
Delabre et al. Algorithms Mol Biol (2020) 15:12
https://doi.org/10.1186/s13015-020-00171-4

RESEARCH

Evolution through segmental duplications
and losses: a Super-Reconciliation approach
Mattéo Delabre1, Nadia El‑Mabrouk1*, Katharina T. Huber2, Manuel Lafond3, Vincent Moulton2,
Emmanuel Noutahi1 and Miguel Sautie Castellanos1

Abstract

The classical gene and species tree reconciliation, used to infer the history of gene gain and loss explaining the
evolution of gene families, assumes an independent evolution for each family. While this assumption is reasonable for
genes that are far apart in the genome, it is not appropriate for genes grouped into syntenic blocks, which are more
plausibly the result of a concerted evolution. Here, we introduce the Super-Reconciliation problem which consists in
inferring a history of segmental duplication and loss events (involving a set of neighboring genes) leading to a set of
present‑day syntenies from a single ancestral one. In other words, we extend the traditional Duplication‑Loss reconcil‑
iation problem of a single gene tree, to a set of trees, accounting for segmental duplications and losses. Existency of a
Super‑Reconciliation depends on individual gene tree consistency. In addition, ignoring rearrangements implies that
existency also depends on gene order consistency. We first show that the problem of reconstructing a most parsimo‑
nious Super‑Reconciliation, if any, is NP‑hard and give an exact exponential‑time algorithm to solve it. Alternatively,
we show that accounting for rearrangements in the evolutionary model, but still only minimizing segmental dupli‑
cation and loss events, leads to an exact polynomial‑time algorithm. We finally assess time efficiency of the former
exponential time algorithm for the Duplication‑Loss model on simulated datasets, and give a proof of concept on the
opioid receptor genes.

Keywords: Gene tree, Reconciliation, Duplication, Loss, Synteny

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco
mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Gene gain and loss is known as a major force driv-
ing evolution. The classical method used for inferring
these events is to reconstruct the tree of the gene fam-
ily of interest and to embed it into the species phylog-
eny. Assuming the gene and species trees are known and
correspond to the true evolution, incongruence between
the two trees can be explained by gain and loss events,
and “reconciling” the two trees allows recovering these
events.

Tree reconciliation can be performed through different
biological models of evolution, the most common being

the Duplication-Loss (DL) [1–3] or Duplication-Loss and
Transfer [4–6] models. Incomplete lineage sorting, i.e.
imperfect segregation of alleles, can also be considered
[7, 8]. While most reconciliation methods are based on
the parsimony principle of minimizing the number or
cost of operations, probabilistic models seeking for a rec-
onciliation with maximum likelihood or maximum pos-
terior probability have also been developed [9–11].

Regardless of the model, current algorithms for recon-
ciliation take each gene family individually, assuming an
independent evolution through single gene gain and loss.
Although this hypothesis is reasonable for genes that
are far apart in the genome, it is clearly too restrictive
for those organized in syntenic blocks or paralogons, i.e.
sets of homologous chromosomal regions, among one or
many genomes, sharing the same genes (e.g. neuropep-
tide Y-family receptors [12], the Homeobox gene clusters

Open Access

Algorithms for
Molecular Biology

*Correspondence: mabrouk@iro.umontreal.ca
1 Département d’informatique (DIRO), Université de Montréal, Québec,
Canada
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-020-00171-4&domain=pdf

Page 2 of 15Delabre et al. Algorithms Mol Biol (2020) 15:12

[13–15], the FGFR fibroblast growth factor receptors [16,
17] or the genes of the opioid system [18–20]). These
genes are more plausibly the result of an evolution from a
common ancestral region, rather than from a set of inde-
pendent gene duplications that would have converged to
the same organization in different genomic regions.

The purpose of this paper is to generalize the DL rec-
onciliation of a single gene tree, to a set of gene trees,
accounting for segmental duplications and losses. As
far as we know, this problem has never been consid-
ered before. The closest algorithms are DeCo [21] and
DeCoStar [22] which, given a set of gene families, a set
of adjacencies between genes, a set of gene trees and a
species tree, compute an adjacency forest reflecting the
evolution of each adjacency. However, adjacencies are
taken independently, and only single duplications and
losses are considered. A correction strategy that adjusts
the computation of the evolutionary cost to favour co-
evolution events, hence grouping seemingly individual
events into single segmental ones was latter proposed in
[23]. Another related problem asks for the reconciliation
of a set of gene trees leading to a minimum number of
duplication episodes, referring to possible whole genome
duplication events, defined as sets of single duplications
mapped to the same node in the species tree [24, 25].
However the considered model does not account for gene
orders and duplications involving a set of neighboring
genes.

Here, we consider the DL Super-Reconciliation problem
(or Super-Reconciliation for short when there is no ambi-
guity) in which, given a set of gene families, a set of syn-
tenies (chromosomal segments exhibiting similar gene
contents), a gene tree for each gene family and a species
tree, we seek an evolutionary history of the set of syn-
tenies that is in agreement with the individual gene trees
whilst minimizing the number of segmental duplications
and losses. Our proposed model is a direct generaliza-
tion of the reconciliation of a single gene tree. Existency
of a Super-Reconciliation depends on individual gene
tree consistency. In addition, ignoring rearrangements
implies that existency also depends on gene order con-
sistency. We first show that the problem of reconstruct-
ing a most parsimonious Super-Reconciliation, if any, is
NP-hard and give an exact exponential-time algorithm
to solve it. Alternatively, we show that accounting for
rearrangements in the evolutionary model, but still only
minimizing segmental duplications and losss, reduces to
ignoring gene orders in syntenies, and leads to an exact
polynomial-time algorithm.

After defining the new Super-Reconciliation model in
the next section, we characterize, in the “Existence condi-
tions” section, the conditions under which a Super-Rec-
onciliation exists for a set of syntenies and a set of gene

trees, and exhibit a general framework for inferring a
most parsimonious DL Super-Reconciliation. We prove,
in the “Complexity of the Super-Reconciliation problem”
section, that this problem is NP-hard. A dynamic pro-
gramming algorithm for the main step of the framework
is given in the “A Super-Reconciliation for a supertree”
section. The “Unordered Super-Reconciliation” section
is dedicated to an extension of the original evolutionary
model accounting for rearrangements. We give a polyno-
mial-time algorithm for finding a Super-Reconciliation,
under this model, minimizing the number of segmen-
tal duplications and losses. An application on simulated
datasets and a proof of concept on the genes of the opi-
oid system are then presented in the “Application” sec-
tion. We conclude with a discussion in the “Conclusion”
section.

Trees, reconciliation and problem statement
A string or a sequence is an ordered set of characters.
Given a string X = x1 · · · xn , a substring of X is a consecu-
tive set of characters from X in the same order as in X
(possibly X itself), and a subsequence is a set of charac-
ters of X in the same order, but not necessarily consecu-
tive in X (X is a substring and a subsequence of X). We
also denote by Set(X) = {x1, x2, ..., xk} the range of X, i.e.
the set of all genes contained in X, without any particular
order.

All trees are considered rooted. Given a tree T, we
denote by r(T) its root, by V(T) its set of nodes and by
L(T) ⊆ V (T) its leafset. We say that T is a tree for
L = L(T) . A node v is an ancestor of v′ if v is on the path
from r(T) to v′ ; v is the father of v′ if it directly precedes v′
on this path. In this latter case, v′ is called the child of v.
We denote by E(T) the set of edges of T, where an edge is
represented by its two terminal nodes (v, v′) , with v being
the father of v′ . Two nodes v and v′ are separated in T iff
neither one is an ancestor of the other. A node is said to
be unary if it has a single child and binary if it has two
children. Given a node v of T, the subtree of T rooted at v
is denoted T[v].

A binary tree is a tree with all internal (i.e. non-leaf)
nodes being binary. If internal nodes have one or two
children, then the tree is said partially binary.

Creating a unary root consists of creating a new node v,
a new edge (v, r(T)) and assigning v as the new root of T.
Grafting a leaf w consists of subdividing an edge (v, v′) of
T, thereby creating a new node v′′ between v and v′ , then
adding a leaf w with parent v′′ . If W is a rooted tree, graft-
ing W to T corresponds to grafting a leaf w, then replac-
ing w by the root of W.

The lowest common ancestor (LCA) in T of a subset
L′ of L(T) , denoted lcaT (L′) , is the ancestor common
to all nodes in L′ that is the most distant from the root.

Page 3 of 15Delabre et al. Algorithms Mol Biol (2020) 15:12

The restriction T |L′ of T to L′ is the tree with leafset L′
obtained from the subtree of T rooted at lcaT (L′) by
removing all leaves that are not in L′ and all unary nodes.
Let T ′ be a tree such that L(T ′) = L′ ⊆ L(T) . We say
that T displays T ′ iff T |L′ is label-isomorphic to T ′ (i.e.,
isomorphic with preservation of leaf labels). We also say
that T is an extension of T ′.

Species, gene and synteny trees (see Fig. 1) The species
tree S for a set � of species represents an ordered set of
speciation events that have led to �.

A gene family is a set Ŵ of genes where each gene g
belongs to a given species s(g) of � . If Ŵ′ ⊆ Ŵ is a subset of
genes, we denote s(Ŵ′) = {s(g) : g ∈ Ŵ′}.

A synteny X is an ordered sequence of genes belonging
to a genome s(X). We consider that genes of a synteny all
belong to different gene families (tandem duplications
are ignored). More precisely, let F = {Ŵ1,Ŵ2, ...,Ŵt} be a
set of gene families, and �F = {(g ,Ŵ) : g ∈ Ŵ ∧ Ŵ ∈ F}
be a function. We say that an ordered sequence of genes
X = g1g2...gk is a synteny on F iff �F is well-defined for

all genes of X, �F is injective, and all genes in X belong to
the same species.

A synteny family is a set X of syntenies. We say that a
set F of gene families are organized into a set X of syn-
tenies iff there is a bijection between the genes of F and
the genes in X (each gene of F belongs to exactly one
synteny of X).

A tree T is a gene tree for a gene family Ŵ (respec. a syn-
teny tree for a synteny family X) if its leafset is in bijec-
tion with Ŵ (respec. X).

Given a gene tree T, the corresponding synteny tree is
the tree T̃ obtained from T by replacing each leaf of T by
the synteny containing the considered gene.

Given a tree T (either gene tree or synteny tree), we
extend the mapping s to internal nodes v of T by defining
s(v) = lcaS({s(l) : l ∈ L(T [v])}).

An evolutionary history is represented by a labeled
tree, where the label of a node is its corresponding event.
In the case of gene families, an event is entirely deter-
mined by its type, either a duplication, a speciation or a

Fig. 1 (i) Two genomes A and B; three gene families (red, green and blue) grouped into two syntenies A1, A2 in A and two syntenies B1, B2 in B.
(ii) Ignoring node labels and dotted lines, T, T ′ and T ′′ are the corresponding gene trees and T̃ , T̃ ′ and T̃ ′′ are the corresponding synteny trees. The
reconciled gene trees R, R′ and R′′ are the same trees but including node labels and dotted lines. Nodes identified by circles are speciations, those
represented by rectangles are duplications, and dotted lines represent lost branches. (iii) The reconciled trees embedded into the species tree S. (iv)
A Super‑Reconciliation R , representing a more realistic evolutionary history from a common ancestral synteny. Each ancestral node is identified by
the synteny, the event and the segment of the synteny affected by the event. Square nodes represent Dup events, round nodes Spe events, brackets
pLoss events and dotted lines fLoss (see text)

Page 4 of 15Delabre et al. Algorithms Mol Biol (2020) 15:12

loss. The labels of a gene tree are obtained through rec-
onciliation, as described below.

Reconciliation

Definition 1 (Reconciled gene tree) Let T be a binary
gene tree and S be a binary species tree. A DL Reconcili-
ation (or simply reconciliation) R(T, S) of T with S is a
labeled extension of T obtained by grafting new leaves
satisfying: for each internal node v of R(T, S) with two
children vl and vr , either s(vl) = s(vr) = s(v) , or s(vl) and
s(vr) are the two children of s(v). The node v is a dupli-
cation in s(v) in the former case and a speciation in the
latter case. A grafted leaf on a newly created node v cor-
responds to a loss in s(v). All other leaves are labeled by
the default event “extant”.

The cost of a reconciliation R(T, S) is the number of
induced duplications and losses.

Note that in a reconciliation, we only choose s(l) for
the grafted leaves, and the value of s(v) for the internal
nodes is entirely determined by the leaves descending
v. Given a gene tree T and a species tree S, a minimum
reconciliation, i.e. a reconciliation of minimum cost, is
obtained from the LCA-mapping which consists in set-
ting s(v) = lcaS(s(L(T [v]))) for each v ∈ V (T) , and labe-
ling each internal node v of T as a speciation if and only
if s(vl) and s(vr) are separated in S, and as a duplication
otherwise. Observe that in any case, if s(vl) and s(vr) are
not separated, then it is impossible for v to be a specia-
tion. We denote by LCA-Reconciliation the reconciliation
labeled by means of the LCA-mapping.

Before extending the reconciliation concept to a set of
gene trees, we need to specify an evolutionary model for
syntenies. In this paper, syntenies are considered to have
evolved from a single ancestral synteny through specia-
tions (defined as for single genes), segmental duplications
and segmental losses, where:

• A speciation Spe(X, [1, l]) acting on a synteny
X = g1 · · · gl belonging to a genome s(X) has the
effect of reproducing X in the two genomes sl and sr
children of s(X) in S.

• A (segmental) duplication Dup(X, [i, j]) acting on a
synteny X belonging to a genome s(X) is an opera-
tion that copies a substring gi · · · gj of size j − i + 1
of X = g1g2 · · · gi · · · gj · · · gl somewhere else into
the genome s(X), creating a new copied synteny
X ′ = g ′i · · · g

′
j where each g ′k , for i ≤ k ≤ j belongs

to the same gene family as gk ; we say that the copied
synteny is partial if [i, j] �= [1, l].

• A (segmental) loss Loss(X, [i, j]) acting on a synteny
X = g1 · · · gi · · · gj · · · gl is an operation that removes
a substring gi · · · gj of size j − i + 1 of X, leading to
the truncated synteny X ′ = g1 · · · gi−1gj+1 · · · gl . A
loss is called full if X ′ is the empty string (i.e. all genes
of X are removed) and partial otherwise. We may a
denote full loss event as fLoss and a partial loss event
as pLoss.

An evolutionary history of a set of syntenies can thus be
represented as a partially binary tree where leaves cor-
respond to extant syntenies and lost syntenies (resulting
from full losses), and each internal node v corresponds to
an event E(X , [i, j]) with E ∈ {Spe,Dup, pLoss} . Thus, in
contrast to a single gene family, a tree representing the
evolution of a set of syntenies is not only labeled by the
type of event corresponding to each internal node, but
also by the segment of the synteny affected by the event
(see the bottom-right tree in Fig. 1).

If E is:

1. Spe, then v is a binary node with two children corre-
sponding to syntenies Y and Z such that X = Y = Z
and s(Y) and s(Z) being the two children of s(X) in S.

2. Dup, then v is a binary node with two children cor-
responding to syntenies X and X ′ = X[i, j] , where
s(X) = s(X ′).

3. pLoss, then v is a unary node with a child
corresponding to the truncated synteny
X ′ = X[1, i − 1]X[j + 1, l] , and s(X) = s(X ′).

The topology of a tree representing the evolution of a set
of syntenies differs from that of a single gene family since
the former may contain unary nodes, resulting from par-
tial losses, while the latter only contains binary nodes.

Our goal is to infer an evolutionary history of a set of
syntenies which is a reconciliation of a set of individual
gene trees, formally defined below.

Definition 2 (Super-Reconciliation) Let G = {T1,T2,

· · · ,Tt} be a set of binary gene trees for the gene families
F = {Ŵ1,Ŵ2, · · · ,Ŵt} organized into a set X of syntenies
belonging to a set � of taxa, and let S be a binary species
tree for � . For each i, 1 ≤ i ≤ t , let T̃i be the synteny tree
corresponding to Ti.

A Super-Reconciliation R(G, S) of G with S is a labeled
synteny tree which is an extension of the trees T̃i , for
1 ≤ i ≤ t , representing a valid history for X .

The cost of a Super-Reconciliation R(G, S) is the number
of induced Dup, fLoss and pLoss events.

Page 5 of 15Delabre et al. Algorithms Mol Biol (2020) 15:12

For example, the cost of the Super-Reconciliation in
Fig. 1 is 5. Notice that, although this cost is higher than
that obtained by considering each gene family indepen-
dently (cost of 3), the induced history is much more real-
istic as it is unlikely that independent gene duplications
would have led to the same gene organization in different
genomic regions.

We are now ready to state the optimization problem
considered in this paper.

super-reconciliation problem:
Input: A set � of species and a species tree S for � ; a
set of gene families F = {Ŵ1,Ŵ2, · · · ,Ŵt} organized into a
set of syntenies X ; a set of gene trees G = {T1,T2 · · · ,Tt}
one for each family of F .

Output: A Super-Reconciliation R(G, S) of minimum
cost.

Existence conditions
As a synteny is represented by a gene order and can only
be modified through losses (duplications create new syn-
tenies but do not modify existing syntenies), an evolu-
tionary history does not always exist for a set of syntenies
X , regardless of the trees linking them. If this holds, the
syntenies are said to be order consistent.

In addition, in contrast to the reconciliation of a single
gene tree which always exists, this is not the case for a
Super-Reconciliation as different gene trees may exhibit
inconsistent speciation histories for the same syntenies.

The following two subsections are dedicated to charac-
terizing the gene order and gene tree conditions required
for the existence of a Super-Reconciliation.

Consistency of gene orders
Given a set of gene families F = {Ŵ1,Ŵ2, · · · ,Ŵt} organ-
ized into a set of syntenies X , we define the precedence
graph P as the directed graph with n vertices, each cor-
responding to a gene family of F , such that a directed
edge (i, j) between two vertices i and j exists iff there is a
synteny X = x1x2 · · · xk of X containing a gene in Ŵi pre-
ceding a gene in Ŵj , i.e. there is a pair 1 ≤ l1 < l2 ≤ k such
that xl1 ∈ Ŵi and xl2 ∈ Ŵj.

If P is acyclic, then P is a Directed Acyclic Graph
(DAG). In this case, there is a topological sorting for P ,
i.e., a linear ordering X of vertices such that for every
directed edge (i, j) in P , i precedes j in X. Verifying if a
directed graph is acyclic and finding a topological sorting
of a DAG is a classical problem solvable in linear time.

The following lemma gives necessary and sufficient
conditions for a set of syntenies to be order consistent
and exhibits the set of possible ancestral syntenies.

Lemma 1 (Order consistency condition) Let
F = {Ŵ1,Ŵ2, · · · ,Ŵt} be a set of gene families organized
into a set X of syntenies. Then X is order consistent iff the
corresponding precedence graph P is acyclic. In this case,
any topological sorting for P is an order consistent ances-
tral synteny for X .

Proof The first part of the lemma follows from the fact
that a directed graph has a topological sorting if and only
if it is acyclic. The second part follows from the fact that,
for any topological sorting A for P and any synteny X of
X , X is a subsequence of A, and thus X can be obtained
from A through losses. �

The ancestral synteny A at the root of a Super-Recon-
ciliation R(G, S) is an order on F . Moreover, as the syn-
teny at each internal node of R(G, S) is obtained from A
through losses, a synteny at each internal node of R(G, S)
should be a subsequence of A. More generally, for any
two nodes v and v′ of R(G, S) , where v is an ancestor of v′ ,
the synteny Y at v′ is a subsequence of the synteny X at v.

Consistency of trees
A set of trees on subsets of X is said consistent iff, for
any triplet Trp = {X1,X2,X3} of distinct elements of X ,
all trees containing Trp as a sub-leafset exhibit the same
topology for Trp.

Lemma 2 (Tree consistency condition) Let
G = {T1,T2, · · · ,Tt} be a set of gene trees for a set of gene
families organized into a set X of syntenies, and let S be
the species tree. If a Super-Reconciliation R(G, S) exists,
then the set of corresponding synteny trees {T̃1, T̃2, · · · T̃t}
is consistent.

Proof By definition, a Super-Reconciliation R(G, S) dis-
plays T̃i , for all 1 ≤ i ≤ t , as R(G, S) is an extension of
each tree. Thus, for any triplet Trp = {X1,X2,X3} of X ,
if T̃i and T̃j contain the triplet Trp as a sub-leafset, then
R(G, S) displays both T̃i|Trp and T̃j|Trp . In other words,
T̃i|Trp and T̃j|Trp are label-isomorphic. �

The consistency problem of rooted trees has been
widely studied. The BUILD algorithm [26] can be used to
test, in polynomial-time, whether a collection of rooted
trees is consistent, and if so, construct a compatible, not
necessarily fully resolved, supertree, i.e. a tree displaying
them all. This algorithm has been generalized to output
all compatible minimally resolved supertrees [27–29],
which may be exponential in the number of genes.

The following theorem makes the link between a super-
tree and a reconciliation.

Page 6 of 15Delabre et al. Algorithms Mol Biol (2020) 15:12

Theorem 1 Let G = {T1,T2 · · · ,Tt} be a set of trees for a
set of families organized in an order-consistent set of syn-
tenies X , and S be the species tree. Let G̃ = {T̃1, T̃2 · · · , T̃t}
be the set of synteny trees corresponding to those in G . If G̃
is a consistent set of trees then:

1. A Super-Reconciliation R(G, S) is an extension of a
supertree for G̃;

2. Any supertree is the “backbone” of a Super-Reconcil-
iation. Namely, for any supertree T̃ for G̃ , there is a
Super-Reconciliation R(G, S) which is an extension of
T̃ .

The first statement of Theorem 1 follows from
Lemma 2. As for the second statement, we will prove it
implicitly in the “A Super-Reconciliation for a supertree”
section by providing an algorithm that yields a minimum
cost reconciliation on any supertree.

Following Theorem 1, the problem reduces to finding
a supertree for the set of synteny trees minimizing the
number of segmental duplications and losses. A natu-
ral algorithm for the super-reconciliation problem
follows:

1. Explore the space of all order consistent ancestral
syntenies A for X ;

2. Explore the space of all supertrees T̃ for G̃;
3. Find a Super-Reconciliation of minimum cost which

is an extension of T̃ with A as an ancestral synteny;
4. Select the Super-Reconciliations leading to the mini-

mum cost.

Step 1 and Step 2 have been discussed in this section.
Before developing an algorithm for Step 3, which is the
purpose of the “A Super-Reconciliation for a supertree”
section, we begin by analyzing the theoretical complexity
of the super-reconciliation problem.

Complexity of the Super‑Reconciliation problem
We have recently considered the problem of finding a
supertree of a set of gene trees minimizing the classical
single gene duplication and single gene duplication and
loss distances. The problem has been shown NP-hard
for the duplication distance, and exponential-time algo-
rithms have been developed for both distances.

For segmental duplications only, the hardness of
super-reconciliation is almost immediate from the
results of [30]. For both duplications and losses, the prob-
lem remains NP-hard, although the proof is far more
technical. Here we give the simpler proof of hardness
for minimizing duplications only, and refer the reader to

Additional file 1 for the NP-hardness proof for minimiz-
ing segmental duplications and losses.

Theorem 2 The super-reconciliation problem is
NP-hard for the duplication cost. Furthermore, the mini-
mum number of duplications is hard to approximate
within a factor n1−ǫ for any 0 < ǫ < 1 , where n is the
number of syntenies in the input.

Proof The hardness follows from that of the mindup-
supertree problem, defined as follows. Given a spe-
cies tree S and a set of gene trees T1, . . . ,Tk , possibly
with overlapping leafsets, mindup-supertree asks for a
supertree T that displays T1, . . . ,Tk such that the LCA-
reconciliation of T and S yields a minimum number d
of duplications. It was shown in [30] that it is NP-hard
to approximate d within a factor n1−ǫ for any 0 < ǫ < 1 ,
where here n is the number of genes in Ŵ =

⋃k
i=1 L(Ti).

To reduce mindup-supertree to the super-reconcil-
iation problem, it essentially suffices to exchange the
roles of genes and syntenies. More precisely, given an
instance of mindup-supertree consisting of a species
tree S and gene trees T1, . . . ,Tk , we compute an instance
of super-reconciliation as follows. The species tree is
the same as S, and for each gene g ∈ Ŵ , we have a syn-
teny Xg with s(Xg) = s(g) whose gene content will soon
be defined. For each gene tree Ti , we create an identical
gene tree T ′

i , but in which each gene g ∈ L(Ti) is replaced
by a unique gene gTi that belongs to synteny Xg (and
hence s(g) = s(gTi) = s(Xg)). Thus Xg has one gene gTi
for each occurrence of g in a tree Ti (recall that a gene can
occur in multiple trees). The ordering of the genes of Xg
is arbitrary (since we are not counting segmental losses),
but the ordering must be order-consistent. This is eas-
ily achieved by ordering the gTi ’s of each synteny Xg in
ascending order of their i indices. Note that the synteny
tree T̃i for T ′

i is obtained by replacing each leaf g of Ti by
Xg . Also observe that there are n syntenies.

It only remains to show the correspondence between the
solutions for the two problem instances. Suppose that the
mindup-supertree instance admits a supertree T with
d duplications when reconciled. Let T̃ be the synteny tree
obtained from T by replacing each gene g ∈ L(T) by Xg .
Because s(g) = s(Xg) , both T and T̃ have the same dupli-
cations under the LCA-reconciliation, which is d. One
can assign a synteny X at the root of T̃ that satisfies our
constraints defined by the precedence graph. We assign
the same synteny X at every internal node (so no par-
tial losses or partial duplications), and partial losses can
be added on each edge linking a leaf Xg with its parent
to obtain the Xg synteny. As we are not counting losses,

Page 7 of 15Delabre et al. Algorithms Mol Biol (2020) 15:12

these are irrelevant and we achieve a cost of d duplica-
tions. Conversely, assume that the super-reconcilia-
tion instance formed by T ′

1, . . . ,T
′
k and S admits a syn-

teny tree T̃ with d duplications. We may replace each
leaf Xg by g, yielding an extension of a supertree T for the
mindup-supertree instance. After suppressing unary
vertices, this results in a reconciled gene supertree with
d duplications. Because the value of the solutions are
preserved and n = |Ŵ| corresponds to the number of syn-
tenies, this reduction is approximation-preserving and
the hardness result follows. �

We state our second hardness result formally here.

Theorem 3 The super-reconciliation problem is
NP-hard for the Dup, fLoss and pLoss cost.

A Super‑Reconciliation for a supertree
In this section, we are given a set G = {T1,T2, · · · ,Tt}
of consistent gene trees for a set of families
F = {Ŵ1,Ŵ2, · · · ,Ŵt} organized in an order consistent set
of syntenies X , and a species tree S for the set � of taxa
containing the genes. In addition, we are given a super-
tree T̃ for the synteny trees G̃ = {T̃1, T̃2, · · · , T̃t} corre-
sponding to those in G , and an order consistent ancestral
synteny A for X .

Given a Super-Reconciliation R(G, S) (R for short),
because R is obtained from T̃ by grafting leaves, each
node of T̃ is present in R. Hence we say that v ∈ V (T̃) has
a corresponding node v′ in R. More precisely, if l ∈ L(T̃) ,
then l ∈ L(R) also and the correspondence is immediate.
If v is an internal node of V (T̃) , the node v′ of R corre-
sponding to v is lcaR({l : l ∈ L(T̃ [v])}) . We show that, as
in the traditional reconciliation setting, the nodes of R
that are also in T̃ should be mapped to the lowest species
possible. To simplify the argument, we will call an inter-
nal node a full loss if it is the parent of a fLoss event. For
later reference, we note that the proofs of Lemma 3 and
Lemma 4 do not involve the gene orders in any way.

Lemma 3 Let R(G, S) be a Super-Reconciliation of
minimum cost which is an extension of T̃ . Let v ∈ V (T̃)
and let v′ be the node corresponding to v in R(G, S) . Then
s(v′) = lcaS(s(L(T̃ [v]))).

Proof First, observe that the statement is clearly true
for the leaves. Assume that the statement is false. Now,
let v be a node of T̃ such that its corresponding node
v′ does not satisfy the statement—moreover, choose v
to be a minimal node with this property (meaning that
for the children vl and vr of v, the corresponding nodes
v′l and v′r in R(G, S) satisfy s(v′l) = lcaS(s(L(T̃ [vl])) and

s(v′r) = lcaS(s(L(T̃ [vr]))). Note that v must exist, since
the statement is true for the leaves.

Now, we may assume that s(v′) �= lcaS(s(v
′
l), s(v

′
r)) , as

otherwise v′ satisfies the lemma. Thus in S, there are at
least k edges on the path from s(v′) to lcaS(s(v′l), s(v

′
r)) ,

where here k > 0 . It is not hard to verify that in this case,
v′ must be a duplication node, according to the definition
of a reconciliation. This implies that there are at least k
full losses on the path from v′ to v′l and at least k full losses
on the path from v′ to v′r . Consider the Super-Reconcilia-
tion R′ that is identical to R(G, S) , with the exception that
s(v′) = lcaS(s(v

′
l), s(v

′
r)) . Then the 2k losses on the paths

between v′ and v′l and between v′ and v′r are not needed
anymore, although if v′ is not the root, k losses become
necessary on the path between v′ and w′ , where w′ is the
node corresponding to the parent w of v in T̃ . Remapping
v′ cannot increase the number of duplications, and so we
have saved k losses.

It remains to argue that the number of partial losses
remains the same. But this is easy to see. We keep the
same synteny assignment at nodes v′ , v′l and v′r (and w′ if v′
is not the root) as in R(G, S) . If v′ was a segmental dupli-
cation in R(G, S) , we set v′ to be a segmental duplication
in R′ as well. The number of partial losses on the paths
between v′ and v′l , v

′
r (and w′) therefore remains the same

as in R(G, S) . �

We now show that speciation and duplication nodes
are easy to identify. Essentially, we may set the events of
internal nodes as in the classical LCA-mapping reconcili-
ation. In what follows, assume that T̃ is reconciled under
the LCA-mapping, and put s(v) = lcaS(L(s(T̃ [v]))) for
every v ∈ V (T̃).

Lemma 4 Let R(G, S) be a Super-Reconciliation of mini-
mum cost which is an extension of T̃ . Let v ∈ V (T̃) be an
internal node of T̃ and let v′ be its corresponding node in
R(G, S) . Moreover let vl and vr be the children of v. If s(vl)
and s(vr) are separated in S, then v′ is a speciation, and
otherwise v′ is a duplication.

Proof Let v′l and v′r be the nodes corresponding to vl and
vr , respectively, in R(G, S) . First, if s(vl) and s(vr) are not
separated, then by Lemma 3, s(v′l) and s(v′r) are not sep-
arated, hence it is not possible for v′ to be a speciation.
Therefore v′ must be a duplication.

Suppose instead that s(vl) and s(vr) are separated in S,
but that v′ is labeled by a duplication event Dup(X, [i, j]),
where X is the synteny assigned at v′ . On the path from
v′ to v′l , there may be some pLoss events and some nodes

Page 8 of 15Delabre et al. Algorithms Mol Biol (2020) 15:12

that were grafted owing to full losses. We may assume
that all full loss events, if any, have occurred before the
pLoss events on this path (i.e., nodes grafted from full
losses are closer to v′). This is without loss of generality, as
this does not change the resulting synteny in v′l . We shall
make the same assumption with the path from v′ to v′r .
Now, by Lemma 3, s(v′) = lcaS(s(vl), s(vr)) . Because v′ is
a duplication, the two children wl ,wr of v′ in R(G, S) must
satisfy s(wl) = s(wr) = s(v′) . Since s(v′l) �= s(v′) �= s(v′r) ,
we have that {wl ,wr} ∩ {v′l , v

′
r} = ∅ , and therefore wl and

wr were grafted on T̃ due to full losses. If we label v′ as
a speciation Spe(X, [1, |X|]), these two full losses are not
needed anymore, and by doing so we have one duplica-
tion less and two full losses less. Let Yl and Yr be the two
syntenies that are assigned at wl and wr in R(G, S) , respec-
tively. Then Yl = X and Yr = X[i, j] or vice-versa (assume
the former, without loss of generality). Suppose that wr
is an ancestor of v′r in R(G, S) , again without loss of gen-
erality. The substring X[i, j] can be obtained from X by
adding at most two partial losses on the path from v′ to
v′r . The rest of the reconciliation can remain the same. To
sum up, we have removed one duplication and two full
losses, and inserted at most two partial losses to repro-
duce the effect of the segmental duplication. This contra-
dicts that R(G, S) is a reconciliation of minimum cost. �

From Lemma 4, it follows that we know the event-type
(Dup or Spe) of each internal node of the supertree T̃ . It
then remains to extend the tree with losses and infer the
actual event at each node (i.e., the corresponding synteny
and segment being duplicated or lost). It is easy to see
that losses and segments affected by the events are fully
determined by gene orders assigned to internal nodes.
Therefore, the problem reduces to the classical “small
phylogeny problem” generally defined as follows: Given
an alphabet � (nucleotides or amino-acids or genes), a
distance on the set of words of � (edit distance for gene
sequences or rearrangement distances for gene orders)
and a tree T with leaves being words on � (extant gene
sequences or gene orders), find the labeling of ancestral
nodes (ancestral sequences or orders) minimizing the
total cost of the tree. This cost is the sum of costs of each
branch, which is the distance between the two words
connected by the branch.

Here, we are given a synteny tree T̃ for a set X of syn-
tenies on a set of gene families F , and an ancestral syn-
teny A which is an order of F . We want to find a synteny
assignment attributing a partial order on F to each node
of V (T̃) . We assume that the root r of T̃ is assigned the
synteny A. It follows from the considered evolution-
ary model that, for two nodes u and v of T̃ with u being
an ancestor of v, the synteny Xv assigned to v should be
a subsequence of the string Xu assigned to u. A synteny

assignment verifying this condition is called a valid syn-
teny assignment for T̃ .

For v ∈ V (T̃) , define d(v, X) as the minimum number
of segmental duplications and losses induced by a syn-
teny assignment on T̃ [v] with X being the assignment at
v. The small-phylogeny for syntenies problem is
to find an optimal assignment, i.e. an assignment leading
to d(T̃) = minX d(r(T̃),X) for X belonging to the set of
syntenies that are order consistent with X .

Solving this problem can be done by dynamic program-
ming by computing d(v, X), for each v ∈ V (T̃) and each
possible synteny X.

Let v be an internal node of T̃ and vl , vr be its two chil-
dren. Let X, Xl , Xr be valid assignments for respectively
v, vl and vr . Then Xl and Xr are subsequences of X. If v is
a speciation, then all missing genes in Xl and Xr are the
result of losses. Otherwise, if v is a duplication, then for
at most one of Xl and Xr , the missing prefix or suffix can
be due to the partial duplication of a segment of X, and
all other missing genes should be the result of losses. This
motivates the following two variants of the loss distance
between two syntenies.

Let X and Y be two syntenies with Y being a subse-
quence of X. We let DT (X ,Y) denote the minimum
number of segmental losses required to transform X to Y
and DP(X ,Y) the minimum number of segmental losses
required to transform a substring of X to Y.

Theorem 4 Let v be a node of T̃ , X be a synteny and
S(X) be the set of subsequences of X.

• If v is a leaf, then d(v,X) = 0 if X is the extant syn-
teny corresponding to leaf v, and +∞ otherwise;

• If v is a speciation with children vl and vr , then,

• If v is a duplication node with children vl and vr , then

The above can be used to solve the small-phylogeny
for syntenies problem with dynamic programming.
To do this, one can simply traverse T̃ in post-order, and
apply the recurrences of Theorem 4 at each node encoun-
tered. We finish this section by analyzing the complexity
of this algorithm. Let n = |V (T̃)| and let t be the number

d(v,X) = min (Xl∈S(X))(D
T (X ,Xl)+ d(vl ,Xl))

+ min (Xr∈S(X))(D
T (X ,Xr)+ d(vr ,Xr));

d(v,X) = 1+

min

min (Xl∈S(X))(D
T (X ,Xl)+ d(vl ,Xl))+

min (Xr∈S(X))(D
P(X ,Xr)+ d(vr ,Xr)),

min (Xl∈S(X))(D
P(X ,Xl)+ d(vl ,Xl))+

min (Xr∈S(X))(D
T (X ,Xr)+ d(vr ,Xr))

Page 9 of 15Delabre et al. Algorithms Mol Biol (2020) 15:12

of gene families involved in the small-phylogeny for
syntenies problem instance. For a node v ∈ V (T̃) and
a synteny X, there are O(2t) possible subsequences of X.
The value of d(v, X) can thus be computed by finding a
minimum over O(2t) possible values for its left child vl ,
and then over O(2t) possible values for its right child
vr . It is straightforward to check that DT and DP can be
computed in time O(t) since all characters of the synteny
strings are unique.

Let us now consider the number of possible entries
in our dynamic programming table. The possible syn-
tenies for X correspond to the subsequences of a topo-
logical sorting of an acyclic directed graph with t nodes
(see Additional file 1). In the worst case, there are
O(2t · t!) = O(2t log t+t) such syntenies. It follows that
there are at most O(n2t log t+t) entries in the dynamic
programming table, and each entry takes time O(t2t) to
compute. It is known that if there are k possible topologi-
cal sortings in a directed acyclic graph, then they can be
enumerated in time O(k) [31] (it is worth noting however
that counting the number of such topological sortings in
#P-complete [32]). Therefore, if t is not too large, then the
above recurrences can solve the small phylogeny problem
relatively quickly, even if n is large. Put differently, the
small-phylogeny for syntenies problem is fixed-
parameter tractable with respect to parameter t.

Corollary 1 The small-phylogeny for syntenies
problem can be solved in time O(t2t log t+2tn) , where t is
the number of gene families present in the input and n is
the number of syntenies.

Unordered Super‑Reconciliation
The strongest and less biologically supported condition
for the existency of a DL Super-Reconciliation is probably
gene order consistency. In fact, genomes being subject to
rearrangements shuffling gene organization, it is hard to
expect that a set of homologous chromosomal segments
in phylogenetically distant genomes would exhibit the
same gene order. In other words, we can hardly ignore
the presence of rearrangements in the evolutionary his-
tory leading to a set of homologous genomic regions.

The small phylogeny problem, which consists in infer-
ring ancestral gene orders minimizing a given rear-
rangement distance, has been extensively studied (see
for example [33–37]). Algorithmic developments and
results differ depending on the considered rearrange-
ment distance. The most studied one is probably the DCJ
distance, accounting for artificial movements implicitely
mimicking inversions and transpositions [38, 39].

Almost all versions of the small phylogeny problem
with rearrangements have been proven NP-hard, even

those accounting for equal gene content for all genomes
[40]. Heuristics have also been developed for inferring
ancestral gene orders minimizing rearrangements, dupli-
cations and loss events (reviews can be found in [41, 42]).
Extension of these heuristics to the Super-Reconciliation
problem is certainly possible, but can only increase the
intractability of the original problem.

Here, we explore a compromise which consists in con-
sidering an evolutionary model accounting for segmen-
tal duplications, losses and rearrangements, but yet only
minimizing duplication and loss events. In other words,
gene orders are not important anymore, as we can use
as many rearrangements as we want for obtaining the
required orders.

Reducing syntenies to their range sets, an unordered
evolutionary history of a set of syntenies can be repre-
sented as a partially binary tree where each internal node
v corresponds to an event E(Set(X)) with X = synteny(v)
being the synteny at v and E ∈ {Spe,Dup, pLoss} such
that, if E is:

1. Spe, then v is a binary node with two children
corresponding to syntenies Y and Z such that
Set(X) = Set(Y) = Set(Z) and s(Y) and s(Z) are the
two children of s(X) in S.

2. Dup, then v is a binary node with two chil-
dren corresponding to syntenies Y and Z such
that Set(Y) = Set(X) , Set(Z) ⊆ Set(X) and
s(X) = s(Y) = s(Z).

3. pLoss, then v is a unary node with a child corre-
sponding to a synteny Y such that Set(Y) � Set(X)
and s(X) = s(Y).

If no ambiguity on the synteny of v, we will denote by
Set(v) the range set of the synteny at node v of tree T (in
other words, Set(v) = Set(synteny(v)).

An Unordered Super-Reconciliation (USR) Ru(G, S)
of a set G = {T1,T2, · · · ,Tt} of gene trees with a species
tree S is a labeled synteny tree which is an extension of
the trees T̃i , for 1 ≤ i ≤ t , representing a valid unordered
evolutionary history for X . The cost d(Ru(G, S)) of such
an unordered Super-Reconciliation is the number of
induced Dup, fLoss and pLoss events.

The unordered super-reconciliation problem
then consists in inferring the USR of minimum cost.
Notice that, as gene order is ignored, at most one pLoss
can separate two binary nodes on a most parsimonious
USR.

Regarding existence conditions, Lemma 2 and Theo-
rem 1 clearly apply to the USR problem, as gene order
information is not involved in tree consistency. Namely,
an USR exists if and only if the trees of G̃ are consistent,
and in this case any supertree for G̃ is the backbone of an

Page 10 of 15Delabre et al. Algorithms Mol Biol (2020) 15:12

USR. Lemma 3 and Lemma 4 also apply since, as men-
tioned before, their proofs do not involve gene orders.
Therefore, we may assume that, if a supertree T̃ of syn-
tenies is given, its nodes can be mapped according to the
LCA-mapping and its speciation/duplication nodes iden-
tified in this way.

The USR problem thus reduces to a small phylogeny
problem which consists in inferring internal node gene
contents of the supertree T̃ leading to a minimal dupli-
cation and loss cost. As duplications are already deter-
mined by the node labeling of T̃ , only loss events remain
to be minimized. Notice that the root’s gene content is
just F .

We add to T̃ the fLoss branches obtained from the
LCA-Reconciliation of T̃ with S. In other words, the new
tree is an intermediate between T̃ and Ru(G, S) . For prac-
tical reasons, we still call it T̃ . Notice that fLoss branches
can only create speciation nodes. For the requirements of
the following algorithms, the empty synteny is assigned
to the leaf created by an fLoss branch.

We now present a dynamic programming algorithm to
find the minimum number of pLoss events required for a
USR.

A dynamic programming approach for optimal USRs
Given an USR R, we denote by SetR(v) the range set of
the synteny assigned to v in R. For an internal node v of
T̃ , denote

as the set of all gene families that appear in a synteny
under v. Note that v must have a gene in every family
in lcaSet(v) . For a range set X, denote by CX (v) the mini-
mum cost of an USR R between T̃ [v] and S in which we
assign SetR(v) = X (if lcaSet(v) is not a subset of X, put
CX (v) = ∞). We denote Clca(v) := ClcaSet (v)(v) , i.e. the
cost when we assign the smallest possible range set to
v. If v is a leaf, we have Clca(v) = 0 and CX (v) = ∞ for
any X = Set(v) . The value we are interested in is Clca(r) ,
where r is the root of T̃ .

We first show that the exact nature of the “extra” con-
tent that might be assigned to an internal node v is irrel-
evant for the computation of the optimal cost.

Lemma 5 Let v ∈ V (T̃) be an internal node of T̃ , and
let X, Y be any range sets satisfying lcaSet(v) � X ,Y . Then
CX (v) = CY (v).

Proof This can be shown by induction on the depth
of the nodes of T̃ . The lemma is true for leaves, as
CX (v) = CY (v) = ∞ in this case. So assume that v is

lcaSet(v) =
⋃

l∈L(T̃ [v])

Set(l)

an internal node. Let R be a minimum USR of T̃ [v] in
which SetR(v) = X . We build a reconciliation R′ in which
SetR′(v) = Y . Consider the children v1 and v2 of v in T̃ .
If SetR(v1) = lcaSet(v1) , then either there is a pLoss node
on the vv1 path in R, or v is a duplication and X was par-
tially duplicated. In any case for our USR R′ , we can
use this pLoss or duplication to lose Y \ lcaSet(v1) , and
assign SetR′(v1) = lcaSet(v1) without incurring addi-
tional cost compared to R. We then use the same recon-
ciliation as R for the subtree T̃ [v1] , and thus R′ incurs no
extra cost on the v1 side. If instead SetR(v1) strictly con-
tains lcaSet(v1) , then in R′ we put SetR′(v1) = Y without
requiring any pLoss on the vv1 path. Moreover by induc-
tion, CSetR(v1)(v1) = CY (v1) . It follows that R′ has as many
losses as R in the T̃ [v1] subtree — and since there is no
loss on the vv1 branch, R′ has at most as many losses as R
on the v1 side (note that R′ could have strictly less losses
than R on the v1 side if R had a loss on the vv1 branch
— this implicitly means that R had no such loss, as oth-
erwise our R′ will end up having less losses than R and
contradict its optimality). Now, it suffices to observe that
the same scheme can be applied to v2 as well (noting that
losses saved by partial duplications cannot happen on
both sides of v), showing that there is an R′ that is of cost
no more than R. �

Lemma 5 implies that there are two possible minimum
loss costs for T̃ [v] . Either v is assigned lcaSet(v) and its
cost is Clca(v) , or it is assigned X with extra content and
its cost is CX (v) , for any X strictly containing lcaSet(v) .
We will therefore denote by C∗(v) the minimum loss cost
of T̃ [v] when v is assigned any X such that X = lcaSet(v) .
This leads to a dynamic programming formulation that
takes into account the two cases. For an internal node
v, define spec(v) = 1 if v is a speciation, and spec(v) = 0
otherwise. The value of C∗(v) can be computed according
to the following Lemma.

Lemma 6 For an internal node v of T̃ with children v1
and v2 , we have

Proof Let R be an optimal USR in which
SetR(v) = X �= lcaSet(v) . It follows that X = lcaSet(v1)
and X = lcaSet(v2) . The lemma lists all the possible ways
of sending extra content to the children or not. In the
first case, we have two losses: we lose X \ lcaSet(v1) and
X \ lcaSet(v2) on both the vv1 and vv2 branches, respec-
tively (if v is a duplication, we can save one loss in a

C∗(v) = min

Clca(v1)+ Clca(v2)+ 1+ spec(v),
C∗(v1)+ Clca(v2)+ spec(v),
Clca(v1)+ C∗(v2)+ spec(v),
C∗(v1)+ C∗(v2).

Page 11 of 15Delabre et al. Algorithms Mol Biol (2020) 15:12

partial duplication, hence the spec(v) term). In the second
and third cases, we lose content only on one side (again
potentially using a partial duplication), and in the last
case, we transfer X to the children without incurring any
loss. �

The computation of Clca(v) has more cases, depending
if the children of v have the same lcaSet value or not. We
show in Algorithm 1 how Clca(v) can be computed. We
omit the proof of correctness for this algorithmn as it is
similar to that of Lemma 6.

1 The program and simulations are available at: https ://githu b.com/UdeM-
LBIT/Super Recon cilia tion

It is now clear that if the values of Clca(vi) and C∗(vi)
are known for the children v1, v2 of v, then Clca(v) and
C∗(v) can be computed in constant time, assuming we
have access to lcaSet(v) for every v ∈ T̃ . By computing
these values in a post-order traversal of T̃ , we can com-
pute Clca(r) for the root of T̃ in time O(|V (T̃)|) . It is also
straightforward to conceive a backtracking procedure to
construct an actual USR. Moreover, every optimal solu-
tion can be produced by our dynamic programming
paradigm.

This algorithm requires computing lcaSet(v) for every
vertex, which can be accomplished in time O(|V (T̃)||F |)
(recall that F is the set of gene families). This actually
dominates the running time.

Theorem 5 The minimum cost of a USR can be obtained
in time O(|V (T̃)||F |).

Application
Simulated datasets
The dynamic programming algorithm that ignores rear-
rangements has been implemented in C++1 and tested
on balanced trees obtained from simulated evolution-
ary histories. Simulations have been performed accord-
ing to five parameters: t, the number of gene families
in the ancestral synteny; d, the maximum depth of the
balanced tree; pdupl , the probability for any given node
to be a segmental duplication; ploss , the probability for
a loss to occur under any given node; and plength , the
probability to remove one gene in a segmental loss,

defining the probability for a loss to remove k genes (for
k ∈ {1, 2, 3, ..}): P(X = k) = (1− plength)

k−1plength , fol-
lowing a shifted geometric distribution.

Simulations yield Super-Reconciliations leading to
fully labelled trees. The input of the Super-Reconciliation
algorithm is then obtained from those trees by removing
loss nodes and synteny information on the internal, non-
root nodes.

From an accuracy point of view (results not shown), as
expected the larger the density of duplication and loss
events, the further is the simulated history from a most
parsimonious history, and thus from the inferred tree.

As for time-efficiency, values for inferring the Super-
Reconciliation of a single tree, aggregated over 500 sim-
ulations per value of t, the size of the ancestral synteny

https://github.com/UdeM-LBIT/SuperReconciliation
https://github.com/UdeM-LBIT/SuperReconciliation

Page 12 of 15Delabre et al. Algorithms Mol Biol (2020) 15:12

(number of gene families), are given in Fig. 2. Computa-
tions have been done on the “Cedar” cluster of Compute
Canada with 32 Intel 8160 CPUs operating at 2.10 GHz.
As expected, running time exponentially increases with
respect to parameter t. This prevented us from extend-
ing the simulations beyond an ancestral synteny of size
14, for which the Super-Reconciliation of a single tree of
depth 5 required around 15 min. However, if the synteny
size remains fixed, running times increase polynomially
with the size of the trees. As shown by the right diagram
of Fig. 2, for an ancestral synteny of size 5, simulations
exhibit a running time of no more than few seconds for
trees with depth up to 15, representing balanced trees
with up to 215 leaves.

Apart from genomic segments related through a recent
whole genome duplicatiom event, real biological data-
sets are more likely to reveal large gene families rather
than large sets of gene families evolving in concert. Thus,
the increase in running time according to the size of the
ancestral synteny is unlikely to be a bottleneck towards
applying our Super-Reconciliation algorithm. The par-
ticular case of whole genome duplication is however
worth exploring in more details.

The opioid system
The opioid receptors, important regulators of neuro-
transmission and reward mechanisms in mammals, offer
an interesting proof of concept, as these genes are present
in clusters with conserved synteny in vertebrate genomes.

Three genes for the opioid receptors (OPR) were iden-
tified and named OPRD1 (delta), OPRK1 (kappa) and
OPRM1 (mu). A fourth gene was later found (OPRL1) in
rodents and human. In human, they are located on chro-
mosomes 1, 6, 8 and 20.

Previous studies have considered the duplication sce-
nario explaining the evolution of the opioid receptor
genes [18–20]. The main question was whether observed
paralogons arose from the two whole genome duplication

events, often called 1R and 2R, known to have occurred
early in vertebrate evolution.

By exploring regions surrounding the OPR genes in
human, four syntenic regions, containing genes from
three other families (NKAIN, SRC-B and STMN) appar-
ently sharing a common history, were identified. From
the analysis of individual gene trees (neighbor-joining
and quartet-puzzling maximum likelihood trees), con-
clusions associating the evolution of the opioid system
related genes to the 1R and 2R events were drawn.

Here, we consider the same four gene families OPR,
NKAIN, STMN, and SRC-B, and further extend the OPR
family with two neuropeptide NPBWR receptors, known
to be closely related to the opioid receptors (Fig. 3(i)).
Protein sequences and gene orders were downloaded
from the Ensembl database (Release 92)2 for the follow-
ing five species: Homo sapiens, Mus musculus, Gallus
gallus, Lepisosteus oculatus (spotted gar) and Drosophila
melanogaster. Gene orders are given in Fig. 3(ii).

For each gene family, we built a multiple sequence
alignment with ClustalW [43] (Gonnet weight matrix
and gap opening and extension penalties respectively set
to 10 and 0.2). Maximum likelihood gene trees were sub-
sequently constructed for each family using MEGA7 [44]
(Jones-Taylor-Thornton substitution matrix and uniform
rates among sites). As some syntenies contained paralogs
(multiple copies from the same gene family, for example
synteny H3 contains two ‘a’), duplicates were removed
so as to maximize gene tree consistency. Although gene
trees were still inconsistent, the overall clustering of gene
copies was preserved among gene trees, and consistency
could be attained after some local adjustments, using the
species tree as reference.

The obtained Super-Reconciliation is given in Fig. 3(iii).
Notice however that gene orders are far from being

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Size of the ancestral synteny

10−4

10−2

100

102
T
im

e
to

co
m
pu

te
(s
)

Best-fit exponential

1 2 3 1154 7 86 109 12 13 1514
Depth of the input tree

0

1

2

3

T
im

e
to

co
m
pu

te
(s
)

Best-fit 4th-degree polynomial

Fig. 2 Time‑efficiency of the algorithm with respect to the size of the ancestral synteny (for d = 5) and the depth of the input tree (for t = 5), for
pdupl = ploss = plength = 0.5 . Note that the leftmost graph uses a logarithmic scale

2 https ://useas t.ensem bl.org/index .html.

https://useast.ensembl.org/index.html

Page 13 of 15Delabre et al. Algorithms Mol Biol (2020) 15:12

consistent. In fact, all considered genomes are separated
by a considerable evolutionary distance, and therefore,
local rearrangements could have occurred along each
lineage-specific branch. Choosing the (h, s, a, n) order
on every node of the tree and assuming rearrangements
to occur at terminal edges, i.e. after duplication and loss
events, leads to a history of three duplications and two
losses before the speciation of bony fish and tetrapods,
with two duplications correlating with the 1R and 2R
tetraploidization events. This result is in agreement with
previous studies on the opioid receptor genes [18].

Further analysis, using more genes and species, is
required to provide a more detailed scenario for the evo-
lution of the opioid receptor genes. Our objective here
however, was not to verify a given hypothesis, but rather
to provide a proof of concept and explore the applicabil-
ity and limitations of the proposed reconciliation model
on real data.

Conclusion
We have presented a natural extension of the DL Rec-
onciliation model to handle segmental duplications and
losses. This is the first effort towards developing a unify-
ing automated method framework for reconciling a set of
gene trees. We provide computational complexity results
and a general inference method.

However, as the considered evolutionary model is
restricted to losses and transposed duplications, the pos-
sibility of application to real datasets remains very lim-
ited. In particular, a duplication and loss history does not
always exist for a set of syntenies if rearrangements are

ignored, as the corresponding gene orders may be incon-
sistent. One solution would be to minimally correct gene
orders to ensure consistency, before applying the DL
Super-Reconciliation model. In this paper, we have con-
sidered an alternative way of working around this prob-
lem, which consists of extending the evolutionary model
to account for rearrangements, but still only minimize
duplication and loss events. The underlying Unordered
Super-Reconciliation problem has been shown tractable.
However, this way of integrating rearrangements is far
from being fully satisfactory as the obtained evolutionary
history may lead to a prohibitive number of rearrange-
ments. In other words, the problem of Super-Reconcilia-
tion with rearrangements remains open.

Another strong constraint is the fact that tandem
duplications, leading to syntenies with multiple gene cop-
ies, are ignored. In fact, only transposed duplications,
i.e. duplications creating new syntenies, are allowed.
Although the Super-Reconciliation model can easily be
extended to tandem duplications by allowing for unary
duplication nodes, the inference methodology devel-
oped in this paper is hardly applicable in this context. In
particular, gene order consistency is a more challenging
problem in presence of interleaving tandem duplications.
In addition, having many gene paralogs in syntenies lead
to multi-labeled trees (or mul-trees), i.e. trees with many
leaves with the same label. This raises the issue of find-
ing an appropriate definition of mul-tree consistency of
a “mul-supertree”. But more importantly, what would
be the meaning of a synteny mul-supertree, with the
same synteny labeling more than one leaf? Clearly such a

Fig. 3 (i) The four considered gene families. (ii) The considered species tree with the corresponding clusters: 19 in total involving 24 genes from the
OPR family (genes named ‘a’), 17 from the NKAIN family (named ‘n’), 7 from the STMN family (named ‘s’) and 13 from the SRC‑B family (named ‘h’). (iii)
The Super‑Reconciliation obtained form individual gene trees (not shown), and the induced duplication and loss history. Losses are indicated by red
bars on the considered edges and duplications by rectangles. Yellow stars indicate the location of the 1R and 2R whole genome duplication events.
Gene orders after removing duplicates (see text) are indicated on leaves, and chosen gene orders for internal nodes are shown

Page 14 of 15Delabre et al. Algorithms Mol Biol (2020) 15:12

supertree cannot represent the backbone of a “valid” evo-
lutionary history represented by a Super-Reconciliation.

A way of getting around this problem would be to
prune multi-labeled gene trees in a way leading to “opti-
mal” single-labeled trees. The more natural way to state
the decision problem is whether there exists a way of
choosing a single gene copy from each family represented
in a synteny in such a way the obtained single-labeled
gene trees are consistent. This is the way we implicitely
handled the gene families of the opioid system. Alterna-
tively, we can consider the optimization problem of find-
ing the pruning minimizing a Robinson-Foulds distance
between trees. Although authors have considered similar
problems for mul-trees [45–48], as far as we know, none
have yet handled these particular ones, representing an
interesting avenue for future developments.

Supplementary information
Supplementary information accompanies this paper at https ://doi.
org/10.1186/s1301 5‑020‑00171 ‑4.

Additional file 1. The proof of NP‑hardness of the Super‑Reconciliation
problem.

Acknowledgements
Authors acknowledge the support of the Natural Sciences and Engineering
Research Council of Canada (NSERC) (Discovery Grant RGPIN‑249834) and
of the Fonds de Recherche du Québec Nature et Technologie (FRQNT). We
also thank Sèverine Bérard and Annie Chateau for truitful discussions on the
DeCo and DeCoStar algorithms that have inspired the Super‑Reconciliation
problem.

Authors’ contributions
MD has been in charge of the implementation part of the project, MSG
contributed to the biological application part, ML and EN have been involved
in writing the proofs, all authors contributed to developing the ideas and to
the writing. NEM has supervised all the work and the writing of the paper. All
authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Département d’informatique (DIRO), Université de Montréal, Québec,
Canada. 2 School of Computing Sciences, University of East Anglia, Norwich,
UK. 3 Department of Computer Science, Université de Sherbrooke, Sher‑
brooke, Canada.

Received: 26 August 2019 Accepted: 5 May 2020

References
 1. Goodman M, Czelusniak J, Moore GW, Romero‑Herrera AE, Matsuda G.

Fitting the gene lineage into its species lineage, a parsimony strategy
illustrated by cladograms constructed from globin sequences. Syst Zool.
1979;28:132–63.

 2. Zhang LX. On Mirkin‑Muchnik‑Smith conjecture for comparing molecular
phylogenies. J Comput Biol. 1997;4:177–88.

 3. Zmasek CM, Eddy SR. A simple algorithm to infer gene duplication and
speciation events on a gene tree. Bioinformatics. 2001;17:821–8.

 4. Bansal MS, Alm EJ, Kellis M. Efficient algorithms for the reconciliation
problem with gene duplication, horizontal transfer and loss. Bioinformat‑
ics. 2012;28(12):283–91. https ://doi.org/10.1093/bioin forma tics/bts22 5.

 5. Doyon JP, Ranwez V, Daubin V, Berry V. Models, algorithms and programs
for phylogeny reconciliation. Briefings Bioinf. 2011;12(5):392–400.

 6. Tofigh A, Hallett M, Lagergren J. Simultaneous identification of duplica‑
tions and lateral gene transfers. IEEE/ACM Trans Comput BiolBioinf.
2011;8(2):517–35. https ://doi.org/10.1109/TCBB.2010.14.

 7. Vernot B, Stolzer M, Goldman A, Durand D. Reconciliation with non‑
binary species trees. J Comput Biol. 2009;15:981–1006.

 8. Wu YC, Rasmussen MD, Bansal MS, Kellis M. Most parsimonious reconcili‑
ation in the presence of gene duplication, loss, and deep coalescence
using labeled coalescent trees. Genome Res. 2014;24:475–86.

 9. Akerborg O, Sennblad B, Arvestad L, Lagergren J. Simultaneous bayesian
gene tree reconstruction and reconciliation analysis. Proc Natl Acad Sci
USA. 2009;106(14):5714–9.

 10. Sjöstrand J, Tofigh A, Daubin V, Arvestad L, Sennblad B, Lagergren
J. A bayesian method for analyzing lateral gene transfer. Syst Biol.
2014;63(3):409–20.

 11. Szöllősi GJ, Tannier Daubin V, Boussau B. The inference of gene trees with
species trees. Syst Biol. 2014;64(1):42–62.

 12. Larsson TA, Olsson F, Sundstrom G, Lundin LG, Brenner S, Venkatesh B, Lar‑
hammar D. Early vertebrate chromosome duplications and the evolution
of the neuropeptide y receptor gene regions. BMC Evol Biol. 2008;8:184.

 13. Abbasi AA, Grzeschik KH. An insight into the phylogenetic history of hox
linked gene families in vertebrates. BMC Evol Biol. 2007;7:239.

 14. Ferrier DEK. Evolution of homeobox gene clusters in animals: the giga‑
cluster and primary vs. secondary clustering. Front Ecol Evol. 2016;4:34.

 15. Garcia‑Fernàndez J. The genesis and evolution of homeobox gene clus‑
ters. Nat Rev Genet. 2005;6:881–92.

 16. Ajmal W, Khan H, Abbasi AA. Phylogenetic investigation of human FGFR‑
bearing paralogons favors piecemeal duplication theory of vertebrate
genome evolution. Mol Phylogenet Evol. 2014;81:49–60.

 17. Hafeez M, Shabbir M, Altaf F, Abbasi AA. Phylogenomic analysis reveals
ancient segmental duplications in the human genome. Mol Phylogenet
Evol. 2016;94:95–100.

 18. Dreborg S, Sundstrom G, Larsson TA, Larhammar D. Evolution of verte‑
brate opioid receptors. Proc Natl Acad Sci USA. 2008;105(40):15487–92.

 19. Stevens CW. The evolution of vertebrate opioid receptors. Front Biosci.
2009;14:1247–69.

 20. Sundstrom G, Dreborg S, Larhammar D. Concomitant duplications of opi‑
oid peptide and receptor genes before the origin of jawed vertebrates.
PLoS ONE. 2010;5:5.

 21. Bérard S, Gallien C, Boussau B, Szollosi GJ, Daubin V, Tannier E. Evolution
of gene neighborhoods within reconciled phylogenies. Bioinformatics.
2012;28(18):382–8.

 22. Anselmetti Y, Patterson M, Ponty Y, Bérard S, Chauve C, Scornavacca
C, Daubin V. DeCoSTAR: Reconstructing the ancestral organization of
genes or genomes using reconciled phylogenies. Genome Biol Evol.
2017;9(5):1312–9.

 23. Duchemin W. Phylogeny of dependencies and dependencies of phy‑
logenies in genes and genomes. Theses, Université de Lyon (December
2017). https ://tel.archi ves‑ouver tes.fr/tel‑01779 517

 24. Paszek J, Gorecki P. Efficient algorithms for genomic duplication models.
IEEE/ACM Trans Comput Biol Bioinform. 2017;15(5):1515–24.

 25. Dondi R, Lafond M, Scornavacca C. Reconciling multiple genes trees via
segmental duplications and losses. Algorith Mol Biol. 2019;14:25.

 26. Aho AV, Yehoshua S, Szymanski TG, Ullman JD. Inferring a tree from
lowest common ancestors with an application to the optimization of
relational expressions. SIAM J Comput. 1981;10(3):405–21.

 27. Constantinescu M, Sankoff D. An efficient algorithm for supertrees. J Clas‑
sif. 1995;12:101–12.

 28. Ng MP, Wormald NC. Reconstruction of rooted trees from subtrees.
Discrete Appl Math. 1996;69:19–31.

 29. Semple C. Reconstructing minimal rooted trees. Discrete Appl Math.
2003;127:3.

 30. Lafond M, Ouangraoua A, El‑Mabrouk N. Reconstructing a supergenetree
minimizing reconciliation. BMC Genom. 2015;16:4.

 31. Pruesse G, Ruskey F. Generating linear extensions fast. SIAM J Comput.
1994;23(2):373–86.

https://doi.org/10.1186/s13015-020-00171-4
https://doi.org/10.1186/s13015-020-00171-4
https://doi.org/10.1093/bioinformatics/bts225
https://doi.org/10.1109/TCBB.2010.14
https://tel.archives-ouvertes.fr/tel-01779517

Page 15 of 15Delabre et al. Algorithms Mol Biol (2020) 15:12

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ? Choose BMC and benefit from:

 32. Brightwell G, Winkler P. Counting linear extensions. Order.
1991;8(3):225–42.

 33. Moret B, Wang L, Warnow T, Wyman S. New approaches for reconstruct‑
ing phylogenies from gene order data. Bioinformatics. 2001;17:165–73.

 34. Bourque G, Pevzner PA. Genome‑scale evolution: reconstructing gene
orders in the ancestral species. Genome Res. 2002;12:26–36.

 35. Chauve C, Tannier E. A methodological framework for the reconstruction
of contiguous regions of ancestral genomes and its application to mam‑
malian genomes. PloS Comput Biol. 2008;4:1000234.

 36. Ma J, Zhang L, Suh BB, Raney BJ, Burhans RC, Kent WJ, Blanchette M,
Haussler D, Miller W. Reconstructing contiguous regions of an ancestral
genome. Genome Res. 2007;16:1557–65.

 37. Sankoff D, Blanchette M. The median problem for breakpoints in com‑
parative genomics. In: Jiang, T., Lee, D.T. (eds.) Computing and combina‑
torics, proceeedings of COCOON ’97. Lecture notes in computer science.
Berlin: Springer; 1997, pp. 251–63.

 38. Bergeron A, Mixtacki J, Stoye J. Hp distance via double cut and join dis‑
tance. In: Ferragina, P., Landau, G. (eds.) Combinatorial Pattern Matching.
CPM ‘08. Lecture Notes in Computer Science, vol. 5029. 2008.

 39. Bergeron A, Mixtacki J, Stoye J. A new linear time algorithm to compute
the genomic distance via the double cut and join distance. Theor Com‑
put Sci. 2009;410:5300–16.

 40. Tannier E, Sankoff D. Multichromosomal median and halving problems
under different genomic distances. BMC Bioinf. 2009;10:120.

 41. El‑Mabrouk N. Genome rearrangement with gene families. Mathemat‑
ics of evolution and phylogeny. Oxford: Oxford University Press; 2005. p.
291–320.

 42. Fertin G, Labarre A, Rusu I, Tannier E, Vialette S. Combinatorics of genome
rearrangements. Cambridge, Massachusetts, London, England: The MIT
Press; 2009.

 43. Thompson JD, Higgins DG, Gibson TJ. Clustal w: improving the sensitivity
of progressive multiple sequence alignment through sequence weight‑
ing, position‑specific gap penalties and weight matrix choice. Nucleic
Acids Res. 1994;22(22):4673–80.

 44. Kumar S, Stecher G, Tamura K. Molecular evolutionary genetics analysis
version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–4.

 45. Scornavacca C, Berry V, Ranwez V. From gene trees to species trees
through a supertree approach. In: LATA 2009.

 46. Chaudhary R, Burleigh JG, Fernández‑Baca D. Inferring species trees from
incongruent multi‑copy gene trees using the robinson‑foulds distance.
Algorith Mol Biol. 2013;8(1):28. https ://doi.org/10.1186/1748‑7188‑8‑28.

 47. Bansal MS, Burleigh JG, Eulenstein O, Fernández‑Baca D. Robinson‑
foulds supertrees. Algorith Mol Biol. 2010;5(1):18. https ://doi.
org/10.1186/1748‑7188‑5‑18.

 48. Deepak A, Fernández‑Baca D, McMahon MM. Extracting conflict‑free
information from multi‑labeled trees. Algorithm Mol Biol. 2013;8(1):18.
https ://doi.org/10.1186/1748‑7188‑8‑18.

 49. Holyer I. The NP‑completeness of edge‑coloring. SIAM J Comput.
1981;10(4):718–20.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1186/1748-7188-8-28
https://doi.org/10.1186/1748-7188-5-18
https://doi.org/10.1186/1748-7188-5-18
https://doi.org/10.1186/1748-7188-8-18

	Evolution through segmental duplications and losses: a Super-Reconciliation approach
	Abstract
	Background
	Trees, reconciliation and problem statement
	Reconciliation

	Existence conditions
	Consistency of gene orders
	Consistency of trees

	Complexity of the Super-Reconciliation problem
	A Super-Reconciliation for a supertree
	Unordered Super-Reconciliation
	A dynamic programming approach for optimal USRs

	Application
	Simulated datasets
	The opioid system

	Conclusion
	Acknowledgements
	References

