E
(x)).

(ii) If t(x) ∈ {d, t} , then µ(x) ∈ E(S).
(iii) If t(x) = t and (x, y) ∈ ET , then µ(x) and µ(y) 

are incomparable in S.
(iv) If t(x) = s , then µ(u) and µ(v) are incompara-

ble in S for all distinct u, v ∈ ch(x).
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(M3)  Ancestor constraint. Let x, y ∈ V (T ) with 
x ≺T

E
y . Note, the latter implies that the path 

connecting x and y in T does not contain trans-
fer edges. We distinguish two cases:

 
(i) If t(x), t(y) ∈ {d, t} , then µ(x) �S µ(y),
(ii) otherwise, i.e., at least one of t(x) and t(y) is a 

speciation s , µ(x) ≺S µ(y).

We call µ the reconciliation map from (T ; t, σ) to S. The pro-
vided definition of a reconciliation map coincides with the 
one as given in [3, 4, 48] and is a natural generalization of the 
maps as in [35, 37, 38, 49] for the case where no HGT took 
place.

The question arises when for a given gene tree 
(T ; t, σ) a species tree S together with a reconcilia-
tion map µ from (T ; t, σ) to S exists. An answer to this 
question is provided by

Definition 1 (Informative triplets) Let (T ; t, σ) be an 
event-labeled gene tree. The set R(T ; t, σ) is the set of 
triplets σ(a)σ (b)|σ(c) where σ(a), σ(b), σ(c) are pairwise 
distinct and either 

1 ab|c is a triplet displayed by T
E

 and t(lcaT
E
(a, b, c)) = s 

or
2 a, b ∈ L(T

E
(x)) and c ∈ L(T

E
(y)) for some transfer 

edge (x, y) or (y, x) in ET

Theorem  1 ([3]) Let (T ; t, σ) be a labeled gene tree. 
Then, there is a species tree S together with a reconcilia-
tion map µ from (T ; t, σ) to S if and only if R(T ; t, σ) is 
compatible. In this case, every species tree S that displays 
R(T ; t, σ) can be reconciled with (T ; t, σ).

Moreover, there is a polynomial-time algorithm that 
returns a species tree S for (T ; t, σ) together with a recon-
ciliation map µ in polynomial time, if one exists and oth-
erwise, returns that there is no species tree for (T ; t, σ).

It has been shown in [3], that if there is any recon-
ciliation map from (T ; t, σ) to S, then there is always a 
reconciliation map µ that additionally satisfies for all 
u ∈ V (T ) with t(u) ∈ {d, t}:

where v denotes the unique parent of lcaS(σT
E
(u)) 

in S. As a consequence, we consider the following 
simplification.

µ(u) = (v, lcaS(σT
E
(u))) ∈ E(S)

Definition 2 The LCA-map µ̂T ,S : V (T ) → V (S) 
associates every vertex v ∈ V (T ) to the lowest common 
ancestor of σT

E
(v) , i.e., µ̂T ,S(v): = lcaS(σT

E
(v))

Remark 3 Note that if v is a leaf of T, we have 
µ̂T ,S(v) = σ(v) . Moreover, the LCA-map µ̂T ,S always 
exists and is uniquely defined, although there might be 
no reconciliation map from (T ; t, σ) to S.

We may write µ̂, µ̂T or µ̂S if T and/or S are clear from 
the context.

Compatibility of R(T ; t, σ) provides a necessary con-
dition for the existence of biologically feasible reconcili-
ation, i.e., maps that are additionally time-consistent. To 
be more precise:

Definition 3 (Time map) The map τT : V (T ) → R is 
called a time map for the rooted tree T if x ≺T y implies 
τT (x) > τT (y) for all x, y ∈ V (T ).

Definition 4 (Time-consistent) A reconciliation map 
µ from (T ; t, σ) to S is time-consistent if there are time 
maps τT for T and τS for S satisfying the following condi-
tions for all u ∈ V (T ) : 

(B1)  If t(u) ∈ {s,⊙} , then τT (u) = τS(µ(u)).
(B2)  If t(u) ∈ {d, t} and, thus µ(u) = (x, y) ∈ E(S) , then 

τS(y) > τT (u) > τS(x).

 If a time-consistent reconciliation map from (T ; t, σ) to 
S exists, we also say that S is a time-consistent species tree 
for (T ; t, σ).

Figure 1 gives an example for two different species trees 
that both display R(T ; t, σ) for which only one admits 
a time-consistent reconciliation map. Further examples 
can be found in [3, 4]. 

Auxiliary graph construction
When the species tree is known, one can efficiently 
determine whether a time-consistent map for a given 
gene G and species tree S exists. We will use an auxiliary 
graph as defined in [4], and will investigate the structure 
of this graph in the remaining part of this section. Intui-
tively, this graph exhibits timing information between 
genes and species. That is, the gene tree events allow us 
to determine constraints of the form “x must have existed 
before y”, and each such constraint is represented by an 
arc from x to y. As it turns out, the absence of cycles in 
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the resulting graph is necessary and sufficient to deter-
mine the existence of a time-consistent map for a given 
event-labeled gene tree and a given species tree.

Let (T ; t, σ) be a labeled gene tree and S be a spe-
cies tree. Let A(T , S) be the graph with vertex set 
V (A(T , S)) = V (T ) ∪ V (S) , and edge set E(A(T , S)) con-
structed from four sets as follows: 

(A1)  For each (u, v) ∈ E(T ) , we have 
(u′, v′) ∈ E(A(T , S)) , where 

 and 

(A2)  For each (x, y) ∈ E(S) , we have (x, y) ∈ E(A(T , S))

(A3)  For each u with t(u) ∈ {d, t} , we have 
(u, µ̂(u)) ∈ E(A(T , S))

(A4)  for each (u, v) ∈ ET , we have 
(lcaS(µ̂(u), µ̂(v)),u) ∈ E(A(T , S))

 We are aware of the fact that the graph A(T , S) heav-
ily depends on the event-labeling t and the species 
assignment σ of the gene tree (T ; t, σ) . However, to 
keep the notation simple we will write, by slight abuse 
of notation, A(T , S) instead of the more correct nota-
tion A((T ; t, σ), S) . The A(T , S) graph has four types of 
edges, and we shall refer to them as the A1, A2, A3-and 
A4-edges, respectively. We note for later reference that if 
(x, y) is an A1-edge such that x, y ∈ V (S) , then we must 

u′ =

{
µ̂(u) if t(u) ∈ {⊙, s}
u otherwise

v′ =

{
µ̂(v) if t(v) ∈ {⊙, s}
v otherwise

have y �S x which follows from the definition of µ̂T ,S and 
the fact that σT

E
(y) ⊆ σT

E
(x).

We emphasize, that the definition of A(T , S) slightly 
differs from the one provided in [4]. While Proper-
ties (A2), (A3) and (A4) are identical, (A1) was defined 
in terms of a reconciliation map µ from (T ; t, σ) to S in 
[4]. To be more precise, in [4] it is stated u′ = µ(u) and 
v′ = µ(v) for speciation vertices or leaves u and v instead 
of u′ = µ̂(u) and v′ = µ̂(v) , respectively. However, Con-
dition (M1) and (M2.i) imply that µ(u) = µ̂(u) and 
µ(v) = µ̂(v) provided µ exists. In other words, the defi-
nition of A(T , S) here and in [4] are identical, in case a 
reconciliation map µ exists.

Since we do not want to restrict ourselves to the 
existence of a reconciliation map (a necessary condition 
is provided by Theorem 1) we generalized the definition 
of A(T , S) in terms of µ̂ instead.

For later reference, we summarize the latter observa-
tions in the following remark.

Remark 4 The graph A(T , S) does not explicitly depend 
on a reconciliation map. That is, even if there is no recon-
ciliation map at all, A(T , S) is always well-defined.

The graph A(T , S) will be utilized to characterize 
gene-species tree pairs that admit a time-consistent 
reconciliation map. For a given gene tree (T ; t, σ) and a 
given species tree S, the existence of a time-consistent 
reconciliation map can easily be verified in polynomial 
time.

Theorem  2 ([3, 4]) Let (T ; t, σ) be a labeled gene tree 
and S be a species tree. Then T admits a time-consistent 

b c'a d'd

A B C D
a 'd db ca'

a

A B C D
a 'd db ca'

0

now

ti
me

Fig. 1 Taken from [3, Fig. 4]. From the binary gene tree (T ; t , σ) (right) we obtain the species triplets R(T ; t , σ) = {AB|D, AC|D} . Note, vertices v of T 
with t(v) = s and t(v) = t are highlighted by “ • ” and “ △ ”, respectively. Transfer edges are marked with an “arrow”. Shown are two (tube-like) species 
trees (left and middle) where planted roots are omitted that display R(T ; t , σ) . Thus, Theorem 1 implies that for both trees a reconciliation map 
from (T ; t , σ) exists. The respective reconciliation maps for (T ; t , σ) and the species tree are given implicitly by drawing (T ; t , σ) within the species 
tree. The left species tree S is least resolved for R(T ; t , σ) . The reconciliation map from (T ; t , σ) to S is unique, however, not time-consistent. Thus, no 
time-consistent reconciliation between T and S exists at all. On the other hand, for T and the middle species tree (that is a refinement of S) there is a 
time-consistent reconciliation map
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reconciliation map with S if and only if S displays every 
triplet of R(T ; t, σ) and A(T , S) is acyclic.

Recognition and reconstruction of a time-consistent recon-
ciliation map can then be done in O(|V (T )| log(|V (S)|)) 
time.

In Appendix: "Lemma 3 and Proof of Lemma 1", we 
provide Lemma 3 that is rather technical, but essentially 
implies the following

Remark 5 If S has a leaf that forms a self-loop in 
A(T , S) , then we may immediately discard S as it can-
not have a solution (since any refinement will have this 
self-loop). For the rest of the section, we will therefore 
assume that no leaf of S belongs to a self-loop.

Gene tree consistency
The main question of interest of this work is to deter-
mine whether a species tree S exists at all for a labeled 
gene tree T. Here, we solve a slightly more general prob-
lem: the one of refining a given almost binary species 
tree S so that T can be reconciled with it. The idea of our 
approach is to refine S in a step-wise manner using exten-
sion moves, as defined below.

Definition 5 (Extension) Let x be a vertex of a tree 
T with ch(x) = {x1, . . . , xk} , k ≥ 3 and suppose that 
X ′ ⊂ ch(x) is a strict subset of ch(x).

Then, the (x,X ′) extension modifies T to the tree Tx,X ′ 
as follows: If |X ′| ≤ 1 , then put Tx,X ′ = T  . Otherwise, 
remove the edges (x, x′) for each x′ ∈ X ′ from T and add 
a new vertex y together with the edges (x, y) and (y, x′) for 
all x′ ∈ X ′ to obtain the tree Tx,X ′.

Given two trees T and T ′ , we say that T ′ is a refinement 
of T if there exists a sequence of extensions that trans-
forms T into T ′.

The gene tree consistency (GTC) problem:
Given: A labeled gene tree (T ; t, σ) and an almost 

binary species tree S.
Question: Does there exist a refinement S∗ of S that dis-

plays R(T ; t, σ) and such that A(T , S∗) is acyclic?
It is easy to see that the problem of determining the 

existence of a species tree S that displays R(T ; t, σ) and 
such that A(T , S) is acyclic is a special case of this prob-
lem. Indeed, it suffices to provide a star tree S as input 
to the GTC problem, since every species tree is then a 
refinement of S.

Definition 6 A species tree S∗ is a solution to a given 
GTC instance ((T ; t, σ), S) if S∗ is a refinement of S, S∗ 
displays R(T ; t, σ) and A(T , S∗) is acyclic.

We first show that, as a particular case of the following 
lemma, one can restrict the search to binary species trees 
(even if T is non-binary).

Lemma 1 Let ((T ; t, σ), S) be a GTC instance and 
assume that a species tree Ŝ is a solution to this instance. 
Then any refinement S∗ of Ŝ is also a solution to 
((T ; t, σ), S).

Proof See Appendix: "Lemma 3 and Proof of Lemma 1". �

This shows that we can restrict our search to binary 
species trees, and we may only require that it agrees with 
R(T ; t, σ).

Proposition 1 An instance ((T ; t, σ), S) of the GTC 
problem admits a solution if and only if there exists a 
binary refinement S∗ of S that agrees with and, therefore, 
displays R(T ; t, σ) such that A(T , S∗) is acyclic.

Proof Assume that ((T ; t, σ), S) admits a solution Ŝ . 
By Lemma  1, any binary refinement S∗ of Ŝ displays 
R(T ; t, σ) (and hence agrees with it) and A(T , S∗) is 
acyclic.

Conversely, suppose that there is a binary species tree 
S∗ that is a refinement of S and agrees with R(T ; t, σ) 
such that A(T , S∗) is acyclic. Since A(T , S∗) is acy-
clic, we only need to show that S∗ displays R(T ; t, σ) . 
Let ab|c ∈ R(T ; t, σ) . Because S∗ is binary, we must 
have one of ab|c, ac|b or bc|a in rt(S∗) . Since S∗ agrees 
with R(T ; t, σ) , ab|c ∈ rt(S∗) , and it follows that 
R(T ; t, σ) ⊆ rt(S∗) . Hence, S∗ displays R(T ; t, σ) . Tak-
ing the latter arguments together, S∗ is a solution to the 
instance ((T ; t, σ), S) of the GTC problem, which com-
pletes the proof. �

An algorithm for the GTC problem
We need to introduce a few more concepts before 
describing our algorithm. For a sequence Q = (v1, . . . , vk) 
we denote M(Q) = {v1, . . . , vk}.

Given a graph G, a partial topological sort of G is a 
sequence of distinct vertices Q = (v1, v2, . . . , vk) such 
that for each i ∈ {1, . . . , k} , vertex vi has in-degree 0 in 
G − {v1, . . . , vi−1} . If, for any v ∈ V (G) , there is no partial 
topological sort Q′ satisfying M(Q′) = M(Q) ∪ {v} then 
Q is called a maximal topological sort. Note that the set 
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of vertices in a maximal topological sort of G is unique, in 
the sense that for two distinct maximal topological sorts 
Q,Q′ of G we always have M(Q) = M(Q′) (cf. Lemma 4 
in Appendix: "Properties of maximal topological sort 
andLemma 4").

The motivation to consider partial and maximal topolog-
ical sorts is as follows: To find a solution S∗ for a given GTC 
instance, we must ensure that the graph A(T , S∗) is acyclic 
which holds precisely when there is a maximal topological 
sort that contains every vertex (cf. Lemma 4 in Appendix: 
"Properties of maximal topological sort andLemma 4"). 
If this is not the case, our goal is to find a refinement S′ of 
S∗ such that the updated graph A(T , S′) admits the same 
maximal topological sort as A(T , S∗) together with (at least 
one) additional vertex appended to it. We thus attempt to 
extend the maximal topological sorts in a step-wise manner 
until it contains every vertex of A(T , S∗) , or until no refine-
ment on S∗ allows us to augment it.

Our algorithm will make use of what we call a good split 
refinement. To this end, we provide first.

Definition 7 (Split refinement)
Let S be an almost binary tree and let x be a cherry of S. 
We say that a refinement S′ of S is a split refinement (of 
S at x) if S′ can be obtained from S by partitioning the 
set ch(x) of children of x into two non-empty subsets 
X1,X2 = ch(x) \ X1 , and applying the extensions (x,X1) 
and then (x,X2).

In other words, we split the children set of x into non-
empty subsets X1 and X2 , and add a new parent vertex 
above each subset of size 2 or more and connect x with 

the newly created parent(s) or directly with x′ whenever 
Xi = {x′}.

We note that the two (x,X1) and (x,X2) extensions yield 
a valid refinement of S since the set X2 is a strict sub-
set of the children of x in Sx,X1 . Also observe that a split 
refinement transforms an almost binary tree into another 
almost binary tree that has one additional binary internal 
vertex.

Definition 8 (Good split refinement) Let ((T ; t, σ), S) 
be a GTC instance. Let Q be a maximal topological sort 
of A(T , S) , and let S′ be a split refinement of S at some 
cherry vertex x. Then S′ is a good split refinement if the 
two following conditions are satisfied:

• S′ agrees with R(T ; t, σ);
• All the in-neighbors of x in A(T , S′) belong to M(Q).

The intuition behind a good split refinement is that 
it refines S by creating an additional binary vertex. 
Moreover, this refinement maintains agreement with 
R(T ; t, σ) and, more importantly, creates a new vertex 
of in-degree 0 in the auxiliary graph that can be used 
to extend the current maximal topological sort. Ulti-
mately, our goal is to repeat this procedure until Q con-
tains every vertex, at which point we will have attained 
an acyclic graph.

As an example consider Fig.  2. The species tree S1 
corresponds to the star tree. Clearly S1 agrees with 
R(T ; t, σ) since rt(S1) = ∅ . However, A(T , S) contains 
cycles. For the maximal topological sort Q1 of A(T , S1) 

Fig. 2 Top left: the gene tree (T ; t , σ) from Fig. 1 from which we obtain the species triplets R(T ; t , σ) = {AB|D, AC|D} . Moreover, the sequence of 
species trees S1, S2 and S3 is obtained by stepwise application of good split refinements. The species tree S4 is an example of a split refinement of S2 
that is not good. The corresponding graphs A(T , S) are drawn right to the respective species tree S. For clarity, we have omitted to draw all vertices 
of A(T , S) that have degree 0. Moreover, in the respective species trees the planted roots are omitted. See text for further discussion



Page 9 of 27Lafond and Hellmuth  Algorithms Mol Biol           (2020) 15:16  

we have M(Q1) = L(T ) ∪ {1, 2, 5} . Now, S2 is a good 
split refinement of S1 , since S2 agrees with R(T ; t, σ) 
(in fact, S2 displays R(T ; t, σ) ) and since x = 1′ has no 
in-neighbors in A(T , S2) which trivially implies that all 
in neighbors of x = 1′ in A(T , S2) are already contained 
M(Q1) . For the maximal topological sort Q2 of A(T , S2) 
we have M(Q2) = M(Q1) ∪ {1′} . Still, A(T , S2) is not 
acyclic. The tree S3 is a good split refinement of S2 , 
since S3 agrees with R(T ; t, σ) and the unique in-neigh-
bor 1′ of x = 2′ in A(T , S3) is already contained M(Q2) . 
Since A(T , S3) is acyclic, there is a time-consistent rec-
onciliation map from (T ; t, σ) to S3 , which is shown in 
Fig.  1. Furthermore, S4 is not a good split refinement 
of S2 . Although S4 is a split refinement of S2 and agrees 
with R(T ; t, σ) , the in-neighbor 4 of x = 2′ is not con-
tained in M(Q2) . 

We will discuss later the question of finding a good split 
refinement efficiently, if one exists. For now, assume that 
this can be done in polynomial time. The pseudocode for 
a high-level algorithm for solving the GTC problem is 
provided in Alg. 1. We note in passing that this algorithm 
serves mainly as a scaffold to provide the correctness 
proofs that are needed for the main Alg. 2.

The following result shows that if we reach a situa-
tion where there is no good split refinement for an GTC 
instance, then no solution exits at all.

Proposition 2 Let ((T ; t, σ), S) be a GTC instance such 
that S is not binary and does not admit a good split refine-
ment. Then, ((T ; t, σ), S) does not admit a solution.

Proof See Appendix: "Proof of proposition". �

We next show that if we are able to find a good split 
refinement S′ of S, the ((T ; t, σ), S′) instance is equiva-
lent in the sense that ((T ; t, σ), S) admits a solution if 
and only if ((T ; t, σ), S′) also admits a solution.

Theorem  3 Let ((T ; t, σ), S) be a GTC instance, 
and suppose that S admits a good split refinement 
S′ . Then ((T ; t, σ), S) admits a solution if and only if 
((T ; t, σ), S′) admits a solution. Moreover, any solution for 
((T ; t, σ), S′) , if any, is also a solution for ((T ; t, σ), S).

Proof See Appendix: "Proof of Theorem". �

Theorem  4 Algorithm  1 determines whether a given 
GTC instance ((T ; t, σ), S) admits a solution or not 
and, in the affirmative case, constructs a solution S∗ of 
((T ; t, σ), S).

Proof Let ((T ; t, σ), S) be GTC instance. First it is tested 
in Line 2 whether S is binary or not. If S is binary, then S 
is already its binary refinement and Prop. 1 implies that 
S is a solution to ((T ; t, σ), S) if and only if S agrees with 
R(T ; t, σ) and A(T , S) is acyclic. The latter is tested in 
Line 3. In accordance with Prop. 1, the tree S is returned 
whenever the latter conditions are satisfied and, other-
wise, “there is no solution” is returned.

Assume that S is not binary. If S admits no good split 
refinement, then Alg.  1 (Line  10) returns “there is no 
solution”, which is in accordance with Prop. 2. Contrary, 
if S admits a good split refinement S′ , then we can apply 
Theorem  3 to conclude that ((T ; t, σ), S) admits a solu-
tion if and only if ((T ; t, σ), S′) admits a solution at all.

Now, we recurse on ((T ; t, σ), S′) as new input of Alg. 1 
in Line  8. The correctness of Alg.  1 is finally ensured 
by Theorem  3 which states that if ((T ; t, σ), S′) admits 
a solution and thus, by Prop.  1, a binary refinement S∗ 
which is obtained by a series of good split refinements 
starting with S, is a solution for ((T ; t, σ), S) .  �

Finding a good split refinement
To find a good split refinement, if any, we can loop 
through each cherry x and ask “is there a good split 
refinement at x”? Clearly, every partition X1,X2 of ch(x) 
may provide a good split refinement and thus there might 
be O(2|ch(x)|) cases to be tested for each cherry x. To cir-
cumvent this issue, we define a second auxiliary graph 
that is an extension of the well-known Aho-graph to 
determine whether a set of triplets is compatible or not 
[47, 50, 51]. For a given set R of triplets, the Aho-graph 
has vertex set V and (undirected) edges ab for all triplets 
ab|c ∈ R with a, b, c ∈ V  . Essentially we will use this Aho-
graph and add additional edges to it. The connected com-
ponents of this extended graph eventually guide us to the 
process of finding good split refinements.
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We define now the new auxiliary graph to determine 
whether the cherry x of S admits a good split refinement 
or not.

Definition 9 (Good-split-graph) Let (T ; t, σ) be a gene 
tree, S be a species tree and x be a cherry of S. Moreover, 
let Q be a maximal topological sort of A(T , S).

We define G((T ; t, σ), S, x) = (V ,E) as the undi-
rected graph with vertex set V = L(S(x)) . Moreover, 
an (undirected) edge ab is contained in E if and only if 
a, b ∈ L(S(x)) and a, b are distinct and satisfy at least one 
of the following conditions: 

(C1)  There exists c ∈ L(S(x)) such that 
ab|c ∈ R(T ; t, σ);

(C2)  There exists an edge (u, v) ∈ E(T ) such 
that t(u) ∈ {d, t} , u /∈ M(Q) , t(v) = s , and 
{a, b} ⊆ σT

E
(v);

(C3)  There exists an edge (u, v) ∈ E(T ) such that 
t(u) = t(v) = s , µ̂S(u) = x and {a, b} ⊆ σT

E
(v);

(C4)  There exists a vertex u ∈ V (T ) \M(Q) such that 
t(u) ∈ {d, t} and {a, b} ⊆ σT

E
(u).

Intuitively, edges represent pairs of species that must 
belong to the same part of a split refinement at x. That 
is, (C1) links species that would contradict a triplet of 
R(T ; t, σ) if they were separated (as in the classical 
BUILD algorithm [47, 50, 51]); (C2) links species that 
would yield an A1-edge from a vertex not in Q into x if 
they were separated; (C3) links species that would cre-
ate a self-loop on x if they were separated; and (C4) links 
species that would create an A3-edge from a vertex not in 
Q into x if separated. We want the graph G((T ; t, σ), S, x) 
to be disconnected which would allow us to split the 
children of x while avoiding all the situations in which 
we create a separation of two children where we cannot 
ensure that this separation yields a good split refinement 
at x. Considering only such pairs of children turns out to 
be necessary and sufficient, and Theorem  5 below for-
malizes this idea.

Definition 10 Given an undirected graph H, we say that 
(A, B) is a disconnected bipartition of H if A ∪ B = V (H) , 
A ∩ B = ∅ and for each a ∈ A, b ∈ B , ab /∈ E(H).

We are now in the position to state how good split 
refinements can be identified. Note, we may assume 
w.l.o.g. that S agrees with R , as otherwise there can be 
no good split refinement at all.

Theorem  5 Let ((T ; t, σ), S) be a GTC instance, and 
assume that S agrees with R(T ; t, σ) . Let Q be a maximal 
topological sort of A(T , S) . Then there exists a good split 
refinement of S if and only if there exists a cherry x of S 
such that every strict ancestor of x in S is in Q, and such 
that G((T ; t, σ), S, x) is disconnected.

In particular, for any disconnected bipartition (A, B) of G, 
the split refinement that partitions the children of x into A 
and B is a good split refinement.

Proof See Appendix: "Proof of Theorem". �

The GTC algorithm
We can finally describe the detailed algorithm for the 
GTC problem, see also Fig. 3.

A pseudocode to compute a time-consistent spe-
cies for a given event-labeled gene tree (T ; t, σ) , if one 
exists, is provided in Alg. 2. The general idea of Alg. 2 
is as follows. With (T ; t, σ) as input, we start with a star 
tree S and stepwisely refine S by searching for good 
split refinements. If in each step a good split refinement 
exists and S is binary (in which case we cannot further 
refine S), then we found a time-consistent species tree S 
for (T ; t, σ) . In every other case, the algorithm returns 
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“No time-consistent species tree exists”. Observe that 
at any point during the execution of the algorithm, the 
graph G((T ; t, σ), S, x) is stored in memory for each 
cherry x of S. Since S is initialized as a star tree, only 
G((T ; t, σ), S, r) needs to be computed initially, with r 
being the root of S. After applying a binary refinement 
at some non-binary cherry x, two cherries x1 and x2 
are created, in which case we compute their auxiliary 
graph. Note that at this point, the graph G((T ; t, σ), S, x) 
is not needed since x is not a cherry anymore, and thus 
it could be discarded. The correctness proof as well as 
further explanations on the running time are provided 
in the proof of Theorem 6.

To show that this algorithm runs in O(n3) time, we 
need first the following.

Lemma 2 R(T ; t, σ) can be computed in worst-case 
time �(n3) , where n = |L(T )|.

Proof See Appendix: "Proof of Lemma".  �

We note that it is not too difficult to show that Algo-
rithm 2 can be implemented to take time O(n4) . Indeed, 

each line of the algorithm can be verified to take time 
O(n3) , including the construction of A(T , S) (which 
takes time O(n log n) , as shown in [4, Thm. 6]) and the 
construction of the G((T ; t, σ), S, x) graphs (by check-
ing every triplet of R(T ; t, σ) for (C1) edges, and for 
every pair a,  b of vertices, checking every member of 
V (T ) ∪ E(T ) for (C2), (C3) or (C4) edges). Since the main 
while loop is executed O(n) times, this yields complex-
ity O(n4) . However, with a little more work, this can be 
improved to cubic time algorithm.

As stated in Lemma 2, we may have R(T ; t, σ) ∈ �(n3) . 
Thus, any hope of achieving a better running time would 
require a strategy to reconstruct a species tree S without 
reconstructing the full triplet set R(T ; t, σ) that S needs 
to display. It may be possible that such an algorithm 
exists, however, this would be a quite surprising result 
and may require a completely different approach.

Theorem  6 Algorithm  2 correctly computes a time-
consistent binary species tree for (T ; t, σ) , if one exists, 
and can be implemented to run in time O(n3) , where 
n = |L(T )| . Its worst-case runtime is �(n3).

Fig. 3 Top right: the gene tree (T ; t , σ) from Fig. 1 from which we obtain the species triplets R(T ; t , σ) = {AB|D, AC|D} . We start with the star tree 
S1 (top left) and obtain G((T ; t , σ), S1, 1′) , which is shown right to S1 . G((T ; t , σ), S1, 1′) has four vertices A, B, C, D and two edges. The edge labels 
indicate which of the conditions in Def. 9 yield the respective edge. In G((T ; t , σ), S1, 1′) , there is only one non-trivial connected component which 
implies the good split that results in the tree S2 (lower left). There is only one cherry 2′ in S2 and the corresponding graph G((T ; t , σ), S2, 2′) is drawn 
right to S2 . Again, the connected components give a good split that results in the binary tree S3 . The tree S3 is precisely the species tree (planted root 
omitted) as shown in the middle of Fig. 1
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Proof See Appendix: Proof of Theorem.  �

Summary and outlook
Here, we considered event-labeled gene trees (T ; t, σ) 
that contain speciation, duplication and HGT. We 
solved the Gene Tree Consistency (GTC) problem, 
that is, we have shown how to decide whether a time-
consistent species tree S for a given gene tree (T ; t, σ) 
exists and, in the affirmative case, how to construct 
such a binary species tree in cubic-time. Since our 
algorithm is based on the informative species triplets 
R(T ; t, σ) , for which R(T ; t, σ) ∈ �(n3) may possible, 
there is no non-trivial way to improve the runtime 
of our algorithm. Our algorithm heavily relies on the 
structure of an auxiliary graph A(T , S) to ensure time-
consistency and good split refinements to additionally 
ensure that the final tree S displays R(T ; t, σ).

This approach may have further consequence in phy-
logenomics. Since event-labeled gene trees (T ; t, σ) 
can to some extent directly be inferred from genomic 
sequence data, our method allows to test whether 
(T ; t, σ) is “biologically feasible”, that is, there exists 
a time-consistent species tree for (T ; t, σ) . Moreover, 
our method also shows that all information about the 
putative history of the species is entirely contained 
within the gene trees (T ; t, σ) and thus, in the underly-
ing sequence data to obtain (T ; t, σ).

We note that the constructed binary species tree is 
one of possibly exponentially many other time-con-
sistent species trees for (T ; t, σ) . In particular, there 
are many different ways to choose a good split refine-
ment, each choice may lead to a different species tree. 
Moreover, the reconstructed species trees here are 
binary. This condition might be relaxed and one may 
obtain further species tree by “contracting” edges so 
that the resulting non-binary tree is still a time-con-
sistent species tree for (T ; t, σ) . This eventually may 
yield so-called “least-resolved” time-consistent species 
trees and thus, trees that make no further assumption 
on the evolutionary history than actually supported by 
the data.

As part of further work, it may be of interest to 
understand in more detail, if our approach can be used 
to efficiently list all valid (possibly exponentially many) 
solutions, that is, all time-consistent species trees for 
(T ; t, σ).
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Appendix A: Proof of results
A.1 Lemma 3 and Proof of Lemma 1
Before we can prove Lemma 1, we provide a results that 
deals with possible self-loops in A(T , S) . Although it may 
be possible to show in general (with a tedious case-by-
case analysis) that a leaf l of S would never create a self-
loop (l, l) in A(T , S) we use a conceptionally simpler idea 
and treat self-loops as a special case. In particular, we 
show that self-loops in A(T , S) cannot occur as long as 
there is a (not necessarily time-consistent) reconciliation 
map from (T ; t, σ) to S. In this case, the non-occurrence 
of self-loops is preserved by any graph A(T , S∗) for which 
S∗ is a refinement of S.

Lemma 3 Let (T ; t, σ) be an event-labeled gene tree, S be 
a species tree and S∗ be a refinement of S. Moreover, let l be 
a leaf of S (and thus, of S∗ ). Then (l, l) is an edge of A(T , S) 
if and only if (l, l) is an edge of A(T , S∗).

Furthermore, if there is a reconciliation map from (T ; t, σ) 
to S then, the graph A(T , S) will never contain self-loops 
and every edge (u′, v′) in A(T , S) with u′, v′ ∈ V (S) , is 
either an A1- or A2-edge and satisfies v′ ≺S u′.

Proof Let (T ; t, σ) be an event-labeled gene tree, 
S be a species tree and S∗ be a refinement of S. Note 
that if (l,  l) is a self-loop of A(T , S) (respectively 
A(T , S∗) ), then (l, l) must be an A1-edge, and so there is 
(u, v) ∈ E(T ) such that µ̂S(u) = µ̂S(v) = l (respectively 
µ̂S∗(u) = µ̂S∗(v) = l ). Since l is a leaf, µ̂S(u) = µ̂S(v) = l 
if and only if µ̂S∗(u) = µ̂S∗(v) = l , and the statement 
follows.

For the second statement, assume that there is a rec-
onciliation map from (T ; t, σ) to S. To see that A(T , S) 
does not contain self-loops, observe once again that 
self-loops can only be provided by A1-edges. So assume, 
for contradiction, that there is an edge (u, v) ∈ E(T ) 
such that t(u), t(v) ∈ {⊙, s} and µ̂(u) = µ̂(v) . Since 
t(u), t(v) ∈ {⊙, s} , Property (M1) and (M2.i) imply 
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that µ̂(u) = µ(u) and µ̂(v) = µ(v) for every reconcili-
ation map µ from (T ; t, σ) to S. Since v ≺T u , Condi-
tion (M3.ii) implies that µ̂(v) = µ(v) ≺S µ(u) = µ̂(u) ; a 
contradiction.

Now let (u′, v′) be an edge in A(T , S) with u′, v′ ∈ V (S) . 
Since all A3- or A4-edges involve vertices of T, we can 
conclude that (u′, v′) must either be an A1-edge or an 
A2-edge. Clearly, if (u′, v′) is an A2-edge, we trivially 
have v′ ≺S u′ . Assume that (u′, v′) is an A1-edge. Hence 
there is an edge (u, v) ∈ E(T ) such that u′ = µ̂(u) and 
v′ = µ̂(v) . This implies that t(u), t(v) ∈ {s,⊙} . Condition 
(M1) and (M2.i) imply µ̂(u) = µ(u) and µ̂(v) = µ(v) . 
Moreover, since (u, v) ∈ E(T ) , we have t(u) = s . Now, 
we can apply Condition (M3.ii) to conclude that 
v′ = µ̂(v) = µ(v) ≺S µ(u) = µ̂(u) = u′ . �

We are now in the position to prove Lemma 1.

Proof of Lemma 1 We may assume that Ŝ is non-binary 
as otherwise we are done. Let S∗ be any refinement of Ŝ . 
First observe that we have R(T ; t, σ) ⊆ rt(Ŝ) ⊆ rt(S∗) , 
and thus S∗ displays R(T ; t, σ).

It remains to show that A(T , S∗) is acyclic. We first 
prove that any single (x,X ′) extension applied to Ŝ pre-
serves acyclicity. Let S′: = Ŝx,X ′ be any tree obtained 
from Ŝ after applying some (x,X ′) extension. As speci-
fied in Definition 5, if |X ′| ≤ 1 , then S′ = Ŝ . In this case, 
A(T , S′) = A(T , Ŝ) is acyclic and we are done. Hence, 
suppose that |X | > 1 . Thus, a new node y was created, 
added as a child of x and became the new parent of 
X ′ ⊂ X . We claim that A(T , S′) is acyclic. For the remain-
der, we will write µ̂

Ŝ
 and µ̂S′ instead of µ̂

T ,Ŝ
 and µ̂T ,S′ 

since T will remain fixed. We will make use of the follow-
ing properties. 

 (P1) For every subset Z ⊆ L(S) , it holds that 

lca
Ŝ
(Z) =

{
lcaS′(Z) if lcaS′(Z) �= y
x otherwise

 (P2) For every u ∈ V (T ) , it holds that 

µ̂
Ŝ
(u) =

{
µ̂S′(u) if µ̂S′(u) �= y(Case P2.a)
x otherwise (Case P2.b)

Property (P1) follows from the fact that L(S′(v)) = L(Ŝ(v)) 
for any v ∈ V (S′) \ {y} and L(S′(y)) ⊂ L(Ŝ(x)) . Therefore 
if lcaS′(Z) = z �= y , then z is also a common ancestor of Z 
in Ŝ and there cannot be lower common ancestor below 
z. If z = y , then x is a common ancestor of Z in Ŝ and 
there cannot be a lower common ancestor below x. Prop-
erty (P2) is a direct consequence of (P1) and the defini-
tion of µ̂S′ and µ̂

Ŝ
.

Now, suppose for contradiction that A(T , S′) con-
tains a cycle C = (w1, . . . ,wk ,w1) . Note that 
R(T ; t, σ) ⊆ rt(Ŝ) ⊆ rt(S′) . Thus, Theorem  1 implies 
that there is a reconciliation map from from (T ; t, σ) to 
S′ . By Lemma 3, A(T , S′) does not contain self-loops and 
thus k > 1 for C = (w1, . . . ,wk ,w1)

Consider the sequence of vertices C̃ = (w̃1, . . . , w̃k , w̃1) of 
vertices of A(T , Ŝ) where we take C, but replace y by x if it 
occurs. That is, we define, for each 1 ≤ i ≤ k:

We claim that every element in 
{(w̃1, w̃2), . . . , (w̃k−1, w̃k), (w̃k , w̃1)} \ {(x, x)} is an edge in 
A(T , Ŝ) (the pair (x, x) can occur in C̃ if (x, y) is in C, but 
we may ignore it since this still results in a cycle). This 
will imply the existence of a cycle in A(T , Ŝ) , yielding a 
contradiction.

We show that (w̃1, w̃2) ∈ E(A(T , Ŝ)) , assuming that 
(w̃1, w̃2)  = (x, x) . This is sufficient to prove our claim, 
since we can choose w1 as any vertex of C and relabel the 
other vertices accordingly.

Case: (w1,w2) is an A1-edge.
 Since (w1,w2) is an A1-edge, it is 
defined by some edge (u, v) ∈ E(T ) and 
must coincide with one of the edges in 
A = {(u, v), (u, µ̂S′(v)), (µ̂S′(u), v), (µ̂S′(u), µ̂S′(v))}.
 Suppose that w1,w2  = y . Then, by con-
struction of w̃1 and w̃2 , we have w̃1 = w1 
and w̃2 = w2 . Hence, (w̃1, w̃2) = (w1,w2) is 
an edge in A . By (P2), µ̂

Ŝ
(u) = µ̂S′(u) and 

µ̂
Ŝ
(v) = µ̂S′(v) . Hence, (w̃1, w̃2) is of one of the form 

(u, v), (u, µ̂
Ŝ
(v)), (µ̂

Ŝ
(u), v), (µ̂

Ŝ
(u), µ̂

Ŝ
(v)) . This 

implies that (w̃1, w̃2) is an A1-edge that is contained 
in A(T , Ŝ).
 If w1 = y , then y ∈ V (S′) implies that y = µ̂S′(u) . 
By construction and (P2.b), w̃1 = x = µ̂

Ŝ
(u) . This, 

in particular, implies that w2 /∈ {x, y} as otherwise, 
w̃2 = x ; contradicting (w̃1, w̃2)  = (x, x) . By construc-
tion of w̃2 , we have w̃2 = w2 . Thus, (w̃1, w̃2) is either 
of the form (µ̂

Ŝ
(u), v) or (µ̂

Ŝ
(u), µ̂

Ŝ
(v)) depending on 

the label t(v). In either case, (w̃1, w̃2) is an A1-edge 
that is contained in A(T , Ŝ) (invoking (P2.b) for the 
latter case).

 If w2 = y then, by analogous arguments as in the 
case w1 = y , we have w̃2 = x = µ̂

Ŝ
(v) and w̃1 = w1 . 

w̃i =

{
wi if wi �= y
x if wi = y
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Again, (w̃1, w̃2) is an A1-edge that is contained in 
A(T , Ŝ).

 In summary, (w̃1, w̃2) is an A1-edge in A(T , Ŝ) 
whenever (w1,w2) is an A1-edge in A(T , S′)

Case: (w1,w2) is an A3-edge.
 Since (w1,w2) is an A3-edge, we have 
(w1,w2) = (u, µ̂S′(u)) . Since u ∈ V (T ) , it holds that 
w1 = u �= y and thus, w̃1 = w1 = u . Now we can 
apply similar arguments as in the first case: either 
µ̂S′(u) �= y and thus, w̃2 = w2 = µ̂S′(u) = µ̂

Ŝ
(u) or 

µ̂S′(u) = y and thus, w̃2 = x = µ̂
Ŝ
(u) . In both cases, 

(w̃1, w̃2) = (u, µ̂
Ŝ
(u)) which implies that (w̃1, w̃2) is 

an A3-edge in A(T , S′).
Case: (w1,w2) is an A2-edge.
 Since (w1,w2) is an A2-edge, we have 
(w1,w2) ∈ E(S′) and hence, w1 is the parent of 
w2 in S′ . This implies that w2  = y as, otherwise, 
w1 = x and thus, (w̃1, w̃2) = (x, x) ; a contradic-
tion. Thus, by construction, w̃2 = w2 . If w1 = y , 
then w̃1 = x and, by construction of S′ , we have 
(x,w2) = (w̃1, w̃2) ∈ E(Ŝ) . In this case, (w̃1, w̃2) is an 
A2-edge in E(A(T , Ŝ)) . Otherwise, if w1  = y , then 
w̃1 = w1 . Hence, (w1,w2) = (w̃1, w̃2) ∈ E(Ŝ) which 
implies that (w̃1, w̃2) is an A2-edge in E(A(T , Ŝ)).
Case: (w1,w2) is an A4-edge.
 Since (w1,w2) is an A4-edge, there is an edge 
(u, v) ∈ ET such that w1 = lcaS′(µ̂S′(u), µ̂S′(v)) and 
w2 = u . Clearly, w2 = y is not possible, since w2 = u 
corresponds to a vertex in T. By construction, 
w̃2 = w2 = u . Note that in A(T , Ŝ) , (u,  v) defines 
the A4 edge (lca

Ŝ
(µ̂

Ŝ
(u), µ̂

Ŝ
(v)),u) . Therefore, it 

remains to show that w̃1 = lca
Ŝ
(µ̂

Ŝ
(u), µ̂

Ŝ
(v)) . 

Notice that 

 In a similar manner, we obtain 

 Let Z = σT
E
(u) ∪ σT

E
(v) . Prop-

erty (P1) implies that if w1  = y , then 
lca

Ŝ
(µ̂

Ŝ
(u), µ̂

Ŝ
(v)) = lca

Ŝ
(Z) = lcaS′(Z) = w1 = w̃1 , 

as desired. If w1 = y , then 
lca

Ŝ
(µ̂

Ŝ
(u), µ̂

Ŝ
(v)) = lca

Ŝ
(Z) = x and w̃1 = x , as 

desired.
We have therefore shown that a cycle in A(T , S′) implies 
a cycle in A(T , Ŝ) . Since Ŝ is a solution, we deduce that 
A(T , S′) cannot have a cycle, and it is therefore also a 
solution to ((T ; t, σ), S).

w1 = lcaS′(µ̂S′(u), µ̂S′(v))

= lcaS′(lcaS′(σT
E
(u)), lcaS′(σT

E
(v)))

= lcaS′(σT
E
(u) ∪ σT

E
(v))

lca
Ŝ
(µ̂

Ŝ
(u), µ̂

Ŝ
(v)) = lca

Ŝ
(σT

E
(u) ∪ σT

E
(v))

To finish the proof, we need to show that A(T , S∗) is acy-
clic. This is now easy to see since Ŝ can be transformed 
into S∗ by a sequence of extensions. As we showed, each 
extension maintains the acyclicity property, and we 
deduce that A(T , S∗) is acyclic. �

A.2 Properties of maximal topological sort and Lemma 4
Lemma 4 Let G = (V ,E) be a graph and Q and Q′ be 
maximal topological sorts of G. Then, M(Q) = M(Q′) . 
In particular, M(Q) = V (G) if and only if G is a directed 
acyclic graph.

Furthermore, if x ∈ V \M(Q) , then none of the vertices y 
in V for which there is a directed path from x to y are con-
tained in M(Q).

If x ∈ M(Q) , then x is not contained in any cycle of G.

Proof Let Q,Q′ be maximal topological sorts of G, 
with Q = (v1, . . . , vk) and assume, for contradiction that 
M(Q)  = M(Q′) . Let vi be the first vertex in the sequence 
Q such that vi /∈ M(Q′) . Then all the in-neighbors of vi 
are in the set {v1, . . . , vi−1} . Moreover, by assumption 
{v1, . . . , vi−1} ⊆ M(Q′) , implying that vi has in-degree 0 
in G −M(Q′) . Hence, we could append vi to Q′ , contra-
dicting its maximality. The fact that M(Q) = V (G) if and 
only if G a directed acyclic graph is well-known and fol-
lows from the results of [52].

Let x ∈ V \M(Q) . Moreover, let 
P = (x = v1, . . . vk = y) , k ≥ 2 , be a directed path from 
x to y. Since x /∈ M(Q) , v2 has in-degree greater than 0 
in G −M(Q) . Therefore, v2 /∈ M(Q) and, by induction, 
vk = y /∈ M(Q).

We now show that no vertex x ∈ M(Q) can be con-
tained in a cycle of G. Assume, for contradiction, that 
there is a cycle C such that some of its vertices are part 
of a maximal topological sort Q = (v1, . . . , vk) of G. Let vi 
be the first vertex of C that appears in Q. Hence, vi must 
have in-degree 0 in G − {v1, . . . , vi−1} . But this implies, 
that the in-neighbor of vi in C must already be contained 
in Q; a contradiction. �

A maximal topological sort of G can be found by 
applying the following procedure: start with Q empty, 
and while there is a vertex of in-degree 0 in G −M(Q) , 
append v to Q and repeat. Then, G is acyclic if an only 
if any maximal topological sort Q of V(G) satisfies 
M(Q) = V (G) . The latter argument is correct as it 
directly mirrors the well-known algorithm by Kahn to 
find a topological sort of graph [52].
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A.3 Proof of proposition 2
We prove some general-purpose statements first. Let 
IG(v) denote the set of in-neighbors of vertex v in a graph 
G.

Lemma 5 Let ((T ; t, σ), S) be a GTC instance. More-
over, let S′ be a split refinement of S at a cherry x. Then, 
for every vertex y of S such that y ��S x , it holds that 
IA(T ,S′)(y) = IA(T ,S)(y).

Proof Let y ∈ V (S) be a vertex of S satisfying y ��S x . 
Since y /∈ V (T ) , for every z ∈ IA(T ,S′)(y) or z ∈ IA(T ,S)(y) 
the edge (z, y) cannot be an A4-edge.

If (z,  y) is an A2-edge in A(T , S) then, (z, y) ∈ E(S) , 
which is if and only if (z, y) ∈ E(S′) , since y ��S x . In this 
case, z ∈ IA(T ,S)(y) if and only if z ∈ IA(T ,S′)(y),

It remains to consider A1- and A3-edges. We translate 
here Property (P2.a) as in the proof of Lemma 1. It states 
as a particular case that for u ∈ V (T ) , µ̂S(u) = µ̂S′(u) 
whenever µ̂S(u) �� x . This holds for every y ��S x , which 
immediately implies that z ∈ IA(T ,S)(y) and the edge (z, y) 
is an A1-edge, resp., A3-edge in A(T , S) if and only if 
z ∈ IA(T ,S′)(y) and (z, y) is an A1-edge, resp., A3-edge in 
A(T , S′) . �

We are now in the position to prove Prop.  2.

Proof of Prop. 2 We show that if S does not admit 
a good split refinement, then none of the binary 
refinements S∗ of S is a solution to the GTC instance 
((T ; t, σ), S) . Contraposition of Lemma  1 together with 
Prop.  1 then implies that there is no solution at all for 
((T ; t, σ), S).

Thus, assume that S is not binary (but almost binary, 
due to the definition of GTC instances) such that S does 
not admit a good split refinement. Let S∗ be any binary 
refinement of S. We may assume that S∗ agrees with and 
thus, displays R(T , t, σ) , as otherwise it is not a solution. 
We show that A(T , S∗) contains a cycle.

Let Q be a maximal topological sort of A(T , S) . By 
Lemma  4, M(Q) is independent of the choice of the 
particular sequence Q. Note that V (S) ⊆ V (S∗) and 
therefore that V (A(T , S)) ⊆ V (A(T , S∗)). In particular, 
M(Q) ⊆ V (A(T , S∗)) . Also notice that because of the A2 
edges in A(T , S) and Lemma 4, if a vertex x ∈ V (S) is not 
in M(Q) , then no descendant of x in S is in M(Q). We 
separate the proof into three claims.
Claim 1 Let y ∈ V (S∗) \ V (S) . Then y has in-degree at 
least 1 in A(T , S∗)−M(Q).

Observe that since y /∈ V (S) , y must have been created by 
one of the extensions that transforms S into S∗ , and so 
in S∗ , y must be a descendant of a vertex x such that x is 

a non-binary cherry in S. We first argue that x /∈ M(Q) , 
and then proceed to prove the claim.

Note that since x is non-binary and S∗ is a binary refine-
ment of S, there is a split refinement S′ of S at x such that 
S∗ refines S′ . Since S∗ agrees with R(T ; t, σ) , also S′ agrees 
with R(T ; t, σ) . If all in-neighbors of x in A(T , S′) are in 
Q, then S′ is a good split refinement; a contradiction. So 
we may assume that x has an in-neighbor y in A(T , S′) 
such that y /∈ M(Q) . Since x ∈ V (S) , the edge (y, x) can-
not be an A4-edge in A(T , S′) . If (y, x) is an A1-edge in 
A(T , S′) , then x = µ̂S′(v) for some v ∈ V (T ) . By construc-
tion, L(S(x)) = L(S′(x)) and thus, µ̂S(v) = µ̂S′(v) = x . 
Therefore, (y, µ̂S(v)) = (y, x) ∈ E(A(T , S)) . Similarly, if 
(y, x) is an A3-edge in A(T , S′) , then x = µ̂S′(y) and again, 
(y, µ̂S(y)) = (y, x) ∈ E(A(T , S)) . If (y, x) is an A2-edge in 
A(T , S′) , then (y, x) ∈ E(A(T , S)) since the parent of x is 
the same in S and S′ . In all cases, y is an in-neighbor of 
x in A(T , S) . However, since y /∈ M(Q) , vertex y remains 
an in-neighbor of x in the graph A(T , S)−M(Q) . It fol-
lows that x /∈ M(Q).

Now, since x /∈ M(Q) , and because of the A2-edges, y 
must have in-degree at least 1 in A(T , S∗)−M(Q).

Claim 2 Let v ∈ V (T ) \M(Q) . Then v has in-degree at 
least 1 in A(T , S∗)−M(Q).

Let v ∈ V (T ) \M(Q) . Since v /∈ M(Q) , v has in-degree 
at least 1 in A(T , S)−M(Q) , or else it could be added to 
the maximal topological sort. Let (x,  v) be an incoming 
edge of v in A(T , S)−M(Q) , which is either an A1- or 
an A4- edge.

If (x,  v) is an A1- edge, we either have x ∈ V (T ) or 
x ∈ V (S) . Suppose first that x ∈ V (T ) . In this case, the 
(x,  v) edge exists because x is the parent of v in T with 
t(x),  t(v) both in {d, t} . This is independent of S, and so 
(x,  v) is also an A1-edge of A(T , S∗)−M(Q) . Suppose 
now that x ∈ V (S) . In this case, observe that x /∈ M(Q) , 
since (x,  v) is an edge in A(T , S)−M(Q) . Therefore, 
x ∈ V (S) \M(Q) . This, in particular, implies that the 
parent vp of v in T satisfies t(vp) = s and µ̂S(vp) = x . 
Since S∗ refines S, we must have µ̂S∗(vp) �S∗ x . There 
are two cases, either µ̂S∗(vp) /∈ V (S) , in which case trivi-
ally µ̂S∗(vp) /∈ M(Q) , or µ̂S∗(vp) ∈ V (S) . In the latter 
case, there is a directed (possibly edge-less) path from x 
to µ̂S∗(vp) in A(T , S) due to the A2-edges. Thus, we can 
apply Lemma 4 to conclude that µ̂S∗(vp) /∈ M(Q).

In either case, (µ̂S∗(vp), v) is an A1-edge of 
A(T , S∗)−M(Q) . Therefore, v has an in-neighbor in 
A(T , S∗) that does not belong to Q.
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Assume now that (x,  v) is an A4-edge. Thus, there is 
an edge (v, v′) ∈ ET such that x = lcaS(µ̂S(v), µ̂S(v

′)) . 
Again since S∗ refines S, it is not hard to see that 
lcaS∗(µ̂

∗
S(v), µ̂

∗
S(v

′)) �S∗ x . By similar arguments 
as before, lcaS∗(µ̂

∗
S(v), µ̂

∗
S(v

′)) /∈ M(Q) . Thus, 
(lcaS∗(µ̂

∗
S(v), µ̂

∗
S(v

′)), v) is an A4-edge of A(T , S∗) . Hence, 
v also has in-degree at least 1 in A(T , S∗)−M(Q) , which 
proves Claim 2.

We prove the analogous statement for the species tree 
vertices.

Claim 3 Let x ∈ V (S) \M(Q) . Then x has in-degree at 
least 1 in A(T , S∗)−M(Q).

Let x ∈ V (S) \M(Q) . We may assume that x has in-
degree at least 1 in A(T , S)−M(Q) , by the maximal-
ity of Q. Notice that since S∗ is a binary refinement of S, 
there exists a sequence of split refinements that trans-
forms S into S∗ . That is, there is a sequence of trees 
S = S1, S2, . . . , Sk = S∗ such that for 2 ≤ i ≤ k , Si is a split 
refinement of Si−1.

Let (w, x) be an incoming edge of x in A(T , S)−M(Q) . 
We consider the following three exclusive cases: either x 
is a binary or a non-binary interior vertex, or a leaf.

Suppose first that x is a binary vertex of S. 
Because S is almost binary, x is not a descend-
ant of any non-binary vertex of S. By applying 
Lemma  5 successively on each split refinement of 
the sequence transforming S into S∗ , we obtain 
IA(T ,S1)(x) = IA(T ,S2)(x) = . . . = IA(T ,Sk )(x) = IA(T ,S∗)(x) . 
In particular, w ∈ IA(T ,S∗)(x) , which proves the claim for 
this case since w /∈ M(Q).

Suppose now that x is a leaf of S. If the parent xp of x is 
binary, then again, successive application of Lemma  5 
on S1, . . . , Sk implies that IA(T ,S)(x) = IA(T ,S∗)(x) , and 
therefore that w ∈ IA(T ,S∗)(x) . If xp is a non-binary cherry, 
then xp /∈ M(Q) by Claim 1. There are two cases, either 
the parent p(x) of x in S∗ is identical to xp or not. In the 
first case, p(x) = xp is not part of Q. In the latter case, 
p(x) refers to some newly added vertex during the con-
struction of S∗ . In this case, p(x) is not contained in S and 
so neither in Q. In summary, the parent of x in S∗ is not 
in Q. Due to the A2-edges, x has in-degree at least 1 in 
A(T , S∗)−M(Q).

Finally, suppose that x is a non-binary interior vertex of S, 
i.e. x is a cherry. Let S′ be a split refinement of S at x such 
that S∗ refines S′ . Recall that as in Claim 1, S′ agrees with 

R(T ; t, σ) . This and the fact that S does not admit a good 
split refinement implies that x has in-degree at least 1 in 
A(T , S′)−M(Q) . Now, x is binary in S′ . As before, there 
is a sequence of binary refinements transforming S′ into 
S∗ . Since x is not a descendant of any non-binary vertex 
in S′ , by applying Lemma  5 on each successive refine-
ment, IA(T ,S′)(x) = IA(T ,S∗)(x) . It follows that x has in-
degree at least 1 in A(T , S∗)−M(Q) as well. This proves 
Claim 3.

To finish the argument, note that V (A(T , S∗)−M(Q)) =

(V (T ) \M(Q)) ∪ (V (S) \M(Q)) ∪ (V (S∗) \ V (S)) . By 
Claim 1, each vertex in V (S∗) \ V (S) has in-degree at 
least 1 in A(T , S∗)−M(Q) , and by Claim 2 and Claim 
3, it follows that every vertex of A(T , S∗)−M(Q) has 
in-degree at least 1. This implies that A(T , S∗)−M(Q) 
contains a cycle, and hence that A(T , S∗) also contains 
a cycle. We have reached a contradiction, proving the 
lemma. �

A.4 Proof of Theorem 3
First, we provide the following lemma for later reference.

Lemma 6 Let ((T ; t, σ), S) be a GTC instance and let 
Q be a maximal topological sort of A(T , S) . Moreover, 
let S′ be a split refinement of S at a cherry x. Then, for 
any maximal topological sort Q′ of A(T , S′) , it holds that 
M(Q) ⊆ M(Q′).

Proof Assume without loss of generality that the cherry 
x is non-binary in S, as otherwise S = S′ and we are done. 
Let x1, x2 be the children of x in S′ , and assume further-
more w.l.o.g. that |L(S′(x1))| ≥ |L(S′(x2))| . Note that x2 
could be a leaf, but that x1 must be an internal vertex 
since x is a non-binary cherry. Now, if M(Q) = ∅ , then 
the lemma statement is trivially satisfied. Hence, assume 
that Q = (w1, . . . ,wl) , l ≥ 1 . We construct partial topo-
logical sorts Q0,Q1, . . . ,Ql of A(T , S′) as follows. Define 
Q0 = () as an empty sequence and, for each 1 ≤ i ≤ l , Qi 
is obtained from Qi−1 by appending wi to Qi−1 if wi  = x , 
and if wi = x , by appending x and x1 (in this order) to 
Qi−1 , and then appending x2 to Qi−1 if it is not a leaf in S′ . 
We show, by induction, that each Qi is a partial topologi-
cal sort of A(T , S′) . The base case i = 0 is clearly satisfied. 
So let us assume that for i > 0 the sequence Qi−1 is a par-
tial topological of of A(T , S′) . Consider now the vertex wi.

Case: wi ∈ V (S) and wi ��S x
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 By Lemma  5, IA(T ,S)(wi) = IA(T ,S′)(wi) . Since 
each member of IA(T ,S)(wi) precedes wi in Q, 
M(Qi−1) contains IA(T ,S)(wi) . It follows that append-
ing wi to Qi−1 yields a partial topological sort Qi of 
A(T , S′).

In the remaining cases, we will make frequent use of the 
fact that if Q′ is a partial topological sort of A(T , S′) and 
v is a vertex with IA(T ,S′)(v) \M = ∅ for some (possibly 
empty) subset M ⊆ M(Q′) , then appending v to Q′ yields 
a partial topological sort of A(T , S′) . In other words, we 
can w.l.o.g. assume IA(T ,S′)(v) \M �= ∅ for all such con-
sidered sets.

Case: wi ∈ V (S) and wi = x

 We start by showing that the sequence Qx
i−1 

obtained by appending x to Qi−1 is a partial topologi-
cal sort of A(T , S′) . Let z ∈ IA(T ,S′)(x) . Suppose first 
that z ∈ V (S′) . Then (z, x) is either an A1- or A2-edge 
of A(T , S′) . If (z, x) is an A2-edge, then z is the par-
ent of x in both S and S′ . Thus (z, x) ∈ E(A(T , S)) 
and since x ∈ M(Q) , we must have z ∈ M(Q) . 
Moreover, z must precede x in Q, and it follows that 
z ∈ M(Qi−1) . If (z, x) is an A1-edge, then x �S′ z . If 
x ≺S′ z , then x ≺S z as well. Thus in A(T , S) , there 
is a path of A2-edges from z to x, implying that z 
precedes x in Q. Finally if x = z , then A(T , S′) con-
tains the self-loop (x, x). In this case, there is an edge 
(u, v) ∈ E(T ) such that (x, x) = (µ̂S′(u), µ̂S′(v)) . 
By construction, L(S′(x)) = L(S(x)) and there-
fore, (µ̂S(u), µ̂S(v)) = (x, x) is an edge of A(T , S) . 
This case cannot occur, since it is impossible that 
x ∈ M(Q) if x is part of a self-loop. Therefore, z pre-
cedes x in Q whenever z ∈ V (S′).

 If instead z ∈ V (T ) , then (z, x) is either an A1- or 
A3-edge of A(T , S′) , in which case there is z′ ∈ V (T ) 
such that (z, x) = (z, µ̂S′(z

′)) . By construction 
L(S′(x)) = L(S(x)) and therefore, (z, µ̂S(z

′)) = (z, x) 
is an edge of A(T , S) . Again, z must precede x in Q. 
We have thus shown that z precedes x in Q for every 
z ∈ IA(T ,S′)(x) ⊆ M(Qi−1) . Hence, appending x to 
Qi−1 yields a partial topological sort Qx

i−1 of A(T , S′).

 We continue with showing that Qi is a partial 
topological sort of A(T , S′) . Note, Qi is obtained by 
appending x1 and, in case x2 is not a leaf in S′ , also 
x2 to the partial topological sort Qx

i−1 of A(T , S′) . 
Let z ∈ IA(T ,S′)(xj) \ {x} , where xj ∈ {x1, x2} is is 
chosen to be an interior vertex of S′ . Note, xj = x1 
is always possible as argued at the beginning of this 
proof. Suppose that z ∈ V (S′) . In this case, (z, xj) 
cannot be an A2-edge since it would imply x = z ; a 

contradiction. Hence, (z, xj) is an A1-edge of A(T , S′) 
and xj �S′ z . Similarly as before, if xj ≺S′ z , then 
x ≺S z since z  = x . Thus, z precedes x in Q, since 
A(T , S) contains a path of A2-edges from z to x. If 
xj = z , then there is an edge (u, v) ∈ E(T ) such that 
(µ̂S′(u), µ̂S′(v)) = (xj , xj) . Since xj is supposed not 
to be a leaf in S′ and by construction of S′ from S, 
we must have in S that (µ̂S(u), µ̂S(v)) = (x, x) , con-
tradicting x ∈ M(Q) . Now, assume that z ∈ V (T ) 
in which case (z, xj) is either an A1- or A3-edge in 
A(T , S′) . Again, there must be a vertex z′ ∈ V (T ) 
such that (z, xj) = (z, µ̂S′(z

′)) . By construc-
tion L(S′(xi)) ⊂ L(S(x)) . This and xj = µ̂S′(z

′) 
immediately implies that x = µ̂S(z

′) . Thus, 
(z, µ̂S(z

′)) = (z, x) is an edge of A(T , S) and z must 
precede x in Q. Again, this holds for every z which 
implies implies that IA(T ,S′)(xj) \ {x} ⊆ M(Qx

i−1) . 
Thus, appending x1 and x2 to Qx

i−1 after x yields the 
partial topological sort Qi of A(T , S′).
Case: wi ∈ V (S) and wi ≺S x

 Since x is a cherry, wi must be a leaf in S. Thus x 
precedes wi in Q and therefore, we may assume that 
x, x1 and, in case x2 is not a leaf in S′ , also x2 are con-
tained in the partial topological sort Qi−1 of A(T , S′) 
Note, x2 could be absent from Qi−1 if it is a leaf and 
wi = x2 . That is, we may assume that wi is a child of 
either x, x1 or x2 in S′ , and that the parent of wi in 
S′ is in Qi−1 . Consider z ∈ IA(T ,S′)(wi) \ {x, x1, x2} . If 
z ∈ V (S′) , then wi �S′ z . As before, if wi ≺S′ z , then 
wi ≺S z and because of the A2-edges of A(T , S) , 
z precedes wi in Q. If z = wi , then (wi,wi) is a self-
loop in A(T , S′) . By Lemma 3, (wi,wi) is also a self-
loop of A(T , S) ; a contradiction since, by Remark 5, 
A(T , S) has no self-loops on its leaves. So assume 
that z ∈ V (T ) . Then (z,wi) is an A1- or A3-edge. 
Since wi is a leaf, we have that for any v ∈ V (T ) , 
µ̂S′(v) = wi if and only if µ̂S(v) = wi . It follows 
that (z,wi) ∈ E(A(T , S)) . Therefore, z precedes wi 
in Q and z belongs to Qi−1 . Thus we may append 
wi to Qi−1 to obtain a partial topological sort Qi of 
A(T , S′).
Case: wi ∈ V (T )

 Let z ∈ IA(T ,S′)(wi) . Thus, (z,wi) is either an A1- 
or A4-edge in A(T , S′) . If z ∈ V (T ) , then (z,wi) is 
an A1-edge in A(T , S′) . Since the event-labels in T 
are fixed, (z,wi) is an A1-edge in A(T , S) and thus, 
z ∈ IA(T ,S)(wi) . Therefore, z precedes wi in Q.
 Now, suppose z ∈ V (S′) . If (z,wi) is an A1-edge, 
then the parent u of wi in T satisfies µ̂S′(u) = z . 
If z /∈ {x, x1, x2} , then we immediately obtain 
µ̂S(u) = z . Hence, (z,wi) ∈ E(A(T , S)) and thus, z 
precedes wi in Q. If z ∈ {x, x1, x2} , then it is easy to 
verify that µ̂S(u) = x . Thus (x,wi) ∈ E(A(T , S)) , x 
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precedes wi in Q. By construction, we have added 
x, x1, x2 in one of the previous steps to obtain 
Qj , 1 ≤ j ≤ i − 1 . Hence, z ∈ {x, x1, x2} precedes 
wi in Q. If instead (z,wi) is an A4-edge, then wi 
has a child v such that lcaS′(µ̂S′(wi), µ̂S′(v)) = z . 
Clearly, it holds that z = lcaS′(Z) for 
Z = σT

E
(wi) ∪ σT

E
(v) . If z ∈ {x, x1, x2} , 

then (lcaS(Z),wi) = (x, v) ∈ E(A(T , S)) , 
and if z /∈ {x, x1, x2} , then 
(lcaS(Z),wi) = (lcaS′(Z),wi) = (z,wi) ∈ E(A(T , S)) . 
In both cases, z precedes wi in Q. In every case, each 
z is already contained in Qi−1 , and we may append 
wi to Qi−1 to obtain a partial topological sort Qi of 
A(T , S′).

We have shown that Ql is a partial topological sort of 
A(T , S′) satisfying M(Q) ⊆ M(Ql) . If we add in-degree 
0 vertices in Ql until we obtain a maximal topological sort 
Q′ of A(T , S′) , then have M(Q) ⊆ M(Ql) ⊆ M(Q′) , as 
desired. �

We are now in the position to prove Theorem 3.

Proof of Theorem  3 It is easy to see that any solution 
S∗ of ((T ; t, σ), S′) would be a solution for ((T ; t, σ), S) . 
Hence, if ((T ; t, σ), S) does not admit a solution, then 
((T ; t, σ), S′) cannot admit a solution.

For the converse, suppose now that ((T ; t, σ), S) admits 
a solution. Thus, there is a binary refinement S∗ of S that 
displays R(T ; t, σ) and such that A(T , S∗) is acyclic. Let 
S′ be any good split refinement of S at some cherry x of 
S. Furthermore, let x1, x2 be the children of x in S′ , and 
let X = L(S′(x1)) and Y = L(S′(x2)) . Note that {X ,Y } is 
a partition of the children of x in S. Consider the trees 
S∗|X and S∗|Y  . We define another tree Ŝ obtained by 
replacing the children of x in S∗ by S∗|X and S∗|Y  . More 

precisely, first observe that, by construction L(S∗|X ) = X 
and L(S∗|Y ) = Y  . Moreover, for any binary refinement S∗ 
of S it must hold that L(S∗(x)) is the set of children ch(x) 
in S. In particular, x is an ancestor in S∗ of every vertex in 
S∗|X as well as in S∗|Y  . Hence, we can safely replace the 
two subtrees S∗(v1) and S∗(v2) rooted at the two children 
v1, v2 of x in S∗ by S∗|X and S∗|Y  (by defining the root of 
S∗|X and the root of S∗|Y  as the two new children of x) to 
obtain another tree Ŝ with L(Ŝ) = L(S∗) . By construction, 
Ŝ is identical to S∗ , except that the two subtrees below x 
are replaced by S∗|X and S∗|Y  . An example of the trees 
S, S′, S∗ and Ŝ is shown in Figure 4. 

Let x̂1 and x̂2 be the children of x in Ŝ , with L(Ŝ(x̂1)) = X 
and L(Ŝ(x̂2)) = Y  . Clearly, Ŝ(x̂1) = S∗|X , resp., 
Ŝ(x̂2) = S∗|Y  is a binary refinement of S′(x1) , resp., 
S′(x2) . Moreover, S∗|L(S∗)\(X∪Y ) is a binary refinement of 
S′|L(S′)\(X∪Y ) . Taking the latter two arguments together, Ŝ 
is a binary refinement of S′.

We proceed with showing that Ŝ is a solution to 
((T ; t, σ), S′) . To this end, we apply Prop. 1 and show that 
Ŝ agrees with R(T ; t, σ) and that A(T , Ŝ) is acyclic.

Let us first argue that Ŝ agrees with R(T ; t, σ) . Observe 
first that since Ŝ contains S∗|X and S∗|Y  as subtrees, Ŝ dis-
plays all triplets in ab|c ∈ rt(S∗) with a, b, c ∈ X , or with 
a, b, c ∈ Y  . Moreover, Ŝ displays all triplets ab|c ∈ rt(S∗) 
for which at least one of a,  b and c is not contained in 
X ∪ Y  . The latter two arguments and lca

Ŝ
(X ∪ Y ) = x 

imply that Ŝ displays all triplets ab|c ∈ rt(S∗) except 
possibly those for which lca

Ŝ
(a, b, c) = x . Let 

Rx = {ab|c ∈ rt(Ŝ) : lca
Ŝ
(a, b, c) = x} . By the latter argu-

ments, the only triplets in rt(Ŝ) that are not in rt(S∗) are 

Fig. 4 A representation of the trees S, S′ , S∗ and Ŝ  . The X1, X2 and X3 triangles represent subtrees containing only leaves from X (same with Y1, Y2, Y3 
and Y)
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in Rx , i.e. rt(Ŝ) ⊆ rt(S∗) ∪ Rx . By the definition of a good 
split refinement, S′ agrees with R(T ; t, σ) . Note that Rx 
contains precisely those triplets ab|c for which either 
a, b ∈ X and c ∈ Y  or c ∈ X and a, b ∈ Y  . This observa-
tion immediately implies that Rx ⊆ rt(S′) . We thus have 
rt(Ŝ) ⊆ rt(S∗) ∪ rt(S′) and since both S∗ and S′ agree 
with R(T ; t, σ) , it follows that Ŝ agrees with R(T ; t, σ).

We must now argue that A(T , Ŝ) is acyclic. Assume 
for contradiction that A(T , Ŝ) contains a cycle 
C = (w1,w2, . . . ,wk ,w1) . Since Ŝ is binary and agrees 
with R(T ; t, σ) , Ŝ displays R(T ; t, σ) and Theorem  1 
implies that there is a reconciliation map from from 
(T ; t, σ) to Ŝ . By Lemma 3, A(T , Ŝ) does not contain self-
loops and thus k > 1 for C = (w1, . . . ,wk ,w1) . We will 
derive a contradiction by showing that A(T , S∗) contains 
a cycle. The proof is divided in a series of claims.

Claim 1If (u, v) ∈ E(A(T , Ŝ)) and u, v /∈ V (Ŝ(x)) , 
then (u, v) ∈ E(A(T , S∗)).

 Note that Ŝ and S∗ are identical except for 
the subtree rooted at x. Thus, (u, v) is an A2-edge 
in E(A(T , Ŝ) if and only if it is an A2-edge in 
A(T , S∗) (assuming u, v /∈ V (Ŝ(x)) ). Moreo-
ver, for all other edge types, notice that for every 
w ∈ V (T ) such that µ̂

Ŝ
(w) ∈ V (Ŝ) \ V (Ŝ(x)) , we 

have µ̂
Ŝ
(w) = µ̂S∗(w) . Thus if (u,  v) is an edge of 

A(T , Ŝ) with u, v /∈ V (Ŝ(x)) , then it is of one of the 
forms (w, z), (µ̂

Ŝ
(w), z), (w, µ̂

Ŝ
(z)) or (µ̂

Ŝ
(w), µ̂

Ŝ
(z)) , 

where (w, z) ∈ E(T ) . Since T does not change and 
by the previous argument, all four cases lead to 
(u, v) ∈ E(A(T , S∗)) . This proves Claim 1.

To stress once again, since Ŝ  is binary and agrees with 
R(T ; t, σ) , it must display R(T ; t, σ) . Thus, we can 
apply Theorem 1 to conclude that there is a reconcilia-
tion map from Ŝ  to (T ; t, σ).
Now, let Z = (V (T ) ∪ V (Ŝ)) \ V (Ŝ(x)) . Observe that 
Z = (V (T ) ∪ V (S∗)) \ V (S∗(x)) . If C does not contain 
a vertex of V (Ŝ(x)) , then by Claim 1, every edge of C is 
also in A(T , S∗) . Thus C is also a cycle in A(T , S∗) , con-
tradicting that it is acyclic. Therefore, we may assume 
that C contains at least one vertex from V (Ŝ(x)) . On the 
other hand, assume that C does not contain a vertex of 
Z. Then all the vertices of C belong to V (Ŝ(x)) . Since, as 
we argued before, A(T , Ŝ) does not contain self-loops, we 
conclude that every edge (u,  v) of C is either an A1- or 
an A2-edge of A(T , Ŝ) that satisfies v ≺

Ŝ
u . However, this 

implies that the edges of C cannot form a cycle; a con-
tradiction. Therefore, C must contain vertices from both 
V (Ŝ(x)) and Z. Assume, without loss of generality, that 
w1 ∈ V (Ŝ(x)) and wk ∈ Z.

Now, C can be decomposed into a set of subpaths that 
alternate between vertices of V (Ŝ(x)) and of Z. More 
precisely, we say that a subpath P = (wi,wi+1, . . . ,wl) 
of C, where 1 ≤ i ≤ l ≤ k , is a V (Ŝ(x))-subpath if 
wi, . . . ,wl ∈ V (Ŝ(x)) . Similarly, we say that P is a Z-sub-
path if wi, . . . ,wl ∈ Z . Now, C = (w1, . . . ,wk) is a concat-
enation of subpaths P1,P′

1,P2,P
′
2, . . . ,Ph,P

′
h such that for 

1 ≤ i ≤ h , Pi is a non-empty V (Ŝ(x))-subpath and P′
i is a 

non-empty Z-subpath.

We want to show that A(T , S∗) contains a cycle. To this 
end, we will construct a cycle C∗ in A(T , S∗) such that 
C∗ is the concatenation of subpaths P∗

1 ,P
′
1, . . . ,P

∗
h ,P

′
h , 

where each P∗
i  is a subpath of A(T , S∗) that replaces Pi . 

First notice that for each 1 ≤ i ≤ h , all the edges of P′
i are 

in A(T , S∗) by Claim 1. Therefore, every P′
i is a path in 

A(T , S∗).

In what follows, we consider the V (Ŝ(x))-subpath 
Pi = (wp,wp+1, . . . ,wq) , where 1 ≤ i ≤ h ( wp = wq 
may be possible if Pi consists of a single vertex only). 
Notice that wp−1 and wq+1 are in Z (where we define 
wp−1 = wk if p = 1 and wq+1 = w1 if p = k ). We con-
struct a path P∗

i = (w∗
1 , . . . ,w

∗
r ) of A(T , S∗) such that 

(wp−1,w
∗
1) ∈ E(A(T , S∗)) and (w∗

r ,wq+1) ∈ E(A(T , S∗)).

To this end, we provide the following

Claim 2 The vertex x does not belong to C.

 Let Q be a maximal topological sort of A(T , S) 
and let Q′ be a maximal topological sort of A(T , S′) . 
By Lemma  6, M(Q) ⊆ M(Q′) . Moreover, since S′ 
is a good split refinement, all the in-neighbors of x 
in A(T , S′) belong to Q. Since M(Q) ⊆ M(Q′) , all 
the in-neighbors of x in A(T , S′) are also in Q′ . This 
and maximality of Q′ implies that x is itself also in 
Q′ . Let Q̂ be a maximal topological sort of A(T , Ŝ) . 
Since Ŝ can be obtained from a sequence of split 
refinements starting from S′ , Lemma  6 implies that 
M(Q′) ⊆ M(Q̂) . In particular, x ∈ M(Q̂) . Lemma 4 
implies that x cannot be contained in any cycle of 
A(T , Ŝ) , which proves Claim 2.

Recalling (again) that A(T , Ŝ) does not contain self-
loops, every edge (u,  v) of Pi is an A1- or A2-edge of 
A(T , Ŝ) and satisfies v ≺

Ŝ
u . This implies that either 

wq ≺
Ŝ
wq−1 ≺Ŝ

. . . ≺
Ŝ
wp , or that wp = wq . In either 

case, we have wq �
Ŝ
wp . By Claim 2, wp  = x . This 

and wp ∈ V (Ŝ(x)) implies that wp ≺
Ŝ
x . By con-

struction of Ŝ  we therefore have L(Ŝ(wp)) ⊆ X  or 
L(Ŝ(wp)) ⊆ Y  . We will assume, without loss of 
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generality, that L(Ŝ(wp)) ⊆ X  . Since wq �
Ŝ
wp , we 

have L(Ŝ(wq)) ⊆ L(Ŝ(wp)) ⊆ X . We now construct two 
important sets Xp ⊆ X  and Xq ⊆ X that are quite help-
ful for our construction of a cycle C∗ in A(T , S∗).

Claim 3There exists a subset Xp ⊆ X such that 
wp = lca

Ŝ
(Xp) and (wp−1, lcaS∗(Xp)) ∈ E(A(T , S∗)).

Since wp ∈ V (Ŝ) , the edge (wp−1,wp) is either an 
A1-, A2- or A3-edge in A(T , Ŝ) . Suppose first that 
(wp−1,wp) is an A2-edge. Then wp−1 is the par-
ent of wp in Ŝ . Since wp ≺

Ŝ
x , this implies that 

wp−1 ∈ V (Ŝ(x)) , contradicting wp−1 ∈ Z . Therefore, 
this case is not possible.

Suppose that (wp−1,wp) is an A1-edge defined 
by some (u, v) ∈ E(T ) . Then wp ∈ V (Ŝ) 
implies wp = µ̂

Ŝ
(v) = lca

Ŝ
(σT

E
(v)) and we 

define Xp = σT
E
(v) . We must prove that 

(wp−1, lcaS∗(Xp)) ∈ E(A(T , S∗)) . Since (u, v) ∈ E(T ) 
yields the A1-edge (wp−1,wp) in A(T , Ŝ) , we have 
t(v) ∈ {⊙, s} . Hence, (u,  v) yields some A1-edge 
(z, lcaS∗(Xp)) in A(T , S∗) for some vertex z. In what 
follows, we show that z = wp−1.

If wp−1 ∈ V (T ) , then wp−1 = u and (u,  v) defines 
the A1-edge (u, µ̂S∗(v)) = (wp−1, lcaS∗(Xp)) in 
A(T , S∗) . If wp−1 ∈ V (Ŝ) , then wp−1 = µ̂S∗(u) . 
Since wp−1 ∈ Z , vertex wp−1 must be a strict 
ancestor of x in Ŝ . This and the fact that S∗ and 
Ŝ coincide except possibly in S∗(x) and Ŝ(x) 
implies that µ̂

Ŝ
(u) = µ̂S∗(u) = wp−1 . Hence, 

(wp−1, lcaS∗(Xp)) ∈ E(A(T , S∗)).

Finally, suppose that (wp−1,wp) is an A3-edge 
defined by some u ∈ V (T ) . Then wp−1 = u and 
wp = µ̂

Ŝ
(u) = lca

Ŝ
(σT

E
(u)) , where σT

E
(u) ⊆ X . 

Define Xp = σT
E
(u) . Then (wp−1,wp) = (u, lca

Ŝ
(Xp)) 

and (u, µ̂S∗(u)) = (wp−1, lcaS∗(Xp)) ∈ E(A(T , S∗)) . 
This proves Claim 3.

Claim 4: There exists a subset Xq ⊆ X such that 
wq = lca

Ŝ
(Xq) and (lcaS∗(Xq),wq+1) ∈ E(A(T , S∗)).

We show first that wq+1 ∈ V (T ) . Assume, for con-
tradiction, that wq+1 ∈ V (Ŝ) . Since (wq ,wq+1) is 
an edge of A(T , Ŝ) and since wq ∈ V (Ŝ) , the edge 
(wq ,wq+1) is an A1- or A2-edge in A(T , Ŝ) . How-
ever in both cases, because there are no self-loops, 
wq+1 ≺Ŝ

wq and thus, wq+1 ∈ V (Ŝ(x)) ; a contradic-

tion to wq+1 ∈ Z . Hence, wq+1 ∈ V (T ) . Therefore, 
(wq ,wq+1) is either an A1- or A4-edge in A(T , Ŝ).

Suppose first that (wq ,wq+1) is an A1-edge of 
A(T , Ŝ) defined by some (u, v) ∈ E(T ) . Then 
(wq ,wq+1) = (µ̂

Ŝ
(u), v) , where µ̂

Ŝ
(u) = lca

Ŝ
(σT

E
(u)) 

and where σT
E
(u) ⊆ X . Define Xq = σT

E
(u) . 

Then (wq ,wq+1) = (lca
Ŝ
(Xq),wq+1) , and 

(µ̂S∗(u), v) = (lcaS∗(Xq),wq+1) is an A1-edge of 
A(T , S∗).

Suppose instead that (wq ,wq+1) is an A4-edge of 
A(T , Ŝ) defined by some (u, v) ∈ ET  with u = wq+1 . 
Then (wq ,wq+1) = (lca

Ŝ
(µ̂

Ŝ
(u), µ̂

Ŝ
(v)),u) =

(lca
Ŝ
(σT

E
(u) ∪ σT

E
(v)),u) . Define 

Xq = σT
E
(u) ∪ σT

E
(v) . Hence, wq = lca

Ŝ
(Xq) , 

and since wq ∈ V (Ŝ(x)) , we must 
have σT

E
(u) ∪ σT

E
(v) ⊆ X . Moreover, 

(lcaS∗(µ̂S∗(u), µ̂S∗(v)),u) = (lcaS∗(Xq),wq+1) is an 
A4-edge of A(T , S∗) . This completes the proof of 
Claim 4.

Claim 5: Let Xp and Xq be subsets of X as defined in 
Claim 3 and 4. Then in A(T , S∗) , there exists a path 
from lcaS∗(Xp) to lcaS∗(Xq).

By Claim 3 and 4 we have wp = lca
Ŝ
(Xp) 

and lca
Ŝ
(Xq) = wq , respectively. As 

argued after the proof of Claim 2, we have 
lca

Ŝ
(Xq) = wq �

Ŝ
wp = lca

Ŝ
(Xp) . Because Ŝ con-

tains S∗|X as a rooted subtree, it follows that 
lcaS∗(Xq) �S∗ lcaS∗(Xp) . Because of the A2-edges, 
there must be a path from lcaS∗(Xp) to lcaS∗(Xq) in 
A(T , S∗) . This completes the proof of Claim 5.

We may now finish the argument. For each 1 ≤ i ≤ h , 
we let P∗

i  be the path obtained from Claim 5. We claim 
that by concatenating the paths P∗

1 ,P
′
1,P

∗
2 ,P

′
2, . . . ,P

∗
h ,P

′
h 

in A(T , S∗) , we obtain a cycle. We have already argued 
that each P∗

i  and each P′
i is a path in A(T , S∗) . The rest 

follows from Claim 4, since it implies that for each 
1 ≤ i ≤ h , the last vertex of P∗

i  has the first vertex of P′
i 

as an out-neighbor, and the last vertex of P′
i has the first 

vertex of P∗
i+1 as an out-neighbor (where P∗

h+1 is defined 
to be P∗

1 ). We have thus found a cycle in A(T , S∗) , a 
contradiction to the acyclicity of A(T , S∗).
Hence, A(T , Ŝ) is acyclic. This and the fact that Ŝ displays 
R(T ; t, σ) implies that Ŝ is a solution to ((T ; t, σ), S′) . 
Therefore, ((T ; t, σ), S′) admits a solution.  �



Page 21 of 27Lafond and Hellmuth  Algorithms Mol Biol           (2020) 15:16  

A.5 Proof of Theorem 5
Before proving Theorem  5, we provide a result that 
shows how maximal topological sorts and strict ances-
tors of vertices in S are related w.r.t. split refinements 
of S.
Lemma 7 Let Q be a maximal topological sort of 
A(T , S) . If there exists a good split refinement S′ of S at 
a cherry x, then every strict ancestor of x in S and S′ is in 
M(Q).

Proof Let S′ be a good split refinement of S at x. By con-
struction, the sets of ancestors of x in S and S′ are equal.

Assume that there is a strict ancestor y of x that is not 
in Q. Due to the A2-edges in A(T , S) there is a directed 
path P from y to x in A(T , S) . Lemma 4 implies that none 
of the vertices along this path P are contained in M(Q) . 
Since y is a strict ancestor of x in S, we can conclude that 
the parent p(x) of x in S is not contained in M(Q) . Again, 
due to the A2-edges of A(T , S′) , the pair (p(x),  x) is an 
edge in A(T , S′) and hence, p(x) is an in-neighbor of x 
in A(T , S′) . However, since S′ is a good split refinement 
of S, all the in-neighbors of x in A(T , S′) must, by defini-
tion, belong to M(Q) ; a contradiction. Thus, every strict 
ancestor y of x in S and S′ is in M(Q) . �

In what follows, when we ask whether a fixed x admits a 
good split refinement, we can first check whether all of its 
ancestors are in Q, where Q is a maximal topological sort 
of A(T , S) . If this is not the case, then, by contraposition 
of Lemma 7, we may immediately conclude that there is 
no good split refinement at x.

Otherwise, we investigate x further.
We are now in a position to prove Theorem 5.

Proof of Theorem  5 In what follows, put 
G:=G((T ; t, σ), S, x) . Suppose that there exists a good 
split refinement S′ of S. Let x be the cherry of S that 
was refined from S to S′ , and let x1, x2 be the children of 
x in S′ . Let Q be a maximal topological sort of A(T , S) . 
By Lemma 7, every strict ancestor of x in S is in Q. Let 
A = L(S(x1)) and B = L(S(x2)) . We claim that for any 
pair a ∈ A, b ∈ B , ab /∈ E(G).

Assume for contradiction that there is an edge ab with 
a ∈ A, b ∈ B . We treat each possible edge type separately.

(C1): Suppose that ab ∈ E(G) because there exists 
c ∈ L(S(x)) such that ab|c ∈ R(T ; t, σ) . Because a ∈ A 
and b ∈ B and by construction of S′ , we either have 
ac|b ∈ rt(S′) if c ∈ A , or bc|a ∈ rt(S′) if c ∈ B . In either 

case, S′ does not agree with R(T ; t, σ) , contradicting that 
S′ is a good split refinement.

(C2): Suppose instead that ab ∈ E(G) because there 
exists an edge (u, v) ∈ E(T ) with t(u) ∈ {d, t} , u /∈ M(Q) , 
t(v) = s and a, b ∈ σT

E
(v) . By construction of S′ and due 

to the choice of A = L(S(x1)) and B = L(S(x2)) , we have 
µ̂S′(v) = lcaS′(σT

E
(v)) �S′ lcaS′(a, b) = x . If µ̂S′(v) = x , 

then (u, µ̂S′(v)) = (u, x) is an A1-edge of A(T , S′) . Thus, 
x has in-neighbor u in A(T , S′) such that u /∈ M(Q) , 
which contradicts that S′ is a good split refinement. So 
assume that µ̂S′(v) ≻S′ x . In this case, (u, µ̂S′(v)) is an 
A1-edge of S′ , and by Lemma 5, (u, µ̂S′(v)) ∈ E(A(T , S)) . 
Since u /∈ M(Q) , we must have µ̂S′(v) /∈ M(Q) . Since 
µ̂S′(v) ≻S x , we obtain a contradiction to Lemma 7.

(C3): Suppose that ab ∈ E(G) because there exists an 
edge (u, v) ∈ E(T ) with t(u) = t(v) = s , µ̂S(u) = x 
and a, b ∈ σT

E
(v) . Note, since lcaS(a, b) = x and 

a, b ∈ σT
E
(v) , it must hold that x �S µ̂S(v) . Moreover, 

t(u) = t(v) = s implies that u and v are contained in 
the same connected component of T

E
 . This and v ≺T

E
u 

implies σT
E
(v) ⊆ σT

E
(u) . Hence, µ̂S(v) �S µ̂S(u) . Now, 

x �S µ̂S(v) �S µ̂S(u) = x implies µ̂S(v) = µ̂S(u) = x . 
Therefore, (µ̂S(u), µ̂S(v)) = (x, x) is an A1-edge of 
A(T , S) , and it follows that x /∈ M(Q) (a vertex with 
a self-loop cannot never be added to a maximal topo-
logical sort). Moreover, because a, b ∈ σT

E
(v) and 

a ∈ A = L(S(x1)) and b ∈ B = L(S(x2)) , it holds that 
µ̂S′(u) = µ̂S′(v) = x . Hence (x,  x) is an A1-edge of 
A(T , S′) as well, and x has an in-neighbor not in Q 
(namely x itself ). This contradicts the assumption that S′ 
is a good split refinement.

(C4): Suppose that ab ∈ E(G) because there 
is a vertex u ∈ V (T ) \M(Q) such that 
t(u) ∈ {d, t} and a, b ∈ σT

E
(u) . The reason-

ing is similar to Case (C2). That is, we must have 
p:=µ̂S′(u) = lcaS′(σT

E
(u)) �S′ lcaS′(a, b) = x . Now, 

A(T , S′) contains the A3-edge (u,  p). We cannot have 
p = x because u /∈ M(Q) and S′ is a good split refine-
ment of S. Thus p ≻S′ x . In this case, (u, p) ∈ E(A(T , S)) 
by Lemma 5. Thus p cannot be in M(Q) , which contra-
dicts Lemma 7.

We have thus shown that ab cannot exist for any pair 
a ∈ A and b ∈ B . Since A and B form a partition of V(G), 
the graph G must be disconnected.

Conversely, suppose that there exists a cherry x of S such 
that G is disconnected and such that every strict ancestor 
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of x in S is in Q. Let (A, B) be any disconnected biparti-
tion of G. Furthermore, let S′ be the split refinement of 
S obtained by splitting the children of x into A and B and 
let x1, x2 be the two children of x in S′ . W.l.o.g. assume 
that x1 and x2 is the ancestor of the leaves in A and B, 
respectively. We claim that S′ is a good split refinement.

Let us first argue that S′ agrees with R(T ; t, σ) . 
Assume for contradiction that S′ displays a triplet ac|b, 
but that ab|c ∈ R(T ; t, σ) . By assumption, S agrees with 
R(T ; t, σ) , so ac|b ∈ rt(S′) \ rt(S) . This implies that 
lcaS′(a, b) = lcaS′(c, b) = x . W.l.o.g we may assume that 
a, c ∈ A and b ∈ B . However, Condition (C1) implies that 
we have the edge ab ∈ E(G) , contradicting that (A,  B) 
forms a disconnected bipartition. Therefore, S′ agrees 
with R(T ; t, σ).

It remains to show that all in-neighbors of x in A(T , S′) 
are contained in M(Q) . Assume, for contradiction, that 
there is an edge (p, x) ∈ E(A(T , S′)) such that p /∈ M(Q) . 
Since x ∈ V (S′) , the edge (p, x) it either an A1-, A2- or 
A3-edge in A(T , S′) . As it is now our routine, we check 
several cases separately.

Case: (p, x) is an A1-edge and p  = x.

In this case (p,  x) is defined by some edge 
(u, v) ∈ E(T ) . Suppose that (p, x) = (µ̂S′(u), µ̂S′(v)) . 
Since p  = x , p is a strict ancestor of x in S′ , and 
hence also in S. This is not possible, since we assume 
that every strict ancestor of x in S belongs to Q 
(whereas here we suppose p /∈ M(Q) ). We deduce 
that (p, x) = (u, µ̂S′(v)) . Therefore, u /∈ M(Q) , 
t(u) ∈ {d, t} and t(v) = s . Moreover, since µ̂S′(v) = x 
and x has only the two children x1 and x2 in S′ , we 
can conclude there are a, b ∈ σT

E
(v) such that 

a �S′ x1 and b �S′ x2 , i.e. a ∈ A, b ∈ B . The latter two 
arguments imply that Condition (C2) is satisfied for 
a and b and, therefore, ab ∈ E(G) ; a contradiction to 
(A, B) are forming a disconnected bipartition.
Case: (p, x) is an A1-edge and p = x.
In this case, (p, x) = (x, x) = (µ̂S′(u), µ̂S′(v)) is 
defined by some edge (u, v) of T. Since x is an inter-
nal vertex of S′ , we must have t(u) = t(v) = s . 
Since L(S(x)) = L(S′(x)) and x is a cherry in S, 
we also have (µ̂S(u), µ̂S(v)) = (x, x) . Moreover 
because µ̂S′(v) = x = lcaS′(x1, x2) , there must exist 
distinct a,  b with a ≺S′ x1 and b ≺S′ x2 such that 
a, b ∈ σT

E
(v) . Thus, a ∈ A, b ∈ B . Moreover ab satis-

fies the Condition (C3). Thus, ab ∈ E(G) ; a contra-

diction to our assumption that (A,  B) forms a dis-
connected bipartition.
Case: (p, x) is an A2-edge.
 This case is not possible, since the parent of x is 
the same in S and S′ , and we assume that all strict 
ancestors of x in S are in Q.
Case: (p, x) is an A3-edge.
 In this case, (p, x) = (u, µ̂S′(u)) is defined 
by a vertex u ∈ V (T ) such that t(u) ∈ {d, t} and 
µ̂S′(u) = x . Since u = p and, by assumption 
p /∈ M(Q) , we have u ∈ V (T ) \M(Q).
 As in the A1-case, there must be a, b ∈ σT

E
(u) 

such that a ∈ A, b ∈ B . Then ab should be an edge of 
G because of Condition (C4), a contradiction.

We have shown that the (p, x) edge cannot exist. There-
fore in A(T , S′) , all the in-neighbors of x are in Q. Since S′ 
also agrees with R, it follows that splitting the children of 
x into (A, B) forms a good split refinement at x. �

A.6 Proof of Lemma 2
Proof of Lemma 2 To compute R(T ; t, σ) as in Def. 1 
we can proceed as follows: We first compute the lcaT

E
 ’s 

for every pair of vertices within the connected compo-
nents of T

E
. This task can be done in constant time for 

each pair of vertices after linear preprocessing of the 
trees in T

E
 [53, 54]. Thus, we end in an overall time com-

plexity of O(n2) to compute all lcaT
E

 ’s between the leaves 
of T. We now compute the distance from the root ρ

T̃
 to 

all other vertices in V (T̃ ) for every connected component 
T̃  of T

E
 . The latter can be done for each individual con-

nected component T̃  via Dijkstra’s algorithm in 
O(|V (T̃ )|2) time. As this must be done for all connected 
components of T

E
 and since ∑

T̃
|V (T̃ )|2 ≤ (

∑
T̃
|V (T̃ )|)2 = |V (T )|2 we end in time 

O(|V (T )|2) = O(n2) to compute the individual distances. 
Now, for all three distinct leaves a,  b,  c within the con-
nected components of T

E
 , we compare the relative order 

of x = lcaT
E
(a, b) , y = lcaT

E
(a, c) , and z = lcaT

E
(b, c) 

which can be done directly by comparing the distances 
d
T̃
(ρ

T̃
, x) , d

T̃
(ρ

T̃
, y) and d

T̃
(ρ

T̃
, z) . It is easy to see that at 

least two of the latter three distances must be equal. 
Hence, as soon as we have found that two distances are 
equal but distinct from the third, say 
dT (ρT , x)  = dT (ρT , y) = dT (ρT , z) , we found the triplet 
ab|c that is displayed by T̃  . If, in addition, t(z) = s and 
σ(a), σ(b), σ(c) are pairwise distinct, then we add 
σ(a)σ (b)|σ(c) to R(T ; t, σ) . The latter tasks can be done 
in constant for every triplet a, b, c. Since there are at most (
n
3

)
= O(n3) triplets in T, we end in an overall time-



Page 23 of 27Lafond and Hellmuth  Algorithms Mol Biol           (2020) 15:16  

complexity O(n3) to compute all triplets displayed by T 
that satisfy Def. 1(1).

Now we proceed to construct for all transfer edges 
(u, v) ∈ ET the triplets σ(a)σ (b)|σ(c) for all 
a, b ∈ L(T

E
(u)) and c ∈ L(T

E
(v)) as well as for all 

c ∈ L(T
E
(u)) and a, b ∈ L(T

E
(v)) with σ(a), σ(b), σ(c) 

being pairwise distinct. To this end, we need to compute 
L(T

E
(w)) for all w ∈ V (T ) . We may traverse every con-

nected component T̃  of T
E

 from the root ρT
E

 to each indi-
vidual leaf and and for each vertex w along the path from 
ρT

E
 to a leaf l, we add the leaf l to L(T

E
(w)) . As there are 

precisely |L(T̃ )| such paths, each having at most 
|V (T̃ )| ∈ O(|L(T̃ )|) vertices, we end in O(|L(T̃ )|2) time to 
compute L(T

E
(w)) for all w ∈ V (T̃ ) . As this step must be 

repeated for all connected components T̃  of T
E

 we end, by 
the analogous arguments as in the latter paragraph, in ∑

T̃
O(|L(T̃ )|2) = O(n2) time to compute L(T

E
(w)) for all 

w ∈ V (T ) . Now, for every transfer edge (u, v) ∈ ET the tri-
plets σ(a)σ (b)|σ(c) (with σ(a), σ(b), σ(c) being pairwise 
distinct) are added to R(T ; t, σ) for all a, b ∈ L(T

E
(u)) and 

c ∈ L(T
E
(v)) as well as for all c ∈ L(T

E
(u)) and 

a, b ∈ L(T
E
(v)) . Note, none of the trees T

E
 contains trans-

fer edges. Moreover, for each transfer edge (u, v) we have, 
by Axiom (O3), σT

E
(v) ∩ σT

E
(u) = ∅ . The latter two argu-

ments imply that, for each transfer edge (u,  v), precisely (
|σ(L(T

E
(v)))|

2

)
|σ(L(T

E
(u)))| +

(
|σ(L(T

E
(u)))|

2

)
|σ(L(T

E
(v)))| 

triplets are added.

Now, let T = {T1,T2, . . . ,Tk} be the set of trees in the for-
est T

E
 . For each i ∈ {1, . . . , k} , define ni = |L(Ti)| . Let us 

write Ti → Tj if there exists a transfer edge (u, v) ∈ ET satis-
fying u ∈ V (Ti), v ∈ V (Tj) . It is easy to verify that there is 
exactly one transfer edge connecting two distinct connected 
components of T

E
 , as otherwise, some root vertex of some 

Tj would have in-degree 2 or more in T (since all transfer 
edges go from a vertex to a root of another subtree of T

E
 ). 

For each transfer edge (u, v) ∈ ET , where u ∈ V (Ti) and 
v ∈ V (Tj) , we can bound the number of added triplets by (
|σT

E
(u)|

2

)
|σT

E
(v)| +

(
|σT

E
(v)|

2

)
|σT

E
(u)| ≤ n2i nj + nin

2
j  . 

The total number of triplets considered is then at most

In the latter approximation, we have used the fact that 
distinct trees Ti and Tj have disjoint sets of leaf sets (cf. [4, 
Lemma 1]). Thus, 

∑
Ti∈T

ni ≤ n and 
∑

Tj :Ti→Tj
ni ≤ n . In 

summary, R(T ; t, σ) can be computed in O(n3) time.

Finally, note that if (T ; t, σ) is binary such that all inner 
vertices are labeled as speciation s and for all two distinct 
leaves x, y ∈ L(T ) we have σ(x)  = σ(y) , then 

|R(T ; t, σ)| =

(
n
3

)
∈ O(n3) . Hence, the boundary 

O(n3) can indeed be achieved and thus, the worst-case 
runtime is �(n3) . �

A.7 Proof of Theorem 6
Proof of Theorem  6 We first prove the correctness 
of the algorithm. Algorithm  2 takes as input a labeled 
gene tree (T ; t, σ) . First R(T ; t, σ) is computed and the 
star tree S (which clearly agrees with R(T ; t, σ) ) will be 
furthermore refined. Moreover, S contains at this point 
of computation only one cherry, namely the root r of S, 
and G((T ; t, σ), S, r) is computed. Now, in each step of 
the while-loop it is first checked if S is non-binary and if 
in one of the previous steps a good split refinement has 
been found. In this case, it is first checked (for-loop) if 
there are non-binary cherries of the current tree S for 
which all strict ancestors are contained in M(Q) with 
Q being the maximal topological sort of A(T , S) . If this 
is not the case for all non-binary cherries, the while-
loop terminates according to Lemma  7 and the algo-
rithm correctly outputs “No time-consistent species tree 
exists”. Contrary, if there is a non-binary cherry x for 
which all strict ancestors are contained in M(Q) , then 
it is checked whether we have not found already a good 
split for S and if G((T ; t, σ), S, x) is disconnected. In this 
case, we can apply Theorem 5 to conclude that there is a 
good split refinement for S at x which is computed in the 
subsequent step. If, however, for all non-binary cherries 
G((T ; t, σ), S, x) is connected, the algorithm correctly 

∑

Ti∈T

∑

Tj :Ti→Tj

(
n2i nj + n2j ni

)

=
∑

Ti∈T

n2i

∑

Tj :Ti→Tj

nj +
∑

Ti∈T

ni
∑

Tj :Ti→Tj

n2j

≤
∑

Ti∈T

n2i · n+
∑

Ti∈T

ni · n
2

= n
∑

Ti∈T

n2i + n2
∑

Ti∈T

ni ≤ 2n3 ∈ O(n3).
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outputs “No time-consistent species tree exists” according 
to Theorem 5. Finally, if in each step of the while-loop we 
have found a good split refinement and S does not con-
tain a non-binary cherry, then S must, by construction, 
be binary. In this case, repeated application of Theo-
rem 3 shows that the final binary tree S is a solution to 
the underlying GTC instance and the algorithm correctly 
returns S. Thus, Algorithm 2 correctly computes a time-
consistent binary species tree for (T ; t, σ) , if one exists.

We next analyze the running time of the algorithm. Let 
� = σ(L(T )) be the set of species. We will frequently use 
the fact that |�| ≤ n . The main challenge in optimizing 
this algorithm is to be able to efficiently construct and 
update the G((T ; t, σ), S, x) graphs. We will save this 
analysis for the end of the proof, and will ignore the time 
spent on graph updates for now.

We will assume that σT
E
(u) is computed and stored for 

each u ∈ V (T ) . As argued in the proof of Lemma  2, 
this can be done in time O(n2) . Also by Lemma  2, the 
triplet set R(T ; t, σ) can be computed in O(n3) time. 
Since every iteration of the main while loop adds a new 
binary vertex in S, the loop will be executed O(n) times 
(since a binary tree on |�| ≤ n leaves has O(n) inter-
nal vertices). By [4, Lemma 3], computing µ̂T ,S can be 
done in time O(n log(|�|)) = O(n log(n)) . By [4, Thm. 
6], the auxiliary graph A(T , S) can be computed in 
O(|V (T )| log(|V (S)|)) time. Since O(|V (T )|) = O(n) 
and O(|V (S)|) = O(n) , the latter task can be done in 
O(n log(n)) time. Construction of Q can be done in 
time O(|V (A(T , S))| + |E(A(T , S))|) = O(n) using the 
techniques of [52] and by observing that the edges in 
E(A(T , S)) cannot exceed |E(T )| + |E(S)| = O(n).

In each pass of the main while loop, we iterate 
through O(n) non-binary cherries. Let c1, . . . , ck be 
the non-binary cherries of S, assuming that each aux-
iliary G((T ; t, σ), S, ci) graph is already pre-com-
puted. Since c1, . . . , ck are cherries of S, the sets in 
{L(S(c1)), L(S(c2)), . . . L(S(ck))} must be pairwise dis-
joint. Denoting ni = |L(S(ci))| , 1 ≤ i ≤ k , we thus observe 
that 

∑k
i=1 ni ≤ n . In the worst case, we go through 

every cherry and check connectedness in time O(n2i ) 
on each graph G((T ; t, σ), S, ci) via “classical” breadth-
first search. Thus in one iteration of the main while 
loop, the total time spent on connectedness verification 
is O(

∑k
i=1 n

2
i ) = O(n2) . When we apply a split refine-

ment, we compute µ̂T ,S(u) for all u ∈ V (T ) , A(T , S) 
and Q at most once per while iteration, each operation 
being feasible in time O(n log n) . To be more precise, 
as soon as we have found a good split refinement we 

put Has_GoodSplit=TRUE. Hence, the if-condition 
(Line 11) will then not be satisfied, and we will not rec-
ompute the values µ̂T ,S(u) , A(T , S) and Q again for the 
remaining non-binary cherries x of S within the for-loop 
(Line 10). As there are O(n) iterations, the time spent on 
operations other than graph construction and updates is 
O(n3).

Let us now argue that the total time spent on the auxil-
iary G((T ; t, σ), S, x) graph updates can be implemented 
to take time O(n3) . To this end, we maintain a special 
data structure that, for each 2-element subset {a, b} ⊆ � , 
remembers the members of � ∪ V (T ) that may cause ab 
to be an edge in the auxiliary graphs. We describe this 
in more detail. For a certain species tree S, we say that 
a, b ∈ L(S) are siblings if a and b have the same parent in 
S. For any two siblings a, b of S, define

Note that if we have access to each of the four li sets 
for any siblings a,  b, then we may construct a graph 
G:=G((T ; t, σ), S, x) in time O(n2) . Indeed, to decide 
whether there is an edge ab in G((T ; t, σ), S, x) , it suffices 
to check whether one li(a, b) , 1 ≤ i ≤ 4 , is non-empty, a 
task that can done in constant time for each two verti-
ces a, b ∈ � . Since there are O(n2) pairs to check, the 
graph construction takes time O(n2) . After each binary 
refinement, there are two new graphs to construct (one 
for each child of the new binary vertex), and since there 
are O(n2) iterations, the total time spent for constructing 
graphs will be O(n3) . The main challenge is to update the 
li sets after a binary refinement, which we now analyze.

We thus show how to maintain these four sets for each 
pair of siblings as S undergoes split refinements, starting 
with the initial star tree S. With S being a star tree, the 
set l1(a, b) can be constructed in time O(n3) for all a,  b 
by iterating through R(T ; t, σ) once, and each li(a, b) , 
i ∈ {2, 3, 4} can be constructed in time O(n3) by first con-
structing A(T , S) with its maximal topological sort Q 
and, for each a, b pair, checking every vertex and edge of 
T for conditions (C2), (C3) and (C4). It is easy to see that 
each condition can be checked in constant time per edge 
or vertex.

l1(a, b) = {c ∈ � : c is a sibling of a and b, and

ab|c ∈ R(T ; t, σ)}

l2(a, b) = {u ∈ V (T ) : ∃v ∈ V (T ) such that (u, v)

satisfies (C2) }

l3(a, b) = {u ∈ V (T ) : ∃v ∈ V (T ) such that (u, v)

satisfies (C3) and ab ∈ ch(x)}

l4(a, b) = {u ∈ V (T ) : u satisfies (C4) }
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Now assume inductively that l1, l2, l3 and l4 are known 
for each pair of siblings of S. Assume that we perform a 
split refinement at some cherry x of S, yielding a tree S′ in 
which x1, x2 are the new children of x. We then need to 
compute G((T ; t, σ), S, x1) and G((T ; t, σ), S, x2) . Denote 
X1 = L(S′(x1)) and X2 = L(S′(x2)) , let Q (resp. Q′ ) be a 
maximal topological sort of A(T , S) (resp. A(T , S′) ). We 
describe how each li update is done, and argue on the 
total time spent on each update type (by total time, we 
mean summing the time over every iteration of the for 
loop).

• (The l1 set). For a, b ∈ X1 , we may need to remove 
c from l1(a, b) if c ∈ X2 since it is not a sibling of a 
and b anymore. Thus, for each a, b ∈ X1 and each 
c ∈ X2 , we remove c from l1(a, b) if present (and we 
do the same for each a′b′ ∈ X2, c

′ ∈ X1 ). Therefore, 
each time that a pair a, b ∈ � gets separated from 
some c ∈ � during the species tree construction, 
we need O(1) time to remove c from l1(a, b) . Impor-
tantly, this separation occurs at most once for each 
triplet {a, b, c} during the whole algorithm execution. 
Therefore, in total we spend time O(1) on l1 for each 
distinct a, b, c ∈ � , and so the total time spent on 
updating l1 is O(n3).

• (The l2 set). Let a, b ∈ Xi , i ∈ {1, 2} . Recall that 
we must have u ∈ l2(a, b) if there is (u, v) ∈ E(T ) 
such that t(u) ∈ {d, t},u /∈ M(Q′) , t(v) = s and 
{a, b} ⊆ σT

E
(v) . Since M(Q) ⊆ M(Q′) and t does 

not change when refining, after one binary refine-
ment we can only remove elements from l2(a, b) , 
and never insert new elements. That is, we only need 
to remove some u from l2(a, b) if u /∈ M(Q) but 
u ∈ M(Q′) . Therefore, when computing Q′ and add-
ing a new element u ∈ M(Q′) \M(Q) , we remove 
u from each l2(a, b) that contains u. This takes time 
O(n2) every time we add a new element in the maxi-
mal topological sort, and this is enough to keep l2 
up-to-date. Importantly, each vertex of T gets added 
at most once in Q during the execution of the whole 
algorithm. Therefore, maintaining l2 consumes total 
time O(n3) in total.

• (The l4 set). Let a, b ∈ Xi , i ∈ {1, 2} . Recall 
that we must have u ∈ l4(a, b) if u ∈ V (T ) , 
t(u) ∈ {d, t},u /∈ M(Q′) , and {a, b} ⊆ σT

E
(u) . This 

can be handled exactly as in the l2 set. That is, since t 
never changes, u can only be removed from l4 when 
adding u to Q′ . Thus when adding a vertex u to the 
maximal topological sort, we remove u from every 
l4(a, b) containing u, which takes time O(n2) . Since 
each u gets added at most once in Q, maintaining l4 
takes O(n3) times in total.

• (The l3 set). Let a, b ∈ Xi , i ∈ {1, 2} . Recall that we 
must have u ∈ l3(a, b) if there is (u, v) ∈ E(T ) such 
that t(u) = t(v) = s , µ̂S′(u) = xi and a, b ∈ σT

E
(v) . 

Note that if µ̂S′(u) = xi , then µ̂S(u) = x , and x was 
the parent of a and b in S. Since t does not change 
after refining, this means that if u must be in l3(a, b) 
after the binary refinement, then u was also in 
l3(a, b) before the refinement. It follows that we 
never add new vertices into l3(a, b) . It therefore suf-
fices to detect when some u needs to be removed 
from l3(a, b) . Recall that when refining S into S′ , 
µ̂S′(u) �= µ̂S(u) is only possible if µ̂S(u) = x and 
µ̂S′(u) ∈ {x, x1, x2} . There are thus three cases to 
consider. If µ̂S′(u) = x , then we remove u from all 
l3(a, b) such that a, b ∈ X1 or a, b ∈ X2 . We note 
that we will never consider again the {a, b,u} triplet 
because u will never be refined again. If µ̂S′(u) = x1 , 
then u stays present in all l3(a, b) such that a, b ∈ X1 , 
but we must remove u from every l3(a, b) such that 
a, b ∈ X2 . Symmetrically, if µ̂S′(u) , we remove u from 
every l3(a, b) such that a, b ∈ X1 . In either case, the 
triplets {a, b,u} evaluated in the last two cases will 
never be considered again because u will never be 
mapped to an ancestor of a and b in future refine-
ments of S′ . Globally, we therefore notice that for any 
triplet {a, b,u} such that a, b ∈ L(S) and u ∈ V (T ) , 
we only need to consider once the removal of u from 
l3(a, b) , and this removal takes O(1) time. We deduce 
that maintaining l3 requires total time O(n3).

To summarize, the li sets can be kept up-to-date after 
each split refinement in total time O(n3) . Since the other 
operations also take time O(n3) , the complete algorithm 
also takes O(n3) time.
Finally, among all algorithms that compute R(T ; t, σ) , 
Lemma 2 implies that the boundary O(n3) is tight, that is 
the worst-case runtime is �(n3) �.
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