
Bansal Algorithms Mol Biol (2020) 15:6
https://doi.org/10.1186/s13015-020-00166-1

RESEARCH

Linear-time algorithms for phylogenetic tree
completion under Robinson–Foulds distance
Mukul S. Bansal1,2*

Abstract

Background: We consider two fundamental computational problems that arise when comparing phylogenetic
trees, rooted or unrooted, with non-identical leaf sets. The first problem arises when comparing two trees where the
leaf set of one tree is a proper subset of the other. The second problem arises when the two trees to be compared
have only partially overlapping leaf sets. The traditional approach to handling these problems is to first restrict the
two trees to their common leaf set. An alternative approach that has shown promise is to first complete the trees by
adding missing leaves, so that the resulting trees have identical leaf sets. This requires the computation of an optimal
completion that minimizes the distance between the two resulting trees over all possible completions.

Results: We provide optimal linear-time algorithms for both completion problems under the widely-used Robin-
son–Foulds (RF) distance measure. Our algorithm for the first problem improves the time complexity of the current
fastest algorithm from quadratic (in the size of the two trees) to linear. No algorithms have yet been proposed for the
more general second problem where both trees have missing leaves. We advance the study of this general problem
by proposing a useful restricted version of the general problem and providing optimal linear-time algorithms for the
restricted version. Our experimental results on biological data sets suggest that completion-based RF distances can
be very different compared to traditional RF distances.

Keywords: Phylogenetics, Distance measures, Robinson–Foulds distance, Optimal phylogenetic tree completion

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco
mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
A phylogenetic tree, or phylogeny, is a uniquely leaf-
labeled tree that shows the evolutionary relationships
between different biological entities, generally either
species or genes. Phylogenies may be either rooted or
unrooted. The leaf nodes of a phylogeny represent the
extant set of entities on which the phylogeny is built,
while internal nodes represent hypothetical ancestors.
The comparison of different phylogenetic trees is one
of the most fundamental tasks in evolutionary biology
and computational phylogenetics. Many biologically rel-
evant distance or similarity measures have been defined

in the literature for the case when the two phylogenies
to be compared have the same leaf set. These include the
widely used Robinson–Foulds distance [1], triplet and
quartet distances [2, 3], nearest neighbor interchange
(NNI) and subtree prune and regraft (SPR) distances [4–
6], maximum agreement subtrees [7–9], nodal distance
[10], geodesic distance [11] and several others. Often,
however, this comparison involves two trees that have
non-identical leaf sets. The need to compare trees that do
not have identical leaf sets arises naturally in several situ-
ations: For instance, algorithms for computing phyloge-
netic supertrees are typically based on comparing input
trees on partial leaf sets with candidate supertrees on the
complete leaf set [12–16]. Likewise, searching for phylog-
enies similar to a query tree in a phylogenetic database

Open Access

Algorithms for
Molecular Biology

*Correspondence: mukul.bansal@uconn.edu
1 Department of Computer Science and Engineering, University
of Connecticut, 371 Fairfield Way, Storrs, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-0039-2596
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-020-00166-1&domain=pdf

Page 2 of 15Bansal Algorithms Mol Biol (2020) 15:6

[17–20] and clustering of phylogenetic trees [21] often
involve comparisons between trees with only partially
overlapping leaf sets.

The traditional approach to comparing two phylog-
enies on non-identical leaf sets is to first restrict the two
phylogenies to their common leaf set and then apply one
of the distance or similarity measures that compare two
trees on the same leaf set. However, an alternative, and
perhaps more useful, approach to comparing trees with
non-identical taxa is to fill-in or complete the two trees to
be compared with the leaves missing from each, result-
ing in two trees on the same leaf set, and then apply the
distance or similarity measure. This completion based
approach is especially desirable when used with the Rob-
inson–Foulds (RF) distance measure [1], the most com-
monly used distance measure in evolutionary biology.
Indeed, several important biological applications would
directly benefit from the use of this completion-based
RF distance, such as the construction of majority-rule(+)
supertrees [22–25], construction of Robinson–Foulds
supertrees [13, 14, 26], phylogenetic database search
[17–20], and clustering of phylogenetic trees [21]. To
distinguish between the two methods for computing RF
distance between two trees with non-identical leaf sets,

we refer to the completion-based RF distance as RF(+)
distance and to the traditional pruning-based RF distance
as RF(−). Figure 1 shows an example of two trees with
partially overlapping leaf sets and these two ways of com-
puting the RF distance between them.

Previous work
The idea of a completion-based RF(+) distance was pro-
posed at least a decade ago. Cotton and Wilkinson were
among the first to propose such a distance measure in
their seminal paper describing majority-rule supertrees
[22]. Specifically, they defined two types of majority-rule
supertrees: majority-rule(−) and majority-rule(+) super-
trees. The majority-rule(−) supertrees were based on
traditional RF(−) distances between trees, while major-
ity-rule(+) supertrees were based on completion-based
RF(+) distances. Majority-rule(+) supertrees and its var-
iants have been shown to have many desirable properties
[27] and there have been efforts to develop exact (ILP-
based) and heuristic methods for computing majority-
rule(+) supertrees [23, 25]. Though these methods only
work for small datasets, they have been shown to result
in biologically meaningful supertrees [23]. The paper by
Kupczok [25] characterizes the RF(+) distance in the

Fig. 1 RF(−) and RF(+) distances. This figure illustrates the difference between the traditional (RF(−)) and RF(+) distance measures when applied
to trees with partially overlapping leaf sets. In this example, the leaf sets of T1 and T2 are a subset of the leaf set of S. To compute the RF(−) distance
between T1 and S, we must first restrict S to the leaf set of T1 , resulting in tree S1 . The RF(−) distance between S and T1 is thus RF(S1, T1) , which is
2. Likewise, to compute the RF(−) distance between T2 and S, we must first restrict S to the leaf set of T2 , resulting in tree S2 . The RF(−) distance
between S and T2 is thus RF(S2, T2) , which is also 2. In contrast, to compute the RF(+) distance between T1 and S, we must first compute an optimal
completion of T1 on the leaf set of S (denoted by the dashed red lines), resulting in tree T ′1 . The RF(+) distance between S and T1 is thus RF(S, T ′1) ,
which is 2. Likewise, to compute the RF(+) distance between T2 and S, we must first compute an optimal completion of T2 on the leaf set of S,
resulting in tree T ′2 . The RF(+) distance between S and T2 is thus RF(S, T ′2) , which is 4. Observe that while both T1 and T2 are equidistant from S under
RF(−), computing the RF(+) distances reveals that T1 is more similar to S than is T2

Page 3 of 15Bansal Algorithms Mol Biol (2020) 15:6

case when the leaf set of one tree is a subset of the leaf
set of the other in terms of incompatible splits between
the two trees, but does not provide an efficient algorithm
for computing this distance or for computing an actual
completion. More recently, Christensen et al. [28] pro-
vided an O(n2) time algorithm for the case when the leaf
set of one tree is a subset of the leaf set of the other and
applied the algorithm to compute optimal completions
for gene trees with respect to a species tree. To the best
of our knowledge, no algorithms (polynomial time or
otherwise) currently exist for the general problem where
the two trees have only partially overlapping leaf sets, or
for any of its variants.

Our contribution
In this work, we address an important gap in the algo-
rithmics of phylogenetic tree comparison. Specifically, we
provide the first optimal, linear-time algorithms for two
fundamental computational problems that arise when
comparing phylogenetic trees with non-identical leaf
sets. For the first problem, which arises when comput-
ing the RF(+) distance between two binary trees where
the leaf set of one tree is a proper subset of the other, we
improve upon the time complexity of the previous fast-
est algorithm for this problem by a factor of n, where n
is the number of leaves in the larger of the two trees. For
the second problem, which is a generalization of the first
and arises when computing the RF(+) distance between
two binary trees that have only partially overlapping leaf
sets, we show that the default problem formulation can
result in tree completions that are unsupported by the
original input trees, propose a modification of the prob-
lem formulation that corrects this deficiency, and provide
optimal linear-time algorithms for the modified prob-
lem. Crucially, no polynomial time algorithms currently
exist for the default formulation of the second problem,
and our modified problem formulation can be viewed as
a useful restricted version of the general problem. Our
algorithms are easy to understand and implement, work
for both rooted and unrooted trees, and are scalable to
the entire tree of life. These algorithms can be applied
wherever phylogenetic distances must be computed
between trees with non-identical leaf sets and enable new
kinds of phylogenetic and comparative analyses that have
been computationally infeasible.

We implemented our algorithm for the first problem
and applied it to three published biological supertree
data sets to study how RF(+) distances differ from RF(−)
distances in practice. For each data set, we ordered the
input trees according to their RF(+) and RF(−) distances
to a precomputed supertree and measured how often
the relative pairwise ranking between any pair of input
trees differs between the two rankings. We found a large

number of such pairs for each data set, demonstrating,
for the first time, that using the RF(+) distance can result
in very different relative estimates of phylogenetic dis-
tances compared to using the RF(−) distance.

RF(+) distances have several desirable properties com-
pared to RF(−) distances. For instance, the set of possible
values RF(+) distance can take ranges from 0 to about
twice the size of the union of the leaf sets of the two
trees, while for RF(−) distance this range is only from
0 to about twice the size of the intersection of the two
leaf sets. Thus, RF(+) distances have significantly more
discriminatory power than RF(−) distances. In appli-
cations such as median supertree construction, RF(+)
distance has the distinct advantage that each input tree
gets an equal “vote” in the supertree construction since
all input trees contribute an RF distance within the same
range. With RF(−) distances, larger trees can contrib-
ute much more to the total distance than smaller trees.
Finally, in computing RF(−) distances we ignore the addi-
tional topological information provided by leaves that
are present in only one tree, while RF(+) distance makes
complete use of the information in the topologies of the
two trees. RF(+) distances thus make more efficient use
of the available information. Despite these advantages,
RF(+) distances have not been applied in practice due to
unavailability of efficient algorithms. In contrast, RF(−)
distances can be computed in time linear in the sizes
(number of leaves) of the input trees. Our new algorithms
address this discrepancy by making it equally computa-
tionally efficient to compute RF(+) distances.

Preliminaries and problem definitions
Given a tree T, we denote its node set, edge set, and leaf
set by V(T), E(T), and Le (T) , respectively. The set of all
non-leaf (i.e., internal) nodes of T is denoted by I(T).

If T is rooted, the root node of T is denoted by rt (T) ,
the parent of a node v ∈ V (T) by pa T (v) , its set of chil-
dren by Ch T (v) , and the (maximal) subtree of T rooted
at v by T(v). If two nodes in T have the same parent,
they are called siblings of each other. The least common
ancestor, denoted lcaT (L) , of a set L ⊆ Le (T) in T is
defined to be the node v ∈ V (T) such that L ⊆ Le (T (v))
and L ⊆ Le (T (u)) for any child u of v. A rooted tree is
binary if all of its internal nodes have exactly two chil-
dren, while an unrooted tree is binary if all its nodes
have degree either 1 or 3. Throughout this work, the
term tree refers to binary trees with uniquely labeled
leaves.

Let T be a rooted or unrooted tree. Given a set
L ⊆ Le (T) , let T be the subtree of T with leaf set L. We
define the leaf induced subtree T[L] of T on leaf set L to
be the tree obtained from T by successively removing

Page 4 of 15Bansal Algorithms Mol Biol (2020) 15:6

each non-root node of degree two and adjoining its two
neighbors.

Definition 1 (Completion of a tree) Given a tree T and
a set L′ such that Le (T) ⊆ L′ , a completion of T on L′ is a
tree T ′ such that Le (T ′) = L′ and T ′[Le (T)] = T .

If T is a rooted tree, for each node v ∈ V (T) , the clade
CT (v) is defined to be the set of all leaf nodes in T(v); i.e.
CT (v) = Le (T (v)) . We denote the set of all clades of a
rooted tree T by Clade (T) . This concept can be extended
to unrooted trees as follows. If T is an unrooted tree,
each edge (u, v) ∈ E(T) defines a partition of the leaf
set of T into two disjoint subsets Le (Tu) and Le (Tv) ,
where Tu is the subtree containing node u and Tv is the
subtree containing node v, obtained when edge (u, v)
is removed from T. The partition induced by any edge
(u, v) ∈ E(T) is called a split and is represented by the set
{ Le (Tu), Le (Tv)} . The set of all splits in an unrooted tree
T is denoted by Split (T).

The symmetric difference of two sets A and B, denoted
by A�B , is the set (A \ B) ∪ (B \ A).

Definition 2 (Robinson–Foulds distance) The Robin-
son–Foulds (RF) distance, RF(S,T) , between two trees S
and T is defined to be |Clade (S)�Clade (T)| if S and T
are rooted trees, and | Split (S)� Split (T)| if S and T are
unrooted trees.

Let S and T be two trees. Without loss of general-
ity, we will assume that | Le (T)| ≤ | Le (S)| . When
Le (S) = Le (T) , there are two possible scenarios: (1)
Le (T) � Le (S) , i.e., the leaf set of T is a proper subset
of the leaf set of S, and (2) Le (S) ∩ Le (T) � Le (T) , i.e.,
each of S and T contains leaves not found in the other.
Based on these two scenarios, and depending on whether
the two trees are rooted or unrooted, we define the fol-
lowing four problems.

Problem 1 (Rooted One-Tree RF(+) (ROT-RF(+)))
Given two rooted trees S and T such that Le (T) ⊆ Le (S) ,
compute a completion T ′ of T on Le (S) such that RF(S,T ′)
is minimized.

Problem 2 (Unrooted One-Tree RF(+) (UOT-
RF(+))) Given two unrooted trees S and T such that
Le (T) ⊆ Le (S) , compute a completion T ′ of T on Le (S)
such that RF(S,T ′) is minimized.

Problem 3 (Rooted RF(+) (R-RF(+))) Given two
rooted trees S and T, compute a completion S′ of
S on Le (S) ∪ Le (T) and a completion T ′ of T on
Le (S) ∪ Le (T) such that RF(S′,T ′) is minimized.

Problem 4 (Unrooted RF(+) (U-RF(+))) Given
two unrooted trees S and T, compute a completion S′
of S on Le (S) ∪ Le (T) and a completion T ′ of T on
Le (S) ∪ Le (T) such that RF(S′,T ′) is minimized.

We show how to solve Problems 1 and 2 in O(|V(S)|)
time. As we will see later, Problems 3 and 4 can actu-
ally lead to unsupported completions. We will therefore
define meaningful variants of Problems 3 and 4 (requir-
ing only a slight variation on the original problems)
and show how to solve them in O(|V (S)| + |V (T)|)
time. For the purposes of complexity analysis, we will
assume that the leaves of S and T are labeled by inte-
gers from the set {1, . . . , | Le (S) ∪ Le (T)|} . However,
our algorithms work even if the leaf labels are arbitrary,
and universal hashing [29] or perfect hashing [30] can
be used to guarantee expected O(|V (S)| + |V (T)|) time
complexity.

A linear‑time algorithm for ROT‑RF(+)
To solve the ROT-RF(+) problem, our algorithm starts
with the trees S and T and modifies T by adding to
it, according to a particular scheme, the leaves from
Le (S) \ Le (T) . The completed tree thus produced,
denoted by T ′ , will be such that RF(S,T ′) is minimized.

We define Tree-Add(T , v,X) to be the tree
obtained from T by attaching to it a tree X, where
Le (X) ∩ Le (T) = ∅ , as follows: If v is not the root of T,
then attach X onto the edge (pa (v), v) (by subdividing
(pa (v), v) into two edges) such that rt (X) becomes the
sibling of the node v ∈ V (T) . If v is the root of T, then
Tree-Add(T , v,X) is the tree obtained by creating a new
root node and setting v and rt (X) as its two children.

The main idea behind our algorithm can be illus-
trated by the following simple example. Suppose the
given trees S and T are such that Le (S) = Le (T) ∪ {l} .
The goal is to add this leaf l to T so as to minimize the
RF distance. Let v denote the sibling of l in S. Let u
denote the node lcaT (Le (S(v))) . As we will prove later,
T ′ = Tree-Add(T ,u, l) must be an optimal completion
for T. Our algorithm extends this idea to the case when
T has multiple missing leaves. A description of the
algorithm follows:

Page 5 of 15Bansal Algorithms Mol Biol (2020) 15:6

minimizes RF(S,T ∗) . Then, RF(S,T ′) = RF(S,T ∗) ,
implying that T ′ is a solution for the ROT-RF(+) problem.

Proof It suffices to show that T ′ maximizes the number
of matched clades CS(v) , for v ∈ V (S).

Observe that Algorithm OneTreeCompletion partitions
V(S) into three sets according to the color assigned to
each node: red, green, or blue. We will consider these
three sets of nodes separately.

Case 1: Red nodes. All maximal subtrees in S that contain
only red nodes are included as is in the completed tree
T ′ . Thus, if v is a red node then CS(v) has a match in T ′ .
Thus, T ′ maximizes the number of matched clades CS(v)
over all red v.

Case 2: Green nodes. We claim that if v is green and CS(v)
does not have a match in T ′ then it must be unmatch-
able. Suppose CS(v) has a match in T, and let u ∈ V (T)
be such that CS(v) = CT (u) . Observe that the clade CT (u)

Figure 2 illustrates the algorithm through an exam-
ple. Next, we prove the correctness and analyze the time
complexity of this algorithm. We need the following
additional definitions:

Definition 3 (Matched clade) Given any two rooted
trees A and B on the same leaf set, and v ∈ V (A) , we say
that clade CA(v) has a match in B if Clade (B) contains
CA(v).

Definition 4 (Matchable clade of S) Given any v ∈ I(S) ,
we call the clade CS(v) matchable if there exists some
completion of T on Le (S) that contains the clade CS(v).

The correctness of Algorithm OneTreeCompletion fol-
lows from the following lemma.

Lemma 1 Let T ′ denote the completion of T returned
by Algorithm OneTreeCompletion on trees S and T.
Let T ∗ denote an optimal completion of T on Le (S) that

Page 6 of 15Bansal Algorithms Mol Biol (2020) 15:6

must also appear in T ′ since no blue node x ∈ V (S) will
be such that MS(x) ∈ V (T (u)) . This implies that if CS(v)
has a match in T then CS(v) must also have a match in T ′ .
In other words, if CS(v) does not have a match in T ′ then
CS(v) cannot have a match in T. Now, since CS(v) only
contains leaves that are already present in T, no comple-
tion of T on Le (S) can create clade CS(v) if CS(v) is not
already present in Clade (T) . Thus, if CS(v) has no match
in T then CS(v) must be unmatchable. This proves our
claim, and so T ′ must maximize the number of matched
clades CS(v) for green v.

Case 3: Blue nodes. We claim that if v is blue and CS(v)
does not have a match in T ′ then it must be unmatch-
able. Let C ′

S(v) denote the set containing only the green
nodes from CS(v) . We will say that clade CS(v) has a
partial-match in T if and only if C ′

S(v) ∈ Clade (T) .
Suppose CS(v) has a partial-match in T, and let u be
the node from T for which CT (u) = C ′

S(v) (note that,
in fact, u = MS(v)). Observe that any marked node
x ∈ V (S(v)) must be such that MS(x) ∈ V (T (u)) . This
implies that Algorithm OneTreeCompletion adds all the
maximal red subtrees within S(v) (i.e., subtrees rooted
at a red child of a marked node in S(v)) to one or more
of the edges in the set {(pa (t), t)|t ∈ T (u)} . Moreover,
since CT (u) = C ′

S(v) , none of the other marked nodes

y ∈ V (S) \ V (S(v)) can be such that MS(y) ∈ V (T (u)) .
Thus, there must be a node u′ ∈ T ′ for which
CT ′(u′) = CT (u) ∪ {r|ris a red leaf fromS(v)} , and so
CS(v) must have a match in T ′ . Consequently, if CS(v) has
a partial-match in T then CS(v) must have match in T ′ .
In other words, if CS(v) does not have a match in T ′ then
CS(v) cannot have a partial-match in T.

Now, suppose v ∈ V (S) is such that CS(v) has no partial-
match in T. Since C ′

S(v) only contains leaves that are
already present in T, and there exists no node u ∈ V (T)
for which CT (u) = C ′

S(v) , no completion of T on Le (S)
can create clade CS(v) . Thus, if CS(v) has no partial-match
in T then CS(v) must be unmatchable. This proves our
claim, and so T ′ must maximize the number of matched
clades CS(v) for blue v.

In summary, the tree T ′ maximizes the number of
matched clades for each of the three sets into which
V(S) is partitioned, thereby maximizing the number of
matched clades over all of V(S). Hence, T ′ must be a solu-
tion for the ROT-RF(+) problem. �

Theorem 1 Algorithm OneTreeCompletion solves the
ROT-RF(+) problem in O(|V(S)|) time.

Fig. 2 Algorithm for ROT-RF(+). Given S and T as shown in the left column of the figure, Algorithm OneTreeCompletion first colors each node of S
either green (circles), red (stars), or blue (squares) as shown in the middle column of the figure. A node is colored green if all leaves in the subtree
rooted at that node are present in both S and T, red if all leaves in that subtree are present only in S, and blue if that subtree has both green and
red descendants. If a blue node v has exactly one red child, then it is “marked”. In this example, s1 and s4 are marked nodes, highlighted in the figure
by the double perimeter around the blue (square) nodes. The algorithm then computes the LCA mapping, defined to be lcaT (Le (S(v)) ∩ Le (T)) ,
for each green or blue node v of S. These LCA mappings appear in the square boxes on S in the middle column. The algorithm then performs a
pre-order traversal of S, grafting copies of the red subtrees at each marked node onto the appropriate edges of T. The grafted subtrees are shown
using dashed red lines on T ′ in the right column. Tree T ′ is an optimal completion of T on Le (S)

Page 7 of 15Bansal Algorithms Mol Biol (2020) 15:6

Proof Lemma 1 establishes that Algorithm One-
TreeCompletion solves the ROT-RF(+) problem. It there-
fore suffices to show that this algorithm can be imple-
mented in O(|V(S)|) time. We consider the complexity of
each of the three ‘for’ loops separately.

The ‘for’ loop of lines 1 through 16 executes a single post-
order traversal of the tree S, and so lines 2 through 16 are
executed a total of O(|V(S)|) times. Each of the lines 2
through 16, except for line 16, clearly requires only O(1)
time per iteration. Line 16 can also be executed in O(1)
time after an O(|S|) preprocessing step to construct a
lookup table that enables O(1) time lookup of whether
a given leaf label from S occurs in tree T as well. This
lookup table can be easily implemented using an array
since the leaves of S (and T) are uniquely labeled by inte-
gers from the set {1, . . . , | Le (S)|} . The indices of the array
correspond to the leaf labels, and the entries correspond
to whether the corresponding leaf appears only in S or in
both T and S. Such an array can be constructed using a
single traversal through the leaf sets of S and T. Even if
the leaves have arbitrary labels, O(|S|) preprocessing time
and expected O(1) lookup time can be achieved through
hashing [29].

Line 18 is executed a total of O(|V(S)|) times through
the ‘for’ loop on line 17. After an O(|V(T)|) pre-
processing step on T, the least common ances-
tor of any pair of nodes from V(T) can be computed
in constant time [31]. For any internal node v con-
sidered in the ‘for’ loop on line 17, observe that
lcaT (X) , where X = {g |g ∈ Le (S(v)) and g is green}
is equivalent to lcaT (Y) , where
Y = {MS(g)|g ∈ Ch S(v) and g is not red} . Thus, com-
puting the least common ancestor mapping for any v (in
line 18) is equivalent to computing the least common
ancestor of the mappings of its (up to two) blue or green
children. Thus, after an O(| Le (T)|) preprocessing step
on T to enable fast least common ancestor computation
[31], each execution of line 18 requires only O(1) time.
This gives a total time complexity of O(|V(S)|) for lines
17 and 18.

The ‘for’ loop on line 19 executes line 20 a total of
O(|V(S)|) times. For a marked node v, line 20 requires
O(|V(R)|) time, where R is the subtree rooted at the
red child of v, to copy over the subtree R to T. Since
each such R is disjoint from the others, over all possible
marked nodes v, the total number of nodes in all the cor-
responding Rs is bounded by O(|V(S)|). Thus, the total
time complexity of lines 19 and 20 is O(|V(S)|).

Finally, line 21 requires O(|V(S)|) time to write the com-
pleted version of T. The total time complexity is thus
O(|V(S)|). �

Note that Algorithm OneTreeCompletion computes a
single optimal completion, and that optimal completions
need not be unique.

Solving UOT‑RF(+) in linear time
An unrooted tree can be converted into a rooted tree by
adding a root node on a chosen edge (thereby splitting
the chosen edge into two edges, with the two end points
of the chosen edge becoming the two children of the root
node). Thus, if the unrooted tree has e edges then there
are e ways to root that tree, with each of the e ways result-
ing in a different rooted tree.

If S and T are unrooted trees then we will show how to
compute an optimal completion of T on Le (S) by using
Algorithm OneTreeCompletion on appropriately rooted
versions of S and T. The following observation establishes
a direct relationship between the RF distance between
two unrooted trees on the same leaf set and the RF dis-
tance between appropriately rooted versions of the two
unrooted trees. This observation is also proved in [14].

Observation 1 Let P and Q be unrooted trees on the
same leaf set, and l be any leaf node (common to P and Q).
Let P̂ be obtained by rooting P on the edge connecting l to
the rest of P, and Q̂ be obtained by rooting Q on the edge
connecting l to the rest of Q. Then, RF(P,Q) = RF(P̂, Q̂).

Proof Consider any edge (u, v) ∈ E(P) . We will use
Pu to denote the subtree containing node u and Pv to
denote the subtree containing node v, obtained when
edge (u, v) is removed from P. Edge (u, v) defines the
split { Le (Pu), Le (Pv)} in P. We define a bijection
f : Split (P) → Clade (P̂) \ {l, rt (P)} from splits in P to
clades in P̂ as follows. Given any split { Le (Pu), Le (Pv)} ,
without loss of generality, we assume that the leaf l
occurs in the Pu side of this split, i.e., l ∈ Le (Pu) , and
define f ({ Le (Pu), Le (Pv)}) = C

P̂
(v).

Note that RF(P,Q) is equal to 2× (| Split (P) \ Split (Q)|) .
Likewise, RF(P̂, Q̂) is equal to
2× (|Clade (P̂) \ Clade (Q̂)|) . It therefore suffices to
show that, given any split {X ,Y } from P, {X ,Y } ∈ Split (Q)
if and only if f ({X ,Y }) ∈ Clade (Q̂) . Suppose
{X ,Y } ∈ Split (Q) . Without loss of generality, we may
assume that l ∈ X . This implies that f ({X ,Y }) = Y . Since
{X ,Y } ∈ Split (Q) , there must be a node q ∈ V (Q̂) such
that C

Q̂
(q) = Y . Thus, f ({X ,Y }) = C

Q̂
(q) , and so

f ({X ,Y }) ∈ Clade (Q̂) . Conversely, suppose

Page 8 of 15Bansal Algorithms Mol Biol (2020) 15:6

{X ,Y } �∈ Split (Q) . Again, without loss of generality, we
may assume that l ∈ X and so f ({X ,Y }) = Y . There can-
not be any edge (u, v) ∈ E(Q) for which either Qu or Qv is
equal to Y. Thus, there cannot be any node q in V (Q̂) for
which C

Q̂
(q) = Y . Thus, f ({X ,Y }) �∈ Clade (Q̂).

 �

Lemma 2 Let S and T be unrooted trees such that
Le (T) ⊆ Le (S) . Let T ′ be an optimal completion of T
on Le (S) , such that T ′ minimizes RF(S,T ′) . Let l be any
leaf node common to T and S. Let Ŝ be obtained by root-
ing S on the edge connecting l to the rest of S, and T̂ be
obtained by rooting T on the edge connecting l to the rest
of T. If T̂ ′ is an optimal completion of T̂ on Le (Ŝ) then
RF(S,T ′) = RF(Ŝ, T̂ ′).

Proof Observe that S and T ′ are on the same leaf set. Let
T ′′ be obtained by rooting T ′ on the edge connecting l to
the rest of T ′ . The tree T ′′ must be a valid (not necessar-
ily optimal) completion of the tree T̂ on Le (Ŝ) . Thus, by
Observation 1, RF(S,T ′) = RF(Ŝ,T ′′).

Likewise, observe that Ŝ and T̂ ′ are on the same leaf
set. Let T̂ ′′ be the unrooted tree obtained by suppress-
ing the root node of T̂ ′ . The tree T̂ ′′ must be a valid (not

necessarily optimal) completion of the tree T on Le (S) .
Thus, by Observation 1, RF(Ŝ, T̂ ′) = RF(S, T̂ ′′).

We claim that T ′′ must be an optimal completion of T̂
on Le (Ŝ) . If not, then RF(Ŝ, T̂ ′) < RF(Ŝ,T ′′) , imply-
ing that RF(S, T̂ ′′) < RF(S,T ′) , which is a contradiction
since T ′ is an optimal completion of T on Le (S) . Thus,
we must have RF(Ŝ, T̂ ′) = RF(Ŝ,T ′′) , implying that
RF(S,T ′) = RF(Ŝ, T̂ ′) . �

Based on the observation above, we solve the UOT-
RF(+) problem as follows:

Algorithm for UOT-RF(+) on input trees S and T:

1. Let l be any leaf from Le (T) . Construct Ŝ by rooting
S on the edge connecting l to the rest of S, and T̂ by
rooting T on the edge connecting l to the rest of T.

2. Call Algorithm OneTreeCompletion with trees Ŝ and
T̂ as input. Let T̂ ′ be the tree returned.

3. Convert T̂ ′ into an unrooted tree by suppressing the
root node and output the resulting tree.

Theorem 2 The UOT-RF(+) problem can be solved in
O(|V(S)|) time.

Fig. 3 Extraneous clades and R-RF(+) and EF-R-RF(+) completions. This figure shows two trees S and T with partial leaf set overlap whose optimal
completions under the R-RF(+) problem result in extraneous clades. The tree S contains two leaves c and d that are absent from T, and the tree T
contains two leaves i and j absent from S. The lower-right part of the figure shows optimal completions of S and T, labeled S′′ and T ′′ , respectively,
that minimize the RF distance over all possible completions. The nodes marked in red denote (non-leaf) clades common to both S′′ and T ′′ . Observe
that of the three nodes that S′′ and T ′′ have in common, the lower two, i.e., {c, i} and {d, j} , are extraneous clades that have no support in either S
or T and do not contain any of the leaves shared by both S and T. Optimal completions under EF-R-RF(+) disallow such extraneous clades. The
upper-right part of the figure shows optimal completions of S and T that minimize the RF distance over all completions without any extraneous
clades. The completions S′ and T ′ only contain clades that have at least one leaf shared by both trees

Page 9 of 15Bansal Algorithms Mol Biol (2020) 15:6

Proof Let T ∗ denote the output of the algorithm
described above, and let T ′ denote an optimal comple-
tion of T on Le (S) . Since Ŝ and T̂ are rooted at a common
leaf-edge, l, of S and T, and since the tree T̂ ′ minimizes
RF(Ŝ, T̂ ′) , Lemma 2 implies that RF(S,T ′) = RF(Ŝ, T̂ ′).

Now, observe that S and T ∗ have the same leaf set, and
that l is a leaf node common to S and T ∗ . Furthermore, Ŝ
is obtained by rooting S on the edge connecting l to the
rest of S, and T̂ ′ is obtained by rooting T ∗ on the edge
connecting l to the rest of T ∗ . Thus, by Observation 1,
we must have RF(S,T ∗) = RF(Ŝ, T̂ ′) . Thus, RF(S,T ∗)
must be equal to RF(S,T ′) , implying that T ∗ is an optimal
completion of T on Le (S) . �

The previous fastest algorithm for solving the UOT-
RF(+) problem [28] has quadratic time complexity. Our
algorithm is able to find edges on which to graft the miss-
ing subtrees more efficiently than the algorithm from
[28] because we use appropriately rooted versions of the
unrooted input trees and then use simple post-order and
pre-order tree traversals of the trees coupled with effi-
cient least common ancestor computations.

The R‑RF(+) problem
Observe how an optimal completion of T in the ROT-RF(+)
problem maximizes the number of clades that have a match
in S. This ensures a meaningful completion of T. However,
in the R-RF(+) problem, where both trees may have miss-
ing leaves, it is possible that optimal completions of the
two trees contain “extraneous” clades that contain leaves
from both S and T but do not contain any leaves common
to S and T. Extraneous clades are created by pairing a sub-
tree containing only missing leaves from one tree with a
subtree containing only missing leaves from the other tree.
Such clades can help to lower the RF distance between the
two completed trees, but are completely unsupported by
the topologies of S and T. This phenomenon is illustrated
through an example in Fig. 3. We therefore define a variant
of the R-RF(+) problem that only allows completions that
do not result in extraneous clades. Crucially, this restriction
to only non-extraneous clades also makes the underlying
completion problem easier to solve. Note that extraneous
clades could indeed be “correct”

in some cases, so restricting to non-extraneous clades
could sometimes prevent us from considering certain
correct clades when computing completions.

Definition 5 (Extraneous clade) Suppose S and T are
rooted trees. Given completions S′ and T ′ of S and T,
respectively, on Le (S) ∪ Le (T) , we define a clade of S′
or T ′ to be an extraneous clade if it contains leaves from
both S and T but no leaves that are common to S and T.

Problem 5 (Extraneous-Clade-Free R-RF(+) (EF-R-
RF(+))) Given two rooted trees S and T, compute a com-
pletion S′ of S on Le (S) ∪ Le (T) and a completion T ′ of T
on Le (S) ∪ Le (T) such that S′ and T ′ do not contain any
extraneous clades and RF(S′,T ′) is minimized.

An example of an optimal EF-R-RF(+) completion
appears in Fig. 3. Next, we show how to solve the EF-R-
RF(+) problem in linear time.

A linear‑time algorithm for EF‑R‑RF(+)
For the EF-R-RF(+) problem, Le (S) and Le (T) are both
proper subsets of Le (S) ∪ Le (T) , i.e., both S and T must
be completed on the leaf set Le (S) ∪ Le (T) . Our algo-
rithm for this problem builds upon the algorithm for the
ROT-RF(+) problem. Specifically, we first complete T
on Le (S) ∪ Le (T) with respect to S, then complete S on
Le (S) ∪ Le (T) with respect to the previous completion
of T. Formally, the algorithm is as follows:

Algorithm TwoTreeCompletion(S, T)
1: T = OneTreeCompletion(S, T).
2: S = OneTreeCompletion(T , S).
3: return S and T .

In the following, we will show that when Algorithm
TwoTreeCompletion terminates, the trees S′ and T ′ returned
by the algorithm must be such that they do not contain any
extraneous clades, and that RF(S′,T ′) is the smallest pos-
sible for any completion of S and T that does not have extra-
neous clades. We will assume, without any loss of generality,
that S and T have at least one leaf in common; if there are
no leaves in common between S and T then the EF-R-RF(+)
problem has no solution since any completion of S and T
would necessarily contain extraneous clades.

For brevity, in the remainder of this section, we will
implicitly assume that all completions of S and T are on
the leaf set Le (S) ∪ Le (T) . Next, we define the notions of
original nodes, grafted nodes, and grafted subtrees in tree
completions.

Definition 6 (Original nodes) Let S′ and T ′ denote any
completions of S and T. Observe that completing a tree
creates new internal nodes in the tree but preserves all
original internal nodes (though not necessarily the clades
rooted at those nodes). Thus, we have I(S) ⊂ I(S′) and
I(T) ⊂ I(T ′) . The set of nodes in I(S′) that are also pre-
sent in I(S) are called the original nodes of S′ , denoted
O(S′) . Analogously, the set of nodes in I(T ′) that are also
present in I(T) are called the original nodes of T ′ , denoted
O(T ′).

Page 10 of 15Bansal Algorithms Mol Biol (2020) 15:6

Definition 7 (Grafted nodes) Let S′ and T ′ denote
any completions of S and T. Observe that any node
u ∈ I(S′) \O(S′) is either a node that was already present
in a subtree from T (consisting of leaves missing from S)
as that subtree was grafted into S, or a new node that was
created as a subtree from T (consisting of leaves missing
from S) was grafted into S. We refer to the new nodes
created by the grafting of a subtree from T into S′ as the
grafted nodes of S′ , denoted G(S′) . Analogously, the set of
nodes in I(T ′) \O(T ′) that were newly created through
the process of grafting a subtree from S into T are called
the grafted nodes of T ′ , denoted G(T ′).

Definition 8 (Grafted subtrees) If S′ denotes any com-
pletion of S and u ∈ G(S′) , then u is created by the graft-
ing of a subtree of T (consisting of leaves missing from S)
at that node u in S′ . We denote the grafted subtree of T
at u by graft(u) . Similarly, if T ′ denotes any completion
of T and v ∈ G(T ′) , then v is created by the grafting of a
subtree of S at that node v in T ′ . We denote the grafted
subtree of S at v by graft(v).

Node colorings
For convenience, we will color the nodes of S and T
according to the coloring scheme used in Algorithm One-
TreeCompletion. Thus, each node of S and T is colored
either red, or green, or blue. We will assume that these
colored nodes maintain their original colors in the com-
pleted trees S′ and T ′ , and thus both S′ and T ′ contain
nodes that are red, green, and blue, as well as nodes that
are uncolored.

We now show that the completed trees S′ and T ′
returned by Algorithm TwoTreeCompletion must be free
of extraneous clades.

Lemma 3 The trees S′ and T ′ returned by Algorithm
TwoTreeCompletion do not have any extraneous clades.

Proof Let us first consider the tree T ′ . Any non-original
node in T ′ is either a node from a maximal red subtree of
S or is a grafted node created by grafting a maximal red
subtree of S into T ′ using the Tree-Add operation. Based
on Algorithm OneTreeCompletion, each grafted node
created through the Tree-Add operation has at least one
green descendant, and so it cannot be extraneous. More-
over, any node inside a maximal red subtree of S only has
descendants from S, not from T. Thus, since T did not
contain any extraneous clades to begin with, neither can
T ′ . An analogous argument applies to S′ . �

The next lemma identifies an important property of
optimal completions.

Lemma 4 Let S∗ and T ∗ be any optimal completions of S
and T, respectively, under the EF-R-RF(+) problem. Then,
for any u ∈ G(S∗) , graft(u) must be a maximal red subtree
of T and, for any v ∈ G(T ∗) , graft(v) must be a maximal
red subtree of S.

Proof Observe that any maximal red subtree of T must
appear as is in the tree T ∗ , since grafting a red leaf or
subtree from S into any of the red subtrees of T would
result in an extraneous clade. We will show that if there
exists a node u ∈ G(S∗) for which graft(u) is not a maxi-
mal red subtree of T, it is possible to modify the tree S∗
so that the modified tree has more matched clades than
S∗ , a contradiction. An analogous argument applies
to T ∗ . Suppose there exists such a node u. Then, there
must exist a red internal node r of T such that the two
subtrees, denoted R′ and R′′ , rooted at the two chil-
dren of r appear as is in the tree S∗ but not as siblings
of each other (i.e., their roots do not have the same par-
ent in S∗). Let r′ and r′′ denote the root nodes of R′ and
R′′ , respectively, and s′ and s′′ denote the parents of r′
and r′′ in S∗ . Thus, R′ = graft(s′) and R′′ = graft(s′′) .
Now, observe that all clades of S∗ rooted either at a node
on the path from lca S∗(s

′, s′′) to s′ or on the path from
lca S∗(s

′, s′′) to s′′ , except for the node lca S∗(s
′, s′′) itself,

must be mismatched clades (since all maximal red sub-
trees of T appear as is in the tree T ∗). Also, note that if
S∗ is modified by pruning out the subtree R′ and regraft-
ing it on the edge (s′′, r′′) then the only matched clades
that can become mismatched are the ones whose roots
lie on the path from lca S∗(s

′, s′′) to s′ or from lca S∗(s
′, s′′)

to s′′ , except for node lca S∗(s
′, s′′) . Thus, modifying the

tree S∗ in this fashion does not result in any additional
mismatched clades, but results in a new matched clade
rooted at the node where R′ is regrafted. Thus, the modi-
fied tree has a larger number of matched clades than S∗ ,
which is a contradiction. �

We also have the following simple observation about
optimal completions.

Observation 2 Let S∗ and T ∗ be optimal completions of
S and T, respectively, that satisfy the property described
in Lemma 4. Then any u ∈ G(S∗) and any v ∈ G(T ∗) must
have at least one green leaf as a descendant.

Proof This follows immediately from the fact that,
under EF-R-RF(+), each clade must contain at least one
green leaf (otherwise it would be an extraneous clade). �

Page 11 of 15Bansal Algorithms Mol Biol (2020) 15:6

Finally, the following lemma proves the correctness of
Algorithm TwoTreeCompletion.

Lemma 5 Let S′ and T ′ denote the completions of S and
T, respectively, returned by Algorithm TwoTreeComple-
tion. Let S∗ and T ∗ denote optimal completions of S and
T, respectively, under the EF-R-RF(+) problem. Then,
RF(S′,T ′) = RF(S∗,T ∗).

Proof Based on Lemma 4, we know that S∗ and T ∗ are
such that, for any u ∈ G(S∗) , graft(u) is a maximal red
subtree of T, and for any v ∈ G(T ∗) , graft(v) is a maxi-
mal red subtree of S. Furthermore, observe that, given
the tree T ∗ , we can compute an optimal completion for
S with respect to T ∗ by using Algorithm OneTreeComple-
tion. Thus, without any loss of generality, we will assume
that S∗ has the topology that would be computed by
Algorithm OneTreeCompletion on input (T ∗, S).

To prove this lemma, it suffices to show that the num-
ber of matched clades in T ′ (with respect to S′) is no less
than the number of matched clades in T ∗ (with respect
to S∗). We first define a one-to-one correspondence
between the internal nodes of T ′ and the internal nodes
of T ∗ . Consider any node t ∈ I(T ′) . There are three pos-
sibilities: (i) t ∈ O(T ′) , (ii) t ∈ G(T ′) , and (iii) t is a node
from a maximal red subtree of S. For case (i), observe
that O(T ′) = O(T ∗) , and so if t ∈ O(T ′) then a counter-
part of t also exists in T ∗ . For case (ii) observe that each
t ∈ G(T ′) is created by grafting graft(t) into T ′ . We will
associate t with that unique node of T ∗ that is created by
grafting the same maximal red subtree of S, graft(t) , into
T ∗ . For case (iii), since the same maximal red subtree of S
also appears in T ∗ , the node associated with t is the same
node from the same maximal red subtree of S in T ∗ . We
denote the node of I(T ∗) corresponding to node t ∈ I(T ′)
by f(t). It is not difficult to see that f : I(T ′) → I(T ∗) is
one-to-one and onto.

We now traverse the nodes of T ′ in post order and iden-
tify the first node t ∈ I(T ′) for which CT ′(t) is a mismatch
in S′ but CT∗(f (t)) is a match in S∗ . If no such node exists
then the number of matched clades in T ∗ could not be
more than the number of matched clades in T ′ , complet-
ing our proof. Thus, suppose such a node t exists. We
again have three possible cases depending on whether (i)
t ∈ O(T ′) , (ii) t ∈ G(T ′) , or (iii) t is a node from a maxi-
mal red subtree of S. We consider each of these cases
separately.

Case (i): t ∈ O(T ′) . In this case, CT ′(t) must be a proper
subset of CT∗(f (t)) . This is because if CT ′(t) = CT∗(f (t))
then both clades would either be matches or both would

be mismatches, while if T ′(t) contains a grafted subtree
not present in T ∗(f (t)) then CT∗(f (t)) could not possi-
bly be a matched clade. Thus, there must be at least one
maximal red subtree of S that is grafted on an edge in
T ∗(f (t)) but not on an edge in T ′(t) . We let X denote the
set of such maximal red subtrees, and let G∗ denote the
set of grafted nodes corresponding to these maximal red
subtrees from X in the tree T ∗.

Let a be any node on the path from f(t) to any g ∈ G∗ in
T ∗ , except for the node f(t) itself. Since T ′ is computed by
executing Algorithm OneTreeCompletion on input (S, T),
and no subtree from X is grafted inside the subtree T ′(t) ,
T ∗(a) cannot be a matched clade. We can therefore mod-
ify T ∗ by cutting out all subtrees of X from T ∗(f (t)) and
grafting them onto the parent edge of f(t) (in any arbi-
trary order if |X | > 1). Let T ∗

M denote this modified ver-
sion of T ∗ , and let g∗ denote the newly created grafted
node that is closest to rt (T ∗

M) along the path from rt (T ∗
M)

to f(t) in T ∗
M . Observe that CT∗

M
(g∗) = CT∗(f (t)) , and so

CT∗
M
(g∗) must be a matched clade in T ∗

M , while CT∗
M
(f (t))

is no longer a matched clade. Thus, overall, the number
of matched clades in T ∗

M is the same as the number of
matched clades in T ∗ . If we now assign T ∗ to be T ∗

M then
node t is no longer such that CT ′(t) is a mismatch in S′
but CT∗(f (t)) is a match in S∗ . Moreover, observe that
any grafted node corresponding to a maximal red subtree
from X in the tree T ′ must lie along the path from rt (T ′)
to t (otherwise CT∗(f (t)) could not be a matched clade).
Thus, the nodes of I(T ′) that have already been consid-
ered so far in the post-order traversal remain unaffected
by the change in the topology of T ∗.

Case (ii): t ∈ G(T ′) . The argument in this case is similar
to that from case (i). As before, CT ′(t) must be a proper
subset of CT∗(f (t)) . This is because if CT ′(t) = CT∗(f (t))
then both clades would either be matches or both would
be mismatches, while if T ′(t) contains a grafted subtree
not present in T ∗(f (t)) then CT∗(f (t)) could not possibly
be a matched clade. There are therefore two possibilities:
T ∗(f (t)) either includes an original node r ∈ O(T ∗) for
which the corresponding original node in T ′ is an ancestor
of t, or T ∗(f (t)) does not include such an original node.

For the first possibility, T ∗(f (t)) includes an original
node r ∈ O(T ∗) for which the corresponding original
node in T ′ is an ancestor of t. Without loss of generality,
let r denote that original node from T ∗(f (t)) that is clos-
est to f(t). Let a be any node along the path from f(t) to
r, except for f(t) itself. Observe that a must be a grafted
node and that CT∗(a) cannot be a match since it does not
include the subtree graft(t) . We can therefore modify T ∗
by cutting out all grafted subtrees along the path from

Page 12 of 15Bansal Algorithms Mol Biol (2020) 15:6

f(t) to r (including graft(t)) and grafting them in the same
order onto any chosen child edge of r. Let T ∗

M denote this
modified version of T ∗ . Note that CT∗

M
(r) = CT∗(f (t)) ,

and so CT∗
M
(r) must be a matched clade in T ∗

M , while
CT∗

M
(f (t)) is no longer a matched clade. Note, also, that

the other newly formed clades in CT∗
M
(f (t)) must all be

mismatches since T ∗
M cannot have more matched clades

than the optimal completion T ∗ . Thus, overall, the num-
ber of matched clades in T ∗

M is the same as the number of
matched clades in T ∗ . If we now assign T ∗ to be T ∗

M then
node t is no longer such that CT ′(t) is a mismatch in S′
but CT∗(f (t)) is a match in S∗ , while the nodes of I(T ′)
that have already been considered so far in the post-order
traversal also remain unaffected by the change in the
topology of T ∗ (since the original node corresponding to r
in T ′ is an ancestor of t).

For the second possibility, T ∗(f (t)) must include a grafted
subtree (maximal red subtree of S) that is not present in
T ′(t) . Let g denote the grafted node of T ∗(f (t)) at which
any such subtree is grafted, and let a be any node on the
path from f(t) to g in T ∗ , except for the node f(t) itself.
Note that, since T ′ is computed by executing Algorithm
OneTreeCompletion on input (S, T), and this maximal
red subtree is not grafted inside the subtree T ′(t) , T ∗(a)
cannot be a matched clade. We can therefore modify T ∗
by cutting out this grafted subtree at g and grafting it at
the parent edge of f(t) (creating such an edge f(t) happens
to be the root of T ∗). Let the new node thus created be
called g∗ and let T ∗

M denote this modified version of T ∗ .
Note that CT∗

M
(g∗) = CT∗(f (t)) , and so CT∗

M
(g∗) must

be a matched clade in T ∗
M , while CT∗

M
(f (t)) is no longer a

matched clade. Note, also, that no other matched clades
of T ∗ are affected by this transformation. Thus, overall,
the number of matched clades in T ∗

M is the same as the
number of matched clades in T ∗ . Furthermore, observe
that graft(g) must be a subtree that appears grafted some-
where along the path from t to rt (T ′) in tree T ′ , since
otherwise, for CT∗(f (t)) to be a match, T ∗(f (t)) would
have to contain an original node r ∈ O(T ∗) for which the
corresponding original node in T ′ is an ancestor of t, a
contradiction of the premise of this second possibility. If
we now assign T ∗ to be T ∗

M then node t is no longer such
that CT ′(t) is a mismatch in S′ but CT∗(f (t)) is a match
in S∗ , while the nodes of I(T ′) that have already been
considered so far in the post-order traversal also remain
unaffected by the change in the topology of T ∗.

Case (iii): t is a node from a maximal red subtree of S.
Observe that if t is a node from a maximal red subtree of
S then CT ′(t) will always be a match in S′ . This is because
the maximal red subtree of S that contains t appears as is

in S′ . Thus, t could not have been a node from a maximal
red subtree of S, and so this case never arises.

A simple inductive argument based on the post-order
traversal of T ′ now completes this proof. �

The next theorem now follows immediately based on
Algorithm TwoTreeCompletion, Theorem 1, and Lemma 5.

Theorem 3 Algorithm TwoTreeCompletion solves the
EF-R-RF(+) problem in O(|V (S)| + |V (T)|) time.

The EF‑U‑RF(+) problem
Observe that if S and T are unrooted and
| Le (S) ∩ Le (T)| < 2 then there do not exist any comple-
tions S′ and T ′ of S and T, respectively, that do not con-
tain an extraneous clade when S′ and T ′ are rooted using
a leaf node from Le (S) ∩ Le (T) . Thus, we will assume
that | Le (S) ∩ Le (T)| ≥ 2 . We first define the concept
of an extraneous split and then define the EF-U-RF(+)
problem.

Definition 9 (Extraneous split) Suppose S and T are
unrooted trees. Let l be any leaf from Le (S) ∩ Le (T) ,
and S′ and T ′ be completions of S and T, respectively, on
Le (S) ∪ Le (T) . Let Ŝ′ be obtained by rooting S′ on the
edge connecting l to the rest of S′ , and T̂ ′ be obtained by
rooting T ′ on the edge connecting l to the rest of T ′ . We
define a split of S′ or T ′ to be an extraneous split if the
corresponding clade in Ŝ′ or T̂ ′ is an extraneous clade.

Problem 6 (Extraneous-Split-Free U-RF(+) (EF-
U-RF(+))) Given two unrooted trees S and T such
that | Le (S) ∩ Le (T)| ≥ 2 , compute a completion S′
of S on Le (S) ∪ Le (T) and a completion T ′ of T on
Le (S) ∪ Le (T) such that S′ and T ′ do not contain any
extraneous splits and RF(S′,T ′) is minimized.

As in Section 4, we will show how to solve EF-U-
RF(+) by solving EF-R-RF(+). In particular, we solve
the EF-U-RF(+) problem using the following algorithm.

Algorithm for EF-U-RF(+) on input trees S and T :

1 Let l be any leaf from Le (S) ∩ Le (T) . Construct Ŝ by
rooting S on the edge connecting l to the rest of S,
and T̂ by rooting T on the edge connecting l to the
rest of T.

2 Call Algorithm TwoTreeCompletion with trees Ŝ and
T̂ as input. Let Ŝ′ and T̂ ′ be the trees returned.

3 Convert Ŝ′ and T̂ ′ into unrooted trees by suppressing
the root node and output the resulting trees.

Page 13 of 15Bansal Algorithms Mol Biol (2020) 15:6

We will show that the completed unrooted trees, S′ and
T ′ , returned by the above algorithm must be extraneous-
split-free and minimize RF(S′,T ′).

Lemma 6 The trees S′ and T ′ returned by the above
algorithm do not have any extraneous splits.

Proof Since the trees Ŝ′ and T̂ ′ computed in the above
algorithm do not have any extraneous clades, each
clade in Clade (Ŝ′) and Clade (T̂ ′) must have at least
one leaf from Le (S) ∩ Le (T) . Now, consider any leaf
l′ ∈ Le (S) ∩ Le (T) , and let Ŝ′′ be obtained by rooting
S′ on the edge connecting l′ to the rest of S′ , and T̂ ′′ be
obtained by rooting T ′ on the edge connecting l′ to the
rest of T ′ . Observe that any clade in Clade (Ŝ′′) must
either be a clade from Clade (Ŝ′) or must contain the leaf
l. Likewise, any clade in Clade (T̂ ′′) must either be a clade
from Clade (T̂ ′) or must contain the leaf l. Thus, neither
Ŝ′′ nor T̂ ′′ contain any extraneous clades, and so, by the
definition of an extraneous split, the trees S′ and T ′ must
be free of any extraneous splits. �

Lemma 7 Let S and T be unrooted trees with partially
overlapping leaf sets and | Le (S) ∩ Le (T)| ≥ 2 . Let S′ be
an optimal completion of S and T ′ be an optimal comple-
tion of T, on Le (T) ∪ Le (S) , such that S′ and T ′ do not
contain any extraneous splits and minimize RF(S′,T ′) .
Let l be any leaf node common to S and T. Let Ŝ be
obtained by rooting S on the edge connecting l to the rest of
S, and T̂ be obtained by rooting T on the edge connecting
l to the rest of T. If Ŝ′ and T̂ ′ are optimal completions of Ŝ
and T̂ , respectively, under the EF-R-RF(+) problem, then
RF(S′,T ′) = RF(Ŝ′, T̂ ′).

Proof Observe that S′ and T ′ are on the same leaf set.
Let T ′′ be obtained by rooting T ′ on the edge connecting
l to the rest of T ′ , and S′′ be obtained by rooting S′ on
the edge connecting l to the rest of S′ . The trees T ′′ and
S′′ must be valid (but not necessarily optimal) comple-
tions of the trees T̂ and Ŝ under the EF-R-RF(+) problem.
Thus, by Observation 1, RF(S′,T ′) = RF(S′′,T ′′).

Likewise, observe that Ŝ′ and T̂ ′ are on the same leaf set.
Let Ŝ′′ and T̂ ′′ be the unrooted trees obtained by sup-
pressing the root nodes of Ŝ′ and T̂ ′ , respectively. As
shown in Lemma 6, the trees Ŝ′′ and T̂ ′′ must be valid
(not necessarily optimal) completions of S and T under
the EF-U-RF(+) problem. Thus, by Observation 1,
RF(Ŝ′, T̂ ′) = RF(Ŝ′′, T̂ ′′).

We claim that S′′ and T ′′ must be optimal comple-
tions of Ŝ and T̂ , respectively, on Le (T) ∪ Le (S) .
If not, then RF(Ŝ′, T̂ ′) < RF(S′′,T ′′) , implying that

RF(Ŝ′′, T̂ ′′) < RF(S′,T ′) , which is a contradic-
tion since S′ and T ′ are optimal completions of S and
T under the EF-U-RF(+) problem. Thus, we must
have RF(Ŝ′, T̂ ′) = RF(S′′,T ′′) , implying that
RF(S′,T ′) = RF(Ŝ′, T̂ ′) . �

Lemma 7 proves that the algorithm described above
correctly solves the EF-U-RF(+) problem. Further-
more, note that the time complexity of the algorithm
above is dominated by the time complexity of Algorithm
TwoTreeCompletion, which is O(|V (S)| + |V (T)|) . Thus,
we immediately have the following theorem.

Theorem 4 The EF-U-RF(+) problem can be solved in
O(|V (S)| + |V (T)|) time.

Experimental evaluation
We implemented our algorithm for the ROT-RF(+)
problem and applied it to three large biological supertree
data sets with the goal of assessing the impact of using
RF(+) distance instead of the traditional RF(−) distance
in practice. Specifically, we computed a supertree (using
a standard supertree method; RFS [13] in this case) for
each of the supertree data sets, and computed the RF(+)
and RF(−) distances between the supertree and the input
trees for each data set. Let the RF(+) distance between a
supertree S and an input tree I be denoted by RF+(S, I) ,
and the RF(−) distance those two trees by RF−(S, I) .
For each data set, we ordered the input trees according
to their RF(+) and RF(−) distances to the supertree and
measured how often the relative ranking between any
pair of input trees differs between the two rankings. More
precisely, given a supertree S and its set of input trees I ,
we computed RF−(S, I) and RF+(S, I) for each I ∈ I , and
counted the number of Type-1, Type-2, and Type-3 pairs
{I ′, I ′′} , where I ′, I ′′ ∈ I , as follows:

Type-1 pairs: Pair {I ′, I ′′} is Type-1 if either
RF−(S, I ′) < RF−(S, I ′′) but
RF+(S, I ′) > RF+(S, I ′′) , or
RF−(S, I ′) > RF−(S, I ′′) but
RF+(S, I ′) < RF+(S, I ′′) . These are
pairs for which the RF(+) and RF(−)
distances impose completely opposite
orderings relative to the supertree.

Type-2 pairs: Pair {I ′, I ′′} is Type-2 if
RF−(S, I ′) = RF−(S, I ′′) but
RF+(S, I ′) �= RF+(S, I ′′) . For these pairs,
RF(−) distances are identical but RF(+)
distances are not.

Page 14 of 15Bansal Algorithms Mol Biol (2020) 15:6

Type-3 pairs: Pair {I ′, I ′′} is Type-3 if
RF−(S, I ′) �= RF−(S, I ′′) but
RF+(S, I ′) = RF+(S, I ′′) . For these pairs,
RF(+) distances are identical but RF(−)
distances are not.

The three data sets, marsupials [32], placental mam-
mals [33], and legumes [34], contain 272, 116, and 571
species, and 158, 726, and 22 input trees, respectively.
We observed that for the 158 input trees of the marsu-
pial data set, there were 521 Type-1 pairs, 619 Type-2
pairs, and 376 Type-3 pairs. For the 726 input trees of
the placental mammals data set, there were 5816 Type-1
pairs, 14, 344 Type-2 pairs, and 6, 238 Type-3 pairs. Like-
wise, for the 22 input trees in the legumes data set, we
observed 8 Type-1 pairs, 3 Type-2 pairs, and no Type-3
pairs. These results, summarized in Table 1, show that
there can be substantial difference between RF(−) and
RF(+) distances.

An open-source implementation of our algorithms
for ROT-RF(+) and EF-R-RF(+) is freely available from:
https ://compb io.engr.uconn .edu/softw are/rf_plus/.

Conclusion
In this work, we provide the first optimal, linear-time
algorithms for two fundamental computational prob-
lems that arise when comparing phylogenetic trees with
non-identical leaf sets. For the first problem, which
arises when computing the RF(+) distance between two
trees where the leaf set of one tree is a proper subset of
the other, we improved upon the time complexity of the
previous fastest algorithm by a factor of n, where n is
the number of leaves in the larger of the two trees. For
the second problem, which arises when computing the
RF(+) distance between two trees that have only partially
overlapping leaf sets, and for which there are no existing
algorithms, we defined a useful restriction of the prob-
lem and provided an optimal linear-time algorithm for it.
These algorithms make it as computationally efficient to
compute RF(+) distances as RF(−) distances. The algo-
rithms work for both rooted and unrooted trees, and can
be directly applied wherever phylogenetic distances must

be computed between trees with non-identical leaf sets.
Furthermore, our experiments with three large biological
supertree data sets suggest that using the RF(+) distance
can result in very different relative estimates of phyloge-
netic distances compared to using the RF(−) distance.

The algorithms presented here have several important,
well-established applications, including construction of
majority-rule(+) supertrees and supertree construction
in general, phylogenetic database search, and clustering
of phylogenetic trees, and these applications should be
studied and developed further. A more detailed experi-
mental study is needed to properly assess the impact of
using RF(+) distances and to systematically study the
effect of factors such as fraction of leaf set overlap and
degree of discordance between trees. This work also
motivates several theoretical questions for future inves-
tigation. For instance, our algorithms for the EF-R-RF(+)
and EF-U-RF(+) problems cannot be easily extended to
solve the R-RF(+) and U-RF(+) problems. In particular,
if optimal completions are allowed to contain extrane-
ous clades then inferring the number and composition
of these extraneous clades (to attain overall optimality)
appears to be computationally challenging. It would be
interesting to determine if linear or near-linear time algo-
rithms exist for R-RF(+) and U-RF(+).

Acknowledgements
A preliminary version of this work was previously published in the Proceedings
of the 16th RECOMB Comparative Genomics Conference (RECOMB-CG 2018),
Lecture Notes in Computer Science 11183: 209-226. We thank Ashim Ranjeet
for implementing the algorithms in this manuscript and making them freely
available open-source.

Authors’ contributions
MSB conceived the research project, conducted the research, implemented
the software, performed the experimental analysis, and wrote the manuscript.
The author read and approved the final manuscript.

Funding
Publication of this article was funded by the U.S. National Science Foundation
through grants IIS 1553421 and MCB 1616514 to MSB.

Availability of data and materials
The algorithms described in this paper have been implemented in the open-
source software package RF+ available freely from https ://compb io.engr.
uconn .edu/softw are/rf_plus/. The data sets used in this paper are described
in [32–34].

Table 1 Summary of results on the three datasets

158‑tree dataset 726‑tree dataset 22‑tree dataset

Number of Type-1 pairs 521 5816 8

Number of Type-2 pairs 619 14,344 3

Number of Type-3 pairs 376 6238 0

Total number of pairs 12,403 263,175 231

Percentage of Type-1/2/3 pairs 12.22% 10.03% 4.76%

https://compbio.engr.uconn.edu/software/rf_plus/
https://compbio.engr.uconn.edu/software/rf_plus/
https://compbio.engr.uconn.edu/software/rf_plus/

Page 15 of 15Bansal Algorithms Mol Biol (2020) 15:6

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Computer Science and Engineering, University of Connecti-
cut, 371 Fairfield Way, Storrs, USA. 2 Institute for Systems Genomics, University
of Connecticut, Storrs, USA.

Received: 23 March 2020 Accepted: 4 April 2020

References
 1. Robinson DF, Foulds LR. Comparison of phylogenetic trees. Math Biosci.

1981;53(1):131–47.
 2. Critchlow DE, Pearl DK, Qian C, Faith D. The triples distance for rooted

bifurcating phylogenetic trees. Syst Biol. 1996;45(3):323–34. https ://doi.
org/10.1093/sysbi o/45.3.323.

 3. Estabrook GF, McMorris FR, Meacham CA. Comparison of undirected
phylogenetic trees based on subtrees of four evolutionary units. Syst
Zool. 1985;34(2):193–200. http://www.jstor .org/stabl e/24133 26.

 4. Waterman MS, Smith TF. On the similarity of dendrograms. J Theor Biol.
1978;73(4):789–800.

 5. Felsenstein J. Inferring phylogenies. Sunderland: Sinauer Assoc; 2003.
 6. Wu Y. A practical method for exact computation of subtree prune

and regraft distance. Bioinformatics. 2009;25(2):190–6. https ://doi.
org/10.1093/bioin forma tics/btn60 6.

 7. Finden CR, Gordon AD. Obtaining common pruned trees. J Classif.
1985;2(1):255–76. https ://doi.org/10.1007/BF019 08078 .

 8. Amir A, Keselman D. Maximum agreement subtree in a set of evo-
lutionary trees: metrics and efficient algorithms. SIAM J Comput.
1997;26(6):1656–69. https ://doi.org/10.1137/S0097 53979 42694 61.

 9. de Vienne DM, Giraud T, Martin OC. A congruence index for testing
topological similarity between trees. Bioinformatics. 2007;23(23):3119–24.
https ://doi.org/10.1093/bioin forma tics/btm50 0.

 10. Cardona G, Llabrés M, Rosselló F, Valiente G. Nodal distances for
rooted phylogenetic trees. J Math Biol. 2010;61(2):253–76. https ://doi.
org/10.1007/s0028 5-009-0295-2.

 11. Kupczok A, Haeseler AV, Klaere S. An exact algorithm for the geodesic
distance between phylogenetic trees. J Comput Biol. 2008;15(6):577–91.

 12. Lin HT, Burleigh JG, Eulenstein O. Triplet supertree heuris-
tics for the tree of life. BMC Bioinf. 2009;10(1):S8. https ://doi.
org/10.1186/1471-2105-10-S1-S8.

 13. Bansal MS, Burleigh JG, Eulenstein O, Fernández-Baca D. Robinson–Foulds
supertrees. Algorith Mol Biol. 2010;5(1):18.

 14. Chaudhary R, Burleigh JG, Fernandez-Baca D. Fast local search for
unrooted Robinson–Foulds supertrees. IEEE/ACM Trans Comput Biol
Bioinf. 2012;9(4):1004–13.

 15. Whidden C, Zeh N, Beiko RG. Supertrees based on the subtree
Prune-and-Regraft distance. Syst Biol. 2014;63(4):566–81. https ://doi.
org/10.1093/sysbi o/syu02 3.

 16. Akanni WA, Wilkinson M, Creevey CJ, Foster PG, Pisani D. Implementing
and testing Bayesian and maximum-likelihood supertree methods in

phylogenetics. R Soc Open Sci. 2015;2:8. http://rsos.royal socie typub lishi
ng.org/conte nt/2/8/14043 6.

 17. Piel WH, Donoghue M, Sanderson M, Netherlands L. TreeBASE: a database
of phylogenetic information. In: Proceedings of the 2nd international
workshop of species 2000.

 18. Wang JT, Shan H, Shasha D, Piel WH. Fast structural search in phylogenetic
databases. Evol Bioinf. 2007;2005:1.

 19. Chen D, Burleigh JG, Bansal MS, Fernández-Baca D. PhyloFinder: an
intelligent search engine for phylogenetic tree databases. BMC Evol Biol.
2008;8(1):90.

 20. McMahon MM, Deepak A, Fernández-Baca D, Boss D, Sanderson MJ.
STBase: one million species trees for comparative biology. PLOS ONE.
2015;10(2):1–17. https ://doi.org/10.1371/journ al.pone.01179 87 02.

 21. Yoshida R, Fukumizu K, Vogiatzis C. Multilocus phylogenetic analysis with
gene tree clustering. Ann Oper Res. 2017;. https ://doi.org/10.1007/s1047
9-017-2456-9.

 22. Cotton JA, Wilkinson M, Steel M. Majority-rule supertrees. Syst Biol.
2007;56(3):445–52. https ://doi.org/10.1080/10635 15070 14166 82.

 23. Dong J, Fernández-Baca D, McMorris F. Constructing majority-
rule supertrees. Algorith Mol Biol. 2010;5(1):2. https ://doi.
org/10.1186/1748-7188-5-2.

 24. Dong J, Fernández-Baca D, McMorris FR, Powers RC. An axiomatic study
of Majority-rule(+) and associated consensus functions on hierarchies.
Discrete Appl Math. 2011;159(17):2038–44.

 25. Kupczok A. Split-based computation of majority-rule supertrees. BMC
Evol Biol. 2011;11(1):205. https ://doi.org/10.1186/1471-2148-11-205.

 26. Vachaspati P, Warnow T. FastRFS: fast and accurate Robinson–Foulds
supertrees using constrained exact optimization. Bioinformatics.
2017;33(5):631–9. https ://doi.org/10.1093/bioin forma tics/btw60 0.

 27. Dong J, Fernandez-Baca D. Properties of Majority-rule supertrees. Syst
Biol. 2009;58(3):360–7. https ://doi.org/10.1093/sysbi o/syp03 2.

 28. Christensen S, Molloy EK, Vachaspati P, Warnow T. Optimal Completion
of Incomplete Gene Trees in Polynomial Time Using OCTAL. In: Schwartz
R, Reinert K, editors. In: 17th international workshop on algorithms in
bioinformatics (WABI 2017). vol. 88 of Leibniz international proceedings
in informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik; 2017. p. 27:1–27:14.

 29. Carter JL, Wegman MN. Universal classes of hash functions. Journal of
Computer and System Sciences. 1979;18(2):143–54.

 30. Dietzfelbinger M, Karlin A, Mehlhorn K, auf der Heide FM, Rohnert H,
Tarjan RE. Dynamic perfect hashing: upper and lower bounds. SIAM J
Comput. 1994;23(4):738–61.

 31. Bender MA, Farach-Colton M, Pemmasani G, Skiena S, Sumazin P. Low-
est common ancestors in trees and directed acyclic graphs. J Algorith.
2005;57(2):75–94.

 32. Cardillo M, Bininda-Emonds ORP, Boakes E, Purvis A. A species-level phylo-
genetic supertree of marsupials. J Zool. 2004;264:11–31.

 33. Beck R, Bininda-Emonds O, Cardillo M, Liu FG, Purvis A. A higher-level MRP
supertree of placental mammals. BMC Evol Biol. 2006;6(1):93.

 34. Wojciechowski MF, Sanderson MJ, Steele KP, Liston A. Molecular phy-
logeny of the “Temperate Herbaceous Tribes” of Papilionoid legumes: a
supertree approach. In: Herendeen PS, Bruneau A, editors. Advances in
legume systematics, vol. 9. Kew: Royal Botanic Gardens; 2000. p. 277–98.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1093/sysbio/45.3.323
https://doi.org/10.1093/sysbio/45.3.323
http://www.jstor.org/stable/2413326
https://doi.org/10.1093/bioinformatics/btn606
https://doi.org/10.1093/bioinformatics/btn606
https://doi.org/10.1007/BF01908078
https://doi.org/10.1137/S0097539794269461
https://doi.org/10.1093/bioinformatics/btm500
https://doi.org/10.1007/s00285-009-0295-2
https://doi.org/10.1007/s00285-009-0295-2
https://doi.org/10.1186/1471-2105-10-S1-S8
https://doi.org/10.1186/1471-2105-10-S1-S8
https://doi.org/10.1093/sysbio/syu023
https://doi.org/10.1093/sysbio/syu023
http://rsos.royalsocietypublishing.org/content/2/8/140436
http://rsos.royalsocietypublishing.org/content/2/8/140436
https://doi.org/10.1371/journal.pone.0117987
https://doi.org/10.1007/s10479-017-2456-9
https://doi.org/10.1007/s10479-017-2456-9
https://doi.org/10.1080/10635150701416682
https://doi.org/10.1186/1748-7188-5-2
https://doi.org/10.1186/1748-7188-5-2
https://doi.org/10.1186/1471-2148-11-205
https://doi.org/10.1093/bioinformatics/btw600
https://doi.org/10.1093/sysbio/syp032

	Linear-time algorithms for phylogenetic tree completion under Robinson–Foulds distance
	Abstract
	Background:
	Results:

	Background
	Previous work
	Our contribution

	Preliminaries and problem definitions
	A linear-time algorithm for ROT-RF(+)
	Solving UOT-RF(+) in linear time
	The R-RF(+) problem
	A linear-time algorithm for EF-R-RF(+)
	Node colorings

	The EF-U-RF(+) problem
	Experimental evaluation
	Conclusion
	Acknowledgements
	References

