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Abstract 

Background: We consider two fundamental computational problems that arise when comparing phylogenetic 
trees, rooted or unrooted, with non-identical leaf sets. The first problem arises when comparing two trees where the 
leaf set of one tree is a proper subset of the other. The second problem arises when the two trees to be compared 
have only partially overlapping leaf sets. The traditional approach to handling these problems is to first restrict the 
two trees to their common leaf set. An alternative approach that has shown promise is to first complete the trees by 
adding missing leaves, so that the resulting trees have identical leaf sets. This requires the computation of an optimal 
completion that minimizes the distance between the two resulting trees over all possible completions.

Results: We provide optimal linear-time algorithms for both completion problems under the widely-used Robin-
son–Foulds (RF) distance measure. Our algorithm for the first problem improves the time complexity of the current 
fastest algorithm from quadratic (in the size of the two trees) to linear. No algorithms have yet been proposed for the 
more general second problem where both trees have missing leaves. We advance the study of this general problem 
by proposing a useful restricted version of the general problem and providing optimal linear-time algorithms for the 
restricted version. Our experimental results on biological data sets suggest that completion-based RF distances can 
be very different compared to traditional RF distances.
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Background
A phylogenetic tree, or phylogeny, is a uniquely leaf-
labeled tree that shows the evolutionary relationships 
between different biological entities, generally either 
species or genes. Phylogenies may be either rooted or 
unrooted. The leaf nodes of a phylogeny represent the 
extant set of entities on which the phylogeny is built, 
while internal nodes represent hypothetical ancestors. 
The comparison of different phylogenetic trees is one 
of the most fundamental tasks in evolutionary biology 
and computational phylogenetics. Many biologically rel-
evant distance or similarity measures have been defined 

in the literature for the case when the two phylogenies 
to be compared have the same leaf set. These include the 
widely used Robinson–Foulds distance [1], triplet and 
quartet distances [2, 3], nearest neighbor interchange 
(NNI) and subtree prune and regraft (SPR) distances [4–
6], maximum agreement subtrees [7–9], nodal distance 
[10], geodesic distance [11] and several others. Often, 
however, this comparison involves two trees that have 
non-identical leaf sets. The need to compare trees that do 
not have identical leaf sets arises naturally in several situ-
ations: For instance, algorithms for computing phyloge-
netic supertrees are typically based on comparing input 
trees on partial leaf sets with candidate supertrees on the 
complete leaf set [12–16]. Likewise, searching for phylog-
enies similar to a query tree in a phylogenetic database 
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[17–20] and clustering of phylogenetic trees [21] often 
involve comparisons between trees with only partially 
overlapping leaf sets.

The traditional approach to comparing two phylog-
enies on non-identical leaf sets is to first restrict the two 
phylogenies to their common leaf set and then apply one 
of the distance or similarity measures that compare two 
trees on the same leaf set. However, an alternative, and 
perhaps more useful, approach to comparing trees with 
non-identical taxa is to fill-in or complete the two trees to 
be compared with the leaves missing from each, result-
ing in two trees on the same leaf set, and then apply the 
distance or similarity measure. This completion based 
approach is especially desirable when used with the Rob-
inson–Foulds (RF) distance measure [1], the most com-
monly used distance measure in evolutionary biology. 
Indeed, several important biological applications would 
directly benefit from the use of this completion-based 
RF distance, such as the construction of majority-rule(+) 
supertrees [22–25], construction of Robinson–Foulds 
supertrees [13, 14, 26], phylogenetic database search 
[17–20], and clustering of phylogenetic trees [21]. To 
distinguish between the two methods for computing RF 
distance between two trees with non-identical leaf sets, 

we refer to the completion-based RF distance as RF(+) 
distance and to the traditional pruning-based RF distance 
as RF(−). Figure  1 shows an example of two trees with 
partially overlapping leaf sets and these two ways of com-
puting the RF distance between them.

Previous work
The idea of a completion-based RF(+) distance was pro-
posed at least a decade ago. Cotton and Wilkinson were 
among the first to propose such a distance measure in 
their seminal paper describing majority-rule supertrees 
[22]. Specifically, they defined two types of majority-rule 
supertrees: majority-rule(−) and majority-rule(+) super-
trees. The majority-rule(−) supertrees were based on 
traditional RF(−) distances between trees, while major-
ity-rule(+) supertrees were based on completion-based 
RF(+) distances. Majority-rule(+) supertrees and its var-
iants have been shown to have many desirable properties 
[27] and there have been efforts to develop exact (ILP-
based) and heuristic methods for computing majority-
rule(+) supertrees [23, 25]. Though these methods only 
work for small datasets, they have been shown to result 
in biologically meaningful supertrees [23]. The paper by 
Kupczok [25] characterizes the RF(+) distance in the 

Fig. 1 RF(−) and RF(+) distances. This figure illustrates the difference between the traditional (RF(−)) and RF(+) distance measures when applied 
to trees with partially overlapping leaf sets. In this example, the leaf sets of T1 and T2 are a subset of the leaf set of S. To compute the RF(−) distance 
between T1 and S, we must first restrict S to the leaf set of T1 , resulting in tree S1 . The RF(−) distance between S and T1 is thus RF(S1, T1) , which is 
2. Likewise, to compute the RF(−) distance between T2 and S, we must first restrict S to the leaf set of T2 , resulting in tree S2 . The RF(−) distance 
between S and T2 is thus RF(S2, T2) , which is also 2. In contrast, to compute the RF(+) distance between T1 and S, we must first compute an optimal 
completion of T1 on the leaf set of S (denoted by the dashed red lines), resulting in tree T ′1 . The RF(+) distance between S and T1 is thus RF(S, T ′1) , 
which is 2. Likewise, to compute the RF(+) distance between T2 and S, we must first compute an optimal completion of T2 on the leaf set of S, 
resulting in tree T ′2 . The RF(+) distance between S and T2 is thus RF(S, T ′2) , which is 4. Observe that while both T1 and T2 are equidistant from S under 
RF(−), computing the RF(+) distances reveals that T1 is more similar to S than is T2
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case when the leaf set of one tree is a subset of the leaf 
set of the other in terms of incompatible splits between 
the two trees, but does not provide an efficient algorithm 
for computing this distance or for computing an actual 
completion. More recently, Christensen et  al. [28] pro-
vided an O(n2) time algorithm for the case when the leaf 
set of one tree is a subset of the leaf set of the other and 
applied the algorithm to compute optimal completions 
for gene trees with respect to a species tree. To the best 
of our knowledge, no algorithms (polynomial time or 
otherwise) currently exist for the general problem where 
the two trees have only partially overlapping leaf sets, or 
for any of its variants.

Our contribution
In this work, we address an important gap in the algo-
rithmics of phylogenetic tree comparison. Specifically, we 
provide the first optimal, linear-time algorithms for two 
fundamental computational problems that arise when 
comparing phylogenetic trees with non-identical leaf 
sets. For the first problem, which arises when comput-
ing the RF(+) distance between two binary trees where 
the leaf set of one tree is a proper subset of the other, we 
improve upon the time complexity of the previous fast-
est algorithm for this problem by a factor of n, where n 
is the number of leaves in the larger of the two trees. For 
the second problem, which is a generalization of the first 
and arises when computing the RF(+) distance between 
two binary trees that have only partially overlapping leaf 
sets, we show that the default problem formulation can 
result in tree completions that are unsupported by the 
original input trees, propose a modification of the prob-
lem formulation that corrects this deficiency, and provide 
optimal linear-time algorithms for the modified prob-
lem. Crucially, no polynomial time algorithms currently 
exist for the default formulation of the second problem, 
and our modified problem formulation can be viewed as 
a useful restricted version of the general problem. Our 
algorithms are easy to understand and implement, work 
for both rooted and unrooted trees, and are scalable to 
the entire tree of life. These algorithms can be applied 
wherever phylogenetic distances must be computed 
between trees with non-identical leaf sets and enable new 
kinds of phylogenetic and comparative analyses that have 
been computationally infeasible.

We implemented our algorithm for the first problem 
and applied it to three published biological supertree 
data sets to study how RF(+) distances differ from RF(−) 
distances in practice. For each data set, we ordered the 
input trees according to their RF(+) and RF(−) distances 
to a precomputed supertree and measured how often 
the relative pairwise ranking between any pair of input 
trees differs between the two rankings. We found a large 

number of such pairs for each data set, demonstrating, 
for the first time, that using the RF(+) distance can result 
in very different relative estimates of phylogenetic dis-
tances compared to using the RF(−) distance.

RF(+) distances have several desirable properties com-
pared to RF(−) distances. For instance, the set of possible 
values RF(+) distance can take ranges from 0 to about 
twice the size of the union of the leaf sets of the two 
trees, while for RF(−) distance this range is only from 
0 to about twice the size of the intersection of the two 
leaf sets. Thus, RF(+) distances have significantly more 
discriminatory power than RF(−) distances. In appli-
cations such as median supertree construction, RF(+) 
distance has the distinct advantage that each input tree 
gets an equal “vote” in the supertree construction since 
all input trees contribute an RF distance within the same 
range. With RF(−) distances, larger trees can contrib-
ute much more to the total distance than smaller trees. 
Finally, in computing RF(−) distances we ignore the addi-
tional topological information provided by leaves that 
are present in only one tree, while RF(+) distance makes 
complete use of the information in the topologies of the 
two trees. RF(+) distances thus make more efficient use 
of the available information. Despite these advantages, 
RF(+) distances have not been applied in practice due to 
unavailability of efficient algorithms. In contrast, RF(−) 
distances can be computed in time linear in the sizes 
(number of leaves) of the input trees. Our new algorithms 
address this discrepancy by making it equally computa-
tionally efficient to compute RF(+) distances.

Preliminaries and problem definitions
Given a tree T, we denote its node set, edge set, and leaf 
set by V(T), E(T), and Le (T ) , respectively. The set of all 
non-leaf (i.e., internal) nodes of T is denoted by I(T).

If T is rooted, the root node of T is denoted by rt (T ) , 
the parent of a node v ∈ V (T ) by pa T (v) , its set of chil-
dren by Ch T (v) , and the (maximal) subtree of T rooted 
at v by T(v). If two nodes in T have the same parent, 
they are called siblings of each other. The least common 
ancestor, denoted lcaT (L) , of a set L ⊆ Le (T ) in T is 
defined to be the node v ∈ V (T ) such that L ⊆ Le (T (v)) 
and L  ⊆ Le (T (u)) for any child u of v. A rooted tree is 
binary if all of its internal nodes have exactly two chil-
dren, while an unrooted tree is binary if all its nodes 
have degree either 1 or 3. Throughout this work, the 
term tree refers to binary trees with uniquely labeled 
leaves.

Let T be a rooted or unrooted tree. Given a set 
L ⊆ Le (T ) , let T  be the subtree of T with leaf set L. We 
define the leaf induced subtree T[L] of T on leaf set L to 
be the tree obtained from T  by successively removing 
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each non-root node of degree two and adjoining its two 
neighbors.

Definition 1 (Completion of a tree) Given a tree T and 
a set L′ such that Le (T ) ⊆ L′ , a completion of T on L′ is a 
tree T ′ such that Le (T ′) = L′ and T ′[ Le (T )] = T .

If T is a rooted tree, for each node v ∈ V (T ) , the clade 
CT (v) is defined to be the set of all leaf nodes in T(v); i.e. 
CT (v) = Le (T (v)) . We denote the set of all clades of a 
rooted tree T by Clade (T ) . This concept can be extended 
to unrooted trees as follows. If T is an unrooted tree, 
each edge (u, v) ∈ E(T ) defines a partition of the leaf 
set of T into two disjoint subsets Le (Tu) and Le (Tv) , 
where Tu is the subtree containing node u and Tv is the 
subtree containing node v, obtained when edge (u,  v) 
is removed from T. The partition induced by any edge 
(u, v) ∈ E(T ) is called a split and is represented by the set 
{ Le (Tu), Le (Tv)} . The set of all splits in an unrooted tree 
T is denoted by Split (T ).

The symmetric difference of two sets A and B, denoted 
by A�B , is the set (A \ B) ∪ (B \ A).

Definition 2 (Robinson–Foulds distance) The Robin-
son–Foulds (RF) distance, RF(S,T ) , between two trees S 
and T is defined to be |Clade (S)�Clade (T )| if S and T 
are rooted trees, and | Split (S)� Split (T )| if S and T are 
unrooted trees.

Let S and T be two trees. Without loss of general-
ity, we will assume that | Le (T )| ≤ | Le (S)| . When 
Le (S)  = Le (T ) , there are two possible scenarios: (1) 
Le (T ) � Le (S) , i.e., the leaf set of T is a proper subset 
of the leaf set of S, and (2) Le (S) ∩ Le (T ) � Le (T ) , i.e., 
each of S and T contains leaves not found in the other. 
Based on these two scenarios, and depending on whether 
the two trees are rooted or unrooted, we define the fol-
lowing four problems.

Problem  1 (Rooted One-Tree RF(+) (ROT-RF(+))) 
Given two rooted trees S and T such that Le (T ) ⊆ Le (S) , 
compute a completion T ′ of T on Le (S) such that RF(S,T ′) 
is minimized.

Problem  2 (Unrooted One-Tree RF(+) (UOT-
RF(+))) Given two unrooted trees S and T such that 
Le (T ) ⊆ Le (S) , compute a completion T ′ of T on Le (S) 
such that RF(S,T ′) is minimized.

Problem  3 (Rooted RF(+) (R-RF(+))) Given two 
rooted trees S and T, compute a completion S′ of 
S on Le (S) ∪ Le (T ) and a completion T ′ of T on 
Le (S) ∪ Le (T ) such that RF(S′,T ′) is minimized.

Problem  4 (Unrooted RF(+) (U-RF(+))) Given 
two unrooted trees S and T, compute a completion S′ 
of S on Le (S) ∪ Le (T ) and a completion T ′ of T on 
Le (S) ∪ Le (T ) such that RF(S′,T ′) is minimized.

We show how to solve Problems 1 and 2 in O(|V(S)|) 
time. As we will see later, Problems 3 and 4 can actu-
ally lead to unsupported completions. We will therefore 
define meaningful variants of Problems 3 and 4 (requir-
ing only a slight variation on the original problems) 
and show how to solve them in O(|V (S)| + |V (T )|) 
time. For the purposes of complexity analysis, we will 
assume that the leaves of S and T are labeled by inte-
gers from the set {1, . . . , | Le (S) ∪ Le (T )|} . However, 
our algorithms work even if the leaf labels are arbitrary, 
and universal hashing [29] or perfect hashing [30] can 
be used to guarantee expected O(|V (S)| + |V (T )|) time 
complexity.

A linear‑time algorithm for ROT‑RF(+)
To solve the ROT-RF(+) problem, our algorithm starts 
with the trees S and T and modifies T by adding to 
it, according to a particular scheme, the leaves from 
Le (S) \ Le (T ) . The completed tree thus produced, 
denoted by T ′ , will be such that RF(S,T ′) is minimized.

We define Tree-Add(T , v,X) to be the tree 
obtained from T by attaching to it a tree X, where 
Le (X) ∩ Le (T ) = ∅ , as follows: If v is not the root of T, 
then attach X onto the edge ( pa (v), v) (by subdividing 
( pa (v), v) into two edges) such that rt (X) becomes the 
sibling of the node v ∈ V (T ) . If v is the root of T, then 
Tree-Add(T , v,X) is the tree obtained by creating a new 
root node and setting v and rt (X) as its two children.

The main idea behind our algorithm can be illus-
trated by the following simple example. Suppose the 
given trees S and T are such that Le (S) = Le (T ) ∪ {l} . 
The goal is to add this leaf l to T so as to minimize the 
RF distance. Let v denote the sibling of l in S. Let u 
denote the node lcaT ( Le (S(v))) . As we will prove later, 
T ′ = Tree-Add(T ,u, l) must be an optimal completion 
for T. Our algorithm extends this idea to the case when 
T has multiple missing leaves. A description of the 
algorithm follows: 
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minimizes RF(S,T ∗) . Then, RF(S,T ′) = RF(S,T ∗) , 
implying that T ′ is a solution for the ROT-RF(+) problem.

Proof It suffices to show that T ′ maximizes the number 
of matched clades CS(v) , for v ∈ V (S).

Observe that Algorithm  OneTreeCompletion partitions 
V(S) into three sets according to the color assigned to 
each node: red, green, or blue. We will consider these 
three sets of nodes separately.

Case 1: Red nodes. All maximal subtrees in S that contain 
only red nodes are included as is in the completed tree 
T ′ . Thus, if v is a red node then CS(v) has a match in T ′ . 
Thus, T ′ maximizes the number of matched clades CS(v) 
over all red v.

Case 2: Green nodes. We claim that if v is green and CS(v) 
does not have a match in T ′ then it must be unmatch-
able. Suppose CS(v) has a match in T, and let u ∈ V (T ) 
be such that CS(v) = CT (u) . Observe that the clade CT (u) 

Figure  2 illustrates the algorithm through an exam-
ple. Next, we prove the correctness and analyze the time 
complexity of this algorithm. We need the following 
additional definitions:

Definition 3 (Matched clade) Given any two rooted 
trees A and B on the same leaf set, and v ∈ V (A) , we say 
that clade CA(v) has a match in B if Clade (B) contains 
CA(v).

Definition 4 (Matchable clade of S) Given any v ∈ I(S) , 
we call the clade CS(v) matchable if there exists some 
completion of T on Le (S) that contains the clade CS(v).

The correctness of Algorithm OneTreeCompletion fol-
lows from the following lemma.

Lemma 1 Let T ′ denote the completion of T returned 
by Algorithm  OneTreeCompletion on trees S and T. 
Let T ∗ denote an optimal completion of T on Le (S) that 
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must also appear in T ′ since no blue node x ∈ V (S) will 
be such that MS(x) ∈ V (T (u)) . This implies that if CS(v) 
has a match in T then CS(v) must also have a match in T ′ . 
In other words, if CS(v) does not have a match in T ′ then 
CS(v) cannot have a match in T. Now, since CS(v) only 
contains leaves that are already present in T, no comple-
tion of T on Le (S) can create clade CS(v) if CS(v) is not 
already present in Clade (T ) . Thus, if CS(v) has no match 
in T then CS(v) must be unmatchable. This proves our 
claim, and so T ′ must maximize the number of matched 
clades CS(v) for green v.

Case 3: Blue nodes. We claim that if v is blue and CS(v) 
does not have a match in T ′ then it must be unmatch-
able. Let C ′

S(v) denote the set containing only the green 
nodes from CS(v) . We will say that clade CS(v) has a 
partial-match in T if and only if C ′

S(v) ∈ Clade (T ) . 
Suppose CS(v) has a partial-match in T, and let u be 
the node from T for which CT (u) = C ′

S(v) (note that, 
in fact, u = MS(v) ). Observe that any marked node 
x ∈ V (S(v)) must be such that MS(x) ∈ V (T (u)) . This 
implies that Algorithm  OneTreeCompletion adds all the 
maximal red subtrees within S(v) (i.e., subtrees rooted 
at a red child of a marked node in S(v)) to one or more 
of the edges in the set {( pa (t), t)|t ∈ T (u)} . Moreover, 
since CT (u) = C ′

S(v) , none of the other marked nodes 

y ∈ V (S) \ V (S(v)) can be such that MS(y) ∈ V (T (u)) . 
Thus, there must be a node u′ ∈ T ′ for which 
CT ′(u′) = CT (u) ∪ {r|ris a red leaf fromS(v)} , and so 
CS(v) must have a match in T ′ . Consequently, if CS(v) has 
a partial-match in T then CS(v) must have match in T ′ . 
In other words, if CS(v) does not have a match in T ′ then 
CS(v) cannot have a partial-match in T.

Now, suppose v ∈ V (S) is such that CS(v) has no partial-
match in T. Since C ′

S(v) only contains leaves that are 
already present in T, and there exists no node u ∈ V (T ) 
for which CT (u) = C ′

S(v) , no completion of T on Le (S) 
can create clade CS(v) . Thus, if CS(v) has no partial-match 
in T then CS(v) must be unmatchable. This proves our 
claim, and so T ′ must maximize the number of matched 
clades CS(v) for blue v.

In summary, the tree T ′ maximizes the number of 
matched clades for each of the three sets into which 
V(S) is partitioned, thereby maximizing the number of 
matched clades over all of V(S). Hence, T ′ must be a solu-
tion for the ROT-RF(+) problem. �

Theorem  1 Algorithm  OneTreeCompletion solves the 
ROT-RF(+) problem in O(|V(S)|) time.

Fig. 2 Algorithm for ROT-RF(+). Given S and T as shown in the left column of the figure, Algorithm OneTreeCompletion first colors each node of S 
either green (circles), red (stars), or blue (squares) as shown in the middle column of the figure. A node is colored green if all leaves in the subtree 
rooted at that node are present in both S and T, red if all leaves in that subtree are present only in S, and blue if that subtree has both green and 
red descendants. If a blue node v has exactly one red child, then it is “marked”. In this example, s1 and s4 are marked nodes, highlighted in the figure 
by the double perimeter around the blue (square) nodes. The algorithm then computes the LCA mapping, defined to be lcaT ( Le (S(v)) ∩ Le (T )) , 
for each green or blue node v of S. These LCA mappings appear in the square boxes on S in the middle column. The algorithm then performs a 
pre-order traversal of S, grafting copies of the red subtrees at each marked node onto the appropriate edges of T. The grafted subtrees are shown 
using dashed red lines on T ′ in the right column. Tree T ′ is an optimal completion of T on Le (S)
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Proof Lemma 1 establishes that Algorithm  One-
TreeCompletion solves the ROT-RF(+) problem. It there-
fore suffices to show that this algorithm can be imple-
mented in O(|V(S)|) time. We consider the complexity of 
each of the three ‘for’ loops separately.

The ‘for’ loop of lines 1 through 16 executes a single post-
order traversal of the tree S, and so lines 2 through 16 are 
executed a total of O(|V(S)|) times. Each of the lines 2 
through 16, except for line 16, clearly requires only O(1) 
time per iteration. Line 16 can also be executed in O(1) 
time after an O(|S|) preprocessing step to construct a 
lookup table that enables O(1) time lookup of whether 
a given leaf label from S occurs in tree T as well. This 
lookup table can be easily implemented using an array 
since the leaves of S (and T) are uniquely labeled by inte-
gers from the set {1, . . . , | Le (S)|} . The indices of the array 
correspond to the leaf labels, and the entries correspond 
to whether the corresponding leaf appears only in S or in 
both T and S. Such an array can be constructed using a 
single traversal through the leaf sets of S and T. Even if 
the leaves have arbitrary labels, O(|S|) preprocessing time 
and expected O(1) lookup time can be achieved through 
hashing [29].

Line 18 is executed a total of O(|V(S)|) times through 
the ‘for’ loop on line 17. After an O(|V(T)|) pre-
processing step on T, the least common ances-
tor of any pair of nodes from V(T) can be computed 
in constant time [31]. For any internal node v con-
sidered in the ‘for’ loop on line 17, observe that 
lcaT (X) , where X = {g |g ∈ Le (S(v)) and g is green} 
is equivalent to lcaT (Y ) , where 
Y = {MS(g)|g ∈ Ch S(v) and g is not red} . Thus, com-
puting the least common ancestor mapping for any v (in 
line 18) is equivalent to computing the least common 
ancestor of the mappings of its (up to two) blue or green 
children. Thus, after an O(| Le (T )|) preprocessing step 
on T to enable fast least common ancestor computation 
[31], each execution of line 18 requires only O(1) time. 
This gives a total time complexity of O(|V(S)|) for lines 
17 and 18.

The ‘for’ loop on line 19 executes line 20 a total of 
O(|V(S)|) times. For a marked node v, line 20 requires 
O(|V(R)|) time, where R is the subtree rooted at the 
red child of v, to copy over the subtree R to T. Since 
each such R is disjoint from the others, over all possible 
marked nodes v, the total number of nodes in all the cor-
responding Rs is bounded by O(|V(S)|). Thus, the total 
time complexity of lines 19 and 20 is O(|V(S)|).

Finally, line 21 requires O(|V(S)|) time to write the com-
pleted version of T. The total time complexity is thus 
O(|V(S)|). �

Note that Algorithm  OneTreeCompletion computes a 
single optimal completion, and that optimal completions 
need not be unique.

Solving UOT‑RF(+) in linear time
An unrooted tree can be converted into a rooted tree by 
adding a root node on a chosen edge (thereby splitting 
the chosen edge into two edges, with the two end points 
of the chosen edge becoming the two children of the root 
node). Thus, if the unrooted tree has e edges then there 
are e ways to root that tree, with each of the e ways result-
ing in a different rooted tree.

If S and T are unrooted trees then we will show how to 
compute an optimal completion of T on Le (S) by using 
Algorithm  OneTreeCompletion on appropriately rooted 
versions of S and T. The following observation establishes 
a direct relationship between the RF distance between 
two unrooted trees on the same leaf set and the RF dis-
tance between appropriately rooted versions of the two 
unrooted trees. This observation is also proved in [14].

Observation 1 Let P and Q be unrooted trees on the 
same leaf set, and l be any leaf node (common to P and Q). 
Let P̂ be obtained by rooting P on the edge connecting l to 
the rest of P, and Q̂ be obtained by rooting Q on the edge 
connecting l to the rest of Q. Then, RF(P,Q) = RF(P̂, Q̂).

Proof Consider any edge (u, v) ∈ E(P) . We will use 
Pu to denote the subtree containing node u and Pv to 
denote the subtree containing node v, obtained when 
edge (u,  v) is removed from P. Edge (u,  v) defines the 
split { Le (Pu), Le (Pv)} in P. We define a bijection 
f : Split (P) → Clade (P̂) \ {l, rt (P)} from splits in P to 
clades in P̂ as follows. Given any split { Le (Pu), Le (Pv)} , 
without loss of generality, we assume that the leaf l 
occurs in the Pu side of this split, i.e., l ∈ Le (Pu) , and 
define f ({ Le (Pu), Le (Pv)}) = C

P̂
(v).

Note that RF(P,Q) is equal to 2× (| Split (P) \ Split (Q)|) . 
Likewise, RF(P̂, Q̂) is equal to 
2× (|Clade (P̂) \ Clade (Q̂)|) . It therefore suffices to 
show that, given any split {X ,Y } from P, {X ,Y } ∈ Split (Q) 
if and only if f ({X ,Y }) ∈ Clade (Q̂) . Suppose 
{X ,Y } ∈ Split (Q) . Without loss of generality, we may 
assume that l ∈ X . This implies that f ({X ,Y }) = Y  . Since 
{X ,Y } ∈ Split (Q) , there must be a node q ∈ V (Q̂) such 
that C

Q̂
(q) = Y  . Thus, f ({X ,Y }) = C

Q̂
(q) , and so 

f ({X ,Y }) ∈ Clade (Q̂) . Conversely, suppose 
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{X ,Y } �∈ Split (Q) . Again, without loss of generality, we 
may assume that l ∈ X and so f ({X ,Y }) = Y  . There can-
not be any edge (u, v) ∈ E(Q) for which either Qu or Qv is 
equal to Y. Thus, there cannot be any node q in V (Q̂) for 
which C

Q̂
(q) = Y  . Thus, f ({X ,Y }) �∈ Clade (Q̂).

 �

Lemma 2 Let S and T be unrooted trees such that 
Le (T ) ⊆ Le (S) . Let T ′ be an optimal completion of T 
on Le (S) , such that T ′ minimizes RF(S,T ′) . Let l be any 
leaf node common to T and S. Let Ŝ be obtained by root-
ing S on the edge connecting l to the rest of S, and T̂  be 
obtained by rooting T on the edge connecting l to the rest 
of T. If T̂ ′ is an optimal completion of T̂  on Le (Ŝ) then 
RF(S,T ′) = RF(Ŝ, T̂ ′).

Proof Observe that S and T ′ are on the same leaf set. Let 
T ′′ be obtained by rooting T ′ on the edge connecting l to 
the rest of T ′ . The tree T ′′ must be a valid (not necessar-
ily optimal) completion of the tree T̂  on Le (Ŝ) . Thus, by 
Observation 1, RF(S,T ′) = RF(Ŝ,T ′′).

Likewise, observe that Ŝ and T̂ ′ are on the same leaf 
set. Let T̂ ′′ be the unrooted tree obtained by suppress-
ing the root node of T̂ ′ . The tree T̂ ′′ must be a valid (not 

necessarily optimal) completion of the tree T on Le (S) . 
Thus, by Observation 1, RF(Ŝ, T̂ ′) = RF(S, T̂ ′′).

We claim that T ′′ must be an optimal completion of T̂  
on Le (Ŝ) . If not, then RF(Ŝ, T̂ ′) < RF(Ŝ,T ′′) , imply-
ing that RF(S, T̂ ′′) < RF(S,T ′) , which is a contradiction 
since T ′ is an optimal completion of T on Le (S) . Thus, 
we must have RF(Ŝ, T̂ ′) = RF(Ŝ,T ′′) , implying that 
RF(S,T ′) = RF(Ŝ, T̂ ′) .  �

Based on the observation above, we solve the UOT-
RF(+) problem as follows:

Algorithm for UOT-RF(+) on input trees S and T: 

1. Let l be any leaf from Le (T ) . Construct Ŝ by rooting 
S on the edge connecting l to the rest of S, and T̂  by 
rooting T on the edge connecting l to the rest of T.

2. Call Algorithm OneTreeCompletion with trees Ŝ and 
T̂  as input. Let T̂ ′ be the tree returned.

3. Convert T̂ ′ into an unrooted tree by suppressing the 
root node and output the resulting tree.

Theorem  2 The UOT-RF(+) problem can be solved in 
O(|V(S)|) time.

Fig. 3 Extraneous clades and R-RF(+) and EF-R-RF(+) completions. This figure shows two trees S and T with partial leaf set overlap whose optimal 
completions under the R-RF(+) problem result in extraneous clades. The tree S contains two leaves c and d that are absent from T, and the tree T 
contains two leaves i and j absent from S. The lower-right part of the figure shows optimal completions of S and T, labeled S′′ and T ′′ , respectively, 
that minimize the RF distance over all possible completions. The nodes marked in red denote (non-leaf ) clades common to both S′′ and T ′′ . Observe 
that of the three nodes that S′′ and T ′′ have in common, the lower two, i.e., {c, i} and {d, j} , are extraneous clades that have no support in either S 
or T and do not contain any of the leaves shared by both S and T. Optimal completions under EF-R-RF(+) disallow such extraneous clades. The 
upper-right part of the figure shows optimal completions of S and T that minimize the RF distance over all completions without any extraneous 
clades. The completions S′ and T ′ only contain clades that have at least one leaf shared by both trees
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Proof Let T ∗ denote the output of the algorithm 
described above, and let T ′ denote an optimal comple-
tion of T on Le (S) . Since Ŝ and T̂  are rooted at a common 
leaf-edge, l, of S and T, and since the tree T̂ ′ minimizes 
RF(Ŝ, T̂ ′) , Lemma 2 implies that RF(S,T ′) = RF(Ŝ, T̂ ′).

Now, observe that S and T ∗ have the same leaf set, and 
that l is a leaf node common to S and T ∗ . Furthermore, Ŝ 
is obtained by rooting S on the edge connecting l to the 
rest of S, and T̂ ′ is obtained by rooting T ∗ on the edge 
connecting l to the rest of T ∗ . Thus, by Observation  1, 
we must have RF(S,T ∗) = RF(Ŝ, T̂ ′) . Thus, RF(S,T ∗) 
must be equal to RF(S,T ′) , implying that T ∗ is an optimal 
completion of T on Le (S) .  �

The previous fastest algorithm for solving the UOT-
RF(+) problem [28] has quadratic time complexity. Our 
algorithm is able to find edges on which to graft the miss-
ing subtrees more efficiently than the algorithm from 
[28] because we use appropriately rooted versions of the 
unrooted input trees and then use simple post-order and 
pre-order tree traversals of the trees coupled with effi-
cient least common ancestor computations.

The R‑RF(+) problem
Observe how an optimal completion of T in the ROT-RF(+) 
problem maximizes the number of clades that have a match 
in S. This ensures a meaningful completion of T. However, 
in the R-RF(+) problem, where both trees may have miss-
ing leaves, it is possible that optimal completions of the 
two trees contain “extraneous” clades that contain leaves 
from both S and T but do not contain any leaves common 
to S and T. Extraneous clades are created by pairing a sub-
tree containing only missing leaves from one tree with a 
subtree containing only missing leaves from the other tree. 
Such clades can help to lower the RF distance between the 
two completed trees, but are completely unsupported by 
the topologies of S and T. This phenomenon is illustrated 
through an example in Fig. 3. We therefore define a variant 
of the R-RF(+) problem that only allows completions that 
do not result in extraneous clades. Crucially, this restriction 
to only non-extraneous clades also makes the underlying 
completion problem easier to solve. Note that extraneous 
clades could indeed be “correct”

in some cases, so restricting to non-extraneous clades 
could sometimes prevent us from considering certain 
correct clades when computing completions.

Definition 5 (Extraneous clade) Suppose S and T are 
rooted trees. Given completions S′ and T ′ of S and T, 
respectively, on Le (S) ∪ Le (T ) , we define a clade of S′ 
or T ′ to be an extraneous clade if it contains leaves from 
both S and T but no leaves that are common to S and T.

Problem  5 (Extraneous-Clade-Free R-RF(+) (EF-R-
RF(+))) Given two rooted trees S and T, compute a com-
pletion S′ of S on Le (S) ∪ Le (T ) and a completion T ′ of T 
on Le (S) ∪ Le (T ) such that S′ and T ′ do not contain any 
extraneous clades and RF(S′,T ′) is minimized.

An example of an optimal EF-R-RF(+) completion 
appears in Fig. 3. Next, we show how to solve the EF-R-
RF(+) problem in linear time.

A linear‑time algorithm for EF‑R‑RF(+)
For the EF-R-RF(+) problem, Le (S) and Le (T ) are both 
proper subsets of Le (S) ∪ Le (T ) , i.e., both S and T must 
be completed on the leaf set Le (S) ∪ Le (T ) . Our algo-
rithm for this problem builds upon the algorithm for the 
ROT-RF(+) problem. Specifically, we first complete T 
on Le (S) ∪ Le (T ) with respect to S, then complete S on 
Le (S) ∪ Le (T ) with respect to the previous completion 
of T. Formally, the algorithm is as follows: 

Algorithm TwoTreeCompletion(S, T )
1: T = OneTreeCompletion(S, T ).
2: S = OneTreeCompletion(T , S).
3: return S and T .

In the following, we will show that when Algorithm 
TwoTreeCompletion terminates, the trees S′ and T ′ returned 
by the algorithm must be such that they do not contain any 
extraneous clades, and that RF(S′,T ′) is the smallest pos-
sible for any completion of S and T that does not have extra-
neous clades. We will assume, without any loss of generality, 
that S and T have at least one leaf in common; if there are 
no leaves in common between S and T then the EF-R-RF(+) 
problem has no solution since any completion of S and T 
would necessarily contain extraneous clades.

For brevity, in the remainder of this section, we will 
implicitly assume that all completions of S and T are on 
the leaf set Le (S) ∪ Le (T ) . Next, we define the notions of 
original nodes, grafted nodes, and grafted subtrees in tree 
completions.

Definition 6 (Original nodes) Let S′ and T ′ denote any 
completions of S and T. Observe that completing a tree 
creates new internal nodes in the tree but preserves all 
original internal nodes (though not necessarily the clades 
rooted at those nodes). Thus, we have I(S) ⊂ I(S′) and 
I(T ) ⊂ I(T ′) . The set of nodes in I(S′) that are also pre-
sent in I(S) are called the original nodes of S′ , denoted 
O(S′) . Analogously, the set of nodes in I(T ′) that are also 
present in I(T) are called the original nodes of T ′ , denoted 
O(T ′).
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Definition 7 (Grafted nodes) Let S′ and T ′ denote 
any completions of S and T. Observe that any node 
u ∈ I(S′) \O(S′) is either a node that was already present 
in a subtree from T (consisting of leaves missing from S) 
as that subtree was grafted into S, or a new node that was 
created as a subtree from T (consisting of leaves missing 
from S) was grafted into S. We refer to the new nodes 
created by the grafting of a subtree from T into S′ as the 
grafted nodes of S′ , denoted G(S′) . Analogously, the set of 
nodes in I(T ′) \O(T ′) that were newly created through 
the process of grafting a subtree from S into T are called 
the grafted nodes of T ′ , denoted G(T ′).

Definition 8 (Grafted subtrees) If S′ denotes any com-
pletion of S and u ∈ G(S′) , then u is created by the graft-
ing of a subtree of T (consisting of leaves missing from S) 
at that node u in S′ . We denote the grafted subtree of T 
at u by graft(u) . Similarly, if T ′ denotes any completion 
of T and v ∈ G(T ′) , then v is created by the grafting of a 
subtree of S at that node v in T ′ . We denote the grafted 
subtree of S at v by graft(v).

Node colorings
For convenience, we will color the nodes of S and T 
according to the coloring scheme used in Algorithm One-
TreeCompletion. Thus, each node of S and T is colored 
either red, or green, or blue. We will assume that these 
colored nodes maintain their original colors in the com-
pleted trees S′ and T ′ , and thus both S′ and T ′ contain 
nodes that are red, green, and blue, as well as nodes that 
are uncolored.

We now show that the completed trees S′ and T ′ 
returned by Algorithm TwoTreeCompletion must be free 
of extraneous clades.

Lemma 3 The trees S′ and T ′ returned by Algorithm 
TwoTreeCompletion do not have any extraneous clades.

Proof Let us first consider the tree T ′ . Any non-original 
node in T ′ is either a node from a maximal red subtree of 
S or is a grafted node created by grafting a maximal red 
subtree of S into T ′ using the Tree-Add operation. Based 
on Algorithm OneTreeCompletion, each grafted node 
created through the Tree-Add operation has at least one 
green descendant, and so it cannot be extraneous. More-
over, any node inside a maximal red subtree of S only has 
descendants from S, not from T. Thus, since T did not 
contain any extraneous clades to begin with, neither can 
T ′ . An analogous argument applies to S′ .  �

The next lemma identifies an important property of 
optimal completions.

Lemma 4 Let S∗ and T ∗ be any optimal completions of S 
and T, respectively, under the EF-R-RF(+) problem. Then, 
for any u ∈ G(S∗) , graft(u) must be a maximal red subtree 
of T and, for any v ∈ G(T ∗) , graft(v) must be a maximal 
red subtree of S.

Proof Observe that any maximal red subtree of T must 
appear as is in the tree T ∗ , since grafting a red leaf or 
subtree from S into any of the red subtrees of T would 
result in an extraneous clade. We will show that if there 
exists a node u ∈ G(S∗) for which graft(u) is not a maxi-
mal red subtree of T, it is possible to modify the tree S∗ 
so that the modified tree has more matched clades than 
S∗ , a contradiction. An analogous argument applies 
to T ∗ . Suppose there exists such a node u. Then, there 
must exist a red internal node r of T such that the two 
subtrees, denoted R′ and R′′ , rooted at the two chil-
dren of r appear as is in the tree S∗ but not as siblings 
of each other (i.e., their roots do not have the same par-
ent in S∗ ). Let r′ and r′′ denote the root nodes of R′ and 
R′′ , respectively, and s′ and s′′ denote the parents of r′ 
and r′′ in S∗ . Thus, R′ = graft(s′) and R′′ = graft(s′′) . 
Now, observe that all clades of S∗ rooted either at a node 
on the path from lca S∗(s

′, s′′) to s′ or on the path from 
lca S∗(s

′, s′′) to s′′ , except for the node lca S∗(s
′, s′′) itself, 

must be mismatched clades (since all maximal red sub-
trees of T appear as is in the tree T ∗ ). Also, note that if 
S∗ is modified by pruning out the subtree R′ and regraft-
ing it on the edge (s′′, r′′) then the only matched clades 
that can become mismatched are the ones whose roots 
lie on the path from lca S∗(s

′, s′′) to s′ or from lca S∗(s
′, s′′) 

to s′′ , except for node lca S∗(s
′, s′′) . Thus, modifying the 

tree S∗ in this fashion does not result in any additional 
mismatched clades, but results in a new matched clade 
rooted at the node where R′ is regrafted. Thus, the modi-
fied tree has a larger number of matched clades than S∗ , 
which is a contradiction.  �

We also have the following simple observation about 
optimal completions.

Observation 2 Let S∗ and T ∗ be optimal completions of 
S and T, respectively, that satisfy the property described 
in Lemma 4. Then any u ∈ G(S∗) and any v ∈ G(T ∗) must 
have at least one green leaf as a descendant.

Proof This follows immediately from the fact that, 
under EF-R-RF(+), each clade must contain at least one 
green leaf (otherwise it would be an extraneous clade).  �
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Finally, the following lemma proves the correctness of 
Algorithm TwoTreeCompletion.

Lemma 5 Let S′ and T ′ denote the completions of S and 
T, respectively, returned by Algorithm  TwoTreeComple-
tion. Let S∗ and T ∗ denote optimal completions of S and 
T, respectively, under the EF-R-RF(+) problem. Then, 
RF(S′,T ′) = RF(S∗,T ∗).

Proof Based on Lemma 4, we know that S∗ and T ∗ are 
such that, for any u ∈ G(S∗) , graft(u) is a maximal red 
subtree of T, and for any v ∈ G(T ∗) , graft(v) is a maxi-
mal red subtree of S. Furthermore, observe that, given 
the tree T ∗ , we can compute an optimal completion for 
S with respect to T ∗ by using Algorithm OneTreeComple-
tion. Thus, without any loss of generality, we will assume 
that S∗ has the topology that would be computed by 
Algorithm OneTreeCompletion on input (T ∗, S).

To prove this lemma, it suffices to show that the num-
ber of matched clades in T ′ (with respect to S′ ) is no less 
than the number of matched clades in T ∗ (with respect 
to S∗ ). We first define a one-to-one correspondence 
between the internal nodes of T ′ and the internal nodes 
of T ∗ . Consider any node t ∈ I(T ′) . There are three pos-
sibilities: (i) t ∈ O(T ′) , (ii) t ∈ G(T ′) , and (iii) t is a node 
from a maximal red subtree of S. For case (i), observe 
that O(T ′) = O(T ∗) , and so if t ∈ O(T ′) then a counter-
part of t also exists in T ∗ . For case (ii) observe that each 
t ∈ G(T ′) is created by grafting graft(t) into T ′ . We will 
associate t with that unique node of T ∗ that is created by 
grafting the same maximal red subtree of S, graft(t) , into 
T ∗ . For case (iii), since the same maximal red subtree of S 
also appears in T ∗ , the node associated with t is the same 
node from the same maximal red subtree of S in T ∗ . We 
denote the node of I(T ∗) corresponding to node t ∈ I(T ′) 
by f(t). It is not difficult to see that f : I(T ′) → I(T ∗) is 
one-to-one and onto.

We now traverse the nodes of T ′ in post order and iden-
tify the first node t ∈ I(T ′) for which CT ′(t) is a mismatch 
in S′ but CT∗(f (t)) is a match in S∗ . If no such node exists 
then the number of matched clades in T ∗ could not be 
more than the number of matched clades in T ′ , complet-
ing our proof. Thus, suppose such a node t exists. We 
again have three possible cases depending on whether (i) 
t ∈ O(T ′) , (ii) t ∈ G(T ′) , or (iii) t is a node from a maxi-
mal red subtree of S. We consider each of these cases 
separately.

Case (i): t ∈ O(T ′) . In this case, CT ′(t) must be a proper 
subset of CT∗(f (t)) . This is because if CT ′(t) = CT∗(f (t)) 
then both clades would either be matches or both would 

be mismatches, while if T ′(t) contains a grafted subtree 
not present in T ∗(f (t)) then CT∗(f (t)) could not possi-
bly be a matched clade. Thus, there must be at least one 
maximal red subtree of S that is grafted on an edge in 
T ∗(f (t)) but not on an edge in T ′(t) . We let X denote the 
set of such maximal red subtrees, and let G∗ denote the 
set of grafted nodes corresponding to these maximal red 
subtrees from X in the tree  T ∗.

Let a be any node on the path from f(t) to any g ∈ G∗ in 
T ∗ , except for the node f(t) itself. Since T ′ is computed by 
executing Algorithm OneTreeCompletion on input (S, T), 
and no subtree from X is grafted inside the subtree T ′(t) , 
T ∗(a) cannot be a matched clade. We can therefore mod-
ify T ∗ by cutting out all subtrees of X from T ∗(f (t)) and 
grafting them onto the parent edge of f(t) (in any arbi-
trary order if |X | > 1 ). Let T ∗

M denote this modified ver-
sion of T ∗ , and let g∗ denote the newly created grafted 
node that is closest to rt (T ∗

M) along the path from rt (T ∗
M) 

to f(t) in T ∗
M . Observe that CT∗

M
(g∗) = CT∗(f (t)) , and so 

CT∗
M
(g∗) must be a matched clade in T ∗

M , while CT∗
M
(f (t)) 

is no longer a matched clade. Thus, overall, the number 
of matched clades in T ∗

M is the same as the number of 
matched clades in T ∗ . If we now assign T ∗ to be T ∗

M then 
node t is no longer such that CT ′(t) is a mismatch in S′ 
but CT∗(f (t)) is a match in S∗ . Moreover, observe that 
any grafted node corresponding to a maximal red subtree 
from X in the tree T ′ must lie along the path from rt (T ′) 
to t (otherwise CT∗(f (t)) could not be a matched clade). 
Thus, the nodes of I(T ′) that have already been consid-
ered so far in the post-order traversal remain unaffected 
by the change in the topology of T ∗.

Case (ii): t ∈ G(T ′) . The argument in this case is similar 
to that from case (i). As before, CT ′(t) must be a proper 
subset of CT∗(f (t)) . This is because if CT ′(t) = CT∗(f (t)) 
then both clades would either be matches or both would 
be mismatches, while if T ′(t) contains a grafted subtree 
not present in T ∗(f (t)) then CT∗(f (t)) could not possibly 
be a matched clade. There are therefore two possibilities: 
T ∗(f (t)) either includes an original node r ∈ O(T ∗) for 
which the corresponding original node in T ′ is an ancestor 
of t, or T ∗(f (t)) does not include such an original node.

For the first possibility, T ∗(f (t)) includes an original 
node r ∈ O(T ∗) for which the corresponding original 
node in T ′ is an ancestor of t. Without loss of generality, 
let r denote that original node from T ∗(f (t)) that is clos-
est to f(t). Let a be any node along the path from f(t) to 
r, except for f(t) itself. Observe that a must be a grafted 
node and that CT∗(a) cannot be a match since it does not 
include the subtree graft(t) . We can therefore modify T ∗ 
by cutting out all grafted subtrees along the path from 
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f(t) to r (including graft(t) ) and grafting them in the same 
order onto any chosen child edge of r. Let T ∗

M denote this 
modified version of T ∗ . Note that CT∗

M
(r) = CT∗(f (t)) , 

and so CT∗
M
(r) must be a matched clade in T ∗

M , while 
CT∗

M
(f (t)) is no longer a matched clade. Note, also, that 

the other newly formed clades in CT∗
M
(f (t)) must all be 

mismatches since T ∗
M cannot have more matched clades 

than the optimal completion T ∗ . Thus, overall, the num-
ber of matched clades in T ∗

M is the same as the number of 
matched clades in T ∗ . If we now assign T ∗ to be T ∗

M then 
node t is no longer such that CT ′(t) is a mismatch in S′ 
but CT∗(f (t)) is a match in S∗ , while the nodes of I(T ′) 
that have already been considered so far in the post-order 
traversal also remain unaffected by the change in the 
topology of T ∗ (since the original node corresponding to r 
in T ′ is an ancestor of t).

For the second possibility, T ∗(f (t)) must include a grafted 
subtree (maximal red subtree of S) that is not present in 
T ′(t) . Let g denote the grafted node of T ∗(f (t)) at which 
any such subtree is grafted, and let a be any node on the 
path from f(t) to g in T ∗ , except for the node f(t) itself. 
Note that, since T ′ is computed by executing Algorithm 
OneTreeCompletion on input (S,  T), and this maximal 
red subtree is not grafted inside the subtree T ′(t) , T ∗(a) 
cannot be a matched clade. We can therefore modify T ∗ 
by cutting out this grafted subtree at g and grafting it at 
the parent edge of f(t) (creating such an edge f(t) happens 
to be the root of T ∗ ). Let the new node thus created be 
called g∗ and let T ∗

M denote this modified version of T ∗ . 
Note that CT∗

M
(g∗) = CT∗(f (t)) , and so CT∗

M
(g∗) must 

be a matched clade in T ∗
M , while CT∗

M
(f (t)) is no longer a 

matched clade. Note, also, that no other matched clades 
of T ∗ are affected by this transformation. Thus, overall, 
the number of matched clades in T ∗

M is the same as the 
number of matched clades in T ∗ . Furthermore, observe 
that graft(g) must be a subtree that appears grafted some-
where along the path from t to rt (T ′) in tree T ′ , since 
otherwise, for CT∗(f (t)) to be a match, T ∗(f (t)) would 
have to contain an original node r ∈ O(T ∗) for which the 
corresponding original node in T ′ is an ancestor of t, a 
contradiction of the premise of this second possibility. If 
we now assign T ∗ to be T ∗

M then node t is no longer such 
that CT ′(t) is a mismatch in S′ but CT∗(f (t)) is a match 
in S∗ , while the nodes of I(T ′) that have already been 
considered so far in the post-order traversal also remain 
unaffected by the change in the topology of T ∗.

Case (iii): t is a node from a maximal red subtree of S. 
Observe that if t is a node from a maximal red subtree of 
S then CT ′(t) will always be a match in S′ . This is because 
the maximal red subtree of S that contains t appears as is 

in S′ . Thus, t could not have been a node from a maximal 
red subtree of S, and so this case never arises.

A simple inductive argument based on the post-order 
traversal of T ′ now completes this proof. �

The next theorem now follows immediately based on 
Algorithm TwoTreeCompletion, Theorem 1, and Lemma 5.

Theorem  3 Algorithm  TwoTreeCompletion solves the 
EF-R-RF(+) problem in O(|V (S)| + |V (T )|) time.

The EF‑U‑RF(+) problem
Observe that if S and T are unrooted and 
| Le (S) ∩ Le (T )| < 2 then there do not exist any comple-
tions S′ and T ′ of S and T, respectively, that do not con-
tain an extraneous clade when S′ and T ′ are rooted using 
a leaf node from Le (S) ∩ Le (T ) . Thus, we will assume 
that | Le (S) ∩ Le (T )| ≥ 2 . We first define the concept 
of an extraneous split and then define the EF-U-RF(+) 
problem.

Definition 9 (Extraneous split) Suppose S and T are 
unrooted trees. Let l be any leaf from Le (S) ∩ Le (T ) , 
and S′ and T ′ be completions of S and T, respectively, on 
Le (S) ∪ Le (T ) . Let Ŝ′ be obtained by rooting S′ on the 
edge connecting l to the rest of S′ , and T̂ ′ be obtained by 
rooting T ′ on the edge connecting l to the rest of T ′ . We 
define a split of S′ or T ′ to be an extraneous split if the 
corresponding clade in Ŝ′ or T̂ ′ is an extraneous clade.

Problem  6 (Extraneous-Split-Free U-RF(+) (EF-
U-RF(+))) Given two unrooted trees S and T such 
that | Le (S) ∩ Le (T )| ≥ 2 , compute a completion S′ 
of S on Le (S) ∪ Le (T ) and a completion T ′ of T on 
Le (S) ∪ Le (T ) such that S′ and T ′ do not contain any 
extraneous splits and RF(S′,T ′) is minimized.

As in Section  4, we will show how to solve EF-U-
RF(+) by solving EF-R-RF(+). In particular, we solve 
the EF-U-RF(+) problem using the following algorithm.

Algorithm for EF-U-RF(+) on input trees  S  and  T :

1 Let l be any leaf from Le (S) ∩ Le (T ) . Construct Ŝ by 
rooting S on the edge connecting l to the rest of S, 
and T̂  by rooting T on the edge connecting l to the 
rest of T.

2 Call Algorithm TwoTreeCompletion with trees Ŝ and 
T̂  as input. Let Ŝ′ and T̂ ′ be the trees returned.

3 Convert Ŝ′ and T̂ ′ into unrooted trees by suppressing 
the root node and output the resulting trees.
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We will show that the completed unrooted trees, S′ and 
T ′ , returned by the above algorithm must be extraneous-
split-free and minimize RF(S′,T ′).

Lemma 6 The trees S′ and T ′ returned by the above 
algorithm do not have any extraneous splits.

Proof Since the trees Ŝ′ and T̂ ′ computed in the above 
algorithm do not have any extraneous clades, each 
clade in Clade (Ŝ′) and Clade (T̂ ′) must have at least 
one leaf from Le (S) ∩ Le (T ) . Now, consider any leaf 
l′ ∈ Le (S) ∩ Le (T ) , and let Ŝ′′ be obtained by rooting 
S′ on the edge connecting l′ to the rest of S′ , and T̂ ′′ be 
obtained by rooting T ′ on the edge connecting l′ to the 
rest of T ′ . Observe that any clade in Clade (Ŝ′′) must 
either be a clade from Clade (Ŝ′) or must contain the leaf 
l. Likewise, any clade in Clade (T̂ ′′) must either be a clade 
from Clade (T̂ ′) or must contain the leaf l. Thus, neither 
Ŝ′′ nor T̂ ′′ contain any extraneous clades, and so, by the 
definition of an extraneous split, the trees S′ and T ′ must 
be free of any extraneous splits.  �

Lemma 7 Let S and T be unrooted trees with partially 
overlapping leaf sets and | Le (S) ∩ Le (T )| ≥ 2 . Let S′ be 
an optimal completion of S and T ′ be an optimal comple-
tion of T, on Le (T ) ∪ Le (S) , such that S′ and T ′ do not 
contain any extraneous splits and minimize RF(S′,T ′) . 
Let l be any leaf node common to S and T. Let Ŝ be 
obtained by rooting S on the edge connecting l to the rest of 
S, and T̂  be obtained by rooting T on the edge connecting 
l to the rest of T. If Ŝ′ and T̂ ′ are optimal completions of Ŝ 
and T̂  , respectively, under the EF-R-RF(+) problem, then 
RF(S′,T ′) = RF(Ŝ′, T̂ ′).

Proof Observe that S′ and T ′ are on the same leaf set. 
Let T ′′ be obtained by rooting T ′ on the edge connecting 
l to the rest of T ′ , and S′′ be obtained by rooting S′ on 
the edge connecting l to the rest of S′ . The trees T ′′ and 
S′′ must be valid (but not necessarily optimal) comple-
tions of the trees T̂  and Ŝ under the EF-R-RF(+) problem. 
Thus, by Observation 1, RF(S′,T ′) = RF(S′′,T ′′).

Likewise, observe that Ŝ′ and T̂ ′ are on the same leaf set. 
Let Ŝ′′ and T̂ ′′ be the unrooted trees obtained by sup-
pressing the root nodes of Ŝ′ and T̂ ′ , respectively. As 
shown in Lemma  6, the trees Ŝ′′ and T̂ ′′ must be valid 
(not necessarily optimal) completions of S and T under 
the EF-U-RF(+) problem. Thus, by Observation  1, 
RF(Ŝ′, T̂ ′) = RF(Ŝ′′, T̂ ′′).

We claim that S′′ and T ′′ must be optimal comple-
tions of Ŝ and T̂  , respectively, on Le (T ) ∪ Le (S) . 
If not, then RF(Ŝ′, T̂ ′) < RF(S′′,T ′′) , implying that 

RF(Ŝ′′, T̂ ′′) < RF(S′,T ′) , which is a contradic-
tion since S′ and T ′ are optimal completions of S and 
T under the EF-U-RF(+) problem. Thus, we must 
have RF(Ŝ′, T̂ ′) = RF(S′′,T ′′) , implying that 
RF(S′,T ′) = RF(Ŝ′, T̂ ′) .  �

Lemma  7 proves that the algorithm described above 
correctly solves the EF-U-RF(+) problem. Further-
more, note that the time complexity of the algorithm 
above is dominated by the time complexity of Algorithm 
TwoTreeCompletion, which is O(|V (S)| + |V (T )|) . Thus, 
we immediately have the following theorem.

Theorem  4 The EF-U-RF(+) problem can be solved in 
O(|V (S)| + |V (T )|) time.

Experimental evaluation
We implemented our algorithm for the ROT-RF(+) 
problem and applied it to three large biological supertree 
data sets with the goal of assessing the impact of using 
RF(+) distance instead of the traditional RF(−) distance 
in practice. Specifically, we computed a supertree (using 
a standard supertree method; RFS [13] in this case) for 
each of the supertree data sets, and computed the RF(+) 
and RF(−) distances between the supertree and the input 
trees for each data set. Let the RF(+) distance between a 
supertree S and an input tree I be denoted by RF+(S, I) , 
and the RF(−) distance those two trees by RF−(S, I) . 
For each data set, we ordered the input trees according 
to their RF(+) and RF(−) distances to the supertree and 
measured how often the relative ranking between any 
pair of input trees differs between the two rankings. More 
precisely, given a supertree S and its set of input trees I  , 
we computed RF−(S, I) and RF+(S, I) for each I ∈ I  , and 
counted the number of Type-1, Type-2, and Type-3 pairs 
{I ′, I ′′} , where I ′, I ′′ ∈ I  , as follows: 

Type-1 pairs:  Pair {I ′, I ′′} is Type-1 if either 
RF−(S, I ′) < RF−(S, I ′′) but 
RF+(S, I ′) > RF+(S, I ′′) , or 
RF−(S, I ′) > RF−(S, I ′′) but 
RF+(S, I ′) < RF+(S, I ′′) . These are 
pairs for which the RF(+) and RF(−) 
distances impose completely opposite 
orderings relative to the supertree.

Type-2 pairs:  Pair {I ′, I ′′} is Type-2 if 
RF−(S, I ′) = RF−(S, I ′′) but 
RF+(S, I ′) �= RF+(S, I ′′) . For these pairs, 
RF(−) distances are identical but RF(+) 
distances are not.
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Type-3 pairs:  Pair {I ′, I ′′} is Type-3 if 
RF−(S, I ′) �= RF−(S, I ′′) but 
RF+(S, I ′) = RF+(S, I ′′) . For these pairs, 
RF(+) distances are identical but RF(−) 
distances are not.

The three data sets, marsupials [32], placental mam-
mals [33], and legumes [34], contain 272, 116, and 571 
species, and 158, 726, and 22 input trees, respectively. 
We observed that for the 158 input trees of the marsu-
pial data set, there were 521 Type-1 pairs, 619 Type-2 
pairs, and 376 Type-3 pairs. For the 726 input trees of 
the placental mammals data set, there were 5816 Type-1 
pairs, 14, 344 Type-2 pairs, and 6, 238 Type-3 pairs. Like-
wise, for the 22 input trees in the legumes data set, we 
observed 8 Type-1 pairs, 3 Type-2 pairs, and no Type-3 
pairs. These results, summarized in Table  1, show that 
there can be substantial difference between RF(−) and 
RF(+) distances.

An open-source implementation of our algorithms 
for ROT-RF(+) and EF-R-RF(+) is freely available from: 
https ://compb io.engr.uconn .edu/softw are/rf_plus/.

Conclusion
In this work, we provide the first optimal, linear-time 
algorithms for two fundamental computational prob-
lems that arise when comparing phylogenetic trees with 
non-identical leaf sets. For the first problem, which 
arises when computing the RF(+) distance between two 
trees where the leaf set of one tree is a proper subset of 
the other, we improved upon the time complexity of the 
previous fastest algorithm by a factor of n, where n is 
the number of leaves in the larger of the two trees. For 
the second problem, which arises when computing the 
RF(+) distance between two trees that have only partially 
overlapping leaf sets, and for which there are no existing 
algorithms, we defined a useful restriction of the prob-
lem and provided an optimal linear-time algorithm for it. 
These algorithms make it as computationally efficient to 
compute RF(+) distances as RF(−) distances. The algo-
rithms work for both rooted and unrooted trees, and can 
be directly applied wherever phylogenetic distances must 

be computed between trees with non-identical leaf sets. 
Furthermore, our experiments with three large biological 
supertree data sets suggest that using the RF(+) distance 
can result in very different relative estimates of phyloge-
netic distances compared to using the RF(−) distance.

The algorithms presented here have several important, 
well-established applications, including construction of 
majority-rule(+) supertrees and supertree construction 
in general, phylogenetic database search, and clustering 
of phylogenetic trees, and these applications should be 
studied and developed further. A more detailed experi-
mental study is needed to properly assess the impact of 
using RF(+) distances and to systematically study the 
effect of factors such as fraction of leaf set overlap and 
degree of discordance between trees. This work also 
motivates several theoretical questions for future inves-
tigation. For instance, our algorithms for the EF-R-RF(+) 
and EF-U-RF(+) problems cannot be easily extended to 
solve the R-RF(+) and U-RF(+) problems. In particular, 
if optimal completions are allowed to contain extrane-
ous clades then inferring the number and composition 
of these extraneous clades (to attain overall optimality) 
appears to be computationally challenging. It would be 
interesting to determine if linear or near-linear time algo-
rithms exist for R-RF(+) and U-RF(+).
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