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Abstract 

Background: The increasing amount of available genome sequence data enables large-scale comparative studies. 
A common task is the inference of phylogenies—a challenging task if close reference sequences are not available, 
genome sequences are incompletely assembled, or the high number of genomes precludes multiple sequence align-
ment in reasonable time.

Results: We present a new whole-genome based approach to infer phylogenies that is alignment- and reference-
free. In contrast to other methods, it does not rely on pairwise comparisons to determine distances to infer edges in 
a tree. Instead, a colored de Bruijn graph is constructed, and information on common subsequences is extracted to 
infer phylogenetic splits.

Conclusions: The introduced new methodology for large-scale phylogenomics shows high potential. Application to 
different datasets confirms robustness of the approach. A comparison to other state-of-the-art whole-genome based 
methods indicates comparable or higher accuracy and efficiency.

Keywords: Phylogenomics, Phylogenetics, Phylogenetic splits, Colored de Bruijn graphs

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco 
mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
A common task in comparative genomics is the recon-
struction of the evolutionary relationships of species or 
other taxonomic entities, their phylogeny. Today’s wealth 
of available genome data enables large-scale comparative 
studies, where phylogenetics is faced with the following 
problems: first, the sequencing procedure itself is becom-
ing cheaper and faster, but finishing a genome sequence 
remains a laborious step. Thus, more and more genomes 
are published in an unfinished state, i.e., only assemblies 
(composed of contigs), or raw sequencing data (com-
posed of read sequences) are available. Hence, traditional 
approaches for phylogenetic inference can often not be 
applied, because they are based on the identification and 
comparison of marker sequences, which relies on com-
puting multiple alignments—an NP-hard task in theory, 

and in practice even heuristics are often too slow. Sec-
ond, the low sequencing cost allow new large-scale stud-
ies of certain niches and/or aloof from model organisms, 
where reference sequences would be too distant or not 
available at all.

Whole-genome approaches that are usually alignment- 
and reference-free solve these problems, see e.g.  [1–6]. 
However, the sheer number of genomes to be analyzed 
is still posing limits in large-scale scenarios as almost 
all whole-genome approaches are based on a pairwise 
comparison of some characteristics of the genomes (e.g. 
occurrences or frequencies of k-mers or other patterns) 
to define distances which are then used to reconstruct a 
tree (e.g. by using neighbor joining [7]). This means, for 
n genomes, O(n2) comparisons are performed in order 
to infer O(n) edges. To the best of our knowledge, only 
MultiSpaM  [8] follows a different approach by sam-
pling small, gap-free alignments involving four genomes 
each, which are used to infer a super tree on quartets. 
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According to our experiments, this method is not suit-
able for large-scale settings, though (see Results).

Apart from computational issues, the actual objective 
of phylogenetic inference in terms of how to represent a 
phylogeny is not obvious in the first place. Taking only 
intra-genomic mutations into account, i.e., assuming 
a genome mutating independently of others, genomes 
would have unique lines of ancestors and their phylog-
eny would thus be a tree. Several reasons however con-
flict this simple tree model. Inter-genomic exchange 
of genomic segments such as crossover in diploid or 
polyploid organisms, lateral gene transfer in bacteria, 
or introgression in insects contradict the assumption of 
unique ancestry. Furthermore, incomplete, ambiguous, 
or even misleading information can hamper resolving a 
reliable phylogenetic tree.

Here, we propose a new methodology that is whole-
genome based, alignment- and reference-free, and does 
not rely on a pairwise comparison of the genomes or 
their characteristics. An implementation called SANS 
(“Symmetric Alignment-free phylogeNomic Splits”) is 
available online [9]. The k-mers of all genomic sequences 
(assemblies or reads) are stored in a colored de  Bruijn 
graph, which is then traversed to extract phylogenetic 
signals. The reconstructed phylogenies are not restricted 
to trees. Instead, the generalized model of phylogenetic 
splits  [10] is used to infer phylogenetic networks that can 
indicate a tree structure and also point to ambiguity in 
the reconstruction.

In the following "Background" section, we will first 
introduce two building blocks of our approach, splits 
and colored de Bruijn graphs. Then, we will describe and 
motivate our method in the  "Method" section. After an 
evaluation on several real data sets in the  "Results" sec-
tion, we will give a brief summary and an outlook in the 
"Conclusions" section.

A preliminary version of this study has been published 
at the Workshop on Algorithms in Bioinformatics (WABI) 
2019 [11].

Background
Before presenting our method in the  "Method" section, 
we will introduce two basic concepts it builds upon. 
Firstly, as motivated above, our phylogenies will be rep-
resented by sets of splits, a generalization of trees. Sec-
ondly, to extract phylogenetic signals from the given 
genomes in the first place, they are stored in a colored 
de Bruijn graph.

Phylogenetic splits
In the following, we briefly recapitulate some notions 
and statements from the split decomposition theory 

introduced by Bandelt and Dress  [10], and put them 
into context.

Definition 1 (Unordered split) Given a nonempty set O, 
if for two proper subsets A,B ⊆ O , both A ∩ B = ∅ and 
A ∪ B = O , then the unordered pair {A,B} is a bipartition 
or (unordered) split of O. If either A or B is of cardinality 
one, a split is called trivial.

We extend the above commonly used terminology of 
(unordered) splits to ordered splits—a central concept 
in our approach.

Definition 2 (Ordered split) If {A,B} is an unordered 
split of O, the ordered pairs (A, B) and (B, A) are ordered 
splits. (B, A) is called the inverse (split) of (A, B) and vice 
versa.

Note that one unordered split {A,B} = {B,A} cor-
responds to two ordered splits (A,B)  = (B,A) . Our 
method will first infer ordered splits and their inverse, 
which will then be combined to form unordered splits. 
If clear from the context, we may denote an ordered 
split (A, B) by simply A.

A set of splits S may be supplemented with weights 
w : S −→ R , e.g., in  [10], splits are weighted by a so-
called isolation index. Strong relations between metrics 
and sets of weighted unordered splits have been shown. 
In particular, one can canonically decompose any met-
ric distance  d into a set of weighted splits Sd that is 
weakly compatible in the following sense.

Definition 3 (Weak compatibility  [10]) A set of unor-
dered splits S on O is weakly compatible if for any three 
splits {A1,B1} , {A2,B2} , {A3,B3} ∈ S , there are no ele-
ments a, a1, a2, a3 ∈ O with {a, a1, a2, a3} ∩ Ai = {a, ai} 
for i = 1, 2, 3.

Then, d(a, b) =
∑

{A,B}∈Sd
w({A,B}) δA(a, b)+ d0 

where δA(a, b) := 1 if either a or b in A, but not both, 
and δA(a, b) := 0 otherwise, i.e., the weights of all splits 
separating a from b are accumulated, and where d0 is a 
so-called split prime residue that cannot be decomposed 
further.

As a peculiarity of our approach is being not dis-
tance-based, we mention the above relation of weakly 
compatible splits and distances only for the sake of 
completeness. We will make use of the above property 
to filter a general set of splits such that it can be dis-
played as a—in most cases planar—network.

A metric  d is a tree metric (also called addi-
tive), if and only if there is a set of splits Sd with 



Page 3 of 12Wittler  Algorithms Mol Biol            (2020) 15:4  

d(a, b) =
∑

{A,B}∈Sd
w({A,B}) δA(a, b) that is compatible 

in the following sense.

Definition 4 (Compatibility  [10]) A set of unordered 
splits S on O is compatible if for any two splits {A,B} 
and {A′,B′} , one of the four intersections A ∩ A′ , A ∩ B′ , 
B ∩ A′ , and B ∩ B′ is empty.

We will make use of the implied one to one corre-
spondence of edges in a tree and compatible splits: an 
edge of length w whose removal separates a tree into two 
trees with leaf sets A and B, respectively, corresponds to a 
split {A,B} of weight w.

Colored de Bruijn graphs
A string s is a sequence of characters over a finite, non-
empty set, called alphabet. Its length is denoted by  |s|, 
the character at position i by s[i], and the substring from 
position i through j by s[i..j]. A string of length k is called 
k-mer.

We consider a genome as a set of strings over 
the DNA alphabet {A,C ,G,T } . The reverse com-
plement of a string s is s := s[|s|] · · · s[1] , where 
A := T ,C := G,G := C ,T := A.

An abstract data structure that is often used to effi-
ciently store and process a collection of genomes is the 
colored de Bruijn graph (C-DBG) [12]. It is a node-labeled 
graph (V, E, col) where each vertex v ∈ V  represents a k-
mer associated with a set of colors col(v) representing the 
set of genomes the k-mer occurs in. A directed edge from 
v to v′ exists if and only if for the corresponding k-mers x 
and x′ , respectively, x[2..k] = x′[1..k − 1] . We call a path 
p = v1, . . . , vl of length |p| = l in a C-DBG non-branching 
if all contained vertices have an in- and outdegree of one 
with the possible exception of v1 having an arbitrary inde-
gree and vl having an arbitrary outdegree, and it has the 
same set of colors assigned to all its vertices. A maximal 
non-branching path is a unitig. In a compacted C-DBG, 
all unitigs are merged into single vertices.

In practice, since a genomic sequence can be read 
in both directions, and the actual direction of a given 
sequence is usually unknown, a string and its reverse 
complement are assumed equivalent. Thus, in many 
C-DBG implementations, both a k-mer and its reverse 
complement are represented by the same vertex. In the 
following, we will assume this being internally handled by 
the data structure.

Method
The basic idea of our new approach is that a sequence 
which is contained as substring in a subset  A of all 
genomes G but not contained in any of the other genomes 
is interpreted as a signal that A should be separated from 
G\A in the phylogeny. The more of those sequences exist 
and the longer they are, the stronger is the signal for 
separation.

To efficiently extract common sequences, we first con-
struct a C-DBG of all given genomes. Then, we collect all 
separation signals as ordered splits, where any unitig u con-
tributes |u| to the weight of an ordered split col(u). Since 
both an ordered split (A, B) and its inverse (B, A) indicate 
that A and B should be separated in the phylogeny, we 
combine them to one unordered split {A,B} with an overall 
weight that is a combination of the individual weights. The 
individual steps will be explained in more detail next.

C-DBG. Among several available implementations of 
C-DBGs (e.g.  [12–15]), we decided to use Bifrost  [16] for 
the following reasons: it is easy to install and use; it is effi-
ciently implemented; it can process full genome sequences, 
assemblies, read data or even combinations of these; for 
read data as input, it offers some basic assembly-like filter-
ing of k-mers; and it realizes a compacted C-DBG and pro-
vides a C++ API such that a traversal of the unitigs could 
be easily and efficiently implemented—only unitigs with 
heterogeneous color sets had to be split, because colors are 
not considered during compaction.

Like other implementations of DBGs on the DNA 
alphabet, Bifrost saves space by not storing edges explic-
itly—with the trade-off of having to determine neigh-
boring vertices by querying the graph for all possible 
preceding and succeeding k-mers. Since we do not make 
use of the topology of the C-DBG, this common design 
decision accommodates our needs.

Accumulating split weights. Because different splits often 
have many genomes in common, we use a trie data struc-
ture to store a split (as key) as path from the root to a ver-
tex, along with its weight (as value) assigned to that vertex. 
We represent the set of genomes G as a list with some fixed 
order, and any subset of G as a sublist, i.e., with the same 
relative order. For a split (A, B) and its inverse (B, A), we 
take as key the shorter of A and B, breaking ties by selecting 
that split containing G[0], and as value the pair of weights 
(w,w′) , where w is the accumulated weight of the key, and 
w′ the accumulated weight of its inverse. When the trie is 
accessed for a key the first time, the value is initialized with 
(0, 0). For further observations of the same split, the cor-
responding entry is increased. Figure 1 shows an example.
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The overall method SANS is shown in Algorithm  1, 
the very last step of which will be motivated in the 
following. 

Combining splits and their inverses. To combine an 
ordered split (A, B) of weight wA and its inverse (B, A) of 
weight wB , a naive argument would be: both indicate the 

a

b

c
Fig. 1 Toy example for accumulating weights in a trie. The set of genomes {a, b, c, d, e, f } is considered as ordered list G = [a, b, c, d, e, f ] . a A table 
listing ordered splits extracted from a C-DBG and the corresponding representation as key and value to be stored in a trie. An ordered split can be 
observed several times with different weights, which are accumulated. A split and its inverse are represented in the trie by one key and a pair of 
weights. b Trie representing the splits. Keys correspond to concatenated edge lables along paths from the root to a labeled vertex. Values are shown 
in boxes. c Visualization of weakly compatible subset of splits. E.g., split ({a, b, f }, {c, d, e}) of total weight 

√
9 · 12 ≈ 10.4 is visualized as three parallel 

lines. Split ({c, d}, {a, b, e, f }) has the lowest total weight of 
√
25 · 5 ≈ 10.2 , is the only split that is not weakly compatible to higher weighting splits 

and thus not contained in the network
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same separation, so they should be taken into account 
equivalently, and thus take the sum wA + wB or arith-
metic mean (wA + wB)/2 . However, in our evaluation, 
this weighting scheme often assigned higher weight to 
wrong splits than to correct splits (compared to reli-
able reference trees; exemplified in Sect.  "Drosoph-
ila"). Instead, we revert the above argument: consider 
a mutation on a (true) phylogenetic branch separating 
the set of genomes into subgroups  A and  B. The cor-
responding two variants of the affected segment will 
induce two unitigs with color sets  A and  B, respec-
tively. Under the infinite sites assumption, these unitigs 
would not be affected by other events. So, each muta-
tion on a branch in the phylogeny contributes to both 
splits (A,  B) and (B,  A). We hence take the geometric 
mean 

√
wA · wB such that in case of asymmetric splits, 

the lower weight diminishes the total weight, and only 
symmetric splits receive a high overall weight.

Considering different scenarios that would affect the 
observation of common substrings in the C-DBG, some 
of which are illustrated in Fig.  2, we observe beneficial 
behavior of the weighting scheme in almost all cases:

A single nucleotide variation would cause a bubble in 
the C-DBG composed of two unitigs of similar length k 
each—a symmetric scenario in accordance with the 
above weighting scheme. Both an insertion or deletion 
of length  l would cause an asymmetric bubble and thus 
asymmetric weights k − 1 and l + k − 1 . Here, the geo-
metric mean has the positive effect to weaken the impact 
of the length of the event on the overall split weight. E.g., 
the total weight for x deletions of length l would increase 
linearly with x whereas those for one deletion of length 
x · l would increase with 

√
x . For both a transposition or 

inversion of arbitrary length, the color set of the segment 
itself remains the same, and only those k-mers spanning 
the breakpoint regions would be affected, inducing sym-
metric bubbles in accordance with the weighting scheme. 
Lateral gene transfer is challenging phylogenetic recon-
struction, because a subsequence of length l that is con-
tained in both the group A containing the donor genome 
as well as the target genome  b from the other genomes 
B := G\A can easily be misinterpreted as a signal to sepa-
rate A ∪ {b} from the remainder B\{b} instead of separat-
ing A from B, where the strength of this erroneous signal 
grows with l. Our approach will be affected only little: 
on the one hand, the unitig corresponding to the copied 
subsequence has color set A ∪ {b} and thus contributes to 
an ordered split (A ∪ {b},B\{b}) of weight  l − k + 1 . On 
the other hand, because the transfer does not remove any 
subsequence in the donor sequence, only those k k-mers 
spanning the breakpoint region will be affected, inducing 
a unitig with color set B\{b} whose length is independent 
of l. Missing or additional data may arise from genomic 

segments that are difficult to sequence or assemble and 
might thus be missing in some assemblies, due to the 
usage of different sequencing protocols, assembly tools, 
or filter criteria, or simply because some input files con-
tain plasmid or mitochondrial sequences and others do 
not. This does not affect our approach, because addi-
tional sequence induces unitigs and thus an ordered 
split, but the absence of sequence does not induce any 
split, not even due to breakpoint regions, because in such 
cases usually whole reads, contigs or chromosomes are 
involved. Thus, the weight of the additional ordered split 
would be multiplied by zero for the absent split, result-
ing in a total weight of zero. Copy number changes can 
only be detected if the change is from one to two or vice 
versa, adding or removing k-mers spanning the juncture 
of the two copies. Beyond that, because the k-mer counts 
are not captured, our approach is not sensible for copy 
number changes.

In practice, the structure of a C-DBG is much more 
complex than the simplified picture we draw above. Nev-
ertheless, using the geometric mean yields high accuracy 
of the approach compared to other methods.

Postprocessing. Even though the geometric mean fil-
ters out many asymmetric splits, the total number of 
positively weighted splits can be many-fold higher than 
2n− 3 , the number of edges in a fully resolved tree for 
n genomes. Unfortunately, the observed distribution of 
split weights did not indicate any obvious threshold to 
separate high-weighted splits from low-weighted noise. 
Nevertheless, a rough cutoff can safely be applied by 
keeping only the t highest weighting splits, e.g., in our 
evaluation t = 10 n has been used for all datasets. Addi-
tionally, we evaluated two filtering approaches: greedy 
weakly, i.e., greedily approximating a maximum weight 
subset that is weakly compatible and can thus be dis-
played as a network, and greedy tree, i.e., greedily approx-
imating a maximum weight subset that is compatible and 
thus corresponds to a tree. To this end, we used the cor-
responding options of the software tool SplitsTree  [17, 
18]. As we will demonstrate in Sect. "Results", in particu-
lar the tree filter proved to be very effective in practice.

Run time complexity. Consider n genomes of length 
O(m) each. In Bifrost, the compacted C-DBG is built by 
indexing a k-mer by its minimizer, i.e., a substring with 
the smallest hash value among all substrings of length g 
in a k-mer. According to the developers of Bifrost (per-
sonal communication), inserting a k-mer and its color 
takes O(4(k−g)log(n)) time in the worst case. In practice, 
however, each of the O(mn) k-mers can be inserted in 
O(log(n)) time, and hence, building the complete C-DBG 
takes O(mn log(n)) time. While iterating over all posi-
tions in the graph, we verify whether a unitig has to be 
split due to a change in the color set. Because each of the 
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a

b

c

d
Fig. 2 Toy examples for different mutations to illustrate their effect on a C-DBG. Consider four genomes a, b, c and d and k-mer length k = 3 . Each 
vertex of the C-DBG is labeled with both its k-mer and the reverse complement (in arbitrary order), as well as its color set. Due to the small value 
of k, the C-DBG contains edges corresponding to pairs of overlapping k-mers that are not contained in the given strings. For the purpose of clarity, 
these are not drawn. Mutations are highlighted in bold and/or italics. a Single nucleotide variation in genomes a = b =AAC GCAA and c = d =
AAC TCAA. The induced ordered split {a, b} and its inverse {c, d} of weight k = 3 each yield a corresponding unordered split {{a, b}, {c, d}} of weight √
k k = k = 3 . b Insertion/deletion of length l = 4 (or longer, indicated by dots) in genomes a = b =AAC GG· · ·CACAA and c = d =AAC CAA . The 

induced ordered split {a, b} of weight l + k − 1 = l + 2 and its inverse {c, d} of constant weight k − 1 = 2 yield a corresponding unordered split 
{{a, b}, {c, d}} of weight 

√
(l + k − 1) (k − 1) =

√
2(l + 2) . c Inversion of length l = 4 (or longer, indicated by dots) between genomes a = b =

AAC GG· · ·CACAA and c = d =AAC TG· · · CCCAA. The induced ordered split {a, b} and its inverse {c, d} of constant weight 2(k − 1) = 4 each yield 
a corresponding unordered split {{a, b}, {c, d}} of constant weight 

√
2(k − 1) 2(k − 1) = 2(k − 1) = 4 . d Lateral gene transfer of length l = 4 (or 

longer, indicated by dots) from genome a =AGG· · ·CAG to b =AAC GG· · ·CACAA but not to c = d =AAC CAA . Apart from mutation-independent 
splits for the boundaries, and the trivial split {b} (without its inverse), the split {a, b} of weight l − k + 1 = l − 2 and its inverse {c, d} of constant 
length k − 1 = 2 are induced, yielding a corresponding unordered split {{a, b}, {c, d}} of weight 

√
(l − k + 1) (k − 1) =

√
2(l − 2)
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n genomes adds O(m) color assignments to the graph, we 
have to do O(mn) color comparisons in total, which does 
not increase the overall complexity.

Each genome contributes to at most O(m) ordered 
splits. So the sum of the cardinality of all ordered splits, 
i.e., the total length of all splits in Algorithm 1, is O(mn) . 
Hence, the insertion and lookups of all S in trie T takes 
|S| time each and O(mn) in total, and the number of ver-
tices of T, i.e., the final number of unordered splits, is in 
O(mn) , too. For ease of postprocessing, splits are ordered 
by decreasing weight, increasing the run time for split 
extraction to O(mn log(mn)) , or O(mn log(n)) to output 
only the t, t ∈ O(n) , highest weighting splits, respectively.

Results
In this section, we present several use cases in order to 
exemplify robustness and different other characteristics 
of our approach SANS. We compare to the following 
other whole-genome based reconstruction tools.

MultiSpaM  [8] samples a constant, high number of 
small, gap-free alignments of four genomes. The implied 
quartet topologies are combined to an overall tree topol-
ogy. To the best of our knowledge, all other tools are 
distance-based and rely on pairwise comparisons. Inter-
estingly, although all methods are based on lengths or 
numbers of common subsequences or patterns, their 
results differ considerably from those of SANS. Co-phy-
log [4] analyzes each genome in terms of certain patterns 
(C-grams, O-grams) and compares their characteristics 
(context). In andi  [2], enhanced suffix arrays are used to 
detect pairs of maximal unique matches that are used 
to anchor ungapped local alignments, based on which 
pairwise distances are computed. CVTree3  [6] corrects 
k-, (k−1) -, and (k−2)-mer counts by subtracting ran-
dom background of neutral mutations using a (k−2)-th 
Markov assumption. In FSWM  [3], matches of patterns 
including match and don’t-care position are scored and 
filtered to estimate evolutionary distances.

Unless stated otherwise, a k-mer length of 31 (Bifrost 
default) has been used for constructing the C-DBG for 
SANS. All tools have been run on a single 2  GHz pro-
cessor and times are given in CPU hours (user time). 
Accuracy has been measured in terms of topological 
Robinson-Foulds distance, i.e., a predicted edge (split) is 
correct if and only if the reference tree contains an edge 
that separates the same two sets of leaves. As recall, we 
count the number of correct edges (splits) divided by the 
total number of edges in the reference, and as precision, 
we count the number of correct edges (splits) divided by 
the total number of predicted edges (splits).

Drosophila
This dataset comprises assemblies from 12 species of the 
genus drosophila obtained from the database FlyBase 
(latest release before Feb.  2019 of all-chromosome-
files each) [19]. As reference, we consider the commonly 
accepted phylogeny published by the FlyBase consor-
tium [20, Figure 2] also shown on the database website.

Although being “simple” in the sense that it contains 
only a small number of genomes, its analysis exemplifies 
the following aspects: (i) The effectiveness of our method 
for medium sized input files: for a total of more than 
2 161 Mbp (180 Mbp on average), SANS inferred the cor-
rect tree within 168 min and using up to 25 GB of mem-
ory. We ran CVTree3 with various values of k. In the best 
cases ( k = 12 and 13), 7 of 9 internal edges have been 
inferred correctly taking 95 and 162  min, and up to 26 
and 87  GB of memory, respectively. (For k = 11 , only 4 
internal edges were correct, and for k > 13 , the computa-
tion ran out of memory.) Both Co-phylog and FSWM did 
not finish within 48 hours, and both MultiSpaM and andi 
could not process this dataset successfully. (ii) As can be 
seen in Fig. 3a, combining splits and their inverse using 
the geometric instead of the arithmetic mean strength-
ens the tendency of correct splits having a high weight. 
(iii)  Even though the reconstruction shown in Fig.  3b 
contains 45 splits—in comparison to 21 edges in a binary 
tree—, the visualization is close to a tree structure.

Association of splits and sequences Here, we want to 
highlight a distinctive feature of our methodology. In 
contrast to distance based approaches, there is a one-to-
one correspondence of a phylogenetic split to the con-
served sequences it is derived from. This provides the 
opportunity to trace the cause for a phylogenetic signal 
back to the sequence level. Splits of particular interest 
might be, e.g., those separating pathogens from non-
pathogens, splits contradicting each other, or—as in 
this case of Drosophila with a well-accepted reference at 
hand—splits contradicting the species phylogeny.

As a proof of concept, we analyzed a predicted split 
from the weakly compatible subset of splits shown in 
Fig. 3b which disagrees with the reference phylogeny. We 
selected the highest weighting split which separates at 
least 25 percent of the genomes: mel, sec, sim, ere sepa-
rating from the rest. This split was supported by 290 8641 
k-mers contained in the four genomes but not in the 
others, and 456 k-mers contained in the other genomes 
but not in the four, resulting in a total weight of approxi-
mately 36 419. In comparison, the weakest true positive 
split has a weight of approximately 98 290. Searching the 
sequence of the longest unitig involved  in the selected 
false positive split in the standard database Nucleo-
tide collection (nr/nt) using NCBI blastx with default 
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parameters yields seven matches, the four highest with 
E-values ranging from 3 · 10−15 to 2 · 10−12 being: 

1 Retrovirus-related Pol polyprotein from transposon 
17.6.

2 Retrovirus-related Pol polyprotein from transposon 
297.

3 pol protein [Drosophila melanogaster].
4 pol protein - fruit fly (Drosophila ananassae) trans-

poson Tom (fragment).

It is well known that the phylogenies of transposons 17.6, 
297 and Tom disagree with the Drosophila phylogeny, 
and they are implicated in horizontal gene transfer [21]. 
Although a solid prediction of horizontal transfer would 
require further different analyses, this experiment exem-
plifies the potential harbored in the association of splits 
to sequences.

Salmonella enterica Para C
This dataset is of special interest as the contained assem-
blies from 220 genomes of different serovars within the 
Salmonella enterica Para C lineage include that of an 
ancient Paratyphi C genome obtained from 800 year old 
DNA  [22, 23], the placement of which is especially dif-
ficult due to missing data. As reference, we consider a 
maximum-likelihood based tree on nonrecombinant 
SNP data [22, Figure 5a].

We studied the running time behavior of the different 
methods for random subsamples of increasing size. As 
shown in Fig. 4a, for this high number of closely related 

genomes, we observed a super-linear running time of 
up to 41 min for andi, about 5 h for Co-phylog, and up 
to 43 h for FSWM, whereas the reconstruction of SANS 
shows a linear increase (Pearson correlation coefficient 
0.9994) to about 10  min. The memory requirement of 
both SANS and Co-phylog remained below 0.5  GB, 
whereas andi required about 1 GB, and FSWM required 
up to about 17 GB. We ran CVTree3 with ten values of 
k between 5 and 27, but none of the resulting trees con-
tained more than 5 correct internal edges. For MultiS-
paM, we increased the number of sampled quartets from 
the default of 106 to up to 108 , which increased the run-
ning time from about 1 h to about 66 h. Both recall and 
precision improved but were still below 0.2 for internal 
edges.

The accuracy of the reconstructions with respect to 
the reference is visualized in Fig.  4b. In particular, we 
observe: (i)  the split reconstruction by SANS and the 
tree inferred by Co-phylog are comparably accurate and 
both are more accurate than the FSWM and andi tree, 
(ii) greedily extracting high weighting splits to filter for a 
tree selects correct splits while discarding false splits with 
very high precision, (iii) greedily extracting high weight-
ing splits to filter for a weakly compatible subset also 
selects correct splits, but, as expected, has a lower preci-
sion than the tree filter, because more splits are kept than 
there are edges in a tree, and (iv) the results of SANS are 
robust for a wide range of k from 21 to 63.

a b
Fig. 3 Reconstructed phylogenetic splits on the Drosophila dataset [19]. a Comparison of accuracy for using arithmetic or geometric mean for 
combining weights of splits and their inverse each. Splits have been sorted by the combined weight and the 50 highest weighting splits are 
shown. Color indicates whether a split agrees with the reference [19]. b Visualization of greedily extracted weakly compatible subset of splits using 
SplitsTree [17, 18]. As by default, geometric mean has been used for combining weights of splits and their inverse each
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Salmonella enterica subspecies enterica
In comparison to the Para C dataset, the 2 964 genomes 
studied by Zhou et al.  [23, 24] are not only a larger but 
also a more diverse selection of Salmonella enterica 
strains. As reference, we consider a maximum-likelihood 
based tree on 3  002 concatenated core genes  [24, Fig-
ure 2A, supertree 3].

The probability to observe long k-mers that are con-
served in such a high number of more diverse genomes is 
lower than for the previous datasets. Hence, we selected 

a smaller k-mer length of k = 21 . To assess the efficiency 
for increasing number of genomes, we sampled subsets 
of several sizes. Figure 5 shows the runtime and memory 
consumption of SANS. In comparison, to process a sub-
sample of size 250 where SANS took about 31 min, andi 
took about 110 min, whereas Co-phylog and FSWM took 
already more than 9 h and 50 h, respectively, and Multi-
Spam was not able to process the dataset at all. We ran 
CVTree3 with all values of k between 6 and 14, but in the 
best case ( k = 8 ), the resulting tree contained only 33 (of 
247) correct internal edges such that we did not further 
consider CVTree3 in our evaluation.

The accuracy of the different reconstructions for 250 
genomes as well as SANS accuracy on the complete data-
set with respect to the reference is visualized in Fig. 6. Co-
phylog, FSWM and andi show very similar accuracy for 
250 genomes, whereas SANS has slightly lower recall but 
higher precision (black symbols). For the complete data-
set (visualized in gray), SANS proves comparably high 
precision but low recall. As can be seen by the gray line, 
the low recall is not caused by filtering all SANS splits for 
a tree: each point on the line corresponds to a different 
threshold to discard low weighting splits, and even con-
sidering lowest weighting splits does not increase recall.

On the one hand, SANS is rather conservative for 
large datasets, because any split separating s from n−s 
genomes requires not only some sequence(s) unique 
to the s genomes but also sequences that are unique to 
exactly all other n−s genomes. On the other hand, meas-
uring accuracy by counting correct and false splits cor-
responding to the topological Robinson-Foulds distance 
has to be interpreted with care. E.g., a single misplaced 
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leaf breaks all splits between its correct and predicted 
location. To provide a reference point, the figure also 
includes the accuracy of another reconstruction pro-
posed in the original study of the dataset, which has been 
inferred by reconciling the trees of 3002 core genes [24, 
Figure 2A, supertree 2]. In a quartet-based comparison, 
this tree agrees to the reference by about 75 percent of all 
internal edges, whereas, in contrast, less than 30 percent 
of all internal edges are correct in our Robinson-Foulds 
measure. A quartet-based evaluation, however, is not 

meaningful in our case, because our conservative recon-
struction is not a fully resolved tree, and missing edges 
have a much stronger impact on the quartet distance 
than wrong edges.

Ebolavirus
Viral genomes are short and highly diverse—posing the 
limits of phylogenetic reconstruction based on sequence 
conservation. Here we consider 158 complete genomes 
from five Ebolavirus species and two genomes from the 
outgroup Marburg (19  Kbp on average) obtained from 
the UCSC Ebola Genome Portal [25].

Even with small k-mer lengths, the overall sensitivity 
was too low to infer a fully resolved tree. But the visu-
alization of the inferred splits in Fig.  7 exemplifies the 
explanatory power of the split framework. While a large 
fraction of the phylogeny—in particular the inner part—
does not show a tree structure, relevant clades are clearly 
visible: each of the five Ebolavirus species as well as the 
outgroup Marburg are well separated, and even samples 
from two Zaire ebolavirus outbreaks build one subclade 
each.

Vibrio cholerae
The dataset comprises 22 genomes from the species 
Vibrio cholerae, 7 of which have been sequenced from 
clinical samples and are labeled “pandemic genome” 
(PG), and the remaining 15 have been sequenced from 
non-clinical samples and are labeled “environmental 
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Fig. 7 Splits reconstructed for the Ebolavirus dataset [25]. A greedily 
extracted weakly compatible subset of splits obtained by SANS with 
k-mer length 9 have been visualized with SplitsTree [17, 18]. Dashed 
lines mark different clades: the five Ebolavirus species, samples 
from two Zaire ebolavirus outbreaks, and the outgroup Marburg. 
Corresponding splits are highlighted in green
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genome” (EG) [26, primary dataset]. As already observed 
in the original study, for these genomes, it is difficult to 
reconstruct a reliable, fully resolved tree. Nevertheless, 
representing the phylogeny in form of splits shows a 
strong separation of the pandemic from the environmen-
tal group. The phylogeny presented by the authors of the 
original study [26, Supplementary Figure 1a] is based on 
126 099 sites extracted from alignment blocks.

Comparing our reconstruction results to the reference, 
both shown in Fig. 8, we make two observations. (i) Our 
reconstruction also separates the pandemic from the 
environmental group, and agrees to the reference in fur-
ther sub-groups. (ii) When collecting the sequence data, 
for some of the genomes, we found assemblies, whereas 
for others, only read data was available. Because the used 
C-DBG implementation Bifrost supports a combina-
tion of both types as input, we were able to reconstruct 
a joint phylogeny without extra effort or obvious bias in 
the result.

Conclusions
We proposed a new k-mer based method for phyloge-
netic inference that neither relies on alignments to a ref-
erence sequence nor on pairwise or multiple alignments 
to infer markers. Prevailing whole-genome approaches 
perform pairwise comparisons to determine a quad-
ratic number of distances to finally infer a linear number 
of tree edges. In contrast, in our approach, the length 
of conserved sequences is extracted from a colored 
de  Bruijn graph to first infer signals for phylogenetic 

sub-groups. These signals are then combined with a sym-
metry assumption to weighted phylogenetic splits. Evalu-
ations on several real datasets have proven comparable or 
better efficiency and accuracy compared to other whole-
genome approaches. Our results indicate robustness in 
terms of k-mer length, as well as the taxonomic order, 
size and number of the genomes. The analysis of a dataset 
composed of both assembly and read data indicated also 
robustness in this regard—an important characteristic, 
which we want to investigate further.

A distinctive feature of the proposed methodology is 
the direct association of a phylogenetic split to the con-
served subsequences it has been derived from, which is 
not possible for distance-based methods. For the experi-
ment in "Drosophila" section, corresponding sequences 
have been extracted manually. We plan to enrich our 
implementation with a functionality to allow the analysis 
of characteristic subsequences of identified subgroups, or 
subsequences inducing phylogenetic splits off the main 
tree, e.g. horizontal gene transfer.

Another direction of future work is the incorporation 
of the topology of the de  Bruijn graph. Currently, it is 
simply used as a collection of unitigs. But specific sub-
structures, in particular with regard to the colors in the 
graph, could be used to identify phylogenetic events.

Finally, we want to emphasize the simplicity of the 
new approach as presented here. At its current state, 
apart from iterating a colored de  Bruijn graph and 
agglomerating unitig lengths, the only elaborate ingre-
dient so far is the symmetry assumption realized by 

Fig. 8 Splits reconstructed for the V. cholerae dataset [26]. a Greedily extracted weakly compatible subset of splits obtained by SANS 
visualized with SplitsTree [17, 18]. For taxa highlighted in bold, only read data was available on NCBI (input option -s of Bifrost has been 
used); for Taxon TM1107980, no data was available on NCBI (February 2019). b Reference phylogeny. Figure reprinted from Shapiro et al. [26, 
Supplementary Figure 1a]
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applying the geometric mean. We believe that the gen-
eral approach still harbors much potential to be further 
refined by, e.g., statistical models, advanced data struc-
tures, pre- or postprocessing, to further increase its 
accuracy and efficiency.
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