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Abstract 

Background.: In the field of genome rearrangement algorithms, models accounting for gene duplication lead often 
to hard problems. For example, while computing the pairwise distance is tractable in most duplication-free models, 
the problem is NP-complete for most extensions of these models accounting for duplicated genes. Moreover, prob-
lems involving more than two genomes, such as the genome median and the Small Parsimony problem, are intracta-
ble for most duplication-free models, with some exceptions, for example the Single-Cut-or-Join (SCJ) model.

Results.: We introduce a variant of the SCJ distance that accounts for duplicated genes, in the context of directed 
evolution from an ancestral genome to a descendant genome where orthology relations between ancestral genes 
and their descendant are known. Our model includes two duplication mechanisms: single-gene tandem duplication 
and the creation of single-gene circular chromosomes. We prove that in this model, computing the directed distance 
and a parsimonious evolutionary scenario in terms of SCJ and single-gene duplication events can be done in linear 
time. We also show that the directed median problem is tractable for this distance, while the rooted median problem, 
where we assume that one of the given genomes is ancestral to the median, is NP-complete. We also describe an 
Integer Linear Program for solving this problem. We evaluate the directed distance and rooted median algorithms on 
simulated data.

Conclusion.: Our results provide a simple genome rearrangement model, extending the SCJ model to account for 
single-gene duplications, for which we prove a mix of tractability and hardness results. For the NP-complete rooted 
median problem, we design a simple Integer Linear Program. Our publicly available implementation of these algo-
rithms for the directed distance and median problems allow to solve efficiently these problems on large instances.
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Background
Reconstructing the evolution of genomes at the level 
of large-scale genome rearrangements is an impor-
tant problem in computational biology; e.g. [1, 2]. For a 
given genome rearrangement model, there are several 
computational problems that can be defined, from the 

computation of pairwise distances to the reconstruc-
tion of complete phylogenetic trees, often following a 
parsimony approach [3]. Among these problems, the 
reconstruction of ancestral gene orders given a species 
phylogeny has been considered in various frameworks, 
including the small parsimony problem (SPP), which 
aims at computing gene orders at the internal nodes of 
the given species phylogeny while minimizing the sum of 
the genome rearrangement distances along its branches. 
The simplest instance of the SPP is the Genome Median 
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Problem, where the given species phylogeny contains a 
single ancestral node.

For most genome rearrangement models that do not 
consider gene duplication, computing the pairwise dis-
tance is tractable [3]. This contrasts with the median 
problem, that has been shown to be intractable in most 
models. The median problem was introduced in 1996 [4], 
motivated by its application in heuristics for the SPP [5]. 
Early results suggested that, even in the simple break-
point distance model, computing a median gene order 
is intractable [6], and heuristics based on the Traveling 
Salesman Problem were introduced to solve the break-
point median problem [5, 7]. However, in 2009, Tannier, 
Zheng and Sankoff proved that computing a median gene 
order that is allowed to contain an arbitrary mixture of 
linear and circular fragments is tractable in the break-
point distance model, by using a reduction to a maximum 
weight matching (MWM) problem [8]. This tractabil-
ity result, the first of its kind in genome rearrangement 
algorithms, renewed the interest in gene order median 
problems, although most of the following work presented 
intractability results, even on variations of the breakpoint 
distance [9–11]. A notable exception was the Single-Cut-
or-Join (SCJ) distance, introduced by Feijão and Meidanis 
[12], where it was shown that both the median problem 
and the SPP are tractable.

Gene duplication is another important evolutionary 
mechanism; genes can be duplicated through different 
kinds of evolutionary events, from single-gene duplica-
tion to whole-genome duplications (WGD) [13, 14]. The 
first models of evolution by genome rearrangements 
considered the case of genomes with equal gene con-
tent, thus disregarding gene duplication and gene loss. 
However, for most models that account for gene dupli-
cation, the pairwise distance problem is intractable. For 
example, whereas the distance between two genomes 
can be computed in linear time for genomes without 
duplicated genes under the Double-Cut and Join (DCJ) 
model, it becomes NP-complete to compute the distance 
when duplicated genes are considered [15, 16], although 
it can be approximated when the gene content in both 
genomes is balanced [17]. So far, even in simpler genome 
rearrangement models, the general problem of comput-
ing a distance with duplicated genes is difficult [18, 19], 
with the exception of polynomial time algorithms for 
two extensions of the SCJ model that include large-scale 
duplications: the SCJ double distance [12], where dupli-
cated genes occur through a WGD, and the SCJ and 
whole chromosome duplication (WCD) problem, moti-
vated by cancer genomics [20].

In the present paper, we introduce novel results about 
the pairwise distance and median problems, in a model 
accounting for gene duplications. Our evolutionary 

model is an extension of the SCJ model that includes 
single-gene duplications of two different types, Tandem 
Duplications (TD) or Floating Duplication (FD) in which 
a new copy is introduced as a circular chromosome. We 
call this genome rearrangement model the SCJ-TD-FD 
model. The the pairwise distance problem we consider, is 
a directed distance problem, where we assume that one 
genome, say A, is duplication-free, while the other one, 
denoted by D, can contain duplicated genes. This setting 
is motivated by (1) the SPP where distances are consid-
ered along the branches of a given species phylogeny, 
so between an ancestral genome A and a descendant 
genome D and (2) the fact that developments in phylog-
enomics methods—especially gene trees/species tree rec-
onciliation algorithms—make it realistic to assume that 
orthology relations between genes of an ancestral gene 
order and genes of a descendant gene order are known, 
allowing to see the ancestral gene order as duplication-
free with regard to its descendant. This general frame-
work was introduced by Sankoff and El-Mabrouk in [21] 
(see also [22]) and was later implemented in the DeCo∗ 
family of algorithms [23] to reconstruct ancestral gene 
adjacencies in a duplication-aware evolutionary model 
from data including extant gene orders and reconciled 
gene trees. We show that in the SCJ-TD-FD model the 
directed pairwise distance problem is tractable, and that 
a parsimonious scenario, can be computed in linear time. 
We also introduce two genome median problems, the 
directed median problem and the rooted median prob-
lem. In the directed median, we aim to reconstruct a 
parsimonious duplication-free ancestral gene order from 
the gene orders of k ≥ 2 descendant genomes, that mini-
mizes the sum of the directed distances to the k descend-
ants gene orders. In the rooted median problem, we aim 
to reconstruct a parsimonious median genome between 
an ancestral genome A and k ≥ 2 descendant genomes, 
where we assume that the gene content of the median is 
given and that unambiguous orthology relations between 
the median genes and the given gene orders are provided. 
We prove that the directed median problem is tracta-
ble, while the rooted median problem is NP-complete, 
and we provide a simple simple Integer Linear Program 
(ILP) for this problem, based on a reduction to a colored 
MWM problem. We evaluate our algorithms on simu-
lated data and observe that they generate efficiently very 
accurate results.

Preliminaries
Genes, adjacencies and genomes
A genome consists of a set of chromosomes, each being 
a linear or circular ordered set of oriented genes. Fol-
lowing the usual encoding of gene orders, we represent 
a genome by its gene extremity adjacencies, which we call 
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adjacencies from now. In this representation, a gene g is 
represented using a pair of gene extremities (gt , gh) , gt 
denotes the tail of the gene g and gh denotes its head, and 
an adjacency is a pair of gene extremities that are adja-
cent in a genome. If a gene gi is denoted with a subscript, 
we will denote the tail of gi by gi,t and its head by gi,h . A 
gene extremity is free, also called a telomere, if it does not 
belong to an adjacency. A chromosome is a maximal con-
tiguous sequence of genes; a chromosome with k genes 
can have either k − 1 adjacencies, in which case it is a lin-
ear chromosome, or k adjacencies, in which case it is a 
circular chromosome.

In our work, we consider that genes can be duplicated. 
This implies that a given gene g can have multiple copies 
in a genome, the number of copies being called its copy 
number. Given a set of genomes, we call a gene family all 
copies of a given gene observed in the genomes. A set of 
genomes is said to have equal gene family content if every 
genome contains at least one gene from every gene fam-
ily. A genome in which every gene has copy number 1 
(i.e. is duplication-free) is called a trivial genome. A gene 
family is said to be trivial if each genome contains a single 
gene from this family.

It is important to note that a non-trivial genome can 
not always be represented unambiguously by its adjacen-
cies, that can form a multi-set, unless we distinguish the 
copies of each gene, for example by denoting the copies 
of a gene g with copy number k by g1, . . . , gk . Generally 
a multi-set of gene adjacencies can have several realiza-
tions as a gene order with duplicated genes. Neverthe-
less, in our work we identify a genome with its multi-set 
of adjacencies, as we will show this is sufficient in order 
to solve the directed pairwise distance problem we 
introduce.

For a given gene order X, we denote by ŴX its gene con-
tent, which is a set if X is trivial and a multi-set other-
wise. We call the set induced by ŴX (which is exactly ŴX 
only if X is trivial) its gene alphabet; it follows that two 
gene orders X and Y have equal gene family content if and 
only if they have the same gene alphabet. A key assump-
tion in our work is that when we compare a pair of gene 
orders, we assume that one, say A is an ancestor of the 
second one (say D). In that context, gene families define 
complete bipartite graphs (bi-cliques) between the two 
multi-sets of genes of A and D, that define orthology rela-
tions; we say that these orthology relations are unambigu-
ous if all such bi-cliques contain a single gene of A, which 
is equivalent to state that all members of a gene family in 
D evolved, by gene duplications, from a unique gene in 
A. As a consequence, if a genome A is not trivial but is 
compared to a descendant genome D such that orthology 
relations between A and D are unambiguous, we say that 
A is trivial with respect to D. This is illustrated in Fig. 1. 
In a practical context, for a given set of extant gene orders 
and a species phylogeny for these gene orders, unambig-
uous orthology relations can be obtained, among other 
methods, by computing a gene tree per gene family and 
reconciling the gene trees with the species phylogeny; we 
refer to [22] for a discussion on the use of reconciled gene 
trees for the study of gene orders with duplicated genes.

Given two multi-sets X and Y of adjacencies, we define 
X − Y  as the multi-set obtained as follows: it contains 
k copies of a given adjacency if and only if X contains 
exactly k more occurrences of this adjacency than Y; so 
if Y contains more copies of an adjacency than X, X − Y  
contains no copy of this adjacency. Note that this opera-
tor is not symmetric as X − Y  can be different from 
Y − X.

A

M

D1 D2

g1 g3g2 g4

a1 a2 a3

g13,D2
g14,D2

g12,D2
g11,D2

g24,D2
g21,D2

g11,D1
g12,D1

g13,D1
g14,D1

g23,D1
g22,D1

a b
a2

g3g1

g13,D1

g11,D1
g23,D1

g21,D2

g11,D2
g13,D2

Fig. 1 In a each color represents a gene family from A. Notice that each gene in D1 and D2 can be traced to a unique gene in M whereas a gene 
from A might have multiple daughters in M. b displays the gene tree of the gene family in blue [indicated by arrows in (a)]. Since the gene a2 
undergoes duplication (dark squares) to form g1 and g3 in M, M is not trivial w.r.t A 
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Evolutionary model: the SCJF‑TD‑FD model
In the SCJ-TD-FD model, genome rearrangements are 
modeled by Single-Cut-or-Join (SCJ) operations, which 
either delete an adjacency from a genome (a cut) or join 
a pair of free gene extremities (a join), thus forming a 
new adjacency. For duplication events, we consider two 
types of duplications, both creating an extra copy of a 
single gene: Tandem Duplications (TD) and Floating 
Duplications (FD). A tandem duplication of an existing 
gene g introduces an extra copy of g, say g ′ , by adding 
an adjacency ghg ′t , and, if there was an adjacency ghx by 
replacing it by the adjacency g ′hx . A floating duplication 
introduces an extra copy g ′ of a gene g as a single-gene 
circular chromosome by adding the adjacency g ′hg

′
t . We 

illustrate the two kinds of duplications in Fig. 2.
The motivation for considering floating duplications is 

that gene insertions and gene deletions have been mod-
eled with artificial circular chromosomes before, greatly 
simplifying how to deal with such type of operations. For 
instance, in DCJ model, a deletion of a gene can be seen 
as a DCJ operation that applies two cuts to remove the 
given gene from a chromosome, followed by two joins 
to “repair” the broken chromosome and to circularize 
the deleted gene. A gene insertion is the inverse of this 
operation. This idea was effectively used in the DCJ-indel 
model by Compeau [24].

Note also that our model does not include gene loss. 
The extension to include this evolutionary mechanism 
will be developed in a further work.

Problem statements
The first computational problem we consider is the 
directed SCJ-TD-FD (d-SCJ-TD-FD) distance problem. 
We consider a model of directed evolution in which, 

when comparing two genomes, we assume one, denoted 
by A, is an ancestor of the other genome, denoted by D; 
as the SCJ-TD-FD model does not consider gene losses, 
both A and D have equal gene family content. Moreover, 
we require that the genome A is trivial with respect to D. 
The d-SCJ-TD-FD distance problem asks to compute the 
minimum number of SCJ, TD and FD operations needed 
to transform the ancestral gene order A into the descend-
ant gene order D, denoted by dDSCJ(A,D) . Note that 
formally this way to measure the dissimilarity between 
genomes is not a distance as it is not symmetric, due to 
the assumption of A being trivial with respect to D; it is 
easy to see that symmetry is the only property of a dis-
tance which is not satisfied, so we are dealing actually 
with a quasimetric, although we call it a distance for the 
sake of consistency with the terminology used in stand-
ard genome rearrangement problems.

The second problem we consider is a genome median 
problem, the directed SCJ-TD-FD (d-SCJ-TD-FD) median 
problem. It is defined as follows: given D1, . . . ,Dk ( k ≥ 2) 
(possibly) non-trivial genomes having equal gene family 
content, we want to compute a trivial genome M on the 
same set of gene families, that minimizes

Note that, while generally in genome rearrangement 
models the median of two problem is trivial, as any gene 
order along a parsimonious scenario between D1 and D2 
is a median, it is different in the context of a directed dis-
tance, which motivates this problem.

Last, we consider another genome median problem, 
motivated by the SPP on rooted phylogenies, the rooted 

(1)
k

∑

i=1

dDSCJ(M,Di).

xt xh gt gh yt yh zt zh

xt xh gt gh g′t g′h yt yh zt zh

xt xh gt gh g′t g′h yt yh zt zh

xt xh gt gh zt zh g′t g′h yt yh

Tandem duplication of g

2 cuts, ghg′t and yhzt

2 joins, ghzt and zhg
′
t

xt xh gt gh zt zh yt yhgt ghD

A xt xh gt gh yt yh zt zh

xt xh gt gh g′t g′hyt yh

zt zhxt xh gt gh g′t g′hyt yh

zt zhxt xh gt gh

zt zh

g′t g′hyt yh

Floating duplication of g

2 cuts, g′hg
′
t and yhzt

2 joins, g′hzt and yhg
′
t

xt xh gt gh gt ghD

A

yt yh

zt zh

Fig. 2 (Left) A tandem duplicate of gene g is introduced. The adjacency ghyt has been replaced by g′hyt and an adjacency ghg′t has been introduced. 
In this case the total number of operations to obtain D from A is 5. Note that the number of cut and join operations is dependent on the 
adjacencies of the gene g in A and D. (Right) A floating duplicate of gene g is introduced. An adjacency g′hg

′
t has been added. In this case the total 

number of operations to obtain D from A is 5
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SCJ-TD-FD (r-SCJ-TD-FD) median problem. It takes as 
input (1) k + 1 ≥ 3 genomes, A, D1, . . . ,Dk with equal 
gene family content, such that A is a trivial genome, 
ancestor to the Di s, (2) the gene content ŴM of a median 
genome M which is a descendant of A and an ancestor 
of the genomes D1, . . . ,Dk , and (3) unambiguous orthol-
ogy relations between ŴA and ŴM , and between ŴM and 
the genes of each Di (so one set of orthology relations for 
each Di ). The goal of the rooted median problem is to 
compute a gene order for M (i.e. a set of adjacencies on 
ŴM ) minimizing

Note that in the objective function above, when M is 
compared to A, genes from the same family are indis-
tinguishable, while they are distinguished when M is 
compared to each Di as the provided orthology relations 
between M and each Di are unambiguous. So ŴM can be 
considered as a multi-set in dDSCJ(A,M) and a set in the 
terms dDSCJ(M,Di).

The pairwise distance problem
In this section, we show that the d-SCJ-TD-FD distance 
between A and D can be calculated with the symmetric 
difference between the adjacency (multi)sets of the input 
genomes, with extra terms accounting for the observed 
TD and FD in D. We then provide an alternative formula 
for the distance, that is more amenable to being imple-
mented in a Integer Linear Program (ILP) in the rooted 
genome median problem. Last, we describe a linear 
time algorithm to compute a parsimonious SCJ-TD-FD 
scenario.

The directed SCJ‑TD‑FD distance
Given a gene g, we call a g-linear array a sequence of 
consecutive adjacencies ghgt ; if this sequence forms 
a circular chromosome, it is called a g-circular array. 
Given a genome X, we call an adjacency ghgt an observed 
duplication if g has more than one copy in X. Observed 

(2)dDSCJ(A,M)+

k
∑

i=1

dDSCJ(M,Di).

duplications are part of a g-linear array or a g-circular 
array. Let r(X) be the genome obtained from X by succes-
sively deleting an observed duplication from X, chosen 
arbitrarily, until there remains no observed duplication. 
This corresponds to deleting every ghgt adjacency, except 
that we keep one in the special case in which all copies 
of g are organized in g-circular arrays, as shown in Fig. 3. 
We call r(X) the reduced genome of X.

It is immediate to see that the order in which observed 
duplications are removed does not matter on the result, 
i.e. r(X) does not depend on this order. We define 
t(X) = |X − r(X)| , the number of adjacencies to delete 
to transform X into r(X). Last, for two genomes X and 
Y, we denote by δ(X ,Y ) the absolute difference between 
the number of genes of X and the number of genes of Y. 
Our first main result is given in Theorem 1, which gener-
alizes the SCJ distance formula introduced in [12] in the 
case where A and D are both trivial and with equal gene 
content.

Theorem 1 Let A and D be two gene orders with equal 
gene family content, such that A is trivial with respect to  
D.

We provide in Additional file  1 a complete proof that 
we outline here. We first need to define the notion of 
context conservation of a gene between A and D. Assume 
that a gene g in A is not a telomere (and so there are two 
adjacencies involving g in A, say gtx and ghy ) and there is 
a copy of g in D whose extremities form also adjacencies 
gtx and ghy . We say that the context of g is strongly con-
served between A and D. Note that x and y do not need 
to belong to trivial gene families and there might be sev-
eral copies of x, y, g in D that conserve the context of g in 
A. Assume now that the context of g is not strongly con-
served between A and D, but both adjacencies involving 
g, gtx and ghy , are present in D using different copies of g. 
We say that the context of g is weakly conserved between 
A and D. Again x and y need not to be trivial gene fami-
lies and there might be several occurrences of adjacencies 

(3)
dDSCJ(A,D) = |A− r(D)| + |r(D)− A| + 2δ(A, r(D))+ t(D).

at ah bt bh bt bh bt bh ct ch dt dh et eh fh ft fh ft gt gh et eh ht hh ht hh

at ah bt bh ct ch dt dh et eh fh ft gt gh ht hh

X

r(X)

Fig. 3 An example of the reduced genome r(X), of the genome X. Note that an instance of hhht is retained so that r(X) contains at least one 
representative of gene family h. All observed duplications are removed in r(X). Here, t(X) = |X − r(X)| = 5
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gtx and ghy in D. Last, if the context of g in A is neither 
strongly nor weakly conserved, and so at most one adja-
cency involving g in A is also present in D, then we say 
the context of g is not conserved. The principle of the 
proof is to proceed by induction on the number of dupli-
cate copies in r(D) (which is equal to δ(A, r(D)) ) and to 
pick an arbitrary gene from a non-trivial gene family for 
which one duplicate is introduced using an FD if the con-
text is strongly conserved, a TD if it is weakly conserved 
and either an FD or a TD (both can be chosen arbitrarily) 
if the context is not conserved.

We now introduce an alternative formula to compute 
the directed distance, easier to implement in an ILP than 
the formula provided in Theorem 1 as it does not require 
to consider the reduction r(D) of D. To rewrite dDSCJ(A,D) , 
we introduce an indicator variable αg ,AD , where αg ,AD = 1 
if ghgt is an adjacency present in both A and D, but all its 
occurrences in D were removed while reducing D. For-
mally, αg ,AD = 1 if ghgt ∈ A ∩ D and ghgt /∈ r(D) ; other-
wise αg ,AD = 0 . We then obtain the following result, whose 
proof is also provided in Additional file 1.

Corollary 2 Let A and D be two gene orders with equal 
gene family content, such that A is trivial with respect to 
D.

Computing a parsimonious scenario
It follows from Theorem  1 that computing the d-SCJ-
TD-FD distance can be done in linear time in the size of 
the considered genomes A and D. However, unlike in the 
case where both A and D are trivial, this does not imply in 
a straightforward way an algorithm to transform A into D, 
due to the fact that an adjacency multi-set can have several 
realizations. Nevertheless, we present a simple algorithm 
that computes a parsimonious scenario in terms of duplica-
tions, cuts and joins from A to D, Algorithm 1. 

Algorithm 1 Compute an SCJ-TD-FD parsimonious scenario from gene order A to
gene order D

Reduce D into r(D)
Let A′ = A, D′ = D and i = 1
while D′ is non trivial do

Let g be an arbitrary gene from A′ having more than one descendant gene in D′.
Relabel g by gi.
if the context of g is strongly conserved then

Relabel the corresponding copy of g in D′ by gi.
Add to A′ a single-gene circular chromosome g.

else if the context of g is weakly conserved then
Create an extra copy of gi with a TD.
Relabel a copy of g involved in adjacency gtx in D′ by gi.

else if one adjacency of g is conserved in D′ then
Relabel the corresponding copy of g in D′ by gi.
Add to A′ a single-gene circular chromosome gi.

else
Relabel an arbitrary copy of g in D′ by gi

Add to A′ a single-gene circular chromosome gi.
i = i+ 1

Compute an SCJ scenario from A′ to D′.
Recreate in D′, the linear and circular arrays removed when reducing D into r(D).

(4)

dDSCJ(A,B) = |A− D| + |D − A| + 2δ(A,D)

− 2t(D)+ 2
∑

g∈ŴA

αg ,AD

Theorem 3 Let A and D be two gene orders with equal 
gene family content, such that A is trivial with respect to 
D and D has nD genes. Algorithm 1 computes a parsimo-
nious SCJ-TD-FD scenario that transforms A into D and 
can be implemented to run in time and space O(nD).

The correctness of the algorithm follows immedi-
ately from the fact that it implements exactly the rules 
described to compute the SCJ-TD-FD distance (proof of 
Theorem  1). The linear time and space complexity fol-
lows from the fact that these rules are purely local and 
require only to check for the conservation of adjacencies 
in both considered genomes. Every iteration of the while 
loop in Algorithm 1 takes place only if there is a non-triv-
ial gene family left in D′ . The maximum number of itera-
tions is the number of duplicates genes, nd = nD − nA 
which is O(nD) when nD ≥ nA . In each iteration, we check 
if the context of the chosen gene g is strongly conserved, 
weakly conserved or not conserved. This involves trying 
to match the adjacencies of g in A with those in the adja-
cency set of D′ that involve a copy of g. This can be done 
in constant time, with a linear time preprocessing of the 
data. Hence, the worst-case time complexity is O(nD).

The directed and rooted median problems
The directed median problem
Let us remind that the directed median problem asks, 
given k non-trivial genomes D1, . . . ,Dk , k ≥ 2 , with equal 
gene family content, to find a trivial genome M, such that 
∑k

i=1 dDSCJ(M,Di) is minimized. We denote by ŴM the 
gene content of M, that is the set induced by the multi-
sets ŴDi . We denote by n the total number of adjacencies 
in the Di s, n =

∑k
i=1 |Di| and by m the total number of 

gene families, i.e. m = |ŴM |.
We first assume that the genomes D1, . . . ,Dk are 

reduced. We define the score s(M) of a trivial genome M 
as

Using the identity |M − D| + |D −M| = |M| + |D|

−2|M ∩ D| , that holds even if the D is a multi-set, and 
denoting Nd =

∑k
i=1 (2δ(M,Di)+ |Di|) , we derive

Therefore, minimizing s(M) is equivalent to maximizing 
2
∑k

i=1 |M ∩ Di| − k|M|.

s(M) =

k
∑

i=1

dDSCJ(M,Di)

=

k
∑

i=1

(|M − Di| + |Di −M| + 2δ(M,Di))

s(M) = Nd −

(

2

k
∑

i=1

|M ∩ Di| − k|M|

)

.
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For a given adjacency a, let γi(a) be 1 if a ∈ Di , and 0 
otherwise. The score of a genome with a single adjacency 
a is s({a}) = Nd −

(

2
∑k

i=1 γi(a)− k
)

 . This motivates 
the following approach, similar to the breakpoint median 
algorithm of [8]. We build a graph G where the vertices 
are the extremities (head and tail) of the genes of ŴM , and 
weighted edges are defined as follows: for any edge 
e = (x, y) the weight of e is w(e) = 2

∑k
i=1 γi(e)− k . So 

any edge that does not appear in at least half of the 
descendant genomes has a negative weight. Any match-
ing on G defines a trivial genome, having the adjacencies 
corresponding to the edges in the matching; so from now 
we identify matchings in G and trivial genomes on ŴM . 
We denote the weight of M as w(M) =

∑

e∈M w(e) . It fol-
lows that

Therefore, solving the MWM problem on G solves the 
d-SCJ-TD-FD median problem.

To handle the case where some Di are not reduced, we 
rely on the fact that the genomes can be reduced first 
without impacting the optimality of a trivial genome 
obtained by a MWM. Combined with the tractability of 
computing a MWM [25], and the fact that any edge that 
does not correspond to an adjacency observed in a Di has 
negative weight and thus does not contribute to a MWM, 
we obtain the following result.

Theorem  4 Let k ≥ 2 and D1, . . . ,Dk be k genomes 
having equal gene family content. Let m be the num-
ber of gene families and n the number of adjacen-
cies the Dis. The directed SCJ-TD-FD median problem 
with input D1, . . . ,Dk can be solved in time and space 
O(mn log2(m)).

The rooted median problem is intractable
We now describe two results for the rooted SCJ-TD-
FD median problem. We remind that this problem 
asks, given k + 1 non-trivial genomes A,D1, . . . ,Dk , 
k ≥ 2 , with equal gene family content, the gene con-
tent ŴM of a median genome and unambiguous 
orthology relations between ŴA and ŴM and ŴM and 
the ŴDi s, to find a gene order M on ŴM , such that 
dDSCJ(A,M)+

∑k
i=1 dDSCJ(M,Di) is minimized. As M 

might be non-trivial with respect to A but is trivial with 
respect to the Di s, we denote its adjacencies by Ma in the 
former case ( Ma might be a multi-set of adjacencies) and 
M in the later (a set of adjacencies); so M is induced by 
distinguishing the copies of a same gene family in Ma . 
For a given adjacency xy on ŴM , we denote by a(x)a(y) 

s(M) = Nd −
∑

e∈M

(

2

k
∑

i=1

γi(e)− k

)

= Nd − w(M).

the adjacency on ŴA obtained by replacing x and y by 
their respective orthologs in A, denoted by a(x) and a(y).

Our first result is that, unlike the directed SCJ-TD-FD 
median problem, the rooted SCJ-TD-FD median prob-
lem is NP-complete. Our second result is a simple ILP to 
solve the rooted SCJ-TD-FD median problem.

Theorem  5 The rooted SCJ-TD-FD median problem is 
NP-complete.

The full proof of this result is given in Additional file 1. 
We provide here an outline of the proof, together with 
some comments on the specific instances for which the 
rooted median problem is shown to be intractable. We 
show that finding the optimal gene order for M is NP-
complete even for k = 2 , by reduction from the 2P2N-
3SAT problem [26] (This problem is sometimes called 
the (3,B2)-SAT problem, where B2 indicates that the lit-
erals are balanced with two occurrences each). In 2P2N-
3SAT, we are given n variables x1, . . . , xn and m clauses 
C1, . . . ,Cm , each containing exactly 3 literals. Each varia-
ble xi appears as a positive literal in exactly 2 clauses, and 
as a negative literal in exactly 2 clauses. Note that since 
each variable occurs in exactly 4 clauses and each clause 
has 3 literals, m = 4n/3 . Then we show that from a given 
instance of 2P2N-3SAT, we can design a polynomial size 
instance of the r-SCJ-TD-FD median such that the ini-
tial 2P2N-3SAT instance is satisfiable if and only if there 
exists a median genome M satisfying

We can make two interesting observations about our 
hardness proof:

• In our reduction from 2P2N-3SAT, none of the 
considered genomes contain a g-tandem array or a 
g-chromosome. So our result also implies the hard-
ness of the rooted median problem where the dis-
tance between two genomes A and D, where A is 
an ancestor of D, is computed in a simpler way as 
|A− D| + |D − A| + 2δ(A,D) , i.e. does not contain a 
term related to r(D).

• The reduction we provide involves k = 2 and two 
descendant genomes D1, D2 such that D1 = D2 . It is 
somewhat striking to remark that computing the dis-
tance between A and D is tractable, while computing 
the distance between A and two identical copies of D, 
constrained by the gene content and orthology rela-
tions of an intermediate genome is hard. However 
our hardness proof does not imply that computing a 
median between A and D1 (with given gene content 

dDSCJ(A,Ma)+ dDSCJ(M,D1)

+ dDSCJ(M,D2) ≤ 2|D1| − 2n+ 4δ(M,D1).
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and unambiguous orthology relations with A and 
D1 ), and we even conjecture it is tractable.

An integer linear program for the rooted median problem
We now describe a simple Integer Linear Program (ILP) 
to solve the rooted median problem. The key idea is again 
to convert the rooted median problem into an instance 
of a MWM problem, albeit with certain additional con-
straints. More precisely, in this approach we define a 
complete graph G on the extremities gh and gt of every 
gene g in ŴM . A pair of distinct extremities defines an 
edge and thus a potential adjacency in M, which is thus 
defined by a matching in G. Each edge is assigned a 
weight that reflects the number of descendant genomes 
which contain the corresponding adjacency. Further, 
each edge is assigned a color that reflects its correspond-
ing adjacency in the ancestral genome A, if any, and the 
number of colors of the selected edges also contributes to 
the weight of the matching defining the median M.

We first use Eq. (4) to reformulate the objective func-
tion of the rooted median problem. The claim below is 
formally proved in Additional file 1.

Claim 1 Minimizing the function Eq.  (2) defining the 
evolutionary cost of a median M is equivalent to maxi-
mizing the following expression:

An interpretation as a colored MWM problem. In 
order to compute |M ∩ Di| , we use again variables γi(e) 
as defined for the directed median algorithm, define a 
graph G over the vertex set ŴM and weighted edges, with 
a weight defined as w(e) = 2

∑k
i=1 γi(e)− (k + 1).

Since M is trivial with respect to every Di , the 
weights for edges e ∈ M in the graph G defined as 
in the directed median problem will account for the 
term 

∑k
i=1 2|M ∩ Di| − (k + 1)|M| in Eq.  (5). How-

ever, this principle does not work with A. Indeed, 
it is possible that x1y1 ∈ M and x2y2 ∈ M such that 
a(x1)a(y1) = a(x2)a(y2) ∈ A . In this situation, only 
one of x1y1 or x2y2 can contribute to |A ∩Ma| , but both 
|x1y1 ∩ A| and |x2y2 ∩ A| are equal to 1. In other words, we 
cannot simply sum the adjacencies of Ma which are pre-
sent in A.

(5)

k
�

i=1



2|M ∩ Di| − 2
�

g∈ŴM

αg ,MDi



+ 2|A ∩Ma| + 2t(Ma)

− 2
�

g∈ŴA

αg ,AMa − (k + 1)|M|.

To address this issue, we introduce the notion of a color 
family (see Fig. 4). Let mA be the number of adjacencies 
in A. Each number from the set {1, 2, . . . ,mA} represents 
a distinct color. We arbitrarily assign a distinct color to 
each adjacency in A. If E(G) is the edge set of G, repre-
senting all possible adjacencies in M, then every adja-
cency in E(G) is assigned a color from {1, 2, . . . ,mA} ∪ {0} , 
consistent with the orthology relations: the adjacency 
xy ∈ M receives color i  = 0 if the adjacency a(x)a(y) is 
present in A and is assigned color i, and color 0 if a(x)a(y) 
is not present in A. The set of adjacencies having the same 
color i form a color family, represented by Ei . We denote 
by C the coloring function E(G) → {0, 1, . . . ,mA} defined 
as described above. Note that a color i contributes exactly 
once to the term |A ∩Ma| if there exists at least one adja-
cency in M that belongs to the color family Ei.

Candidate adjacencies. With the aim to reduce the 
number of edges in the graph to be considered, we show 
that we only need to consider specific adjacencies, which 
we call candidate adjacencies. An adjacency xy is a candi-
date adjacency for the median M if at least 

⌊

k+1
2

⌋

+ 1 
genomes from the set {A,D1,D2, . . . ,Dk} contain xy 
(where here A contains xy if a(x)a(y) ∈ A ). Lemma  6 
below is proved in Additional file 1 and implies that the 
number of adjacencies to consider in our ILP is linear in 
the sum of the sizes of the input genomes.

Lemma 6 There exists an optimal median consisting of 
only candidate adjacencies. Furthermore, when k is even, 
an adjacency which is not a candidate adjacency can not 
be a part of any optimal median.

Let us remark that, as a consequence, the hardness 
of the rooted median problem stems from the fact that 
duplication from M to the Di s can create conflicting 
adjacencies, where a median gene extremity belongs to 
several candidate adjacencies. It is interesting to observe 
that this can happen only due to convergent evolution, 
i.e. the fact that the same adjacency is created indepen-
dently in several Di s. This suggests that in the practical 
context of a limited level of convergent evolution, the 
rooted median problem is actually easy to solve with the 
need to rely on an ILP.

An ILP for the rooted median problem. We can now 
provide the complete ILP formulation to solve the rooted 
SCJ-TD-FD median problem. Let x(e) be the binary deci-
sion variable denoting the inclusion of edge (candidate 
adjacency) e ∈ E(G) in M. Let w(e) be the weight of the 
corresponding edge. Also, let ci be the binary decision 
variable indicating the existence of at least one edge from 
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color family Ei in the median M. From the previous para-
graph, one can write the objective function as

Maximize:

We now describe the constraints of the ILP. The first set 
of constraints concern the consistency of the set of cho-
sen adjacencies, that ensures that each gene extremity in 
M belongs to at most one adjacency, or in other words 
that M is a matching for the graph G (these are the first 
two sets of constraints below). Next, we use an addi-
tional set of constraints to determine the values of ci , 
i = {1, 2, . . . ,mA} . If at least one adjacency of color i is 
present in the median, ci = 1 , otherwise ci = 0 . The fol-
lowing inequalities define these color constraints:

Note that for ci above, the constraints of the type x = ⌈y⌉ 
are not linear, but if x is restricted to be in {0, 1} , it can be 

∑

e∈E(G)

w(e)x(e)+ 2

mA
∑

i=1

ci + 2t(Ma)

− 2
∑

g∈ŴA

αg ,AMa − 2

k
∑

i=1

∑

g∈ŴM

αg ,MDi

(6)
∑

e=(yh,z)

x(e) ≤ 1 ∀y ∈ ŴM

(7)
∑

e=(yt ,z)

x(e) ≤ 1 ∀y ∈ ŴM

(8)ci =

⌈

∑

C(e)=i x(e)

|Ei|

⌉

∀i ∈ {1, 2, . . . ,mA}

replaced by the constraint y ≤ x ≤ y+ ǫ , where ǫ is very 
close to 1, say 0.999. A similar trick can be used for floor 
functions.

In order to compute αg ,uv for every pair (u, v)—where 
either u = A, v = Ma or u = M, v = Di for some i—and 
every gene g ∈ Ŵu , we use some additional constraints. 
Let pv(e) be the binary variable denoting if the adjacency 
e exists in v. We use an indicator variable �g ,uv such that 
�g ,uv = 1 if and only if all copies of g are involved in ghgt 
adjacencies. Consequently, �g ,uv = 1 ensures the exist-
ence of the ghgt adjacency in r(v). Thus, �g ,uv =

⌊

nv(ghgt )
nv(g)

⌋

 . 
Further, we use �g ,uv to indicate if at least one instance of 
ghgt has been observed in v. Thus, we can represent �g ,uv 
as 

⌈

nv(ghgt )
nv(g)

⌉

 . Note here that nv(ghgt) counts the occur-
rences of ghgt adjacencies in v while nv(g) counts the 
number of copies of g in v. Since we already know the 
gene orders of A and each Di , the values of pA(e) and 
pDi(e) are known. Further, pM(e) = x(e) . Thus, we obtain 
the following constraints for every gene g and branch 
(u, v):

(9)�g ,uv =

⌊

nv(ghgt)

nv(g)

⌋

(10)�g ,uv =

⌈

nv(ghgt)

nv(g)

⌉

(11)αg ,uv = min(pu(ghgt),�g ,uv − �g ,uv)

(12)tv(g) = nv(ghgt)− �g ,uv

+1

+1 +1

-1

-1

+1

a b c d

a b1 b2

c d1 d2

a1 b1 d1 c1

a2 d2 c2 b2

a1 (b1)1 c2 b2

d2 a2 d1 (b1)2 c1

A

M

D1 D2

(i) (ii)
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1
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1
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1
t ch
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at
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b2t
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d1h d1t

d2h
d2t

Fig. 4 Part (i) of the figure shows an instance of the rooted median problem. Genomes A, D1 and D2 and the gene content of M are provided. Each 
adjacency in A has been assigned a color family. For instance, any adjacency ahbt in the median belongs to the red family. Part (ii) translates the 
problem into an instance of the colored MWM problem. Only, candidate adjacencies, appearing in at least two out of the three given genomes can 
be seen in the graph. The bold edges, forming a matching on the graph, denote the optimal median. Part (iii) lists the contributions of each of the 
selected edges
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We use the fact that if ghgt /∈ v for some g then 
ghgt /∈ r(v) . Thus, if ghgt /∈ v , �g ,uv = 0 thereby ensuring 
the correctness of constraints to find αg ,uv . Again, note 
that the min function is not linear, but that a constraint 
x = min(y, z) can be replaced by x ≥ y and x ≥ z , assum-
ing that x, y, z ∈ {0, 1}.

Thus, there are |mM | binary variables x(e) where |mM | 
is the number of candidate adjacencies for the median. 
Additionally, there are |mA| binary variables, to account 
for the color of each adjacency in A. Further, for every 
gene g from ŴA or from ŴM , there are 7 variables each, 
used in Eqs. (9–12). All together, there are 2|mM | con-
straints pertaining to existence of median adjacencies, 
|mA| constraints to determine the inclusion of the color of 
each ancestral adjacency and finally 4(|ŴA| + k|ŴM |) con-
straints from (9–12).

Experiments
We now describe two sets of experiments on simu-
lated data. In the first one, we evaluate the ability of 
the directed distance to correctly estimate the number 
of evolutionary events when gene duplications occur 
through segmental duplications (a more realistic model 
than single-gene duplications). In the second set of 
experiments, we evaluate the ability of the rooted median 
to reconstruct an accurate ancestral gene order, again in 
a model where gene duplication is not restricted to sin-
gle-gene duplications. We also describe the results of the 
rooted median ILP on real mosquito genomes data.

The pairwise distance
We ran experiments on simulated instances with the 
aim to evaluate the ability of the d-SCJ-TD-FD distance 
to correlate with the true number of syntenic events. We 
followed a simulation protocol inspired from [15]. The 
code itself was programmed in Python and is available 
via github.1 We first describe the simulation protocol, fol-
lowed by the results we obtained.

We started from a genome A composed of a single 
linear chromosome containing 1000 single-copy genes. 
Then, we transformed genome A into a genome D 
through a sequence of random segmental duplications 
and inversions. We fixed the number N of evolution-
ary events (from 50 to 500 by steps of 50) and the prob-
ability P that a given event is a segmental duplication 
(from 0 to 0.5 by steps of 0.1). A segmental duplication 
is defined by three parameters: the position of the first 
gene of the duplicated segment, the length of the dupli-
cated segment, and the breakpoint where the duplicated 
segment is transposed into; we considered two models of 

segmental duplications, one with fixed segment length L 
(with L taking values in {1, 2, 5} ) and one where for each 
segment, L is picked randomly (under the uniform dis-
tribution) in {1, 2, 5, 10} . The breakpoints for inserting 
duplicated segments as well as inversions were chosen 
randomly, again under the uniform distribution. For each 
array of parameters, we ran 50 replicates.

For each instance, we compared two quantities to the 
true number of cuts and joins in the scenario transform-
ing A into D, which is roughly four times the number 
of inversions plus three times the number of segmental 
duplications: first we compared the full SCJ-TD-FD dis-
tance, defined as stated in Theorem 1 and the number of 
cuts and joins ( |A− D| + |D − A| ). Figure 5 illustrates the 
results we obtained.

We can make several observations from these results. 
The first one is a general trend that both measured quan-
tities (the number of cuts and joins and the full SCJ-TD-
FD distances) scale linearly with the true number of cuts 
and joins. The second observation is that, as expected, 
the slope and y-intercept of the graphs depend from both 
the frequency of duplications and the length of the dupli-
cated segments. This leaves open the question of using 
the SCJ-TD-FD distance as an estimator of the number of 
cuts and joins in an evolutionary model where the prob-
ability of duplication compared to rearrangements (that 
can be estimated for example from reconciled gene trees 
and adjacency forests [23]) is given and the length of 
duplicated segments is expected to follow a well defined 
distribution.

The rooted median problem
Next, we ran experiments on simulated data in order to 
evaluate the ability of the ILP to correctly predict the 
gene order of the median genome. The input for the pro-
gram, including gene orders for the ancestor genome A 
and the descendant genomes Di , along with the orthol-
ogy relations, generated using the ZOMBI genome simu-
lator [27]. The ILP was solved using the Gurobi solver.

Simulations parameters. Our input genomes consisted 
of one ancestor A and two descendants D1 and D2 . We 
started with the ancestral genome A as a single circular 
chromosome consisting of 1000 genes, belonging to dif-
ferent gene families (so without duplicate genes). The 
genome A evolved into the median genome M using 
duplications, inversions and translocations. The genome 
M was further evolved along two independent branches 
to yield the descendant genomes, D1 and D2 . The total 
number of rearrangements (inversions + translocations) 
from A to M and from M to Di was varied from 100 to 
500, in steps of 100. The parameter for duplication events 
was kept constant throughout the experiments. The aver-
age number of duplicated genes, over all three branches 1 https ://githu b.com/cchau ve/SCJ-with-SGD.

https://github.com/cchauve/SCJ-with-SGD
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collectively, was found to be 362.8 with a standard devia-
tion of 82 genes. Considering the number of duplication 
events, the mean and standard deviation of segmental 
duplications over the three branches was 72.6 and 15.8 
respectively. The lengths of segmental duplications, 
inversions and translocations were controlled using spe-
cific extension rates. These extension rates (all between 0 
and 1) are the parameters of a geometric distribution dic-
tating the respective lengths. Thus, the length of the seg-
ment being acted upon would be 1 if the extension rate 
parameter is set to 1 and would increase as the parameter 
value reduces. In our experiments, the inversion, translo-
cation and duplication extension rates were 0.05, 0.3 and 
0.2 respectively. For each setting (number of rearrange-
ments) we ran 40 simulations.

Results. For each simulation, we compared the optimal 
median according to the ILP to the actual median gen-
erated by the simulator. For each group, we measured 
the average precision and recall statistics. The ILP pre-
dicts the median genome in the form of its adjacency set. 
Thus, in this context, precision refers to the ratio of num-
ber of correctly predicted adjacencies to the total num-
ber of adjacencies in the computed optimal median. On 
the other hand, recall represents the ratio of the correctly 
predicted adjacencies to the total number of adjacencies 
in the actual median. For each instance, we measured the 
number of candidate adjacencies used in the ILP. Addi-
tionally, to evaluate the effectiveness of our approach, we 
also measured the number of adjacencies in the solution 
which were common to all genomes ( A,D1 and D2 ) and 
those common to only two of the three. An overview of 
the results is given in Table 1.

The ILP rarely predicts an erroneous adjacency to be a 
part of the optimal median, with a near-perfect precision. 
This property is observed throughout the experiments 
irrespective of the number of rearrangement events. On 
the other hand, the ILP predicts more than 90% of the 
median for lower rates of rearrangement and a decreasing 
trend is observed as the number of rearrangement events 
increase. This can be partly attributed to the decrease 
in the number of candidate adjacencies. In general, the 
number of candidate adjacencies is lower than the true 
number of adjacencies in the median, as including other 
adjacencies may result in a non-optimal median. This, 
however, emphasizes the practicality of Lemma 6, as the 
number of adjacency variables is significantly reduced. 
It can also be observed that the number of adjacencies 
common to all genomes decreases with increase in rear-
rangements. These adjacencies will be preferred by the 
ILP on account of higher weight.

Another notable observation is the increase in the 
number of optimal solutions with larger rates of rear-
rangement. This correlates naturally with the decrease 

in the number of adjacencies which are common to all 
genomes. For only 100 rearrangements, the ILP outputs 
a unique optimal median in most runs, with an overall 
average of 2.3 solutions. However, the average number of 
optimal solutions exceeded 3000 in case of 500 rearrange-
ments. Despite a pool of optimal solutions, the SCJ dis-
tance between the actual median and an optimal median 
does not vary by much. If the SCJ distance between the 
actual median and a randomly chosen optimal median is 
D, then the distance between the actual median and any 
other optimal median was observed to stay within the 
range (D − 2,D + 2) . For most of our simulations, the 
ILP output an optimal median in under a minute, with 
the exception of the case with 500 rearrangement events.

Conclusions
In this work, our first main result is the introduction of 
a simple variant of the SCJ model that accounts for sin-
gle-gene duplications, for which computing the directed 
distance from a trivial ancestral genome to a non-trivial 
descendant genome can be done in linear time. This is a 
somewhat surprising tractability result as some relatively 
similar problems are known to be intractable, such as the 
(1,  2)-exemplar breakpoint distance [19]. The require-
ment of considering a trivial ancestral genome and of 
assuming unambiguous orthology relations is crucial 
toward our tractability result and is motivated by appli-
cations toward the small parsimony problem. Moreover 
it is relevant toward applications as recent progress in 
reconciliation algorithms make it realistic to assume that 
the gene content and orthology relations are known at all 
nodes of a given species phylogeny; we refer to [22, 23, 
28] for a series of papers describing this approach and 
applying it on real data. From a theoretical point of view, 
it remains to be seen if these assumptions can be lifted, 
although this makes the problem very close to general 
breakpoint distance with duplicated genes, that has been 
shown to be intractable [29]. Generally, we believe it is 
worthwhile, both from a theoretical point of view and an 
applied point of view, to push the tractability boundaries 
of the SCJ models toward augmented models of evolu-
tion (here accounting for duplications).

Our other results deal with the median genome; we 
show an intriguing tractability boundary between the 
directed median problem and the rooted median prob-
lem, while in the SCJ model with no duplicated genes, 
both problems are equivalent and the median problem 
is tractable [12]. An interesting feature of our hard-
ness proof is that it relies on two identical descend-
ant genomes, showing a sharp tractability boundary 
between the directed pairwise distance problem and the 
rooted median of three genomes problem. Similarly to 
other SCJ-related median problems, our rooted median 
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Fig. 5 Experimental results, for four duplications parameters—single-gene segmental duplication (top row), two-genes segmental duplication 
(second row), five-genes segmental duplications (third row), variable length segmental duplications (bottom row)—and two measured 
quantities—inferred cuts and joins (left column) and SCJ-TD-FD distance (right column)



Page 13 of 14Mane et al. Algorithms Mol Biol            (2020) 15:8  

problem aims at selecting adjacencies among candidate 
adjacencies which are seen in a majority of the given 
input genomes; nevertheless the possibility of conflicting 
median adjacencies due to convergent evolution is at the 
heart of the intractability of the problem. A consequence 
of the hardness of the rooted median problem is that it 
likely implies the hardness of the Small Parsimony Prob-
lem in augmented SCJ model, when the considered spe-
cies phylogeny is rooted. Again this contrasts with the 
classical SCJ model for which the small parsimony prob-
lem is tractable [12].

To address the intractability of the rooted median 
problem, we provide a simple Integer Linear Program 
that computes an optimal median. Without surprise, we 
observe that our ILP outputs a more reliable estimate 
of the median in case of lower rates of rearrangements. 
Moreover, we observe that despite having many more 
optimal solutions for higher rates of rearrangement, the 
distance of a random solution from the actual median 
does not deviate by much. This suggests that in practice, 
the rooted median problem in our model is relatively 
easy to solve.

Our work leaves several open questions. The most 
natural one asks if our model can be extended to include 
other kinds of duplications, other than single-gene dupli-
cations. It was shown in [20] that Whole-Chromosome 
Duplications can be handled, although it is much more 
complicated to compute the distance. It is then relevant 
to ask if an intermediate model accounting for a wider 
range of duplication mechanisms can lead to tractable 
distance problems. Accounting for gene duplication nat-
urally leads to considering gene loss. So far our results 
assume all genomes have equal gene family content, 
which combined with the requirement of unambigu-
ous orthology relations, imply that we do not consider 
gene losses. It is not difficult to model gene loss in our 
model, using cuts and joins to extract lost genes into 
single-gene circular chromosomes, the symmetric opera-
tion of a floating duplication. However, in preliminary 
experiments on real and simulated data (not shown), 
this leads to a dramatic increase of the distance, driven 
by gene losses. The question of modeling gene losses with 

SCJ was previously raised in [20] and is still largely open. 
Last, the question of counting or sampling optimal evo-
lutionary scenarios, both between two genomes or in the 
median problem comes to mind. When two genomes are 
considered, it was shown in [16] that the exact number 
of SCJ scenarios can be computed in polynomial time 
through simple recurrences, that also lead to a sampling 
algorithm; for the median problem, it follows immedi-
ately from the algorithm described in [12] that optimal 
medians can be counted and sampled easily (actually 
there is a unique optimal median if k is odd). However, 
both techniques do not extend immediately to our model, 
especially because an adjacency multi-set does not have a 
unique realization as a gene order with duplicated genes. 
So counting and sampling optimal evolutionary scenar-
ios in our model is an open question deserving further 
research.
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