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Abstract 

Background: Transcriptomic structural variants (TSVs)—large-scale transcriptome sequence change due to struc-
tural variation - are common in cancer. TSV detection from high-throughput sequencing data is a computationally 
challenging problem. Among all the confounding factors, sample heterogeneity, where each sample contains multi-
ple distinct alleles, poses a critical obstacle to accurate TSV prediction.

Results: To improve TSV detection in heterogeneous RNA-seq samples, we introduce the Multiple Compatible 
Arrangements Problem (MCAP), which seeks k genome arrangements that maximize the number of reads that are 
concordant with at least one arrangement. This models a heterogeneous or diploid sample. We prove that MCAP is 
NP-complete and provide a 1

4
-approximation algorithm for k = 1 and a 3

4
-approximation algorithm for the diploid case 

( k = 2 ) assuming an oracle for k = 1 . Combining these, we obtain a 3
16

-approximation algorithm for MCAP when k = 2 
(without an oracle). We also present an integer linear programming formulation for general k. We characterize the 
conflict structures in the graph that require k > 1 alleles to satisfy read concordancy and show that such structures are 
prevalent.

Conclusions: We show that the solution to MCAP accurately addresses sample heterogeneity during TSV detection. 
Our algorithms have improved performance on TCGA cancer samples and cancer cell line samples compared to a TSV 
calling tool, SQUID. The software is available at https ://githu b.com/Kings ford-Group /diplo idsqu id.
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Background
Transcriptomic structural variations (TSVs) are tran-
scriptome sequence alterations due to genomic structural 
variants (SVs). TSVs may cause the joining of parts from 
different genes, which are fusion-gene events. Fusion 
genes are known for their association with various types 
of cancer. For example, the joint protein products of 
BCR-ABL1 genes are prevalently found in leukemia [1]. 
In addition to fusion genes, the joining of intergenic and 

genic regions, called non-fusion-gene events, are also 
related to cancer [2].

TSV events are best studied with RNA-seq data. 
Although SVs are more often studied with whole genome 
sequencing (WGS) [3–8], the models built on WGS data 
lack the flexibility to describe alternative splicing and dif-
ferences in expression levels of transcripts affected by 
TSVs. In addition, RNA-seq data is far more common 
[9] than WGS data in some data cohorts, for example, in 
The Cancer Genome Atlas (TCGA, https ://cance rgeno 
me.nih.gov).

Many methods have been proposed that identify fusion 
genes with RNA-seq data. Generally, these tools identify 
candidates of TSV events through investigation into read 
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alignments that are discordant with the reference genome 
(e.g. [10–15]). A read alignment is concordant with a ref-
erence sequence if the alignment to the sequence agrees 
with the read library preparation. For example in paired-
end Illumina sequencing, the orientation of the forward 
read should be 5′-to-3′ and the reverse for the mate read. 
Otherwise the alignment is discordant with the reference. 
A series of filtering or scoring functions are applied on 
each TSV candidate to eliminate the errors in alignment 
or data preparation. The performance of filters often 
relies heavily on a large set of method parameters and 
requires prior annotation [16]. Furthermore, most of the 
fusion-gene detection methods limit their scope to the 
joining of protein-coding regions and ignore the joining 
of intergenic regions that could also affect the transcrip-
tome. An approach that correctly models both fusion-
gene and non-fusion-gene events without a large number 
of ad hoc assumptions is desired.

An intuitive TSV model is the one that describes 
directly the rearrangement of the genome. For example, 
when an inversion happens, two double-strand breaks 
(DSB) are introduced to the genome and the segment 
between the DSBs is flipped. After a series of SVs are 
applied to a genome, a rearranged genome is produced. 
In order to identify the TSVs, we can attempt to infer the 
rearranged genome from the original genome and keep 
track of the arrangements of genome segments. Since a 
model of the complete genome is produced, both fusion-
gene and non-fusion-gene events can be detected. A 
recently published TSV detection tool, SQUID [9], mod-
els TSV events in this way by determining a single rear-
rangement of a reference genome that can explain the 
maximum number of observed sequencing reads. SQUID 
finds one arrangement of genome segments such that a 
maximum number of reads are concordant with it. Novel 
transcriptomic adjacencies appearing in the arrangement 
are predicted as TSVs while the ones not appearing are 
regarded as sequencing or alignment errors.

Despite the generally good performance of SQUID, it 
relies on the assumption that the sample is homogene-
ous, i.e. the original genome contains only one allele 
that can be represented by a single rearranged string. 
This assumption is unrealistic in diploid (or high ploidy) 
organisms. When TSV events occur within the same 
regions on different alleles, read alignments may suggest 
multiple conflicting ways of placing a segment. Under the 
homogeneous assumption, conflicting TSV candidates 
are regarded as errors. Therefore, this assumption leads 
to discarding the conflicting TSV candidates that would 
be compatible on separate alleles and therefore limits the 
discovery of true TSVs. Conflicting SV candidates are 
addressed in a few SV detection tools such as Variation-
Hunter-CR [6]. However, VariationHunter-CR assumes a 

diploid genome, and its model is built for WGS data that 
lacks ability to handle RNA-seq data.

We present an improved model of TSV events in het-
erogeneous contexts. We address the limitation of the 
homogeneous assumption by extending the assump-
tion to k alleles. We introduce the multiple compat-
ible arrangements problem (MCAP), which seeks, 
assuming the number of alleles k is known, an optimal 
set of k arrangements of segments such that the num-
ber of sequencing reads that are concordant with any of 
the arrangements is maximized. Each arrangement is a 
permutation and reorientation of all segments from the 
reference genome, representing the altered sequence 
of one allele. A connection between segments is pre-
dicted as a TSV if its supporting reads are discordant in 
the original genome but are concordant in any of the k 
arrangements,  otherwise the connection either agrees 
with the reference genome or is considered as errors. 
We show that MCAP is NP-complete. To address NP-
completeness, we propose a 1

4
-approximation algorithm 

for the k = 1 case and a 3
4
-approximation solution to the 

k = 2 case using an oracle for k = 1 . Combining these, 
we obtain a 3

16
-approximation algorithm for MCAP when 

k = 2 (without an oracle). We also present an integer lin-
ear programming (ILP) formulation that gives an optimal 
solution for general k.

We characterize the patterns of reads that result in con-
flicting TSV candidates under a single-allele assumption. 
We show that these patterns are prevalent in both cancer 
cell lines and TCGA samples, thereby further motivating 
the importance of SV detection approaches that directly 
model heterogeneity.

We apply our algorithms to 381 TCGA samples from 4 
cancer types and show that many more TSVs can be iden-
tified under a diploid assumption compared to a haploid 
assumption. We also evaluate an exact ILP formulation 
under a diploid assumption (D-SQUID) on previously 
annotated cancer cell lines HCC1395 and HCC1954, 
identifying several previously known and novel TSVs. We 
also show that, in most of the TCGA samples, the per-
formance of the approximation algorithm is very close to 
optimal and the worst case of 3

16
-approximation is rare.

The Genome Segment Graph (GSG)
A Genome Segment Graph, similar to a splice graph [17], 
encodes relationships between genomic segments and a 
set of reads. A segmentation S of the genome is a parti-
tion of the genome into disjoint intervals according to 
concordant and discordant paired-end alignments with 
respect to the reference genome. The genome partition-
ing, edge construction and edge filtering is done in the 
same way as in Ma et al. [9].
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Definition 1 (Genome Segment Graph) A genome seg-
ment graph is a weighted, undirected graph G = (V ,E,w) 
derived from a segmentation S of the genome and a col-
lection of reads. The vertex set, V = {sh ∈ S}

⋃

{st ∈ S} , 
includes a vertex for both endpoints, head (h) and tail 
(t), for each segment s ∈ S . The head of a segment is the 
end that is closer to the 5′ end of the genome. The tail 
is the end that is close to the 3′ end. Pairs of reads that 
span more than one segment are represented by edges. 
There are four types of connections: head-head, head-
tail, tail-head and tail-tail. Each edge e = (ui, vj) ∈ E , 
where i, j ∈ {h, t} , is undirected and connects endpoints 
of two segments. The weight ( we ∈ w ) is the number of 
sequencing reads that support edge e.

We also define the weight of a subset E′ ⊆ E of edges 
w(E′) =

∑

e∈E′ we . (More details on the GSG provided in 
Ma et al. [9]).

Definition 2 (Permutation, orientation function 
and arrangement) A permutation is a function where 
π(u) = i , where i is the index of segment u ∈ S in an 
ordering of a set S of segments. We also define orienta-
tion function f (u) = 1 if segment u should remain in 
the original orientation, or 0 if it should be inverted. An 
arrangement is a pair of permutation and orientation 
functions (π , f ).

If π(u) < π(v) , we say that segment u is closer to the 
5′ end of the rearranged genome than segment v. Each 
arrangement is a concatenation of segments from dif-
ferent chromosomes, which retrieves the sequences 
affected by inter- and intra-chromosomal TSV events. 
The arrangement of genome segments imitates the 
movements of genomic sequences by SVs. One crucial 
difference between arrangement in GSG and sequence 
movements by SVs is that an arrangement in GSG only 
captures the movement that are relevant to transcrip-
tome sequence alterations. Such alterations can either 
fuse two transcript sequences or incorporate previously 
non-transcribing sequences into transcripts as long as 
they are present in RNA-seq reads.

Definition 3 (Concordant and discordant edges) Let e 
be an edge connecting segment u on end a and segment 
v on end b ( a, b ∈ {h, t} ). Given arrangement (π , f ) , sup-
pose π(u) < π(v) , edge e is concordant with respect to 
the arrangement if f (u) = 1[a = t] and f (v) = 1[b = h] . 
Denote the concordance as e ∼ (π , f ) . Otherwise, e is dis-
cordant and denote as e  ∼ (π , f ).

Combining the permutation and orientation func-
tion, the edge concordance condition can be equivalently 
expressed as

Since edges are constructed based on segment connec-
tions indicated by read alignments, the concordance and 
discordance of edges are extensions from read align-
ments. A discordant edge represents a set of discord-
ant read alignments. Examples of discordant edges with 
tail-tail and head-head connections are shown in Fig. 1a. 
Concordant edges, when connecting nodes that belong to 
the same chromosome, represent concordant alignments 
that are either continuous alignments or split-alignments 
due to alternative splicing. Due to alternative splicing, a 
node can be incident to multiple concordant edges given 
an arrangement. Edges that initially spanned two chro-
mosomes but become concordant in an arrangement 
represent inter-chromosomal translocation events.

Segments connected by discordant edges can be 
arranged so that some of the discordant edges become 
concordant. See Fig.  1b,c for examples of arrange-
ments that make tail-tail and head-head connections 
concordant.

Definition 4 (Conflicts among a set of edges) Given 
GSG G = (V ,E,w) and a subset of edges E′ , the edges in 
set E′ are in conflict with each other if there is no single 
arrangement (π , f ) such that e ∼ (π , f ) (∀e ∈ E′) . Other-
wise, edges in set E′ are compatible with each other.

f (u)1[a = t] + (1− f (u))1[a = h] = 1[π(u)

< π(v)] = f (v)1[b = h] + (1− f (v))1[b = t]

H T H T
u v

H T H T
u -v

H T H T
-u v

and

a b c
Fig. 1 MCAP resolves conflicts. The white ends of the segments represent head with respect to the original genome. The blue ends represent tail 
with respect to the original genome. “H” stands for head and “T” stands for tail in the current arrangement. a Two conflicting edges connecting two 
segments u and v. If the sample is known to be homogeneous ( k = 1 ), then the conflict is due to errors. If k = 2 , MCAP seeks to separate two edges 
into two compatible arrangements as in b and c. b In the first arrangement, segment v is flipped, which makes the blue edge concordant. c In the 
second arrangement, u is flipped to make the red edge concordant
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Definition 5 (Transcriptomic structural variant (TSV)) 
A TSV is a new adjacency in transcript sequences that 
cannot be explained by alternative splicing.

In GSG, the adjacencies in transcript sequences are 
represented by edges. New adjacencies that cannot be 
explained by alternative splicing belong to one of two cat-
egories: (1) the set of edges discordant with respect to the 
original arrangement but concordant in the rearranged 
genome, (2) edges concordant in both the original and 
the rearranged genomes that connect segments that are 
further apart than a user-specified distance, or from dif-
ferent chromosomes. Edges in both categorites are ouput 
as TSVs. Here, as in Ma et al. [9], edges in the second cat-
egory are identified during a post-processing step in the 
implementation.

The Multiple Compatible Arrangements Problem 
(MCAP)
Problem statement
Given an input GSG G = (V ,E,w) and a positive integer 
k, the multiple compatible arrangements prob-
lem seeks a set of k arrangements A = {(πi, fi)}

k
i=1 that 

are able to generate the maximum number of sequencing 
reads:

where 1[e ∼ A] is 1 if edge e is concordant in at least one 
(πi, fi) ∈ A , and 0 otherwise.

This objective function aims to find an optimal set of k 
arrangements of segments where the sum of concordant 
edge weights is maximized in the arranged alleles, where 
k is the number of alleles and assumed to be known. The 
objective seeks to maximize the agreement between 
arranged allelic sequences and observed RNA-seq 
data. Assuming that the majority of RNA-seq reads are 
sequenced correctly, the concordant edges with respect 
to the optimal set of arrangements represent the most 
confident transcriptomic adjacencies. In heterogeneous 
samples where k  = 1 , MCAP separates the conflicting 
edges onto k alleles as shown in an example in Fig. 1.

When k = 1 , the problem reduces to finding a single 
arranged genome to maximize the number of concordant 
reads, which is the problem that SQUID [9] solves. We 
refer to the special case when k = 1 as single compat-
ible arrangement problem (SCAP).

Predicted TSVs are the concordant edges with respect 
to any of the arrangements in a solution to MCAP that 
were either discordant with respect to the reference 
genome or spanning multiple chromosomes.

(1)max
A

∑

e∈E

w(e) · 1[e ∼ A],

NP‑completeness of SCAP and MCAP

Theorem 1 SCAP is NP-complete.

Proof We prove the NP-completeness by reducing from 
the Fragment Orientation Problem (FOP) that has been 
formulated and studied by Kececioglu et al. [18]. In FOP, 
for any pair of fragments, there is evidence supporting or 
against that they have the same orientation. FOP maxi-
mizes the agreement with the evidence by assigning the 
fragment orientation. We rephrase the problem state-
ment as follows.

Input: A set of fragments F  and a score function 
S : F × {0, 1} × F × {0, 1} → R+ that satisfies the fol-
lowing two conditions:

Output: An orientation of fragments O : F → {0, 1}.

Objective: Maximize the sum of score according to the 
orientation,

Kececioglu et  al. [18] defined two symmetric functions 
and used them to express the objective function in a 
more specific way:

where same : F × F → R+ is defined as same(Fi, Fj) �

S(Fi, 0, Fj , 0) = S(Fi, 1, Fj , 1) , and opp : F × F → R+ is 
defined as opp(Fi, Fj) � S(Fi, 0, Fj , 1) = S(Fi, 1, Fj , 0).

Given any FOP instance, a SCAP instance is con-
structed in polynomial time by constructing a segment 
for each fragment in F  and assigning edge weights 
based on the same and opp function values. Specifi-
cally, for fragment Fi , construct a segment si . For any 
pair of segments (si, sj) construct four edges with 
the following weights: w(e = (sih, s

j
h)) = opp(Fi, Fj) , 

w(e = (sit , s
j
h)) = same(Fi, Fj) , w(e = (sih, s

j
t)) = same(Fi, Fj) , 

and w(e = (sit , s
j
t)) = opp(Fi, Fj) . Due to the correspond-

ence between segments S and fragments F  , they can 
be viewed as parameter substitution and used in inter-
changeably in FOP and SCAP.

S(Fi, oi, Fj , oj) = S(Fj , oj , Fi, oi)

S(Fi, oi, Fj , oj) = S(Fi, 1− oi, Fj , 1− oj)

max
O

∑

Fi ,Fj∈F ,Fi �=Fj

S(Fi,O(Fi), Fj ,O(Fj)).

max
O

∑

Fi ,Fj∈F ,Fi �=Fj

same(Fi, Fj)1[O(Fi)

= O(Fj)] + opp(Fi, Fj)1[O(Fi) �= O(Fj)],
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Because the constructed GSG is a complete graph except 
that there is no within-segment edges, the maximization 
of SCAP over permutation π and orientation f can be 
rewritten as

In the last step of the above equation, since the objec-
tive function does not contain permutation π , we can 
take π out of the optimization parameter. That means 
for any permutation the maximum sum of concordant 
edge weights is the same. Applying reparameterization 
by changing segment s∗ to fragment F∗ and changing the 
segment orientation function f with fragment orientation 
function O, the above maximization problem is the same 
as FOP. As a result, the optimal solution of SCAP and 
FOP can be used interchangeably to maximize the crite-
rion of each other.

Therefore, given any instance of FOP, an instance of 
SCAP can be constructed in polynomial time whose 

max
π ,f

∑

e

w(e)1[e ∼ (π , f )]

= max
π ,f

∑

si ,sj∈S,si �=sj

w(e = (sih, s
j
h))1[(s

i
h, s

j
h) ∼ (π , f )] + w(e = (sit , s

j
h))1[(s

i
t , s

j
h) ∼ (π , f )]

+ w(e = (sih, s
j
t))1[(s

i
h, s

j
t) ∼ (π , f )] + w(e = (sit , s

j
t))1[(s

i
t , s

j
t) ∼ (π , f )]

= max
π ,f

∑

si ,sj∈S,si �=sj

opp(si, sj)1
{

1− f (si) = 1[π(si) < π(sj)] = f (sj)
}

+ same(si, sj)1
{

f (si) = 1[π(si) < π(sj)] = f (sj)
}

+ same(si, sj)1
{

1− f (si) = 1[π(si) < π(sj)] = 1− f (sj)
}

+

opp(si, sj)1
{

f (si) = 1[π(si) < π(sj)] = 1− f (sj)
}

= max
π ,f

∑

si ,sj∈S,si �=sj

opp(si, sj)1[1− f (si) = f (sj)] + same(si, sj)1[f (si) = f (sj)]

= max
f

∑

si ,sj∈S,si �=sj

opp(si, sj)1[1− f (si) = f (sj)] + same(si, sj)1[f (si) = f (sj)]

solution contains an orientation function that maximized 
FOP instance at the same time. Since FOP is NP-com-
plete, SCAP is also NP-complete. �

Corollary 1 MCAP is NP-complete.

Proof SCAP is a special case of MCAP with k = 1 , so 
the NP-completeness of MCAP is immediate.  �

A 1
4

‑approximation algorithm for SCAP
We provide a greedy algorithm for SCAP that achieves 
at least 1

4
 approximation ratio and takes O(|V||E|) time. 

The main idea of the greedy algorithm is to place each 
segment into the current order one by one by choosing 
the current “best” position. The current “best” position 
is determined by the concordant edge weights between 
the segment to be placed and the segments already in the 
current order. 
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Algorithm 1: Greedy algorithm for SCAP
Data: Segment set S, genome segment graph G = (V, E,w)

Result: An arrangement of the segments and the sum of concordant edge weights

1 order = [];

2 orientation = [];

3 for i in 1 : |S| do
4 si = the ith segment in S;

// choose from 4 possible order and orientation options

5 options = [(si in the beginning of order in forward strand), (si in the beginning of order

in reverse strand), (si in the end of order in forward strand), (si in the end of order in

reverse strand)] ;

6 for j in 1 : 4 do

7 weights[j] = w({e ∈ E : e connects si with sk and concordant in options[j], k < i});
8 end

// update the current order and orientation

9 opt = argmax1≤i≤4,i∈Nweights[i] ;

10 order = update segment order as given by options[opt] ;

11 orientation = update segment orientation as given by options[opt] ;

12 end

Theorem  2 Algorithm  1 approximates SCAP with at 
least 1

4
 approximation ratio.

Proof Denote E′ ⊂ E as the concordant edges in the 
arrangement of Algorithm  1. Let OPT be the optimal 
value of SCAP. We are to prove w(E′) ≥ 1

4
w(E) ≥ 1

4
OPT .

For iteration i in the for loop, the edges 
Ei = {e ∈ E : e connects si with sj , j < i} are consid-
ered when comparing the options. Each of the four 
options makes a subset of Ei concordant. These sub-
sets are non-overlapping and their union is Ei . Specifi-
cally, the concordant edge subset is {e = (sih, s

j
t) : j < i} 

for the first option, {e = (sih, s
j
h) : j < i} for the second, 

{e = (sit , s
j
h) : j < i} for the third, and {e = (sit , s

j
t) : j < i} 

for the last.
By the selecting the option with the largest sum of con-
cordant edge weights, the concordant edges E′

i in itera-
tion i satisfies w(E′

i) ≥
1
4
w(Ei) . Therefore, the overall 

concordant edge weights of all iterations in the for loop 
satisfy

Each edge e ∈ E must appear in one and only 
one of Ei , and thus 

⋃

i Ei = E . This implies 
∑

i w(E
′
i) ≥

1
4
w(E) ≥ 1

4
OPT  .  �

Algorithm  1 can be further improved in practice by 
considering more order and orientation options when 
inserting a segment into current order. In Algorithm  1, 
only two possible insertion places are considered: the 
beginning and the end of the current order. However, a 
new segment can be inserted between any pair of adja-
cent segments in the current order. We provide an 
extended greedy algorithm to take into account the extra 
possible inserting positions (Algorithm  2). Algorithm  2 
has a time complexity of O(|V |2|E|) , but it may achieve a 
higher total concordant edge weight in practice. 

∑

i

w(E′
i) ≥

1

4

∑

i

w(Ei) =
1

4
w

(

⋃

i

Ei

)

.
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Algorithm 2: Extended greedy algorithm for SCAP
Data: Segment set S, genome segment graph G = (V, E,w)

Result: An arrangement of the segments and the sum of concordant edge weights

1 order = [];

2 orientation = [];

3 for i in 1 : |S| do
4 si = the ith segment in S;

// choose from i+ 1 possible order and orientation options

5 options = [(si in the beginning of order in forward strand), (si in the beginning of order

in reverse strand)] ;

6 for j in 1 : i− 1 do

7 Append [(si right after order[j] in forward strand), (si right after order[j] in reverse

strand)] to list of options ;

8 end

9 for j in 1 : 2i do

10 weights[j] = w({e ∈ E : e connects si with sk and concordant in options[j], k < i});
11 end

// update the current order and orientation

12 opt = argmax1≤i≤2i,i∈Nweights[i] ;

13 order = update segment order as given by options[opt] ;

14 orientation = update segment orientation as given by options[opt] ;

15 end

A 3
4

‑approximation of MCAP with k = 2 using 
a SCAP Oracle
If an optimal SCAP solution can be computed, one way 
to approximate the MCAP’s optimal solution is to solve 
a series of SCAP instances iteratively to obtain multiple 
arrangements. Here, we prove the solution based on iter-
atively solving SCAP has an approximation ratio of 3

4
 for 

the special case of MCAP with k = 2 . 

Algorithm 3: 3
4 -approximation for MCAP with k = 2

Data: A genome segment graph G = (V, E,w)

Result: a set of two arrangements, sum of weights of edges that are concordant in either

arrangement

1 a1 = optimal SCAP arrangement on G;

2 E = {e ∈ E : e is discordant in a1};
3 G = (V,E , w);

4 a2 = optimal SCAP arrangement on G ;

5 Ẽ = {e ∈ E : e ∼ A,A = {a1, a2}};
6 W = e∈Ẽ w(e);

7 return ({a1, a2}, W );

Theorem 3 Algorithm 3 is a 3
4
-approximation of MCAP 

with k = 2 . Denote the optimal objective sum of edge 
weights in MCAP with k = 2 as OPT, and the sum of edge 
weights in the two iterative SCAP as W, then

W ≥
3

4
OPT
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Proof Denote MCAP with k = 2 as 2-MCAP. Let Ed
1  

and Ed
2  be concordant edges in the optimal two arrange-

ments of 2-MCAP. It is always possible to make the con-
cordant edges of the arrangements disjoint by removing 
the intersection from one of the concordant edge set, that 
is Ed

1 ∩ Ed
2 = ∅ . Let Ed = Ed

1 ∪ Ed
2  . The optimal value is 

w(Ed).
Denote the optimal set of concordant edges in the first 
round of Algorithm 3 as Es

1 . The optimal value of SCAP is 
w(Es

1) . E
s
1 can have overlap with the two concordant edge 

sets of the 2-MCAP optimal solution. Let the intersec-
tions be I1 = Ed

1 ∩ Es
1 and I2 = Ed

2 ∩ Es
1 . Let the unique 

concordant edges be D1 = Ed
1 − Es

1 , D2 = Ed
2 − Es

1 and 
S = Es

1 − Ed
1 − Ed

2 .
After separating the concordant edges in 
2-MCAP into the intersections and unique sets, 
the optimal value of 2-MCAP can be written as 
w(Ed) = w(I1)+ w(I2)+ w(D1)+ w(D2) , where the 
four subsets are disjoint. Therefore the smallest weight 
among the four subsets must be no greater than 1

4
w(Ed) . 

We prove the approximation ratio under the following 
two cases and discuss the weight of the second round of 
SCAP separately:

Case  (1): the weight of either D1 or D2 is smaller than 
1
4
w(Ed) . Because the two arrangements in 2-MCAP 

are interchangeable, we only prove for the case where 
w(D1) ≤

1
4
w(Ed) . A valid arrangement of the second 

round of SCAP is the second arrangement in 2-MCAP, 
though it may not be optimal. The maximum concordant 
edge weights added by the second round of SCAP must 
be no smaller than w(D2) . Combining the optimal values 
of two rounds of SCAP, the concordant edge weight is

Case  (2): both w(D1) ≥
1
4
w(Ed) and w(D2) ≥

1
4
w(Ed) . 

The subset with smallest sum of edge weights is now 
either I1 or I2 . Without loss of generality, we assume I1 has 
the smallest sum of edge weights and w(I1) ≤ 1

4
w(Ed) . 

Because the first round SCAP is optimal for the SCAP 
problem, its objective value should be no smaller than 
the concordant edge weights of either arrangement in 
2-MCAP. Thus

A valid arrangement for the second round of SCAP can 
be either of the arrangements in 2-MCAP optimal solu-
tion. Picking the first arrangement of 2-MCAP as the 

(2)

W ≥ w(Es
1)+ w(D2) = w(S)+ w(I1)+ w(I2)+ w(D2)

≥ w(Ed)− w(D1)

≥
3

4
w(Ed).

(3)w(Es
1) ≥ w(Ed

2 ) = w(D2)+ w(I2).

possible (but not necessarily optimal) arrangement for 
the second round of SCAP, the concordant edge weights 
added by the second round of SCAP must be no smaller 
than w(D1) . Therefore, the total sum of concordant edge 
weights of the optimal solutions of both rounds of SCAP 
is

 �

Corollary 2 An approximation algorithm for MCAP 
with k = 2 can be created by using Algorithm  1 as the 
oracle for SCAP in Algorithm  3. This approximation 
algorithm runs in O(|V||E|) time and achieves at least 3

16
 

approximation ratio.

The proof of the corollary is similar to the proof of 
Theorem 3. By adding a multiplier of 1

4
 to the right of ine-

qualities (3) when lower bounding w(Es
1) by w(Ed

2 ) , the 3
16

 
approximation ratio can be derived accordingly.

Integer linear programming formulation for MCAP
MCAP, for general k, can be formulated as an integer 
linear programming (ILP) to obtain an optimal solution. 
We rewrite the i-th permutation ( πi ), orientation ( fi ) and 
decision ( 1[e ∼ (πi, fi)] ) functions with three boolean 
variables yie , zie and xie . For i ∈ {1, 2, . . . , k} and e ∈ E , we 
have:

• xie = 1 if edge e ∼ (πi, fi) and 0 otherwise.
• yiu = 1 if fi(u) = 1 for segment u and 0 if fi(u) = 0.
• ziuv = 1 if πi(u) < πi(v) , or segment u is in front of v 

in arrangement i and 0 otherwise.

In order to account for the edges that are concordant in 
more than one arrangement in the summation in Equa-
tion 1, we define qe such that qe = 1 if edge e is concord-
ant in one of the k arrangements and 0 otherwise. The 
constraints for qe are as follows:

The objective function becomes

(4)

W ≥ w(Es
1)+ w(D1)

≥ w(D2)+ w(I2)+ w(D1)

= w(Ed)− w(I1)

≥
3

4
w(Ed).

(5)qe ≤

k
∑

i

xie

(6)qe ≤ 1
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We then add ordering and orientation constraints. If 
an edge is a tail-head connection, i.e. concordant to the 
reference genome, xie = 1 if and only if ziuv = yiu = yiv . 
If an edge is a tail-tail connection, xie = 1 if and only if 
ziuv = 1− yiv = yiu . If an edge is a head-tail connec-
tion, xie = 1 if and only if ziuv = 1− yiu = 1− yiv . If an 
edge is a head-head connection, xie = 1 if and only if 
ziuv = 1− yiu = yiv . The constraints for a tail-head con-
nection are listed below in Equation 8, which enforce the 
assignment of boolean variables yie , zie and xie:

The constraints of other types of connections are simi-
lar and detailed in Ma et al. [9]. Additionally, constraints 
are added so that all segments are put into a total order 
within each allele. For two segments u, v, segment u will 
be either precede or follow segment v, i.e. ziuv + zivu = 1 . 
For three segments u, v, w, if u precedes v and v precedes 
w, then u has to precede w: 1 ≤ ziuv + zivw + ziwu ≤ 2.

The total number of constraints as a function of k is 

4k|E| + k

(

|V |
3

)

+ 2|E| = O(k(|E| + V 3)) . When k 

increases, the number of constraints grows linearly. 
When k = 1 , the ILP formulation reduces to the same 
formulation as SQUID.

Characterizing the conflict structures that imply 
heterogeneity
In this section, we ignore edge weights and characterize 
the graph structures where homogeneous assumption 
cannot explain all edges. We add a set of segment edges, 
Ê , to the GSG. Each ê ∈ Ê connects the two endpoints of 
each segment, i.e. ê = {sh, st} for s ∈ S . The representa-
tion of GSG becomes G = (E, Ê,V ).

Definition 6 (Conflict structures and compatible struc-
tures) A conflict structure, CS = (E′, Ê′,V ′) , is a subgraph 
of a GSG where there exists a set of edges E′ that can-
not be made concordant using any single arrangement. A 
compatible structure is a subgraph of a GSG where there 
exists a single arrangement such that all edges can be 
made concordant in it.

Definition 7 (Simple cycle in GSG) A simple 
cycle, C = (E′, Ê′, {v0, . . . , vn−1}) , is a subgraph of 
a GSG, such that E′ ⊆ E, Ê′ ⊆ Ê and vi ∈ V  , with 

(7)max
xie ,y

i
u,z

i
uv

∑

e∈E

w(e) · qe

(8)

xie ≤ yiu − yiv + 1,

xie ≤ yiv − yiu + 1,

xie ≤ yiu − ziuv + 1,

xie ≤ ziuv − yiu + 1,

(vi, v(i+1) mod n) ∈ E′ ∪ Ê′ and where vi  = vj when i  = j 
except vn−1 = v0.

Definition 8 (Degree and special degree of a ver-
tex in subgraphs of GSG) Given a subgraph of GSG, 
G′ = (E′, Ê′,V ′) , degE′(v) refers to the degree of vertex 
v ∈ V ′ that counts only the edges e ∈ E′ that connect to v. 
deg(v) refers to the number of edges e ∈ E′ ∪ Ê′ that con-
nect to v.

Theorem 4 Any acyclic subgraph of GSG is a compat-
ible structure.

Proof We show that any acyclic subgraph with N edges 
( |E′| + |Ê′| = N  ), G′

N = (E′, Ê′,V ′) , of GSG is a compat-
ible structure by induction.
When |E′| + |Ê′| = 1 , G′

1 is a compatible structure 
because no other edge in G′ is in conflict with the only 
edge e ∈ E′.
Assume the theorem hold for any acyclic subgraph that 
contains n edges. Let G′

n+1 = (E′, Ê,V ′) be an acyclic 
subgraph with n+ 1 edges. Since G′

n+1 is acyclic, there 
must be a leaf edge that is incident to a leaf node. Denote 
the leaf node as vb and the leaf edge e = (ua, vb) ∈ E′ ∪ Ê′ 
( a, b ∈ {h, t} ). By removing edge e and leaf node vb , the 
subgraph G′

n = (E′ − {e}, Ê′ − {e},V ′ − {vb}) is also acy-
clic and contains n edges. According to the assumption, 
G′
n is a compatible structure and there is an arrangement 

of the segments in which all edges in E′ ∪ ê′ − {e} is con-
cordant. Because no other edge in E′ ∪ Ê′ except e con-
nects to vb , it is always possible to place segment v back 
to the arrangement such that e is concordant. Specifi-
cally, one of the four placing options will satisfy edge e: 
the beginning of the arrangement with orientation 1, the 
beginning with orientation 0, the end with orientation 1 
and the end with orientation 0. Therefore, G′

n+1 is a com-
patible structure.

By induction, acyclic subgraph G′
N of GSG with any |E′| is 

a compatible structure.  �

Theorem 5 A simple cycle C = (E′, Ê′,V ′) is a compat-
ible structure if and only if there are exactly two vertices, 
vj and vi such that degE′(vi) = degE′(vj) = 2 and vi and vj 
belongs to different segments.

Proof We prove sufficiency and necessity separately in 
Lemma 1 and Lemma 2.  �

Lemma 1 If C is a compatible structure, there are 
exactly two vertices, vi, vj that belong to different seg-
ments, such that degE′(vi) = degE′(vj) = 2
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Proof We discuss compatibility in two cases:

Case (1): All edges are concordant in C. Sort the vertices 
by genomic locations in ascending order and label the 
first vertex v1 and the last vn , assuming |V ′| = n . Simi-
larly, sort the set of segments S′ in C by the values of their 
permutation function π and label the first segment s1 and 
the last sm , assuming |S′| = m . Since concordant connec-
tions can only be tail-head connections (e.g. Figure 1 b,c), 
v1 = s1t  and vn = smh  . Since C is a simple cycle, all verti-
ces v ∈ V ′ have deg(v) = 2 . Because v1 and vn are the first 
and last vertices in this arrangement, the edges incident 
to v1 or vn must be in E′ . It follows that the two edges 
incident to v1 connects to s2h and smh  . Similarly, edges inci-
dent to vn connects to s1t  and sn−1

t  . Therefore, we have 
degE′(v1) = degE′(vn) = 2 . Any other vertex vi ( 1 < i < n ) 
is connected by one e ∈ E′ and one ê ∈ Ê′ and thus has 
degE′(vi) = 1.

Case (2): Some edges are discordant in C. If discord-
ant edges exist in cycle C, according to the definition 
of compatible structure, segments in C can be arranged 
such that all edges are concordant. This reduces to case 
(1).  �

Lemma 2 If there are exactly two vertices in V ′ 
that belong to different segments, vi and vj , such that 
degE′(vi) = degE′(vj) = 2 , then C is a compatible 
structure.

Proof Let vi and vj be the one of the end points of seg-
ments si and sj(i  = j) , respectively. We can arrange si and 
sj such that π(si) = mins∈S′ π(s) , π(sj) = maxs∈S′ π(s) 

and that vi = sit , vj = s
j
h . Rename vi to v1 and vj to vn . 

Since C is a simple cycle, we can find two simple paths, P1 
and P2 , between v1 and vn and there is no edge between 
P1 and P2 . Let P′

1 and P′
2 denote P1 and P2 that exclude 

v1 and vn and the edges incident to v1 and vn . Since P′
1 

and P′
2 as acyclic subgraphs of GSG, according to Theo-

rem 4, P′
1 and P′

2 are compatible structures and therefore 
segments in P′

1 and P′
2 can be arranged so that all edges 

are concordant. Denote the first and last vertices in the 
arranged P′

1 as v2 and v3 , and the first and last vertices 
in the arranged P′

2 as v4 and v5 . Because all the edges are 
concordant in P′

1 , v2 and v3 are the head and tail of the 
first and last segments in P′

1 . Because only v1 and vn have 
degE′ = 2 in C, v2 must be connected to v1 or vn and v3 
must be connected to vn or v1 . A similar argument applies 
to v4 and v5 . To ensure concordance of edges connected 
to v1 and vn , if vn is connected to v2 and v1 is connected to 
v3 , we flip all the segments in P′

1 . The similar operation is 
applied to v4 , v5 and P′

2 . Now we have a compatible struc-
ture. �

Corollary 3 A necessary condition for a subgraph 
(E′, Ê′,V ′) to be a conflict structure is that it contains 
cycles. A sufficient condition for a subgraph (E′, Ê′,V ′) to 
be a conflict structure is that it contains a simple cycle 
which is not a compatible structure.

The corollary is a direct derivation from Theorem 4 and 
Theorem 5 when considering general graph structures.

In practice, we determine if a discordant edge, 
e = (u, v) , is involved in a conflict structure by enumer-
ating all simple paths using a modified depth-first search 
implemented in Networkx [19, 20] between u and v 

a b c
Fig. 2 Performance of D-SQUID and SQUID on TCGA samples. a The distribution of fractions of discordant edges that are involved in each identified 
conflict structure (CS) in four cancer subtypes. Minima, maxima and means of the distributions are marked by horizontal bars. b Number of TSVs 
identified by SQUID versus D-SQUID. The red line denotes equality between the number of TSVs between SQUID and D-SQUID. c Histogram of 
fractions of resolved discordant edges by SQUID and D-SQUID
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omitting edge e. We add e to each path and form a sim-
ple cycle. If the simple cycle satisfies Corollary 3, we 
stop path enumeration and label the e as discordant edge 
involved in conflict structure. If the running time of path 
enumeration exceeds 0.5 seconds, we shuffle the order of 
DFS and repeat the enumeration. If path enumeration for 
e exceeds 1000 reruns, we label e as undecided.

Results
To produce an efficient, practical algorithm for TSV 
detection in diploid organisms, we use the following 
approach, which we denote as D-SQUID: Run the ILP 
under the diploid assumption by setting k = 2 on every 
connected component of GSG separately. If the ILP fin-
ishes or the running time of the ILP exceeds one hour, 
output the current arrangements.

a b c
Fig. 3 Performance of D-SQUID and SQUID on breast cancer cell lines with experimentally verified SV. a Total TSVs found. In both cell line samples, 
D-SQUID discovered more TSVs than SQUID. b Number of known fusion-gene and non-fusion-gene events recovered by D-SQUID and SQUID. G 
denotes TSVs that affect gene regions. IG denotes TSVs that affect intergenic regions. c Fraction of discordant edges in conflict structures
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Fig. 4 Examples on which D-SQUID predicts a validated (a) and an unvalidated (b) TSV event that impacts biologically significant genes. The blue 
blocks represent segments in the GSG. The red edges mark the discordant edges in the original arrangement. Blue and green blocks mark exons of 
different genes and dark purple blocks mark UTRs in (b). Regions highlighted in yellow in the gene models mark the corresponding segments in 
GSG
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D‑SQUID identifies more TSVs in TCGA samples than SQUID
We calculate the fraction of discordant edges involved 
in conflict structures (Fig.  2a) in 381 TCGA samples 
from four types of cancers: bladder urothelial carci-
noma (BLCA), breast invasive carcinoma (BRCA), lung 
adenocarcinoma (LUAD) and prostate adenocarcinoma 
(PRAD). Among all samples, we found less than 0.5% 
undecided edges out of all discordant edges. The dis-
tribution of fraction of discordant edges within conflict 
structures are different among cancer types. The more 
discordant edges are involved in conflict structures, the 
more heterogeneous the sample is. Among four cancer 
types, PRAD samples exhibit the highest extent of het-
erogeneity and BRCA samples exhibit the lowest. On 
average, more than 90% of discordant edges are within 
conflict structures in all samples across four cancer types. 
This suggests that TCGA samples are usually heterogene-
ous and may be partially explained by the fact that TCGA 
samples are usually a mixture of tumor cells and normal 
cells [21].

We compare the number of TSVs found by D-SQUID 
and SQUID (Fig. 2b). In all of our results, all of the TSVs 
found by SQUID belong to a subset of TSVs found by 
D-SQUID. D-SQUID identifies many more TSVs than 
SQUID on all four types of cancers.

A discordant edge is termed resolved if it is made con-
cordant in one of the arrangements. Among all discord-
ant edges in all samples, D-SQUID is able to resolve most 
of them (Fig.  2c), while SQUID is only able to resolve 
fewer than 50% of them. The results demonstrate that 
D-SQUID is more capable of resolving conflict structures 
in heterogeneous contexts, such as cancer samples, than 
SQUID.

D‑SQUID identifies more true TSV events than SQUID 
in cancer cell lines
We compare the ability of D-SQUID and SQUID to 
detect fusion-gene and non-fusion-gene events on pre-
viously studied breast cancer cell lines HCC1395 and 
HCC1954 [22]. The annotation of validated TSVs is taken 
from Ma et al. [9]. In both cell lines, D-SQUID discovers 
more TSVs than SQUID. In HCC1954, D-SQUID identi-
fies the same number of known TSVs including fusions 
of gene (G) regions and intergenic (IG) regions com-
pared with SQUID. In HCC1395, D-SQUID identifies 2 
more true TSV events that are fusions of genic regions. 
We tally the fraction of discordant edges in conflict 
structures (Fig.  3c) and find similar fractions between 
HCC1395 and HCC1954, which indicates that the extent 
of heterogeneity in two samples are similar. Compared to 
Fig. 2a, the fraction in HCC samples is much lower than 
that in TCGA samples. This matches the fact that two 
HCC samples contain the same cell type and are both cell 
line samples, which are known to be less heterogeneous 
than TCGA samples.

D‑SQUID predicts TSVs in biologically significant genes 
in cancer cell lines
Figure  4 gives two examples of TSVs predicted by 
D-SQUID but not by SQUID. Such TSVs are involved in 
conflict structures and can only be resolved by separating 
discordant edges into different arrangements.

An example of a validated TSV is shown in Fig. 4a. The 
head-tail connection between segment u1 and u3 con-
flicts with the tail-head connections between segments 
u1 and u2 and segments u2 and u3 . Such a conflict struc-
ture is resolved by separating edge (u1h,u

3
t ) into the sec-

ond arrangement. Notice that since no discordant edges 

a b
Fig. 5 Fold differences (ILP/approx) in run time and total weights of concordant edges resolved by D-SQUID, A1 and A2 on TCGA samples. 
Horizontal and vertical red lines mark 1.0 on both axes. a Shows fold differences between D-SQUID and A1. b Shows fold differences between 
D-SQUID and A2
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are made concordant in the first arrangement, no new 
TSVs are predicted. Therefore, the corresponding gene 
model for the first arrangement is the same as that of the 
original arrangement. The affected regions are exons of 
ERO1A and FERMT2 genes. As predicted by D-SQUID, 
this TSV involves an insertion of the sixth and the sev-
enth exons of FERMT2 between the sixth and seventh 
exons of ERO1A.

Among the unvalidated TSVs predicted by D-SQUID, 
some of them affect genes that are associated with breast 
cancer. The TSV shown in Fig.  4b involves an insertion 
of the 3’ untranslated region (UTR) of CLPSL1 and the 
entire CLPS gene between the first and second exons of 
CLPSL1. It has been reported that CLPSL1 is associated 
with a prognostic factor of breast cancer [23].

A full list of affected regions in HCC samples can be 
found in Additional file 1.

Evaluation of approximation algorithms
We evaluate the approximation algorithms for diploid 
MCAP ( k = 2 ) using two different subroutines described 
in previous sections. In this subsection, A1 refers to using 
Algorithm 1 with worst case runtime O(|V||E|) as a sub-
routine and A2 refers to using Algorithm  2 with worst 
case runtime O(|V |2|E|) as a subroutine. Both A1 and A2 
solve SCAP by greedily inserting segments into the best 
position in the current ordering. While A1 only looks at 
the beginning and ending of the ordering, A2 looks at all 
the positions.

In order to compare the performance of approxima-
tions to the exact algorithm using ILP, we run D-SQUID, 
A1 and A2 on TCGA samples. The algorithms are evalu-
ated on runtime and total weight of concordant edges in 
the rearranged genomes. “Fold difference” on the axes of 
Fig.  5 refers to the ratio of the axis values of D-SQUID 
over that of A1 or A2. Both A1 and A2 output results in a 
much shorter period of time than D-SQUID. A2 achieves 
better approximation than A1, demonstrated by closer-
to-one ratio of total concordant edge weight, at a cost of 
longer run time.

The run time of D-SQUID ILP exceeds 1 h on 4.5% 
of all connected components in all TCGA samples. 
D-SQUID outputs sub-optimal arrangements in such 
cases. As a result, approximation algorithms, especially 
A2, appear to resolve more high-weight discordant edges 
than D-SQUID in some of the samples in Fig.  5, which 
is demonstrated by data points that fall below 1 on the y 
axes. A1 resolves more high-weight edges in 10 samples 
and A2 resolves more high-weight edges in 54 samples 
than D-SQUID.

Conclusions
We present approaches to identify TSVs in heterogene-
ous samples via the multiple compatible arrange-
ments problem (MCAP). We characterize sample 
heterogeneity in terms of the fraction of discordant edges 
involved in conflict structures. In the majority of TCGA 
samples, the fractions of discordant edges in conflict 
structures are high compared to HCC samples, which 
indicates that TCGA samples are more heterogeneous 
than HCC samples. This matches the fact that bulk tumor 
samples often contain more heterogeneous genomes 
than cancer cell lines, which suggests that fraction of 
conflicting discordant edges is a valid measure of sample 
heterogeneity.

We show that obtaining exact solutions to MCAP is 
NP-complete. We derive an integer linear programming 
(ILP) formulation to solve MCAP exactly. We provide a 
3
16

-approximation algorithm for MCAP when the num-
ber of arrangements is two ( k = 2 ), which runs in time 
O(|V||E|). It approximates the exact solutions well in 
TCGA samples.

MCAP addresses this heterogeneity. In 381 TCGA 
samples, D-SQUID is able to resolve more conflicting 
discordant edges than SQUID. Since D-SQUID solves 
MCAP by separating conflicting TSVs onto two alleles, 
D-SQUID’s power to find TSVs generally increases as 
the extent of heterogeneity increases. In HCC cell lines, 
D-SQUID achieves better performance than SQUID. 
Aside from validated TSV events, D-SQUID discovers 
unvalidated fusion-gene events that impact genes associ-
ated with cancer, which requires further investigation.

Several open problems remain. MCAP relies on the 
number of arrangements (k) to make predictions. It is not 
trivial to determine the optimal k for any sample. In addi-
tion, although MCAP is solved by separating TSVs onto 
different alleles, there are typically many equivalent phas-
ings. Developing techniques for handling these alterna-
tive phasings is an interesting direction for future work. 
Analyzing the effect of TSVs, especially non-fusion-gene 
ones, on their impact on cellular functions and diseases is 
another direction of future work.

Another potential future direction to improve the 
accuracy of TSV prediction is to incorporate the distance 
between breakpoints and read pairs into the optimization 
formulation. A long distance between read pairs mapped 
to the reference genome indicates a potential TSV event 
induced by deletion events. Ignoring such long distances 
leads to false negatives. On the other hand, long dis-
tances between breakpoints of a fusion-gene TSV in the 
rearranged genome can potentially indicate false positive 
predictions. We show that thresholding distances during 
pre- and post-processing steps of D-SQUID is helpful in 
reducing false negatives, but not as effective in reducing 
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false positives partially due to the lack of distance consid-
eration in the current problem formulation (Additional 
files 1, 2). Investigating and evaluating potential ways to 
incorporate the distance information, such as adding a 
distance threshold to the edge concordance definition or 
adding distance penalties into the ILP, is a future direc-
tion for improvement.
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org/10.1186/s1301 5-020-00170 -5.

Additional file 1. Annotated break points predicted by D‑SQUID in 
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