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Abstract 

Geometric comparisons of binding sites and their electrostatic properties can identify subtle variations that select dif-
ferent binding partners and subtle similarities that accommodate similar partners. Because subtle features are central 
for explaining how proteins achieve specificity, algorithmic efficiency and geometric precision are central to algorith-
mic design. To address these concerns, this paper presents pClay, the first algorithm to perform parallel and arbitrarily 
precise comparisons of molecular surfaces and electrostatic isopotentials as geometric solids. pClay was presented 
at the 2019 Workshop on Algorithms in Bioinformatics (WABI 2019) and is described in expanded detail here, espe-
cially with regard to the comparison of electrostatic isopotentials. Earlier methods have generally used parallelism to 
enhance computational throughput, pClay is the first algorithm to use parallelism to make arbitrarily high precision 
comparisons practical. It is also the first method to demonstrate that high precision comparisons of geometric solids 
can yield more precise structural inferences than algorithms that use existing standards of precision. One advantage 
of added precision is that statistical models can be trained with more accurate data. Using structural data from an 
existing method, a model of steric variations between binding cavities can overlook 53% of authentic steric influences 
on specificity, whereas a model trained with data from pClay overlooks none. Our results also demonstrate the parallel 
performance of pClay on both workstation CPUs and a 61-core Xeon Phi. While slower on one core, additional proces-
sor cores rapidly outpaced single core performance and existing methods. Based on these results, it is clear that pClay 
has applications in the automatic explanation of binding mechanisms and in the rational design of protein binding 
preferences.
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Background
Molecular shape and electric fields have a strong influ-
ence on binding specificity. At binding interfaces, com-
plementary molecular shapes can accommodate some 
ligands and hinder those that fit poorly. Electric fields 
attract molecules with complementing charges and repel 
others. This connection, between molecular recognition 

and the complementarity of surfaces and fields, is evi-
dence by which human investigators infer the roles of 
individual mechanisms in function. Comparison soft-
ware can make similar inferences. Some methods detect 
proteins with geometrically conserved binding sites, 
supporting the inference that they bind similar partners 
[1–11]. Other methods find variations in electric fields 
near binding sites, suggesting that they accommodate dif-
ferently charged ligands [12–15]. These techniques, and 
their potential for large scale and accurate applications, 
depend on rapid and precise algorithms for representing 
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and comparing molecular surfaces and electrostatic 
isopotentials.

This paper presents pClay, an algorithm that uses fine-
grained multi-threaded parallelism and mathematically 
exact representations to achieve more rapid and precise 
comparisons. In addition to simply making single com-
parisons faster and more precise, the importance of pClay 
is that it enhances methods for integrating many com-
parisons into informed structure-function inferences. 
For example, binding sites that prefer the same ligand 
can exhibit many small steric variations. Binding sites 
that prefer different ligands often have larger variations, 
because the differences in steric hindrance accommodate 
different binding partners. Distinguishing small varia-
tions between similar binding sites from the bigger vari-
ations between different ones can be challenging without 
some context for what is “large enough”. In such cases, a 
statistical model, trained on many small variations, can 
build a frame of reference that can predict atypically 
large variations that influence specificity [16–19]. The 
same statistical approach can identify large variations in 
electrostatic fields that influence specificity [20]. By con-
textualizing individual comparisons within a framework 
built from many comparisons, statistical models offer 
ways to make structure-function inferences that would 
otherwise rely on human expertise. We hypothesize that 
statistical models can produce more accurate inferences 
when trained with data produced with pClay, which rap-
idly performs more precise comparisons than existing 
methods.

pClay performs comparisons using operations for 
Constructive Solid Geometry (CSG) (Fig.  1a). These 
operations, which include unions, intersections and dif-
ferences, can be combined like arithmetic operators to 

sculpt geometric solids that represent molecular struc-
ture. For example, the union of large spheres centered at 
ligand atoms can represent the neighborhood of a ligand 
(Fig.  1b, c). The difference between the spheres and the 
molecular surface of a receptor can describe the solvent-
accessible binding cavity in the receptor (Fig. 1d, e). The 
CSG difference between one binding cavity and another 
is the cavity region that is solvent accessible in one pro-
tein and inaccessible in the other (Fig. 1g). This sculptural 
approach inspires both the name pClay, a portman-
teau for “protein” and “clay,” and also the solid geometry 
approach to the analysis of protein shape and charge that 
pClay enhances. Here, the contribution of pClay is not to 
introduce CSG-based comparison, which was done ear-
lier (e.g. [13, 21]), but rather to demonstrate that rapid 
and precise comparison can significantly enhance the 
speed and accuracy of inferences drawn with CSG-based 
comparisons.

As input, pClay can accept protein structures as atomic 
coordinates in three dimensions, which may arise from 
crystallography or computational molecular models. It 
can also accept geometric solids, such as spheres, tet-
rahedra, and the regions within surfaces derived from 
structural data, including molecular surfaces and elec-
trostatic isopotentials. pClay can be used to output 
detailed geometric differences between binding cavities, 
conserved regions of solvent accessibility in binding cavi-
ties, regions of electrostatic complementarity, and other 
structure-function annotations. The regions and surfaces 
identified by CSG operations are all outputs of pClay, 
and they make a dual prediction: They predict both the 
structural influence on specificity (e.g. the red region in 
Fig. 1g) as well as the steric mechanism by which it acts. 
Likewise, the CSG-based comparison of electrostatic 
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Fig. 1 CSG operations on Protein Structure Data. a Basic CSG operations. Input solids are yellow with dotted outlines. Output solids have unbroken 
outlines. b Sample ligand with grey atoms and white bonds. Light blue circles are spheres centered on each atom. c The CSG union of all spheres 
in each ligand. d The molecular surface of two proteins (blue, red) in complex with each ligand, shown as sphere unions (black outlines). e CSG 
difference of the sphere unions minus molecular surfaces (dotted outlines), shown with molecular surfaces (blue and red, no outline) and envelope 
surfaces (black outline). f Intersection of differences with envelope surfaces (light blue and red, black outlines). g The CSG difference between 
binding cavities reveals a variation in steric hindrance that causes differences in binding preferences
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isopotentials predicts both influential elements of protein 
structure that and an electrostatic mechanism of action.

These two-part predictions yield important utility in 
applications that we have demonstrated earlier. CSG 
differences between the S1 subsites of the trypsins and 
elastases can identify threonine 226 which, in elastases, 
sterically hinders the longer substrates preferred by 
trypsins that might otherwise bind [21]. That region of 
hindrance is only 50% larger than a carbon atom ( 31Å3 ), 
illustrating how important it is to have the precise CSG 
operations enabled with pClay. A similar approach can 
identify gatekeeper residues in the tyrosine kinases, 
which are single amino acids that sterically hinder larger 
drugs [22]. This application is illustrated in Fig. 2, where 
a larger phenylalanine gatekeeper can interfere with the 
binding of imatinib, a larger tyrosine kinase inhibitor.

We have also observed that a CSG-based comparison 
of electrostatic isopotentials can reveal single amino 
acids crucial for selecting ligands in the in the cysteine 
proteases [13] and for stabilizing the three interfaces of 
the SMAD trimer [14]. In such cases the contribution of 
a single amino acid to the electrostatic field of the pro-
tein is subtle, but the difference is still detected in CSG 
comparisons of electric fields at the binding site. The 
correctness of CSG-based predictions was further dem-
onstrated when a blind prediction of the electrostatic 
importance of arginine 235 was later verified experimen-
tally on a study of the ricin toxin [15]. Since no large data-
bases currently link individual mutations to biophysical 
mechanisms of action, a larger scale validation of the 
CSG-based approach is not possible. To these smaller-
scale studies, however, pClay contributes parallelism, 

for enhanced throughput, and precision, up to machine 
limits, to ensure that subtle but influential details are not 
overlooked.

The precision that pClay achieves derives from geomet-
ric solids that have analytical representations. pClay can 
assemble these primitives into solvent excluded regions, 
which we call molecular solids. The boundary of a molec-
ular solid is the classic molecular surface, also known as 
the solvent excluded surface or Connolly surface, which 
was originally developed by Richardson and others [23, 
24]. While we can construct molecular solids with CSG 
operations on many individual primitives, pClay exploits 
molecular properties to sidestep those operations and 
achieve greater efficiency. The resulting molecular solids 
avoid the “photocopier effect,” where multiple CSG oper-
ations can accumulate geometric errors. They can also be 
translated into triangle meshes at an arbitrary degree of 
precision.

pClay also performs CSG operations on any closed tri-
angle mesh as if it was an exact geometric solid. Much 
like VASP-E, this capability enables CSG operations 
to be performed on electrostatic isopotentials, such 
as those produced by GRASP2 [25]. In such cases, the 
electrostatic isopotential, a surface, is used to define the 
boundary of an electrostatic solid. Since electrostatic 
solids and molecular solids are simply geometric solids 
with different origins, pClay can express and compute 
CSG operations that combine electrostatic isopotentials 
and molecular surfaces. These data can be used to iden-
tify electrostatic influences on specificity based on their 
locality to binding cavities and their complementarity 
with other charges, as we have shown in the past [13–15]. 

Fig. 2 Steric hindrance in the tyrosine kinase active site induced by a large gatekeeper residue. A transparent cross section of the c-Kit tyrosine 
kinase is shown in gray (pdb: 1t46). The inhibitor imatinib (magenta sticks) is co-crystallized with c-Kit in the active site (dark gray channel). 
Interleukin-2 tyrosine kinase (pdb: 1snx) is structurally aligned to the c-Kit kinase but not shown for clarity, except for its gatekeeper residue F435 
(cyan spheres). This phenylalanine gatekeeper residue is substantially larger than the threonine gatekeeper of c-Kit, creating steric hindrance that 
prevents longer inhibitors like imatinib from binding in Interleukin-2. Identifying substitutions that influence binding preferences through steric 
hindrance is one important application of CSG-based comparison methods like pClay
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Also, because triangle meshes are treated as exact solids, 
electrostatic isopotentials never lose precision after their 
original approximation into meshes.

pClay boosts computational efficiency with parallel-
ism. As a result, CSG expressions can be evaluated more 
rapidly than they would have been on a single proces-
sor core. We achieve parallelism in pClay in a number of 
ways, most notably by recasting Marching Cubes, a tra-
ditional method for implementing CSG operations [26, 
27], into a series of parallel breadth first searches (BFS). 
In pClay, we use BFS to traverse cubic lattices and iden-
tify contiguous regions of cubes within defined boundary 
regions. These breadth first traversals can be distributed 
evenly across arbitrary numbers of threads. By dividing 
the computation in this way, parallelism can make com-
parisons faster and also enable more detail to be con-
sidered. This advancement stands in qualitative contrast 
with existing efforts to parallelize structure comparisons 
(e.g. [4]), where throughput was increased without bene-
fiting precision. To demonstrate the parallel scalability of 
our method, pClay was tested on both modern multicore 
processors as well as on a Xeon Phi, a manycore coproc-
essor with 61 cores.

In our experimental results, pClay achieved precise, 
scalable performance on range of problem sets. First, we 
demonstrate that pClay generates molecular solids that 
are essentially identical to those generated by existing 
algorithms. Second, we show that pClay exhibits substan-
tial parallel speedup on a range of CSG operations rep-
resenting both realistic and artificial applications. Finally, 
we demonstrate an example application of pClay, where a 
statistical model trained on data from pClay has substan-
tially improved prediction accuracy over the same model 
trained with data from earlier methods. These results 
point to a range of applications in automatically inferring 
the functional role of steric and electrostatic elements of 
protein structure in molecular recognition.

Related work
VASP [21] and VASP-E [13] were the first algorithms to 
use CSG-based comparison to identify elements of pro-
tein structures that influence specificity and connect 
them to steric and electrostatic mechanisms of action. 
pClay advances on these methods by enabling repre-
sentations of molecular structures that are exact up to 
machine precision and by performing CSG operations 
in fine-grained parallelism. By distributing comparisons 
over over multiple processors, pClay enables compari-
sons to be performed at larger scales and at degrees of 
precision that were previously impractical. While pClay 
is the first algorithm to integrate arbitrary precision 
and parallelism to perform comparisons of molecular 

structure, aspects of these capabilities exist separately in 
methods for other applications.

One such application is molecular visualization, which 
has often made use of high precision molecular surfaces 
for visual clarity. Molecular surfaces, also known as sol-
vent excluded surfaces or Connolly surfaces, are com-
monly generated as a collection of points [24, 28], arcs 
[23] or as triangle meshes [25, 29–32] in visualization 
applications (e.g. [33, 34]) and for calculating solvent 
accessible surface area (e.g. [35]). For these applica-
tions, existing methods could be modified to generate 
molecular surfaces at arbitrary degrees of precision, but 
most operate at a fixed precision because more detail is 
unnecessary: Meshes that are finer than those needed 
for visualization are more difficult to render on the same 
hardware, they take longer to generate, and the added 
refinement may not be visible to a user. They also yield 
biologically insignificant refinements to calculated sur-
face area. While the design of pClay has similarities to 
these methods, especially in that it is also inspired by 
the Shrake-Rupley approach [28], it uses arbitrary preci-
sion representations to support comparison rather than 
visualization. In the comparison scenario, arbitrarily fine 
resolutions yield more precise comparisons and more 
accurate predictions, as we shall demonstrate in our 
results.

Several recent methods do generate arbitrarily precise 
representations of the molecular surface. Techniques 
using NURBs [36], alpha shapes [37] or spherical coor-
dinates [38, 39] fall into this second category. Generally, 
these techniques for surface generation have been used 
for visualization and not for computing CSG operations, 
though NURBs and perhaps others are compatible with 
CSG applications. In this regard, pClay explores new 
applications of CSG on arbitrarily precise represen-
tations of molecular surfaces. pClay also differs from 
existing methods because it generates molecular solids 
from collections of three dimensional solids rather than 
by connecting surface patches or generating surface 
approximations.

The comparison of protein structure is frequently par-
allelized because large scale comparisons can be used to 
build statistical models and scan for remote homologs. 
MASH [4] was the first such parallel comparison algo-
rithm and it demonstrated that parallel distributed 
protein structure comparison could refine motifs as geo-
metric search terms for remote homologs, and it achieves 
a superlinear speedup in doing so [4]. Parallel-Probis 
achieves parallel speedups for the direct parallelization 
of large database searches [40]. More recent methods use 
cloud based resources to make parallel structure search 
more accessible to other users [41]. In contrast to these 
efforts to perform more comparisons more quickly, pClay 
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uses parallelization different to add higher precision as 
well as faster performance.

For applications in computer assisted design, algo-
rithms for visualizing the output of CSG operations 
have been parallelized to create efficient user interfaces 
(e.g. [42]). These efforts do not generate an explicit sur-
face as pClay does, nor do they yield analyzable volume 
data. CSG operations may be decomposed into compo-
nents and processed in parallel (e.g. [43] ), for additional 
performance.

Methods
As input, pClay accepts a collection of geometric solids 
and an expression of CSG operations. We convert the 
CSG expression into a binary tree, a CSG tree, where the 
nodes of the tree are geometric solids. The input solids, 
which include spheres, spindles, tetrahedra, molecu-
lar surfaces or triangle meshes, are leaves on the CSG 
tree, while the result of CSG operations are the non-leaf 
nodes. The final result of all operations, the root node, 
is the output. pClay can also generate a closed triangu-
lar mesh at user-defined resolutions to approximate the 
boundary of the output.

To perform CSG operations, pClay implements a 
parallel version of Marching Cubes [26] (the  “Paral-
lel marching cubes” section), which we summarize 
below. Our method requires three basic functions to 
be performed by every geometric solid. These func-
tions are containsPoint(), intersectSegment(), and find-
SurfaceCubes(). Given any point p in three dimensions, 
containsPoint(p) determines exactly if p is inside or 
outside the solid. A point exactly on the surface is said 
to be inside the solid. Second, given a line segment s, 
intersectSegment(s) determines all points of intersection 

between the surface of the operand and s, as well as the 
interior or exterior state of each interval on the segment. 
Finally, given a cubic lattice l that surrounds the primi-
tive, findStartingCubes(l) finds a few cubes of the lattice 
that are surface cubes, having at least one corner inside 
and one corner outside the solid. These cubes are used to 
initiate a parallel breadth first search for all surface cubes, 
called findAllSurfaceCubes(), which is implemented once 
for all primitives and described in  the   “Finding all sur-
face cubes” section. To implement each leaf node it is 
thus sufficient to describe how these basic functions are 
implemented for that solid. Non-leaf nodes implement 
the basic functions as logical operations, as we will detail 
later.

Below, we first describe how the output approximations 
are generated using a parallelization of Marching Cubes 
and how we find all surface cubes beginning the output 
from the starting cubes generated by the basic function. 
We next explain how the three basic functions are imple-
mented for every primitive. Finally, we detail how the 
basic functions are implemented in non-leaf nodes.

Parallel marching cubes
As input, Marching Cubes accepts a set of geometric 
solids (Fig.  3a), which we will refer to as operands, and 
a CSG expression tree to be performed on the operands. 
It also accepts a resolution parameter in angstrom units 
that specifies the degree to which the result of the CSG 
expression should be approximated in the output.

We begin by defining l, an axis aligned cubic lattice sur-
rounding the input operands, where each cube has sides 
equal to the user-specified resolution parameter (Fig. 3b). 

Fig. 3 a Input operands, shown in red and green solids, with black outlines. b Cubic lattice surrounding operands (gray). c, f Surface cubes for both 
operands (gray boxes). d, e, g Several steps of floodfill propagation (starting at yellow circle, following yellow arrow). i Corner points of each surface 
cube (joined gray squares) tested for exterior (yellow) or interior (red) state. j Segments that cross the boundary of the output surfaces (Black 
lines). k Intersection points (white circles) where the segments intersect the output surface. l lookup table representing three dimensional surface 
constructions with different edge intersection patterns. m Triangles (black lines) approximating the intersection points (gray). n Final output surface, 
black lines
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This step is performed by examining the sizes of all oper-
ands and the related CSG operations.

Once the lattice is defined, we invoke 
findStartingCubes(l) on each input solid (Fig.  3c, f ). 
The surface cubes identified are provided as input to 
findAllSurfaceCubes(), which identifies all remaining 
surface cubes of all inputs solids in parallel (Fig.  3h). 
The process of identifying surface cubes for all input 
solids also necessarily determines the interior/exterior 
state of the points on these cubes in relation to specific 
solids. We then compute the interior/exterior state of 
these points in relation to all other solids in an embar-
rassingly parallel manner. Once this assessment is 
made for any point, we can access whether that point 
is inside or outside the output region (Fig. 3i). In this 
way, we find the subset of cubes that contain a corner 
inside and a corner outside the output region.

Next, on each cube of the output surface, we identify 
edges that connect one corner that is inside the output 
region to one that is outside (Fig. 3j). Since these edges 
must pass through the output surface, we call segInter-
sect() on the root node to find the point of intersection 
between the edge and the output surface (Fig. 3k). This 
process is parallelized across the list of edges, ensuring 
that the calculation is never duplicated when dealing 
with adjacent cubes.

Finally, once intersections for every edge on every 
surface cube are determined, triangles are generated in 
each cube following a lookup table (Fig.  3l). The col-
lection of all resulting triangles form a closed triangu-
lar mesh that approximates the output region (Fig. 3m, 
n).

Finding all surface cubes
findAllSurfaceCubes() accepts a cubic lattice l (Fig. 3b), 
a list of starting cubes c (e.g. Fig.  3c,f ), and a primi-
tive p for which to find all remaining surface cubes. 
We perform a parallel floodfill algorithm to identify 
the remaining surface cubes: Each available thread is 
assigned a surface cube. Each thread then tests cubes 
adjacent to the assigned cube to find any that are also 
on the surface of the input solid (e.g. Fig. 3d). This test 
is performed by calling containsPoint() on the corners 
of the adjacent cube. If at least one corner is inside the 
input solid and another corner is outside, the adjacent 
cube is stored on a queue of upcoming cubes. Once all 
cubes adjacent to the initial surface cubes have been 
either added to the queue or discarded, all threads are 
then directed to find cubes adjacent to those still on 
the queue (e.g. Fig.  3e), and so on, until the queue is 
empty, and all cubes on the surface of the input solid 
have been identified. Duplicate entries onto the queue 

are eliminated by recording previously-examined cubes 
on a hash table.

Input solids (leaf nodes)
pClay supports several kinds of simple and complex sol-
ids for CSG operations. These are spheres, tetrahedra, 
spindles, molecular surfaces and polyhedral meshes. 
Each solid type must support the three basic functions: 
containsPoint(), intersectSegment(), and findSurface-
Cubes(). Thus, to describe the implementation of these 
solids, we describe how each method is implemented for 
the solid.

Spheres
Spheres (Fig.  4a) are defined by center point and 
radius. containsPoint(p) is implemented by determin-
ing if the distance from a point p to the center point 
of the sphere is at most equal to the radius. To com-
pute intersectSegment(s), we recast the problem on the 
plane coplanar with the segment and the center of the 
sphere, where it reduces to the trivial problem of find-
ing intersections between a line and a circle. In the rare 
case where the segment intersects the sphere exactly at a 
point of tangency, two artificial points of intersection are 
generated at a trivial separation to maintain topological 
consistency. findStartingCubes() is implemented by iden-
tifying the cube that contains the center of the sphere. 
From this center cube, we step outwards, along adjacent 
squares, in the six orthogonal directions until we find six 
cubes that are partially inside and partially outside the 
sphere (e.g. Fig. 3c, f ).

Tetrahedra
Tetrahedra (Fig.  4b) are defined by four points in 
space. containsPoint(p) is implemented by determin-
ing if the point p exists on the correct side of the four 
half-planes that define the faces of the tetrahedron. 
intersectSegment(s) is implemented by identifying points 
of intersection between a given segment and each tri-
angle face of the tetrahedron. In the rare case where the 
segment intersects the tetrahedron at a point of tangency 
to an edge or to a corner, two artificial points of inter-
section are generated at a trivial separation to maintain 

Fig. 4 a A sphere. b A tetrahedron. c A spindle



Page 7 of 20Georgiev et al. Algorithms Mol Biol           (2020) 15:11  

topological consistency. Where the segment is colinear 
with the edge or face of the tetrahedron, the interval 
returned is the interval of overlap. Finally, findStarting-
Cubes() is implemented by first identifying the cubes that 
contain each corner of the tetrahedron. In some cases, 
these cubes do not have both a corner that is inside and 
a corner that is outside the tetrahedron. In that case, we 
generate the vector from the tetrahedron corner to the 
center of the opposite face of the tetrahedron, we find the 
face of the corner cube that this vector passes through, 
and identify the cube on the other side. We then repeat 
our check for interior and exterior corners on that cube, 
repeating again as necessary until we reach the center of 
the opposite face. We repeat this process for each of the 
four corner points, and if no surface cube is identified, 
none are returned.

Spindles
Spindles (Fig.  5a) define the solvent excluded region 
between two atoms that are too close to permit a sphere 
representing a solvent molecule to pass between them 
(Fig.  5b). “Broken” spindles (Fig.  5c) occur when the 
edge of the solvent sphere can pass beyond the center-
line of the two atoms. Conceptually, spindles are the vol-
ume within a cylinder minus the volume within a coaxial 
torus. We define spindles by center point, perpendicular 
vector, major radius, and minor radius taken from the 
torus (Fig. 5d), and end cap positions along the perpen-
dicular vector (fig.  5e). The center point is the perpen-
dicular projection of the center of the solvent sphere onto 
the segment between atom centers. The perpendicular 
vector points from the center point towards the center 
of one atom. The major radius is the radius of the circle 
defined by the center of the solvent sphere as it rotates 
about the two atoms. The minor radius is the radius of 
the solvent sphere. The endcaps are circles perpendicular 
to the perpendicular vector that are defined by the point 
of tangency between the solvent sphere and the atoms, as 

the solvent sphere rotates about the atoms. The boundary 
surface of a spindle is defined by the end caps and else-
where by the interior curve of the torus (Fig. 5d).

To implement containsPoint(p), note that the spindle 
is rotationally symmetric about the perpendicular vec-
tor. Thus, a plane K can be defined coplanar to p and the 
perpendicular vector of the torus. In K, p is inside the 
spindle only if it is inside the rectangle that defines the 
rotational cross section of the cylinder and also outside 
the circle that defines the rotational cross section of the 
torus.

intersectSegment(s) is computed by first setting up 
the calculation by translating the center of the spindle to 
the origin and rotating its axis to align it with the x axis. 
The segment s is translated and rotated with it. We can 
describe the torus aligned to the x axis as follows:

where R is the major radius, and r is the minor radius of 
the torus. In the torus equation, we substitute x, y and z 
with the line expressions x0 + tdx, y0 + tdy, andz0 + tdz , 
where x0, y0, z0 are segment starting points, and t param-
eterizes the line containing the line segment. The result 
of this substitution is a quartic equation on t, and roots of 
the equation will be parameters on the segment at points 
of intersection between the segment and the torus. We 
converted this equation into a monic quartic using Max-
ima, a computer algebra system [44].

To find the solutions of this equation, we produce the 
Frobenius companion matrix of this quartic polynomial. 
The roots of Eq.  1 are the eigenvalues of this matrix. 
Complex eigenvalues correspond to nonexistent points 
of intersection between the segment and the torus, while 
real eigenvalues correspond to intersection points on 
the torus. We find these intersection points and elimi-
nate any intersections that are outside of the cylinder. 
Separately, we also find intersections with the end caps 
of the spindle, treating them first as infinite planes and 

(1)(x2 + y2 + z2 + R2
− r2)2 − 4R2(y2 + z2) = 0

Fig. 5 a Spindle. b Formation of a spindle (gray) in a simple molecular surface defined on two atoms (red) and a solvent sphere (yellow). The 
perpendicular projection of the center of the solvent sphere onto the interatomic axis defines the center point. c “broken” spindle. d Torus defining 
some characteristics of a spindle, including center point (black dot, center), perpendicular vector (vertical arrow), major radius (arrow from center 
point to horizontal ellipse), minor radius (diagonal arrow from horizontal ellipse to torus surface. e Cylinder (light blue with black outline)
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then determining if the intersection point is within the 
circle on the plane. Intersections between the segment 
and the endcaps or between the segment and the torus 
are returned as intervals where the segment is inside the 
spindle.

findStartingCubes() is implemented by first generating 
the segment between the centers of the endcaps. The lat-
tice cube containing one centroid is identified, and if it 
is not a surface cube, the adjoining cube, through whose 
face which the segment passes, is identified as the next 
cube to examine. This process is repeated until either 
the segment ends at the other centroid of a surface cube 
has been found. In the case where the spindle is broken 
(Fig.  5d), two segments are generated, starting at one 
endcap centroid and moving towards the other endcap 
centroid, but ending at the center.

Molecular solids
pClay generates molecular solids by positioning struc-
tural components with the power diagram [45]. This 
approach follows the classic methods for generating 
molecular surfaces, such as CASTp [37], MSMS [29], 
GRASP2 [25], which also use power diagrams or similar 
constructs. For this reason, we paraphrase our approach 
here, expanding on points that differ from classic meth-
ods. As in the earlier methods, our approach represents 
water molecules as solvent spheres, which can be of any 
given radius. By calling basic functions from simpler 
primitives, pClay achieves an efficient implementation 
of the basic functions for the entire molecular solid with-
out describing it as a CSG operation of many individual 
primitives.

We begin with an input file from the Protein Data Bank 
(PDB). Using atomic coordinates and Van der Waals radii 

for each atom, we first compute a power diagram with 
REGTET [46]. The power diagram divides three dimen-
sional space into cells corresponding to each atom of 
the input. The size of a cell relates to the Van der Waals 
radius of the atom, through the power function. Using 
the power diagram, we construct a topologically dual 
geometric graph (Fig. 6a), which has a vertex at the center 
of each atom and an edge between any vertices that cor-
respond to adjacent cells. This dual graph defines the 
location of the primitives that will comprise the molecu-
lar solid. In sequential stages, we generate all primitives 
of the same type in parallel, starting with sphere primi-
tives, then spindles, tetrahedra, and so on.

At every vertex of the dual graph, we create sphere 
primitives with the appropriate Van der Waals radius of 
each atom (Fig. 6b). Next, we examine every edge on the 
dual graph and generate a spindle between the atoms on 
at the endpoint of each edge, except for overlong edges 
that are longer than the sum of Van set Waals radius 
of the endpoint atoms and the diameter of the solvent 
sphere (Fig.  6c, d). Once all spindles are completed, we 
identify all tetrahedra in the dual graph that lack an over-
long edge and we generate a tetrahedron primitive for 
each one (Fig. 6e).

Next, we identify triangles on the dual graph that are 
not between two tetrahedra (Fig.  6f ). These triangles 
define triplets of atoms that may be on the molecular 
surface. To determine whether the atoms are on the 
surface, we place a solvent sphere tangent to all three 
atoms (Fig.  6g). If the solvent sphere does not collide 
with any other atoms, we create a negsphere: a sphere 
primitive in the tangent location in the same size as the 
solvent that describes a region of the solvent outside 
the molecular surface. We also generate a tetrahedron 

Fig. 6 Molecular Surface Construction. a Dual graph of a power diagram on four atoms (graph edges shown with black lines, graph vertices 
shown as corners). b Sphere primitives from atoms (teal) shown with dual graph. c Atoms (transparent yellow) with one spindle (teal). d Atoms 
with spindles corresponding to all edges of the dual graph. e Tetrahedron primitive (teal) with atoms (yellow). f One triangle of the dual graph 
(bold lines, black circles) that is not between tetrahedra. g Solvent sphere (yellow) tangent to three of the atoms (teal). h New tetrahedron (teal) 
with corners in the center of the three atoms of the triangle and the solvent sphere (yellow). i Cup region inside the new tetrahedron and outside 
the solvent sphere (teal) shown with three atoms of the triangle (yellow). j Cup, shown with three adjacent spindles (teal) and three atoms of the 
triangle (yellow). k Finished molecular solid
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with corners on the triangle and at the center of the 
negsphere (Fig.  6h). The region inside this tetrahe-
dron and outside the negsphere is both inside the sol-
vent excluded region and not occupied by spindles or 
atoms or other tetrahedra. We call this concave subset 
of a tetrahedron a cup (Fig. 6i), and describe cups as a 
negsphere-tetrahedron pair. The concave surface of the 
cup is continuous with the three adjacent spindles and 
atoms (Fig. 6j). Once all triangles that are not between 
two tetrahedra have been examined for the presence of 
a cup, the combination of spheres, spindles, tetrahedra 
and negspheres form a molecular solid (Fig. 6k).

To support the three basic functions, we store all of 
these primitives in a data structure for rapid range-
based lookup. First, we generate a bounding box for 
each primitive. Next, we generate a lattice of cubes, 
where each cube is 2 angstroms on a side. Finally, we 
associate each primitive with all lattice cubes that 
intersect its bounding box. These associations act as a 
hashing function that enables us to rapidly identify any 
primitives nearby a given cube in the lattice. Since real 
molecules have finite atomic density, and since primi-
tives are constructed from atoms and between atoms, 
the number of primitives associated with any cube is 
finite. As a result, a hashing function based on the lat-
tice achieves algorithmically constant time lookup of 
nearby primitives.

A) containsPoint(p) Given a point p, if p is outside the 
coarse lattice, then we immediately return false, because 
p must be outside the molecular surface. If not, we deter-
mine which cube c of the coarse lattice contains p. Next, 
we identify all primitives associated with c. We use the 
containsPoint() function of each associated primitive 
to determine if p is inside the primitive. If p is inside a 
negSphere, then p is outside the molecular surface. if p 
is inside any other primitives, then p is considered inside 
the molecular surface. If p is not inside any primitives, it 
is outside.

B) intersectSegment(s) Given a segment s, we generate 
a list of cubes C that contain some interval of s. Next, we 
generate a list of primitives P associated with the cubes 
in C. We then query each primitive p in the list P for an 
interval of intersection between p and s using the inter-
sectSegment() method of each primitive. The output 
intervals generated are the union of the intervals in tetra-
hedra, spindles and spheres minus the union of intervals 
inside negspheres.

C) findStartingCubes(l) During the construction of 
the molecular solid, we record the points of tangency 
between all negspheres and atom spheres. For each of 
these points, we identify the lattice cubes of l that con-
tain them. We also generate starting cubes from all spin-
dles and isolated spheres in the protein structure, calling 

findStartingCubes() on each of these primitives. From 
these cubes, we return only cubes that exhibit one corner 
inside and one outside the molecular solid.

Polyhedral meshes for electrostatic analysis
pClay performs CSG-based comparisons of electrostatic 
isopotentials by representing them as polyhedral meshes 
that are interpreted as geometric solids. Beginning with 
a pdb file, we provide the atomic coordinates to DelPhi 
[47], a widely used program for producing finite dif-
ference solutions to the Poisson-Boltzmann equation. 
DelPhi produces an electrostatic potential field that esti-
mates the electrostatic potential at points within and sur-
rounding the provided structure. Next, we use VASP-E to 
analyze the field and generate an isopotential surface at 
a given threshold k. When k is positive, the surface sur-
rounds positively charged with electrostatic potential 
equal to or larger than k. When k is negative, the surface 
describes negatively charged regions with potential equal 
to or less than k. When evaluating the electrostatic com-
plementarity of two interacting molecules, we evaluate 
the CSG intersection of a positive isopotential from one 
molecule and the negative isopotential from the other 
molecule, and vice versa. As we showed in earlier work 
[13], amino acid substitutions that cause large changes in 
complementarity can identify residues that have a strong 
electrostatic role in binding specificity.

The surface generated by VASP-E is a closed polyhe-
dral surface composed of triangles, which pClay inter-
prets as a geometric solid (Fig. 7a). To be able to perform 
CSG operations on mesh primitives, we prepare it by, 
first, constructing a cubic lattice surrounding the mesh 
with cube size equal to the resolution (Fig. 7b). Second, 
in parallel, each triangle of the mesh is associated with 
any cube in the lattice it passes through, generating a 
hash table for looking up triangles in a given cube. In this 
process, all cubes in the lattice are classified as empty or 
non-empty: Cubes containing triangles are called non-
empty, and the remaining cubes are empty (Fig.  7c). 
Third, using a parallel breadth first search, the non-empty 
cubes are categorized into connected components, where 
non-empty cubes that share a face are considered part of 
the same connected component (Fig.  7d). Through par-
allel breadth first search, we also categorize empty cubes 
into connected components (Fig. 7e).

Next, we determine whether connected components 
of empty cubes lie nested within each other, based on 
adjacent non-empty cubes. This assessment is computed 
from the outside inwards: The cubes at the edge of the 
lattice are exterior by definition; the empty cubes on the 
other side of the first set of nonempty cubes are always 
interior, and so on. We apply this alternating assignment 
process to each group of nested empty cubes, checking 
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for topological abnormalities. An abnormality may 
arise if a given triangle mesh has an internal void with 
a boundary so close to the surface that they exist within 
a single lattice cube, then empty cubes of the void could 
be incorrectly assigned. We check for these cases by gen-
erating a line segment between sets of empty cubes and 
counting the number of intersections that occur with 
triangles in the mesh. An odd number of intersections 
implies that the two sets of empty cubes have opposite 
interior/exterior status, while an even number implies 
that they are the same. The result is a categorization of all 
connected components of empty cubes as either “empty-
interior” or “empty-exterior”.

ContainsPt(p) Beginning with an input point p, we 
first find the lattice cube that contains it. If p is outside 
the lattice, or inside an empty-exterior cube, then con-
tainsPt() returns false. If p is in an empty-interior cube, 
then true is returned. Finally, if p is inside a non-empty 
cube, 5 line segments are randomly generated between p 
and the centers of nearby empty cubes. We then count 
the intersections between these line segments and tri-
angles of the input mesh. For segments connecting to 
empty-interior cubes, an even number of intersections 
votes that p is interior; an odd number of intersections 
votes that p is exterior. Segments connecting to empty-
exterior cubes generate opposite votes for interior and 
exterior status. Once all segments are examined, votes 
are counted, and the majority is used to determine if p is 
interior or exterior.

intersectSegment(s)  Beginning with a segment s 
as input, we first determine all lattice cubes that inter-
sect the segment, and then retrieve all triangles associ-
ated with these cubes. Next, we find all the intersections 
between s and the triangles. Using containsPt(), we deter-
mine the interior/exterior status of the first endpoint of 
the segment, then use it’s status to determine the inte-
rior/exterior status of the intervals between intersections 
along s.

findStartingCubes(l)  Given an input lattice l that is 
distinct from the lattice m constructed for the Polyhe-
dral Mesh primitive, we must identify starting cubes in 
l. We perform this process by selecting cubes c from the 
nonempty cubes in m, making sure that every connected 
component of nonempty cubes yields at least one cube in 
c. Taking the cubes in c, we find cubes in l that overlap 
with those in c, and then use containsPt() to determine 
if they have corners both inside and outside the mesh. 
The cubes with corners inside and outside the mesh are 
returned as starting cubes.

CSG operations: union, intersection, and difference
A CSG operation node represents the outcome of a CSG 
operation on its operand nodes. Thus, it is responsible 
for fulfilling the three basic functions as if it was a primi-
tive, and it implements those functions by calling on its 
operand nodes. We refer to the operand nodes in the text 
below as A and B.

ContainsPt(p)  For a given point p, the CSG Union 
returns true if containsPoint(p) returns true on at least 
one operand, and false otherwise. The CSG Intersec-
tion returns true if containsPoint(p) returns true on 
both operands, and false otherwise. The CSG differ-
ence between operands A and B returns true if A.
containsPoint(p) is true and B.containsPoint(p) is false, 
and false otherwise.

intersectSegment(s) For a given segment s, 
intersectSegment(s) on any CSG operation begins by 
separately calling intersectSegment(s) on operands A and 
B, which separately output intervals a and b. The output 
of intersectSegment(s) on a CSG Union is the union of a 
and b, the output on a CSG Intersection is the intersec-
tion of a and b, and the output on a CSG difference is the 
subset of the a that is not in b.

getSurfaceCubes()  Given a cubic lattice l, calling 
getSurfaceCubes() on a CSG union, intersection, or dif-
ference returns the setwise union of cubes returned by 

Fig. 7 Processing Polyhedral Meshes. a Polyhedral mesh (light green), with boundary triangles drawn as black segments. An internal void (white, 
center) with boundary line segments. b A cubic lattice surrounding the mesh. c Non-empty cubes (gray squares) and empty cubes (transparent 
squares). d Two distinct connected components of non-empty cubes (numbered). Two distinct connected components of empty cubes 
(numbered)
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calling A.getSurfaceCubes() and B.getSurfaceCubes(). We 
always return a union of cubes because examining the 
union of cubes can avoid circumstances where a discon-
nected region in the final solid is lost. Performance pro-
filing reveals that considering the union of all cubes is a 
minor aspect of overall performance, except in the case 
of CSG operations that are artificially constructed to cre-
ate many irrelevant cubes.

Evaluating the correctness of molecular surfaces
We evaluate the accuracy of molecular surfaces pro-
duced with pClay by measuring their similarity to sur-
faces produced by the trollbase library, an established 
tool for molecular surface generation in GRASP2 [25], 
VASP-E [13], and MarkUs [48]. Surfaces generated with 
the trollbase library have fixed resolution, while surfaces 
generated with pClay were created at 0.25 Å resolution. 
pClay is capable of substantially finer resolutions, but 
0.25 Å was chosen to create surfaces with similar num-
bers of triangles. Evaluating whether the surfaces gener-
ated are similar in many places is a more stringent test 
because the number of triangles is limited.

First, we compare the volume contained by the surfaces 
using the Surveyor’s Formula [49]. To paraphrase this 
method, the Surveyor’s formula divides any nonconvex 
solid into positive and negative tetrahedra and computes 
the total volume from those tetrahedra. Since compari-
sons of total volume do not strictly prove shape similar-
ity, we also measure the distance between every corner 
of triangle meshes produced by pClay and the nearest 
point on the surface produced with trollbase (Fig. 8). This 
distance is measured even if the nearest point is in the 
middle of a triangle, or on the edge or corner of a trian-
gle, and we call it the displacement distance. To evaluate 
shape similarity, we compute minimum, maximum and 
average displacement distances over whole surfaces.

Comparison of pClay with VASP
To our knowledge, VASP [13] is the only other algorithm 
for comparing molecular and electrostatic solids. VASP 
makes these comparisons by performing CSG operations 
on polyhedral solids, without exact primitives or paral-
lelism. Nonetheless, VASP has demonstrated an ability 
to identify important steric [16, 21, 50] and electrostatic 
[13–15, 51] components of protein structure that control 
specificity. For this reason, we compare both the perfor-
mance and the accuracy of pClay to VASP.

Solid representations of binding cavities
We describe binding cavities as geometric solids using 
CSG operations (Fig.  1). We begin with a collection of 
aligned protein structures and a ligand bound to one 
structure (Fig.  1b). First, we compute the union of 5.0 
Å spheres centered on the ligand atoms (Fig.  1c), to 
describe the neighborhood of the ligand. Next, we gen-
erate a molecular solid from the protein structures with 
a 1.4 Å radius probe sphere (Fig.  1d) to represent the 
region that is inaccessible to solvent. A second molecu-
lar solid is generated with a 5.0 Å radius probe sphere 
to represent the region that is inaccessible to molecular 
fragments larger than 10 Å in diameter (Fig.  1e). This 
envelope solid, developed originally for SCREEN [52], 
defines the exterior boundary of the cavity. The CSG dif-
ference of the sphere union minus the molecular solid 
(Fig.  1e, dotted outlines), intersected with the envelope 
solid (Fig.  1f ), produces the solid representation of the 
binding cavity.

Implementation details
pClay is implemented in C and C++. A C wrapper sup-
ports REGTET [46], a fortran program for computing 
power diagrams. Parallel communication and coordina-
tion was achieved in part with Intel’s Threading Building 
Blocks template library (TBB) employs a work stealing 
scheduler to balance computational loads across multiple 

a
b c

Fig. 8 Computing displacement distances. Two similar but nonidentical polyhedral meshes are shown as orange and blue line segments ending 
in circles. Line segments represent individual triangles, and circles represent triangle corners. At every point on both meshes, the displacement 
distance is the minimum distance to the other mesh, as shown by thin lines with arrowheads at both ends (a, b, c)



Page 12 of 20Georgiev et al. Algorithms Mol Biol           (2020) 15:11 

cores. Benchmarks were performed on a workstation 
with two Xeon E5-2609 CPUs running at 2.5 GHZ, with 
32 GB of ram, and on an attached Xeon Phi 7120P 
coprocessor with 61 cores running at 1.24 GHZ and 16 
GB ram. Xeon Phi and Xeon CPU benchmarks were 
never run simultaneously.

Experimental results
We evaluated pClay by measuring correctness in molecu-
lar solid generation, runtime performance, and accuracy 
of predictions made with pClay outputs. We measured 
the correctness of molecular solids in the  “Accuracy of 
molecular solid generation” section, comparing outputs 
from pClay to molecular surfaces generated by estab-
lished software. In the “Parallel Performance and Scaling” 
section, runtime performance was compared to VASP, an 
established software package that performs similar CSG 
operations. Parallel scaling was measured on both Xeon 
CPU and Xeon Phi hardware. Finally, we demonstrate the 
added prediction accuracy yielded by statistical models 
with data from pClay relative to VASP in the  “Evaluat-
ing pClay on existing applications” section. Experimental 
datasets used for this work are detailed in Appendix B.

Accuracy of molecular solid generation
While the generation of molecular surfaces is not the 
primary purpose of pClay, accurate comparisons require 
accurate molecular solids. To evaluate the molecular sol-
ids produced by pClay, we compared them to molecular 
surfaces generated with the trollbase library, which gen-
erates surfaces for several widely used software tools, 
including GRASP2 [25], MarkUs [48], and VASP [21]. 
The 100 sequentially diverse protein structures of Dataset 
A were used for this comparison.

First, we compared the volume within surfaces gener-
ated by pClay to the volume within surfaces generated by 
trollbase. Surfaces produced by pClay contained .00173% 
greater volume, on average, than those generated with 
trollbase. The largest volume difference was observed 
between surfaces generated for yeast RPN14 (pdb: 3VL1, 
chain A). That percentage difference was .02343%, and 
it arose from many small variations, accumulating to a 
total difference of 11.594Å3 . The pClay surface contained 
49, 460Å3 and the trollbase surface contained 49, 471Å3.

Second, we measured displacement distances through-
out surfaces generated with pClay and those of the same 
protein generated with the trollbase library. Molecular 
surfaces approximated from solids produced with pClay 
were polyhedral meshes with an average of 197,718.54 
points. The average displacement distance over all sur-
face points, averaged over all proteins, was 0.00383 Å. 
Average displacement distance varied only within a 

narrow range, having a standard deviation of 0.0004 Å. 
The smallest average displacement distance, observed 
on a UVB resistance protein (pdb: 4DNU, chain A) was 
0.00315 Å and the largest average displacement distance, 
observed on a segment of an acetylcholine receptor (pdb: 
1A11, chain A) was .00506 Å. Over the entire dataset, 
the average maximum displacement distance was .13619 
Å. The largest maximum displacement distance in the 
entire dataset was .22024 Å, observed on proto-oncogene 
C-FOS (pdb: 2WT7, chain A, shown in Fig.  9). In this 
case and in others, the reason that maximum displace-
ment on any protein can even rise to these modest lev-
els stems from the fact that very thin spindles can occupy 
volume inside a lattice cube without occupying any cor-
ner of the cube, preventing it from being part of the tri-
angular mesh output.

Overall, the volume within of molecular surfaces gen-
erated with pClay and trollbase are nearly identical and 
the distances between the two surfaces, evaluated at 
many points, are very close. These results demonstrate 
the pClay produces very accurate solids.

Parallel performance and scaling
We evaluate the runtime performance of pClay by 
measuring the time required to perform two categories 
of CSG operations. We compared pClay performance 
to that of VASP on the same CSG operations. For both 
methods, runtimes included the time necessary to gener-
ate triangulated meshes of the output, in addition to the 
CSG operations themselves, even though pClay does not 
require it. We distinguish Xeon CPU cores from Xeon 
Phi cores by referring to them as CPU and PHI cores.

Fig. 9 Close-in comparison of a molecular surface from pClay (teal) 
and trollbase (transparent yellow) generated from proto-oncogene 
C-FOS, (pdb: 2WT7). The notch where the surfaces are most distant 
yielded the largest displacement distance in Dataset A
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The first category of CSG operations was a set of 
unions on the 30 randomly generated primitives of 
Dataset B, with mesh outputs to be generated at resolu-
tions 1.0 Å, .5 Å, .25 Å and .125 Å. 30 primitives were 
selected to evaluate the performance of pClay in sce-
narios at least as challenging as in existing applications, 
which used approximately 20 primitives (e.g. [21]). CSG 
trees of these unions were balanced binary trees, but 
imbalanced trees yielded essentially identical runtimes. 
Since VASP does not use primitive representations, 
triangle meshes nearly identical to the primitives of 
Dataset B were provided as inputs to VASP. pClay and 
VASP runtime data, on between 1 and 8 CPU cores, 
are shown in Fig.  10a. On a single CPU core, pClay 
required .113 s to compute the CSG union on the 30 
primitives of Dataset B at 1.0 Å resolution, whereas 
9.492 s were required for a single core to compute the 
same union at .125 Å resolution. As the number of 
CPU cores increased to 8, runtime rapidly diminished 
to .03 s to compute the union at 1.0 Å resolution, and 
1.465 s to at .125 Å. In contrast, single-threaded VASP 
required 3 s to compute union on 30 primitives at 1.0 Å 
resolution, and 64 s at .125 Å resolution. It is clear that 
pClay outperforms VASP, the current state of the art, 
on this union of geometric primitives.

We ran the same union operations on 8, 16, 32, and 60 
Xeon Phi cores. Due to the slower speed of PHI cores 
relative to CPU cores, runtimes were slower even though 
the same number of computing threads were used in 
some cases. As the number of utilized cores increased, 
runtimes exhibited sublinear improvement (Fig.  10b), 

because communication overhead increases with the 
number of parallel threads. Runtimes for unions on 
coarser resolutions improved less than for finer resolu-
tions. This difference in parallel speedup (Fig. 10c) arises 
from the fact that the problem size for coarser resolutions 
is already quite small and communications and setup 
time outweigh the advantages of parallelism. In contrast, 
finer resolutions create more computation to be divided, 
justifying the costs of communications and setup.

The second category of CSG operations followed the 
method illustrated in Fig. 1 to represent binding cavities 
as geometric solids. This method, developed and tested 
in earlier work [21], was applied to the serine proteases 
in Dataset C at .25A resolution. This resolution was 
selected because it is more detailed than resolutions used 
in existing work while remaining practical for compari-
son against VASP. Figure 10d illustrates the runtimes for 
generating the binding cavities. Cavity generation on a 
single CPU core completed in between 493 seconds and 
643 seconds. Scaling up to 8 CPU cores, the same process 
required between 149 and 233 seconds. In comparison, 
single threaded VASP required between 499 and 538 sec-
onds to perform the same work. While single threaded 
pClay was slower than VASP on one case, it became 
nearly two minutes faster in all cases by adding a second 
thread of computation, and faster still when adding more 
cores. Resources like this would be commonly available 
in most computers today.

The cavity generation experiment was rerun on 8, 16, 
32, and 60 Xeon Phi cores. Again, since individual PHI 
cores are slower than individual CPU cores, runtimes for 

a b c

d e f

Fig. 10 a Time to compute the union of 30 random primitives at varying resolutions and CPU cores. VASP performance (single threaded) is shown 
in vertical bars. b Time spent to compute the unions on PHI cores. c Parallel speedup on PHI cores. d Time spent for pClay to produce several 
binding cavities on CPU cores, compared to single-core VASP. e Time to produce the same cavities on PHI cores. f Parallel speedup of pClay in cavity 
production on varying PHI cores
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the same number of threads were slower on PHI cores. As 
the number of compute threads increased, we observed 
that runtimes fell subtly (Fig. 10e). Substantial increases 
in the number of PHI cores resulted in only modest 
improvements in runtimes (Fig.  10f ). Runtimes on PHI 
cores contrasted from runtimes on CPU cores, where 
performance improved substantially with increases in the 
number of available cores. Since PHI performance scaled 
well on Dataset B, and since the molecular solids and 
spheres used to generate solid representations binding 
cavities are simply large collections of primitives, these 
results indicate that some aspects of the Xeon Phi archi-
tecture may be causing a bottleneck that does not exist in 
the case of CPU cores.

Evaluating pClay on existing applications
The added precision of pClay enhances prediction 
accuracy in existing applications. To evaluate accuracy 
enhancement, we tested one such application by pro-
ducing training data for VASP-S, a statistical model for 
detecting differences in ligand binding specificity with 
steric causes [16]. VASP-S is trained on the volumes of 
contiguous CSG differences, called fragments, that are 
computed from cavities with the same ligand binding 
preferences. This training enables VASP-S to estimate 
the probability (the p-value) that two cavities have simi-
lar binding preferences. If, for a given pair of cavities, p 
is lower than a threshold α , VASP-S rejects the possibil-
ity that two cavities have similar binding preferences and 
predicts that they have different preferences. The VASP-S 
method is paraphrased in Appendix A.

We hypothesize that training the VASP-S model with 
data generated at finer resolutions, which is not possible 
without pClay, will produce more accurate predictions 

than a VASP-S model trained with coarser data. To evalu-
ate this hypothesis, we used cavities from the trypsins 
in Dataset C, which all prefer to bind positively charged 
amino acids. Fragments were computed at the highest 
practical resolution for VASP, 0.25 Å, and at two new 
resolutions, 0.125 Å and 0.0625 Å, that are now possible 
with pClay. Fragments generated at each resolution were 
used as separate training sets for VASP-S, producing 
three separately trained versions of the VASP-S model 
that differ in the resolution of their training data. Next, 
we estimated the p-value of the largest CSG difference 
between every trypsin and every non-trypsin in Dataset 
C, using all versions of the VASP-S model (Fig. 11). Since 
the non-trypsins prefer ligands that are very different 
from those preferred by trypsin, we expect VASP-S to 
produce estimates of p that are below α (0.02).

When trained with data generated at the standard 
0.25 Å resolution, VASP-S predicts that 43 of the 81 
CSG differences between trypsin and non-trypsin cavi-
ties had different binding preferences. There were thus 
38 false negative predictions where VASP-S incorrectly 
overlooked structural differences between cavities with 
different binding preferences. When trained with data 
generated at resolutions of 0.125 Å and 0.0625 Å, VASP-S 
made none of the same false negative prediction errors: 
This result is apparent in Fig.  11 where the yellow line, 
representing the model trained at 0.25 Å resolution inter-
sects the α threshold of statistical significance near the 
center of the figure. In contrast, the red and blue lines, 
which plot p-values from models trained at 0.125 Å and 
0.0625 Å, never cross the α threshold. Thus, statistical 
models trained with data from pClay had a 0% false nega-
tive rate. These results demonstrate that pClay can pro-
vide precision sufficient to ensure that statistical models 

Fig. 11 The p-value of the largest fragment between every trypsin-elastase and trypsin-chymotrypsin pair in Dataset C was estimated using 
training data generated at .0625 Å (blue line), .125 Å (red line), and .250 Å (yellow line). The vertical axis plots p-value, fragments are sorted by 
ascending p-value along the horizontal axis. The black line indicates the α threshold of 0.02. Fragments with p-values lower than 0.02 result in a 
rejection of the null hypothesis and thus a prediction that the elastase or chymotrypsin in the pair has binding preferences that are different from 
that of trypsin. p-values above the threshold do not result in a rejection of the null hypothesis and thus the incorrect presumption that an elastase 
or chymotrypsin has binding preferences similar to trypsin. The finer resolution training data made possible with pClay yielded more accurate 
predictions
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do not lose accuracy from imprecisely generated training 
data.

Conclusions
We have presented pClay, the first parallel algorithm 
for performing CSG analyses of protein structures 
and electrostatic isopotentials at arbitrarily high reso-
lutions. Central to this capability is the use of math-
ematically exact primitives that can be assembled into 
molecular solids and parallel algorithms for computing 
CSG operations with multiple computing cores.

We have shown that the molecular solids produced 
with pClay are nearly identical to molecular surfaces 
generated by existing, widely used software. The vol-
umes of molecular solids were shown to be close to 
those produced by an existing method within thou-
sandths of one percent. When compared at nearly two 
hundred thousand positions, on average, surfaces pro-
duced with pClay differed from surfaces produced with 
an existing method by thousandths of an angstrom on 
average. Wheres the accuracy of earlier methods was 
important for productive visualization, these detailed 
validations, which, to our knowledge, have never been 
performed for existing methods, are more impor-
tant for pClay because they ensure that pClay is mak-
ing accurate comparisons on the molecular surfaces it 
generates.

We have also shown that pClay performs both artificial 
and practical CSG operations efficiently, and that per-
formance scales with more processor cores. Our perfor-
mance evaluation used both Xeon CPUs and a Xeon Phi 
coprocessor. We observed scalable performance on all 
tests, though performance scaled more modestly in the 
case of the Xeon Phi on cavity generation. These results 
show that parallelism can be used to drive both efficiency 
and precision, which can be crucial for applications that 
require a large amount of precise structural analysis.

The combination of parallelism and precision enables 
existing applications of CSG-based comparison to be 
enhanced with greater prediction accuracy. We dem-
onstrated one such enhancement in our results, where 
we used data from pClay to train a statistical classifier 
to predict elements of protein structures that sterically 
cause differences in binding specificity. In comparison to 
training data produced with earlier methods, the training 
data produced with pClay was generated with superior 
geometric precision, leading to more accurate estima-
tion of statistical significance. As a result, false negative 
predictions were eliminated from models using the more 
precise training data. By enhancing precision, pClay ena-
bles existing methods to avoid overlooking elements of 
protein structure that affect specificity.

These capabilities point to applications where steric or 
electrostatic influences on binding specificity need to be 
detected. As high throughput technologies increasingly 
reveal how disease proteins might vary between or within 
individuals, pClay offers the opportunity to examine that 
data and explain how specific elements of protein mod-
els could alter binding, thereby generating individualized 
insights into how drug therapies might be evaded, how 
molecular interactions might change, and how protein 
therapies can be redesigned for improved specificity.

Acknowledgements
Special Issue—Selected papers from WABI2019.

Authors’ contributions
The algorithm was parallelized by BYC. The method for generating an exact 
molecular surface and for performing exact CSG on multiple abstractly 
defined objects was developed by KFD and BYC. The method for represent-
ing exact general polyhedra was developed by GDG. Benchmarking was 
performed by GDG and BYC. The manuscript was written by BYC. All authors 
read and approved the final manuscript.

Funding
This work was funded by in part by NIH Grant R01GM123131 to Brian Chen.

Availability of data and materials
All data is publicly available and reference in Appendix.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Appendix A: VASP‑S: a statistical model of steric 
variation in ligand binding cavities
When examining the molecular surfaces that define the 
geometry of binding cavities, small differences between 
cavity shapes correspond to variations in the pattern of 
steric hindrance in the two cavities. In two binding cavi-
ties, these steric variations can occur in several loca-
tions, where each location has individual potential to 
accommodate or hinder a potential ligand. We refer to 
these variations as fragments, and define each of them 
as a contiguous region of a CSG difference between two 
binding cavities. Where fragments are large (e.g. C–D in 
Fig.  12d), there are large variations in steric hindrance 
that may cause differences in binding specificity, and 
where fragments are small (e.g. A–B in Fig.  12b), the 
variations may be too subtle to hinder binding through a 
steric mechanism.

VASP-S is a statistical model of fragment volume. It is 
trained on the volumes of fragments from cavities that 
have the same binding preferences. It estimates the prob-
ability p that the volume of a given fragment could have 
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arisen from cavities with binding preferences identical 
to those of the training set. If p is close to 1.0, then the 
probability is high that the fragment could have arisen 
from the training set, so we predict that the cavities that 
yielded the fragment exhibit binding preferences similar 
to those of cavities in the training set. If p is less than a 
threshold value α , then the probability is so low as to sug-
gest that the cavities that yielded the fragment are atypi-
cal of the training set. In such cases, we reject the null 
hypothesis that the given pair of cavities have identical 
binding preferences, and predict that they have different 
binding preferences. To paraphrase the VASP-S method 
[16], we will explain how VASP-S works in two stages: 
First, we document how VASP-S is trained, and then we 
explain how VASP-S is used to estimate p-values.

To train VASP-S, we begin with a collection of bind-
ing cavities with identical binding preferences (Fig. 12a). 
All cavities are aligned using the appropriate structure 
alignment software. Whole-structure alignment algo-
rithms like ska [53] can be used for remotely homolo-
gous proteins, or cavity-based alignment software like 
MASH [4] can be used to align only cavities, when pro-
tein folds are totally dissimilar.[4]. This work performed 
alignments with ska. Next, a solid representation of 
every cavity is produced using the method described in 
the  “solid representations of binding cavities” section. 
Then, for every pair of cavities A, B in the training set, the 

CSG differences A–B and B–A are computed (Fig. 12b), 
and we separate individual fragments from each CSG 
difference.

Figure  12c diagrams how fragments can result from 
CSG differences. For example, the CSG difference A–B 
results in three disconnected semicircular regions shown 
in red with heavy black outlines. These differences rep-
resent the many small variations that can occur between 
proteins with identical binding preferences. Even though 
they prefer the same ligand, substitutions in the amino 
acids adjacent to the cavity, differences in rotamer con-
formation or differences from protein breathing can 
create subtle differences that could be observed even 
between two crystal structures of the same protein. In 
practice there can be many dozens of such fragments, 
most of which are too small to have a steric influence 
on specificity. Using a graph method detailed in [17], we 
isolate individual fragments fi and record their volume 
v(fi) . Once we have recorded all v(fi) , we fit a log-normal 
distribution to these volumes to model the range of indi-
vidual differences that could be observed between cavi-
ties with this binding specificity. We scale the height of 
the distribution so that the total area under the curve is 
equal to 1.

To make a prediction on the binding preferences of a 
given cavity D, we first select at random a cavity from the 
training set. In the example in Fig. 12, we select cavity C. 

fragment 
volume

a b c d

e

f

A

B

C

A-B

A-C

C-B

B-A

C-A

B-C

A-B

A-C

C-B

B-A

C-A

B-C

D C-D C

C-D

Fig. 12 a Cavities A, B and C have the same binding preferences with subtle steric differences. b To produce training data, all symmetric CSG 
differences are computed between the training set cavities. c Individual fragments (semicircles) are separated from each CSG difference, and 
their volumes are computed. A log-normal probability density function is fitted to the volume data. d To estimate the probability that a given 
cavity D has similar or different binding preferences, a solid representation of the cavity is first generated (yellow) and symmetric CSG differences 
are computed between D and a randomly selected training set protein C. e The largest fragment found in the CSG differences C − D and D − C , 
is shown in blue. f The log normal distribution enables the p-value to be estimated resulting in high probabilities for small fragments and low 
probabilities for large fragments
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We then generate a solid representation of the cavity in 
D, as before, and align the cavity to that of C in using the 
same alignment method. Next, we compute the CSG dif-
ferences C–D and D–C, and identify the largest fragment 
k (Fig.  12e). D–C also produces small fragments, which 
are not shown in Fig. 12d for brevity. Next, we measure 
the area underneath the log-normal distribution to the 
right of v(k). This area represents the proportion of indi-
vidual differences from the training set that had volume 
larger than k, and thus the probability p of observing an 
individual difference from the training set with volume 
equal to or larger than v(k). Note that even though cavity 
C is part of the training set it does not affect the inde-
pendence of the fragments in D–C because D is com-
pletely independent of the training set; it arises from a 
different protein. If p is large, as in the case of the small 
semicircles (Fig.  12f ), then k would be typical of the 
training set, so we would maintain the null hypothesis 
that cavity D has binding preferences similar to those of 
the training set. However, if p is smaller than a threshold 
of tolerable improbability α , such as 2%, we would predict 
that cavity D is too atypical of the training set, and there-
fore that D has binding preferences that differ from the 
training set.

Appendix B: Data sets used in this study
Dataset A
Three data sets were used to benchmark and demonstrate 
the capabilities of pClay. To test the accuracy of molecu-
lar solids generated by pClay, Dataset A is a diverse 
selection of protein structures. This selection was made 
by using the VAST server [54] to produce sequentially 
nonredundant protein structures with a BLAST p-value 
cutoff of 10e−7. 100 proteins, listed in Table 1 were arbi-
trarily selected from this set.

Dataset B
To demonstrate the parallel scalability of pClay, Dataset 
B was composed of 10 sphere, 5 spindles, and 15 tetra-
hedron primitives. 30 primitives were selected to make 
the CSG operation at least as computationally complex as 
in earlier applications, which used 20 spheres [21]. The 
spheres were defined with a 5 Å radius and centered at 
atom coordinates. While the atoms overlapped very lit-
tle, they were close enough that many overlaps existed 
between the spheres. To produce a scenario at least as 
complex, Dataset B contains randomly selected primi-
tives of different types that are generated inside a 10Å3 
cube.

The positions or corners of each primitive were ran-
domly assigned integer values within specific ranges to 
ensure a large degree of overlap between primitives, as in 
[21]. In addition to reflecting existing applications, large 
degrees of overlap require the basic functions to be run 
up and down the CSG tree, thereby throughly testing 
pClay, whereas a scenario with few overlaps would be less 
challenging.

Spheres were generated with radius between 1 Å and 
3.5 Å. Spindles were generated between spheres that 
were at least 5 Å apart, with radius between 1 Å and 2.5 
Å, and a probe radius between 5 Å and 10 Å. These crite-
ria generate both whole and broken spindles. Tetrahedra 
were generated with between 2.5 Å and 5.0 Å between 
two corners. These ranges created randomized primi-
tives that inevitably overlapped with a convoluted overall 
shape.

These primitives are detailed in Tables 2 and 3.

Dataset C
Finally, to demonstrate the accuracy of predictions made 
with pClay, Dataset C was created as a set of binding 
cavities from a sequentially nonredundant representative 

Table 1 Dataset A: PDB codes of 100 sequentially non‑redundant protein structures

1914A 1DX5I 1LKKA 1V6SA 2CSHA 2QHLC 3F6CA 4DGMA

19HCA 1EAYD 1LUGA 1WMDA 2DBAA 2TRCG 3F8VA 4DNUA

1A11A 1EFYA 1M2RA 1YPQB 2E3WA 2TRCP 3G46A 4DVCA

1A2OA 1FCYA 1MC2A 1ZHNA 2ED0A 2VB1A 3JXBC 4ESPA

1AF6A 1G2BA 1MUWA 1ZK4A 2ETZA 2W72B 3KLOA 4FAYA 

1AG4A 1GCIA 1NA0A 1ZLMA 2GF5A 2WT7A 3KQNA 4FYYA 

1AIEA 1GVPA 1OSDA 2A3VB 2J7ZA 2YUQA 3O79B 4G9SA

1AMMA 1HQSA 1P47A 2ADRA 2JXBA 3A10A 3QM9A 4GCNA

1AY7B 1I2KA 1PN9A 2ANVA 2K0XA 3D9AL 3U25A 4HVWA

1B0BA 1IT2A 1QHQA 2APFA 2NLLB 3DJ9A 3U8OL

1CKAA 1JBEA 1R1PB 2BNUA 2OQ1A 3EG3A 3UBUB

1CL7I 1K3YA 1R64A 2BZZA 2P49B 3ERXA 3VL1A

1DEMA 1K5NB 1S9KE 2C4FU 2Q20B 3F00A 4AJ8A
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subset of the trypsins, chymotrypsins, and elastases. 
These three families of proteins were selected because 
they perform the same catalytic function, the hydroly-
sis of peptide bonds, and because each family prefers to 
hydrolyze peptide bonds following a different kind of 
amino acid. Trypsins prefer to hydrolyze peptide bonds 
after positively charged amino acids, chymotrypsins 
prefer to hydrolyze peptide bonds after large hydropho-
bic amino acids, and elastases prefer to hydrolyze pep-
tide bonds after small hydrophobic amino acids. These 

distinctions represent a useful test set for evaluating the 
accuracy of pClay at distinguishing their active sites.

Beginning with 582 possible structures in the PDB, 
we eliminated one member of any pair of proteins with 
greater than 90% sequence identity, resulting in a selec-
tion of proteins with 47% average sequence identity. This 
process resulted in the structures specified in Table  4. 
Solid representations of the S1 cavity in each protein 
were generated using the method described in Fig. 1f.
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