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Abstract 

The classical gene and species tree reconciliation, used to infer the history of gene gain and loss explaining the 
evolution of gene families, assumes an independent evolution for each family. While this assumption is reasonable for 
genes that are far apart in the genome, it is not appropriate for genes grouped into syntenic blocks, which are more 
plausibly the result of a concerted evolution. Here, we introduce the Super-Reconciliation problem which consists in 
inferring a history of segmental duplication and loss events (involving a set of neighboring genes) leading to a set of 
present‑day syntenies from a single ancestral one. In other words, we extend the traditional Duplication‑Loss reconcil‑
iation problem of a single gene tree, to a set of trees, accounting for segmental duplications and losses. Existency of a 
Super‑Reconciliation depends on individual gene tree consistency. In addition, ignoring rearrangements implies that 
existency also depends on gene order consistency. We first show that the problem of reconstructing a most parsimo‑
nious Super‑Reconciliation, if any, is NP‑hard and give an exact exponential‑time algorithm to solve it. Alternatively, 
we show that accounting for rearrangements in the evolutionary model, but still only minimizing segmental dupli‑
cation and loss events, leads to an exact polynomial‑time algorithm. We finally assess time efficiency of the former 
exponential time algorithm for the Duplication‑Loss model on simulated datasets, and give a proof of concept on the 
opioid receptor genes.
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Background
Gene gain and loss is known as a major force driv-
ing evolution. The classical method used for inferring 
these events is to reconstruct the tree of the gene fam-
ily of interest and to embed it into the species phylog-
eny. Assuming the gene and species trees are known and 
correspond to the true evolution, incongruence between 
the two trees can be explained by gain and loss events, 
and “reconciling” the two trees allows recovering these 
events.

Tree reconciliation can be performed through different 
biological models of evolution, the most common being 

the Duplication-Loss (DL) [1–3] or Duplication-Loss and 
Transfer [4–6] models. Incomplete lineage sorting, i.e. 
imperfect segregation of alleles, can also be considered 
[7, 8]. While most reconciliation methods are based on 
the parsimony principle of minimizing the number or 
cost of operations, probabilistic models seeking for a rec-
onciliation with maximum likelihood or maximum pos-
terior probability have also been developed [9–11].

Regardless of the model, current algorithms for recon-
ciliation take each gene family individually, assuming an 
independent evolution through single gene gain and loss. 
Although this hypothesis is reasonable for genes that 
are far apart in the genome, it is clearly too restrictive 
for those organized in syntenic blocks or paralogons, i.e. 
sets of homologous chromosomal regions, among one or 
many genomes, sharing the same genes (e.g. neuropep-
tide Y-family receptors [12], the Homeobox gene clusters 
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[13–15], the FGFR fibroblast growth factor receptors [16, 
17] or the genes of the opioid system [18–20]). These 
genes are more plausibly the result of an evolution from a 
common ancestral region, rather than from a set of inde-
pendent gene duplications that would have converged to 
the same organization in different genomic regions.

The purpose of this paper is to generalize the DL rec-
onciliation of a single gene tree, to a set of gene trees, 
accounting for segmental duplications and losses. As 
far as we know, this problem has never been consid-
ered before. The closest algorithms are DeCo [21] and 
DeCoStar [22] which, given a set of gene families, a set 
of adjacencies between genes, a set of gene trees and a 
species tree, compute an adjacency forest reflecting the 
evolution of each adjacency. However, adjacencies are 
taken independently, and only single duplications and 
losses are considered. A correction strategy that adjusts 
the computation of the evolutionary cost to favour co-
evolution events, hence grouping seemingly individual 
events into single segmental ones was latter proposed in 
[23]. Another related problem asks for the reconciliation 
of a set of gene trees leading to a minimum number of 
duplication episodes, referring to possible whole genome 
duplication events, defined as sets of single duplications 
mapped to the same node in the species tree [24, 25]. 
However the considered model does not account for gene 
orders and duplications involving a set of neighboring 
genes.

Here, we consider the DL Super-Reconciliation problem 
(or Super-Reconciliation for short when there is no ambi-
guity) in which, given a set of gene families, a set of syn-
tenies (chromosomal segments exhibiting similar gene 
contents), a gene tree for each gene family and a species 
tree, we seek an evolutionary history of the set of syn-
tenies that is in agreement with the individual gene trees 
whilst minimizing the number of segmental duplications 
and losses. Our proposed model is a direct generaliza-
tion of the reconciliation of a single gene tree. Existency 
of a Super-Reconciliation depends on individual gene 
tree consistency. In addition, ignoring rearrangements 
implies that existency also depends on gene order con-
sistency. We first show that the problem of reconstruct-
ing a most parsimonious Super-Reconciliation, if any, is 
NP-hard and give an exact exponential-time algorithm 
to solve it. Alternatively, we show that accounting for 
rearrangements in the evolutionary model, but still only 
minimizing segmental duplications and losss, reduces to 
ignoring gene orders in syntenies, and leads to an exact 
polynomial-time algorithm.

After defining the new Super-Reconciliation model in 
the next section, we characterize, in the “Existence condi-
tions” section, the conditions under which a Super-Rec-
onciliation exists for a set of syntenies and a set of gene 

trees, and exhibit a general framework for inferring a 
most parsimonious DL Super-Reconciliation. We prove, 
in the “Complexity of the Super-Reconciliation problem” 
section, that this problem is NP-hard. A dynamic pro-
gramming algorithm for the main step of the framework 
is given in the  “A Super-Reconciliation for a supertree” 
section. The  “Unordered Super-Reconciliation” section 
is dedicated to an extension of the original evolutionary 
model accounting for rearrangements. We give a polyno-
mial-time algorithm for finding a Super-Reconciliation, 
under this model, minimizing the number of segmen-
tal duplications and losses. An application on simulated 
datasets and a proof of concept on the genes of the opi-
oid system are then presented in the  “Application” sec-
tion. We conclude with a discussion in the “Conclusion” 
section.

Trees, reconciliation and problem statement
A string or a sequence is an ordered set of characters. 
Given a string X = x1 · · · xn , a substring of X is a consecu-
tive set of characters from X in the same order as in X 
(possibly X itself ), and a subsequence is a set of charac-
ters of X in the same order, but not necessarily consecu-
tive in X (X is a substring and a subsequence of X). We 
also denote by Set(X) = {x1, x2, ..., xk} the range of X, i.e. 
the set of all genes contained in X, without any particular 
order.

All trees are considered rooted. Given a tree T, we 
denote by r(T) its root, by V(T) its set of nodes and by 
L(T ) ⊆ V (T ) its leafset. We say that T is a tree for 
L = L(T ) . A node v is an ancestor of v′ if v is on the path 
from r(T) to v′ ; v is the father of v′ if it directly precedes v′ 
on this path. In this latter case, v′ is called the child of v. 
We denote by E(T) the set of edges of T, where an edge is 
represented by its two terminal nodes (v, v′) , with v being 
the father of v′ . Two nodes v and v′ are separated in T iff 
neither one is an ancestor of the other. A node is said to 
be unary if it has a single child and binary if it has two 
children. Given a node v of T, the subtree of T rooted at v 
is denoted T[v].

A binary tree is a tree with all internal (i.e. non-leaf ) 
nodes being binary. If internal nodes have one or two 
children, then the tree is said partially binary.

Creating a unary root consists of creating a new node v, 
a new edge (v, r(T)) and assigning v as the new root of T. 
Grafting a leaf w consists of subdividing an edge (v, v′) of 
T, thereby creating a new node v′′ between v and v′ , then 
adding a leaf w with parent v′′ . If W is a rooted tree, graft-
ing W to T corresponds to grafting a leaf w, then replac-
ing w by the root of W.

The lowest common ancestor (LCA) in T of a subset 
L′ of L(T ) , denoted lcaT (L′) , is the ancestor common 
to all nodes in L′ that is the most distant from the root. 
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The restriction T |L′ of T to L′ is the tree with leafset L′ 
obtained from the subtree of T rooted at lcaT (L′) by 
removing all leaves that are not in L′ and all unary nodes. 
Let T ′ be a tree such that L(T ′) = L′ ⊆ L(T ) . We say 
that T displays T ′ iff T |L′ is label-isomorphic to T ′ (i.e., 
isomorphic with preservation of leaf labels). We also say 
that T is an extension of T ′.

Species, gene and synteny trees (see Fig. 1) The species 
tree S for a set � of species represents an ordered set of 
speciation events that have led to �.

A gene family is a set Ŵ of genes where each gene g 
belongs to a given species s(g) of � . If Ŵ′ ⊆ Ŵ is a subset of 
genes, we denote s(Ŵ′) = {s(g) : g ∈ Ŵ′}.

A synteny X is an ordered sequence of genes belonging 
to a genome s(X). We consider that genes of a synteny all 
belong to different gene families (tandem duplications 
are ignored). More precisely, let F = {Ŵ1,Ŵ2, ...,Ŵt} be a 
set of gene families, and �F = {(g ,Ŵ) : g ∈ Ŵ ∧ Ŵ ∈ F} 
be a function. We say that an ordered sequence of genes 
X = g1g2...gk is a synteny on F  iff �F  is well-defined for 

all genes of X, �F  is injective, and all genes in X belong to 
the same species.

A synteny family is a set X  of syntenies. We say that a 
set F  of gene families are organized into a set X  of syn-
tenies iff there is a bijection between the genes of F  and 
the genes in X  (each gene of F  belongs to exactly one 
synteny of X).

A tree T is a gene tree for a gene family Ŵ (respec. a syn-
teny tree for a synteny family X  ) if its leafset is in bijec-
tion with Ŵ (respec. X).

Given a gene tree T, the corresponding synteny tree is 
the tree T̃  obtained from T by replacing each leaf of T by 
the synteny containing the considered gene.

Given a tree T (either gene tree or synteny tree), we 
extend the mapping s to internal nodes v of T by defining 
s(v) = lcaS({s(l) : l ∈ L(T [v])}).

An evolutionary history is represented by a labeled 
tree, where the label of a node is its corresponding event. 
In the case of gene families, an event is entirely deter-
mined by its type, either a duplication, a speciation or a 

Fig. 1 (i) Two genomes A and B; three gene families (red, green and blue) grouped into two syntenies A1, A2 in A and two syntenies B1, B2 in B. 
(ii) Ignoring node labels and dotted lines, T, T ′ and T ′′ are the corresponding gene trees and T̃  , T̃ ′ and T̃ ′′ are the corresponding synteny trees. The 
reconciled gene trees R, R′ and R′′ are the same trees but including node labels and dotted lines. Nodes identified by circles are speciations, those 
represented by rectangles are duplications, and dotted lines represent lost branches. (iii) The reconciled trees embedded into the species tree S. (iv) 
A Super‑Reconciliation R , representing a more realistic evolutionary history from a common ancestral synteny. Each ancestral node is identified by 
the synteny, the event and the segment of the synteny affected by the event. Square nodes represent Dup events, round nodes Spe events, brackets 
pLoss events and dotted lines fLoss (see text)
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loss. The labels of a gene tree are obtained through rec-
onciliation, as described below.

Reconciliation

Definition 1 (Reconciled gene tree) Let T be a binary 
gene tree and S be a binary species tree. A DL Reconcili-
ation (or simply reconciliation) R(T,  S) of T with S is a 
labeled extension of T obtained by grafting new leaves 
satisfying: for each internal node v of R(T,  S) with two 
children vl and vr , either s(vl) = s(vr) = s(v) , or s(vl) and 
s(vr) are the two children of s(v). The node v is a dupli-
cation in s(v) in the former case and a speciation in the 
latter case. A grafted leaf on a newly created node v cor-
responds to a loss in s(v). All other leaves are labeled by 
the default event “extant”.

The cost of a reconciliation R(T,  S) is the number of 
induced duplications and losses.

Note that in a reconciliation, we only choose s(l) for 
the grafted leaves, and the value of s(v) for the internal 
nodes is entirely determined by the leaves descending 
v. Given a gene tree T and a species tree S, a minimum 
reconciliation, i.e. a reconciliation of minimum cost, is 
obtained from the LCA-mapping which consists in set-
ting s(v) = lcaS(s(L(T [v]))) for each v ∈ V (T ) , and labe-
ling each internal node v of T as a speciation if and only 
if s(vl) and s(vr) are separated in S, and as a duplication 
otherwise. Observe that in any case, if s(vl) and s(vr) are 
not separated, then it is impossible for v to be a specia-
tion. We denote by LCA-Reconciliation the reconciliation 
labeled by means of the LCA-mapping.

Before extending the reconciliation concept to a set of 
gene trees, we need to specify an evolutionary model for 
syntenies. In this paper, syntenies are considered to have 
evolved from a single ancestral synteny through specia-
tions (defined as for single genes), segmental duplications 
and segmental losses, where:

• A speciation Spe(X,  [1,  l]) acting on a synteny 
X = g1 · · · gl belonging to a genome s(X) has the 
effect of reproducing X in the two genomes sl and sr 
children of s(X) in S.

• A (segmental) duplication Dup(X,  [i,  j]) acting on a 
synteny X belonging to a genome s(X) is an opera-
tion that copies a substring gi · · · gj of size j − i + 1 
of X = g1g2 · · · gi · · · gj · · · gl somewhere else into 
the genome s(X), creating a new copied synteny 
X ′ = g ′i · · · g

′
j  where each g ′k , for i ≤ k ≤ j belongs 

to the same gene family as gk ; we say that the copied 
synteny is partial if [i, j] �= [1, l].

• A (segmental) loss Loss(X,  [i,  j]) acting on a synteny 
X = g1 · · · gi · · · gj · · · gl is an operation that removes 
a substring gi · · · gj of size j − i + 1 of X, leading to 
the truncated synteny X ′ = g1 · · · gi−1gj+1 · · · gl . A 
loss is called full if X ′ is the empty string (i.e. all genes 
of X are removed) and partial otherwise. We may a 
denote full loss event as fLoss and a partial loss event 
as pLoss.

An evolutionary history of a set of syntenies can thus be 
represented as a partially binary tree where leaves cor-
respond to extant syntenies and lost syntenies (resulting 
from full losses), and each internal node v corresponds to 
an event E(X , [i, j]) with E ∈ {Spe,Dup, pLoss} . Thus, in 
contrast to a single gene family, a tree representing the 
evolution of a set of syntenies is not only labeled by the 
type of event corresponding to each internal node, but 
also by the segment of the synteny affected by the event 
(see the bottom-right tree in Fig. 1).

If E is: 

1. Spe, then v is a binary node with two children corre-
sponding to syntenies Y and Z such that X = Y = Z 
and s(Y) and s(Z) being the two children of s(X) in S.

2. Dup, then v is a binary node with two children cor-
responding to syntenies X and X ′ = X[i, j] , where 
s(X) = s(X ′).

3. pLoss, then v is a unary node with a child 
corresponding to the truncated synteny 
X ′ = X[1, i − 1]X[j + 1, l] , and s(X) = s(X ′).

The topology of a tree representing the evolution of a set 
of syntenies differs from that of a single gene family since 
the former may contain unary nodes, resulting from par-
tial losses, while the latter only contains binary nodes.

Our goal is to infer an evolutionary history of a set of 
syntenies which is a reconciliation of a set of individual 
gene trees, formally defined below.

Definition 2 (Super-Reconciliation) Let G = {T1,T2,

· · · ,Tt} be a set of binary gene trees for the gene families 
F = {Ŵ1,Ŵ2, · · · ,Ŵt} organized into a set X  of syntenies 
belonging to a set � of taxa, and let S be a binary species 
tree for � . For each i, 1 ≤ i ≤ t , let T̃i be the synteny tree 
corresponding to Ti.

A Super-Reconciliation R(G, S) of G with S is a labeled 
synteny tree which is an extension of the trees T̃i , for 
1 ≤ i ≤ t , representing a valid history for X .

The cost of a Super-Reconciliation R(G, S) is the number 
of induced Dup, fLoss and pLoss events.
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For example, the cost of the Super-Reconciliation in 
Fig. 1 is 5. Notice that, although this cost is higher than 
that obtained by considering each gene family indepen-
dently (cost of 3), the induced history is much more real-
istic as it is unlikely that independent gene duplications 
would have led to the same gene organization in different 
genomic regions.

We are now ready to state the optimization problem 
considered in this paper.

super-reconciliation problem:
Input: A set � of species and a species  tree S for � ; a 
set of gene families F = {Ŵ1,Ŵ2, · · · ,Ŵt} organized into a 
set of syntenies X  ; a set of gene trees G = {T1,T2 · · · ,Tt} 
one for each family of F .

Output: A Super-Reconciliation R(G, S) of minimum 
cost.

Existence conditions
As a synteny is represented by a gene order and can only 
be modified through losses (duplications create new syn-
tenies but do not modify existing syntenies), an evolu-
tionary history does not always exist for a set of syntenies 
X  , regardless of the trees linking them. If this holds, the 
syntenies are said to be order consistent.

In addition, in contrast to the reconciliation of a single 
gene tree which always exists, this is not the case for a 
Super-Reconciliation as different gene trees may exhibit 
inconsistent speciation histories for the same syntenies.

The following two subsections are dedicated to charac-
terizing the gene order and gene tree conditions required 
for the existence of a Super-Reconciliation.

Consistency of gene orders
Given a set of gene families F = {Ŵ1,Ŵ2, · · · ,Ŵt} organ-
ized into a set of syntenies X  , we define the precedence 
graph P as the directed graph with n vertices, each cor-
responding to a gene family of F  , such that a directed 
edge (i, j) between two vertices i and j exists iff there is a 
synteny X = x1x2 · · · xk of X  containing a gene in Ŵi pre-
ceding a gene in Ŵj , i.e. there is a pair 1 ≤ l1 < l2 ≤ k such 
that xl1 ∈ Ŵi and xl2 ∈ Ŵj.

If P is acyclic, then P is a Directed Acyclic Graph 
(DAG). In this case, there is a topological sorting for P , 
i.e., a linear ordering X of vertices such that for every 
directed edge (i,  j) in P , i precedes j in X. Verifying if a 
directed graph is acyclic and finding a topological sorting 
of a DAG is a classical problem solvable in linear time.

The following lemma gives necessary and sufficient 
conditions for a set of syntenies to be order consistent 
and exhibits the set of possible ancestral syntenies.

Lemma 1 (Order consistency condition) Let 
F = {Ŵ1,Ŵ2, · · · ,Ŵt} be a set of gene families organized 
into a set X  of syntenies. Then X  is order consistent iff the 
corresponding precedence graph P is acyclic. In this case, 
any topological sorting for P is an order consistent ances-
tral synteny for X .

Proof The first part of the lemma follows from the fact 
that a directed graph has a topological sorting if and only 
if it is acyclic. The second part follows from the fact that, 
for any topological sorting A for P and any synteny X of 
X  , X is a subsequence of A, and thus X can be obtained 
from A through losses.  �

The ancestral synteny A at the root of a Super-Recon-
ciliation R(G, S) is an order on F  . Moreover, as the syn-
teny at each internal node of R(G, S) is obtained from A 
through losses, a synteny at each internal node of R(G, S) 
should be a subsequence of A. More generally, for any 
two nodes v and v′ of R(G, S) , where v is an ancestor of v′ , 
the synteny Y at v′ is a subsequence of the synteny X at v.

Consistency of trees
A set of trees on subsets of X  is said consistent iff, for 
any triplet Trp = {X1,X2,X3} of distinct elements of X  , 
all trees containing Trp as a sub-leafset exhibit the same 
topology for Trp.

Lemma 2 (Tree consistency condition) Let 
G = {T1,T2, · · · ,Tt} be a set of gene trees for a set of gene 
families organized into a set X  of syntenies, and let S be 
the species tree. If a Super-Reconciliation R(G, S) exists, 
then the set of corresponding synteny trees {T̃1, T̃2, · · · T̃t} 
is consistent.

Proof By definition, a Super-Reconciliation R(G, S) dis-
plays T̃i , for all 1 ≤ i ≤ t , as R(G, S) is an extension of 
each tree. Thus, for any triplet Trp = {X1,X2,X3} of X  , 
if T̃i and T̃j contain the triplet Trp as a sub-leafset, then 
R(G, S) displays both T̃i|Trp and T̃j|Trp . In other words, 
T̃i|Trp and T̃j|Trp are label-isomorphic. �

The consistency problem of rooted trees has been 
widely studied. The BUILD algorithm [26] can be used to 
test, in polynomial-time, whether a collection of rooted 
trees is consistent, and if so, construct a compatible, not 
necessarily fully resolved, supertree, i.e. a tree displaying 
them all. This algorithm has been generalized to output 
all compatible minimally resolved supertrees [27–29], 
which may be exponential in the number of genes.

The following theorem makes the link between a super-
tree and a reconciliation.
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Theorem 1 Let G = {T1,T2 · · · ,Tt} be a set of trees for a 
set of families organized in an order-consistent set of syn-
tenies X  , and S be the species tree. Let G̃ = {T̃1, T̃2 · · · , T̃t} 
be the set of synteny trees corresponding to those in G . If G̃ 
is a consistent set of trees then:

1. A Super-Reconciliation R(G, S) is an extension of a 
supertree for G̃;

2. Any supertree is the “backbone” of a Super-Reconcil-
iation. Namely, for any supertree T̃  for G̃ , there is a 
Super-Reconciliation R(G, S) which is an extension of 
T̃ .

The first statement of Theorem  1 follows from 
Lemma 2. As for the second statement, we will prove it 
implicitly in the “A Super-Reconciliation for a supertree” 
section by providing an algorithm that yields a minimum 
cost reconciliation on any supertree.

Following Theorem  1, the problem reduces to finding 
a supertree for the set of synteny trees minimizing the 
number of segmental duplications and losses. A natu-
ral algorithm for the super-reconciliation problem 
follows: 

1. Explore the space of all order consistent ancestral 
syntenies A for X ;

2. Explore the space of all supertrees T̃  for G̃;
3. Find a Super-Reconciliation of minimum cost which 

is an extension of T̃  with A as an ancestral synteny;
4. Select the Super-Reconciliations leading to the mini-

mum cost.

Step  1 and Step  2 have been discussed in this section. 
Before developing an algorithm for Step  3, which is the 
purpose of  the “A Super-Reconciliation for a supertree” 
section, we begin by analyzing the theoretical complexity 
of the super-reconciliation problem.

Complexity of the Super‑Reconciliation problem
We have recently considered the problem of finding a 
supertree of a set of gene trees minimizing the classical 
single gene duplication and single gene duplication and 
loss distances. The problem has been shown NP-hard 
for the duplication distance, and exponential-time algo-
rithms have been developed for both distances.

For segmental duplications only, the hardness of 
super-reconciliation is almost immediate from the 
results of [30]. For both duplications and losses, the prob-
lem remains NP-hard, although the proof is far more 
technical. Here we give the simpler proof of hardness 
for minimizing duplications only, and refer the reader to 

Additional file 1 for the NP-hardness proof for minimiz-
ing segmental duplications and losses.

Theorem  2 The super-reconciliation problem is 
NP-hard for the duplication cost. Furthermore, the mini-
mum number of duplications is hard to approximate 
within a factor n1−ǫ for any 0 < ǫ < 1 , where n is the 
number of syntenies in the input.

Proof The hardness follows from that of the mindup-
supertree problem, defined as follows. Given a spe-
cies tree S and a set of gene trees T1, . . . ,Tk , possibly 
with overlapping leafsets, mindup-supertree asks for a 
supertree T that displays T1, . . . ,Tk such that the LCA-
reconciliation of T and S yields a minimum number d 
of duplications. It was shown in [30] that it is NP-hard 
to approximate d within a factor n1−ǫ for any 0 < ǫ < 1 , 
where here n is the number of genes in Ŵ =

⋃k
i=1 L(Ti).

To reduce mindup-supertree to the super-reconcil-
iation problem, it essentially suffices to exchange the 
roles of genes and syntenies. More precisely, given an 
instance of mindup-supertree consisting of a species 
tree S and gene trees T1, . . . ,Tk , we compute an instance 
of super-reconciliation as follows. The species tree is 
the same as S, and for each gene g ∈ Ŵ , we have a syn-
teny Xg with s(Xg ) = s(g) whose gene content will soon 
be defined. For each gene tree Ti , we create an identical 
gene tree T ′

i  , but in which each gene g ∈ L(Ti) is replaced 
by a unique gene gTi that belongs to synteny Xg (and 
hence s(g) = s(gTi) = s(Xg ) ). Thus Xg has one gene gTi 
for each occurrence of g in a tree Ti (recall that a gene can 
occur in multiple trees). The ordering of the genes of Xg 
is arbitrary (since we are not counting segmental losses), 
but the ordering must be order-consistent. This is eas-
ily achieved by ordering the gTi ’s of each synteny Xg in 
ascending order of their i indices. Note that the synteny 
tree T̃i for T ′

i  is obtained by replacing each leaf g of Ti by 
Xg . Also observe that there are n syntenies.

It only remains to show the correspondence between the 
solutions for the two problem instances. Suppose that the 
mindup-supertree instance admits a supertree T with 
d duplications when reconciled. Let T̃  be the synteny tree 
obtained from T by replacing each gene g ∈ L(T ) by Xg . 
Because s(g) = s(Xg ) , both T and T̃  have the same dupli-
cations under the LCA-reconciliation, which is d. One 
can assign a synteny X at the root of T̃  that satisfies our 
constraints defined by the precedence graph. We assign 
the same synteny X at every internal node (so no par-
tial losses or partial duplications), and partial losses can 
be added on each edge linking a leaf Xg with its parent 
to obtain the Xg synteny. As we are not counting losses, 
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these are irrelevant and we achieve a cost of d duplica-
tions. Conversely, assume that  the super-reconcilia-
tion instance formed by T ′

1, . . . ,T
′
k and S admits a syn-

teny tree T̃  with d duplications. We may replace each 
leaf Xg by g, yielding an extension of a supertree T for the 
mindup-supertree instance. After suppressing unary 
vertices, this results in a reconciled gene supertree with 
d duplications. Because the value of the solutions are 
preserved and n = |Ŵ| corresponds to the number of syn-
tenies, this reduction is approximation-preserving and 
the hardness result follows.  �

We state our second hardness result formally here.

Theorem  3 The super-reconciliation problem is 
NP-hard for the Dup, fLoss and pLoss cost.

A Super‑Reconciliation for a supertree
In this section, we are given a set G = {T1,T2, · · · ,Tt} 
of consistent gene trees for a set of families 
F = {Ŵ1,Ŵ2, · · · ,Ŵt} organized in an order consistent set 
of syntenies X  , and a species tree S for the set � of taxa 
containing the genes. In addition, we are given a super-
tree T̃  for the synteny trees G̃ = {T̃1, T̃2, · · · , T̃t} corre-
sponding to those in G , and an order consistent ancestral 
synteny A for X .

Given a Super-Reconciliation R(G, S) (R for short), 
because R is obtained from T̃  by grafting leaves, each 
node of T̃  is present in R. Hence we say that v ∈ V (T̃ ) has 
a corresponding node v′ in R. More precisely, if l ∈ L(T̃ ) , 
then l ∈ L(R) also and the correspondence is immediate. 
If v is an internal node of V (T̃ ) , the node v′ of R corre-
sponding to v is lcaR({l : l ∈ L(T̃ [v])}) . We show that, as 
in the traditional reconciliation setting, the nodes of R 
that are also in T̃  should be mapped to the lowest species 
possible. To simplify the argument, we will call an inter-
nal node a full loss if it is the parent of a fLoss event. For 
later reference, we note that the proofs of Lemma 3 and 
Lemma 4 do not involve the gene orders in any way.

Lemma 3 Let R(G, S) be a Super-Reconciliation of 
minimum cost which is an extension of T̃  . Let v ∈ V (T̃ ) 
and let v′ be the node corresponding to v in R(G, S) . Then 
s(v′) = lcaS(s(L(T̃ [v]))).

Proof First, observe that the statement is clearly true 
for the leaves. Assume that the statement is false. Now, 
let v be a node of T̃  such that its corresponding node 
v′ does not satisfy the statement—moreover, choose v 
to be a minimal node with this property (meaning that 
for the children vl and vr of v, the corresponding nodes 
v′l and v′r in R(G, S) satisfy s(v′l) = lcaS(s(L(T̃ [vl])) and 

s(v′r) = lcaS(s(L(T̃ [vr])) ). Note that v must exist, since 
the statement is true for the leaves.

Now, we may assume that s(v′) �= lcaS(s(v
′
l), s(v

′
r)) , as 

otherwise v′ satisfies the lemma. Thus in S, there are at 
least k edges on the path from s(v′) to lcaS(s(v′l), s(v

′
r)) , 

where here k > 0 . It is not hard to verify that in this case, 
v′ must be a duplication node, according to the definition 
of a reconciliation. This implies that there are at least k 
full losses on the path from v′ to v′l and at least k full losses 
on the path from v′ to v′r . Consider the Super-Reconcilia-
tion R′ that is identical to R(G, S) , with the exception that 
s(v′) = lcaS(s(v

′
l), s(v

′
r)) . Then the 2k losses on the paths 

between v′ and v′l and between v′ and v′r are not needed 
anymore, although if v′ is not the root, k losses become 
necessary on the path between v′ and w′ , where w′ is the 
node corresponding to the parent w of v in T̃  . Remapping 
v′ cannot increase the number of duplications, and so we 
have saved k losses.

It remains to argue that the number of partial losses 
remains the same. But this is easy to see. We keep the 
same synteny assignment at nodes v′ , v′l and v′r (and w′ if v′ 
is not the root) as in R(G, S) . If v′ was a segmental dupli-
cation in R(G, S) , we set v′ to be a segmental duplication 
in R′ as well. The number of partial losses on the paths 
between v′ and v′l , v

′
r (and w′ ) therefore remains the same 

as in R(G, S) .  �

We now show that speciation and duplication nodes 
are easy to identify. Essentially, we may set the events of 
internal nodes as in the classical LCA-mapping reconcili-
ation. In what follows, assume that T̃  is reconciled under 
the LCA-mapping, and put s(v) = lcaS(L(s(T̃ [v]))) for 
every v ∈ V (T̃ ).

Lemma 4 Let R(G, S) be a Super-Reconciliation of mini-
mum cost which is an extension of T̃  . Let v ∈ V (T̃ ) be an 
internal node of T̃  and let v′ be its corresponding node in 
R(G, S) . Moreover let vl and vr be the children of v. If s(vl) 
and s(vr) are separated in S, then v′ is a speciation, and 
otherwise v′ is a duplication.

Proof Let v′l and v′r be the nodes corresponding to vl and 
vr , respectively, in R(G, S) . First, if s(vl) and s(vr) are not 
separated, then by Lemma 3, s(v′l) and s(v′r) are not sep-
arated, hence it is not possible for v′ to be a speciation. 
Therefore v′ must be a duplication.

Suppose instead that s(vl) and s(vr) are separated in S, 
but that v′ is labeled by a duplication event Dup(X, [i, j]), 
where X is the synteny assigned at v′ . On the path from 
v′ to v′l , there may be some pLoss events and some nodes 
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that were grafted owing to full losses. We may assume 
that all full loss events, if any, have occurred before the 
pLoss events on this path (i.e., nodes grafted from full 
losses are closer to v′ ). This is without loss of generality, as 
this does not change the resulting synteny in v′l . We shall 
make the same assumption with the path from v′ to v′r . 
Now, by Lemma 3, s(v′) = lcaS(s(vl), s(vr)) . Because v′ is 
a duplication, the two children wl ,wr of v′ in R(G, S) must 
satisfy s(wl) = s(wr) = s(v′) . Since s(v′l) �= s(v′) �= s(v′r) , 
we have that {wl ,wr} ∩ {v′l , v

′
r} = ∅ , and therefore wl and 

wr were grafted on T̃  due to full losses. If we label v′ as 
a speciation Spe(X, [1, |X|]), these two full losses are not 
needed anymore, and by doing so we have one duplica-
tion less and two full losses less. Let Yl and Yr be the two 
syntenies that are assigned at wl and wr in R(G, S) , respec-
tively. Then Yl = X and Yr = X[i, j] or vice-versa (assume 
the former, without loss of generality). Suppose that wr 
is an ancestor of v′r in R(G, S) , again without loss of gen-
erality. The substring X[i,  j] can be obtained from X by 
adding at most two partial losses on the path from v′ to 
v′r . The rest of the reconciliation can remain the same. To 
sum up, we have removed one duplication and two full 
losses, and inserted at most two partial losses to repro-
duce the effect of the segmental duplication. This contra-
dicts that R(G, S) is a reconciliation of minimum cost. �

From Lemma 4, it follows that we know the event-type 
(Dup or Spe) of each internal node of the supertree T̃  . It 
then remains to extend the tree with losses and infer the 
actual event at each node (i.e., the corresponding synteny 
and segment being duplicated or lost). It is easy to see 
that losses and segments affected by the events are fully 
determined by gene orders assigned to internal nodes. 
Therefore, the problem reduces to the classical “small 
phylogeny problem” generally defined as follows: Given 
an alphabet � (nucleotides or amino-acids or genes), a 
distance on the set of words of � (edit distance for gene 
sequences or rearrangement distances for gene orders) 
and a tree T with leaves being words on � (extant gene 
sequences or gene orders), find the labeling of ancestral 
nodes (ancestral sequences or orders) minimizing the 
total cost of the tree. This cost is the sum of costs of each 
branch, which is the distance between the two words 
connected by the branch.

Here, we are given a synteny tree T̃  for a set X  of syn-
tenies on a set of gene families F  , and an ancestral syn-
teny A which is an order of F  . We want to find a synteny 
assignment attributing a partial order on F  to each node 
of V (T̃ ) . We assume that the root r of T̃  is assigned the 
synteny A. It follows from the considered evolution-
ary model that, for two nodes u and v of T̃  with u being 
an ancestor of v, the synteny Xv assigned to v should be 
a subsequence of the string Xu assigned to u. A synteny 

assignment verifying this condition is called a valid syn-
teny assignment for T̃ .

For v ∈ V (T̃ ) , define d(v, X) as the minimum number 
of segmental duplications and losses induced by a syn-
teny assignment on T̃ [v] with X being the assignment at 
v. The small-phylogeny for syntenies problem  is 
to find an optimal assignment, i.e. an assignment leading 
to d(T̃ ) = minX d(r(T̃ ),X) for X belonging to the set of 
syntenies that are order consistent with X .

Solving this problem can be done by dynamic program-
ming by computing d(v, X), for each v ∈ V (T̃ ) and each 
possible synteny X.

Let v be an internal node of T̃  and vl , vr be its two chil-
dren. Let X, Xl , Xr be valid assignments for respectively 
v, vl and vr . Then Xl and Xr are subsequences of X. If v is 
a speciation, then all missing genes in Xl and Xr are the 
result of losses. Otherwise, if v is a duplication, then for 
at most one of Xl and Xr , the missing prefix or suffix can 
be due to the partial duplication of a segment of X, and 
all other missing genes should be the result of losses. This 
motivates the following two variants of the loss distance 
between two syntenies.

Let X and Y be two syntenies with Y being a subse-
quence of X. We let DT (X ,Y ) denote the minimum 
number of segmental losses required to transform X to Y 
and DP(X ,Y ) the minimum number of segmental losses 
required to transform a substring of X to Y.

Theorem  4 Let v be a node of T̃  , X be a synteny and 
S(X) be the set of subsequences of X.

• If v is a leaf, then d(v,X) = 0 if X is the extant syn-
teny corresponding to leaf v, and +∞ otherwise;

• If v is a speciation with children vl and vr , then,

• If v is a duplication node with children vl and vr , then

The above can be used to solve the small-phylogeny 
for syntenies problem with dynamic programming. 
To do this, one can simply traverse T̃  in post-order, and 
apply the recurrences of Theorem 4 at each node encoun-
tered. We finish this section by analyzing the complexity 
of this algorithm. Let n = |V (T̃ )| and let t be the number 

d(v,X) = min (Xl∈S(X))(D
T (X ,Xl)+ d(vl ,Xl))

+ min (Xr∈S(X))(D
T (X ,Xr)+ d(vr ,Xr));

d(v,X) = 1+

min















min (Xl∈S(X))(D
T (X ,Xl)+ d(vl ,Xl))+

min (Xr∈S(X))(D
P(X ,Xr)+ d(vr ,Xr)),

min (Xl∈S(X))(D
P(X ,Xl)+ d(vl ,Xl))+

min (Xr∈S(X))(D
T (X ,Xr)+ d(vr ,Xr))
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of gene families involved in the small-phylogeny for 
syntenies problem instance. For a node v ∈ V (T̃ ) and 
a synteny X, there are O(2t) possible subsequences of X. 
The value of d(v,  X) can thus be computed by finding a 
minimum over O(2t) possible values for its left child vl , 
and then over O(2t) possible values for its right child 
vr . It is straightforward to check that DT and DP can be 
computed in time O(t) since all characters of the synteny 
strings are unique.

Let us now consider the number of possible entries 
in our dynamic programming table. The possible syn-
tenies for X correspond to the subsequences of a topo-
logical sorting of an acyclic directed graph with t nodes 
(see Additional file  1). In the worst case, there are 
O(2t · t!) = O(2t log t+t) such syntenies. It follows that 
there are at most O(n2t log t+t) entries in the dynamic 
programming table, and each entry takes time O(t2t) to 
compute. It is known that if there are k possible topologi-
cal sortings in a directed acyclic graph, then they can be 
enumerated in time O(k) [31] (it is worth noting however 
that counting the number of such topological sortings in 
#P-complete [32]). Therefore, if t is not too large, then the 
above recurrences can solve the small phylogeny problem 
relatively quickly, even if n is large. Put differently, the 
small-phylogeny for syntenies problem is fixed-
parameter tractable with respect to parameter t.

Corollary 1 The small-phylogeny for syntenies 
problem can be solved in time O(t2t log t+2tn) , where t is 
the number of gene families present in the input and n is 
the number of syntenies.

Unordered Super‑Reconciliation
The strongest and less biologically supported condition 
for the existency of a DL Super-Reconciliation is probably 
gene order consistency. In fact, genomes being subject to 
rearrangements shuffling gene organization, it is hard to 
expect that a set of homologous chromosomal segments 
in phylogenetically distant genomes would exhibit the 
same gene order. In other words, we can hardly ignore 
the presence of rearrangements in the evolutionary his-
tory leading to a set of homologous genomic regions.

The small phylogeny problem, which consists in infer-
ring ancestral gene orders minimizing a given rear-
rangement distance, has been extensively studied (see 
for example [33–37]). Algorithmic developments and 
results differ depending on the considered rearrange-
ment distance. The most studied one is probably the DCJ 
distance, accounting for artificial movements implicitely 
mimicking inversions and transpositions [38, 39].

Almost all versions of the small phylogeny problem 
with rearrangements have been proven NP-hard, even 

those accounting for equal gene content for all genomes 
[40]. Heuristics have also been developed for inferring 
ancestral gene orders minimizing rearrangements, dupli-
cations and loss events (reviews can be found in [41, 42]). 
Extension of these heuristics to the Super-Reconciliation 
problem is certainly possible, but can only increase the 
intractability of the original problem.

Here, we explore a compromise which consists in con-
sidering an evolutionary model accounting for segmen-
tal duplications, losses and rearrangements, but yet only 
minimizing duplication and loss events. In other words, 
gene orders are not important anymore, as we can use 
as many rearrangements as we want for obtaining the 
required orders.

Reducing syntenies to their range sets, an unordered 
evolutionary history of a set of syntenies can be repre-
sented as a partially binary tree where each internal node 
v corresponds to an event E(Set(X)) with X = synteny(v) 
being the synteny at v and E ∈ {Spe,Dup, pLoss} such 
that, if E is: 

1. Spe, then v is a binary node with two children 
corresponding to syntenies Y and Z such that 
Set(X) = Set(Y ) = Set(Z) and s(Y) and s(Z) are the 
two children of s(X) in S.

2. Dup, then v is a binary node with two chil-
dren corresponding to syntenies Y and Z such 
that Set(Y ) = Set(X) , Set(Z) ⊆ Set(X) and 
s(X) = s(Y ) = s(Z).

3. pLoss, then v is a unary node with a child corre-
sponding to a synteny Y such that Set(Y ) � Set(X) 
and s(X) = s(Y ).

If no ambiguity on the synteny of v, we will denote by 
Set(v) the range set of the synteny at node v of tree T (in 
other words, Set(v) = Set(synteny(v)).

An Unordered Super-Reconciliation (USR) Ru(G, S) 
of a set G = {T1,T2, · · · ,Tt} of gene trees with a species 
tree S is a labeled synteny tree which is an extension of 
the trees T̃i , for 1 ≤ i ≤ t , representing a valid unordered 
evolutionary history for X  . The cost d(Ru(G, S)) of such 
an unordered Super-Reconciliation is the number of 
induced Dup, fLoss and pLoss events.

The unordered super-reconciliation problem 
then consists in inferring the  USR of minimum cost. 
Notice that, as gene order is ignored, at most one pLoss 
can separate two binary nodes on a most parsimonious 
USR.

Regarding existence conditions, Lemma  2 and Theo-
rem  1 clearly apply to the  USR problem, as gene order 
information is not involved in tree consistency. Namely, 
an USR exists if and only if the trees of G̃ are consistent, 
and in this case any supertree for G̃ is the backbone of an 
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USR. Lemma  3 and Lemma  4 also apply since, as men-
tioned before, their proofs do not involve gene orders. 
Therefore, we may assume that, if a supertree T̃  of syn-
tenies is given, its nodes can be mapped according to the 
LCA-mapping and its speciation/duplication nodes iden-
tified in this way.

The USR problem thus reduces to a small phylogeny 
problem which consists in inferring internal node gene 
contents of the supertree T̃  leading to a minimal dupli-
cation and loss cost. As duplications are already deter-
mined by the node labeling of T̃  , only loss events remain 
to be minimized. Notice that the root’s gene content is 
just F .

We add to T̃  the fLoss branches obtained from the 
LCA-Reconciliation of T̃  with S. In other words, the new 
tree is an intermediate between T̃  and Ru(G, S) . For prac-
tical reasons, we still call it T̃  . Notice that fLoss branches 
can only create speciation nodes. For the requirements of 
the following algorithms, the empty synteny is assigned 
to the leaf created by an fLoss branch.

We now present a dynamic programming algorithm to 
find the minimum number of pLoss events required for a 
USR.

A dynamic programming approach for optimal USRs
Given an USR R, we denote by SetR(v) the range set of 
the synteny assigned to v in R. For an internal node v of 
T̃  , denote

as the set of all gene families that appear in a synteny 
under v. Note that v must have a gene in every family 
in lcaSet(v) . For a range set X, denote by CX (v) the mini-
mum cost of an USR R between T̃ [v] and S in which we 
assign SetR(v) = X (if lcaSet(v) is not a subset of X, put 
CX (v) = ∞ ). We denote Clca(v) := ClcaSet (v)(v) , i.e. the 
cost when we assign the smallest possible range set to 
v. If v is a leaf, we have Clca(v) = 0 and CX (v) = ∞ for 
any X  = Set(v) . The value we are interested in is Clca(r) , 
where r is the root of T̃ .

We first show that the exact nature of the “extra” con-
tent that might be assigned to an internal node v is irrel-
evant for the computation of the optimal cost.

Lemma 5   Let v ∈ V (T̃ ) be an internal node of T̃  , and 
let X, Y be any range sets satisfying lcaSet(v) � X ,Y  . Then 
CX (v) = CY (v).

Proof This can be shown by induction on the depth 
of the nodes of T̃  . The lemma is true for leaves, as 
CX (v) = CY (v) = ∞ in this case. So assume that v is 

lcaSet(v) =
⋃

l∈L(T̃ [v])

Set(l)

an internal node. Let R be a minimum USR of T̃ [v] in 
which SetR(v) = X . We build a reconciliation R′ in which 
SetR′(v) = Y . Consider the children v1 and v2 of v in T̃  . 
If SetR(v1) = lcaSet(v1) , then either there is a pLoss node 
on the vv1 path in R, or v is a duplication and X was par-
tially duplicated. In any case for our USR R′ , we can 
use this pLoss or duplication to lose Y \ lcaSet(v1) , and 
assign SetR′(v1) = lcaSet(v1) without incurring addi-
tional cost compared to R. We then use the same recon-
ciliation as R for the subtree T̃ [v1] , and thus R′ incurs no 
extra cost on the v1 side. If instead SetR(v1) strictly con-
tains lcaSet(v1) , then in R′ we put SetR′(v1) = Y without 
requiring any pLoss on the vv1 path. Moreover by induc-
tion, CSetR(v1)(v1) = CY (v1) . It follows that R′ has as many 
losses as R in the T̃ [v1] subtree — and since there is no 
loss on the vv1 branch, R′ has at most as many losses as R 
on the v1 side (note that R′ could have strictly less losses 
than R on the v1 side if R had a loss on the vv1 branch 
— this implicitly means that R had no such loss, as oth-
erwise our R′ will end up having less losses than R and 
contradict its optimality). Now, it suffices to observe that 
the same scheme can be applied to v2 as well (noting that 
losses saved by partial duplications cannot happen on 
both sides of v), showing that there is an R′ that is of cost 
no more than R.  �

Lemma 5 implies that there are two possible minimum 
loss costs for T̃ [v] . Either v is assigned lcaSet(v) and its 
cost is Clca(v) , or it is assigned X with extra content and 
its cost is CX (v) , for any X strictly containing lcaSet(v) . 
We will therefore denote by C∗(v) the minimum loss cost 
of T̃ [v] when v is assigned any X such that X  = lcaSet(v) . 
This leads to a dynamic programming formulation that 
takes into account the two cases. For an internal node 
v, define spec(v) = 1 if v is a speciation, and spec(v) = 0 
otherwise. The value of C∗(v) can be computed according 
to the following Lemma.

Lemma 6 For an internal node v of T̃  with children v1 
and v2 , we have

Proof Let R be an optimal USR in which 
SetR(v) = X �= lcaSet(v) . It follows that X  = lcaSet(v1) 
and X  = lcaSet(v2) . The lemma lists all the possible ways 
of sending extra content to the children or not. In the 
first case, we have two losses: we lose X \ lcaSet(v1) and 
X \ lcaSet(v2) on both the vv1 and vv2 branches, respec-
tively (if v is a duplication, we can save one loss in a 

C∗(v) = min











Clca(v1)+ Clca(v2)+ 1+ spec(v),
C∗(v1)+ Clca(v2)+ spec(v),
Clca(v1)+ C∗(v2)+ spec(v),
C∗(v1)+ C∗(v2).
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partial duplication, hence the spec(v) term). In the second 
and third cases, we lose content only on one side (again 
potentially using a partial duplication), and in the last 
case, we transfer X to the children without incurring any 
loss.  �

The computation of Clca(v) has more cases, depending 
if the children of v have the same lcaSet value or not. We 
show in Algorithm  1 how Clca(v) can be computed. We 
omit the proof of correctness for this algorithmn as it is 
similar to that of Lemma 6. 

1 The program and simulations are available at: https ://githu b.com/UdeM-
LBIT/Super Recon cilia tion

It is now clear that if the values of Clca(vi) and C∗(vi) 
are known for the children v1, v2 of v, then Clca(v) and 
C∗(v) can be computed in constant time, assuming we 
have access to lcaSet(v) for every v ∈ T̃  . By computing 
these values in a post-order traversal of T̃  , we can com-
pute Clca(r) for the root of T̃  in time O(|V (T̃ )|) . It is also 
straightforward to conceive a backtracking procedure to 
construct an actual USR. Moreover, every optimal solu-
tion can be produced by our dynamic programming 
paradigm.

This algorithm requires computing lcaSet(v) for every 
vertex, which can be accomplished in time O(|V (T̃ )||F |) 
(recall that F  is the set of gene families). This actually 
dominates the running time.

Theorem 5 The minimum cost of a USR can be obtained 
in time O(|V (T̃ )||F |).

Application
Simulated datasets
The dynamic programming algorithm that ignores rear-
rangements  has been implemented in C++1 and tested 
on balanced trees obtained from simulated evolution-
ary histories. Simulations have been performed accord-
ing to five parameters: t, the number of gene families 
in the ancestral synteny; d, the maximum depth of the 
balanced tree; pdupl , the probability for any given node 
to be a segmental duplication; ploss , the probability for 
a loss to occur under any given node; and plength , the 
probability to remove one gene in a segmental loss, 

defining the probability for a loss to remove k genes (for 
k ∈ {1, 2, 3, ..} ): P(X = k) = (1− plength)

k−1plength , fol-
lowing a shifted geometric distribution.

Simulations yield Super-Reconciliations leading to 
fully labelled trees. The input of the Super-Reconciliation 
algorithm is then obtained from those trees by removing 
loss nodes and synteny information on the internal, non-
root nodes.

From an accuracy point of view (results not shown), as 
expected the larger the density of duplication and loss 
events, the further is the simulated history from a most 
parsimonious history, and thus from the inferred tree.

As for time-efficiency, values for inferring the Super-
Reconciliation of a single tree, aggregated over 500 sim-
ulations per value of t, the size of the ancestral synteny 

https://github.com/UdeM-LBIT/SuperReconciliation
https://github.com/UdeM-LBIT/SuperReconciliation
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(number of gene families), are given in Fig. 2. Computa-
tions have been done on the “Cedar” cluster of Compute 
Canada with 32 Intel 8160 CPUs operating at 2.10 GHz. 
As expected, running time exponentially increases with 
respect to parameter t. This prevented us from extend-
ing the simulations beyond an ancestral synteny of size 
14, for which the Super-Reconciliation of a single tree of 
depth 5 required around 15 min. However, if the synteny 
size remains fixed, running times increase polynomially 
with the size of the trees. As shown by the right diagram 
of Fig.  2, for an ancestral synteny of size 5, simulations 
exhibit a running time of no more than few seconds for 
trees with depth up to 15, representing balanced trees 
with up to 215 leaves.

Apart from genomic segments related through a recent 
whole genome duplicatiom event, real biological data-
sets are more likely to reveal large gene families rather 
than large sets of gene families evolving in concert. Thus, 
the increase in running time according to the size of the 
ancestral synteny is unlikely to be a bottleneck towards 
applying our Super-Reconciliation algorithm. The par-
ticular case of whole genome duplication is however 
worth exploring in more details.

The opioid system
The opioid receptors, important regulators of neuro-
transmission and reward mechanisms in mammals, offer 
an interesting proof of concept, as these genes are present 
in clusters with conserved synteny in vertebrate genomes.

Three genes for the opioid receptors (OPR) were iden-
tified and named OPRD1 (delta), OPRK1 (kappa) and 
OPRM1 (mu). A fourth gene was later found (OPRL1) in 
rodents and human. In human, they are located on chro-
mosomes 1, 6, 8 and 20.

Previous studies have considered the duplication sce-
nario explaining the evolution of the opioid receptor 
genes [18–20]. The main question was whether observed 
paralogons arose from the two whole genome duplication 

events, often called 1R and 2R, known to have occurred 
early in vertebrate evolution.

By exploring regions surrounding the OPR genes in 
human, four syntenic regions, containing genes from 
three other families (NKAIN, SRC-B and STMN) appar-
ently sharing a common history, were identified. From 
the analysis of individual gene trees (neighbor-joining 
and quartet-puzzling maximum likelihood trees), con-
clusions associating the evolution of the opioid system 
related genes to the 1R and 2R events were drawn.

Here, we consider the same four gene families OPR, 
NKAIN, STMN, and SRC-B, and further extend the OPR 
family with two neuropeptide NPBWR receptors, known 
to be closely related to the opioid receptors (Fig.  3(i)). 
Protein sequences and gene orders were downloaded 
from the Ensembl database (Release 92)2 for the follow-
ing five species: Homo sapiens, Mus musculus, Gallus 
gallus, Lepisosteus oculatus (spotted gar) and Drosophila 
melanogaster. Gene orders are given in Fig. 3(ii).

For each gene family, we built a multiple sequence 
alignment with ClustalW [43] (Gonnet weight matrix 
and gap opening and extension penalties respectively set 
to 10 and 0.2). Maximum likelihood gene trees were sub-
sequently constructed for each family using MEGA7 [44] 
(Jones-Taylor-Thornton substitution matrix and uniform 
rates among sites). As some syntenies contained paralogs 
(multiple copies from the same gene family, for example 
synteny H3 contains two ‘a’), duplicates were removed 
so as to maximize gene tree consistency. Although gene 
trees were still inconsistent, the overall clustering of gene 
copies was preserved among gene trees, and consistency 
could be attained after some local adjustments, using the 
species tree as reference.

The obtained Super-Reconciliation is given in Fig. 3(iii). 
Notice however that gene orders are far from being 
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Fig. 2 Time‑efficiency of the algorithm with respect to the size of the ancestral synteny (for d = 5 ) and the depth of the input tree (for t = 5 ), for 
pdupl = ploss = plength = 0.5 . Note that the leftmost graph uses a logarithmic scale

2 https ://useas t.ensem bl.org/index .html.

https://useast.ensembl.org/index.html
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consistent. In fact, all considered genomes are separated 
by a considerable evolutionary distance, and therefore, 
local rearrangements could have occurred along each 
lineage-specific branch. Choosing the (h,  s,  a,  n) order 
on every node of the tree and assuming rearrangements 
to occur at terminal edges, i.e. after duplication and loss 
events, leads to a history of three duplications and two 
losses before the speciation of bony fish and tetrapods, 
with two duplications correlating with the 1R and 2R 
tetraploidization events. This result is in agreement with 
previous studies on the opioid receptor genes [18].

Further analysis, using more genes and species, is 
required to provide a more detailed scenario for the evo-
lution of the opioid receptor genes. Our objective here 
however, was not to verify a given hypothesis, but rather 
to provide a proof of concept and explore the applicabil-
ity and limitations of the proposed reconciliation model 
on real data.

Conclusion
We have presented a natural extension of the DL Rec-
onciliation model to handle segmental duplications and 
losses. This is the first effort towards developing a unify-
ing automated method framework for reconciling a set of 
gene trees. We provide computational complexity results 
and a general inference method.

However, as the considered evolutionary model is 
restricted to losses and transposed duplications, the pos-
sibility of application to real datasets remains very lim-
ited. In particular, a duplication and loss history does not 
always exist for a set of syntenies if rearrangements are 

ignored, as the corresponding gene orders may be incon-
sistent. One solution would be to minimally correct gene 
orders to ensure consistency, before applying the DL 
Super-Reconciliation model. In this paper, we have con-
sidered an alternative way of working around this prob-
lem, which consists of extending the evolutionary model 
to account for rearrangements, but still only minimize 
duplication and loss events. The underlying Unordered 
Super-Reconciliation problem has been shown tractable. 
However, this way of integrating rearrangements is far 
from being fully satisfactory as the obtained evolutionary 
history may lead to a prohibitive number of rearrange-
ments. In other words, the problem of Super-Reconcilia-
tion with rearrangements remains open.

Another strong constraint is the fact that tandem 
duplications, leading to syntenies with multiple gene cop-
ies, are ignored. In fact, only transposed duplications, 
i.e. duplications creating new syntenies, are allowed. 
Although the Super-Reconciliation model can easily be 
extended to tandem duplications by allowing for unary 
duplication nodes, the inference methodology devel-
oped in this paper is hardly applicable in this context. In 
particular, gene order consistency is a more challenging 
problem in presence of interleaving tandem duplications. 
In addition, having many gene paralogs in syntenies lead 
to multi-labeled trees (or mul-trees), i.e. trees with many 
leaves with the same label. This raises the issue of find-
ing an appropriate definition of mul-tree consistency of 
a “mul-supertree”. But more importantly, what would 
be the meaning of a synteny mul-supertree, with the 
same synteny labeling more than one leaf? Clearly such a 

Fig. 3 (i) The four considered gene families. (ii) The considered species tree with the corresponding clusters: 19 in total involving 24 genes from the 
OPR family (genes named ‘a’), 17 from the NKAIN family (named ‘n’), 7 from the STMN family (named ‘s’) and 13 from the SRC‑B family (named ‘h’). (iii) 
The Super‑Reconciliation obtained form individual gene trees (not shown), and the induced duplication and loss history. Losses are indicated by red 
bars on the considered edges and duplications by rectangles. Yellow stars indicate the location of the 1R and 2R whole genome duplication events. 
Gene orders after removing duplicates (see text) are indicated on leaves, and chosen gene orders for internal nodes are shown
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supertree cannot represent the backbone of a “valid” evo-
lutionary history represented by a Super-Reconciliation.

A way of getting around this problem would be to 
prune multi-labeled gene trees in a way leading to “opti-
mal” single-labeled trees. The more natural way to state 
the decision problem is whether there exists a way of 
choosing a single gene copy from each family represented 
in a synteny in such  a way the obtained single-labeled 
gene trees are consistent. This is the way we implicitely 
handled the gene families of the opioid system. Alterna-
tively, we can consider the optimization problem of find-
ing the pruning minimizing a Robinson-Foulds distance 
between trees. Although authors have considered similar 
problems for mul-trees [45–48], as far as we know, none 
have yet handled these particular ones, representing an 
interesting avenue for future developments.

Supplementary information
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org/10.1186/s1301 5‑020‑00171 ‑4.
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