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Abstract 

Motivation: Estimated gene trees are often inaccurate, due to insufficient phylogenetic signal in the single gene 
alignment, among other causes. Gene tree correction aims to improve the accuracy of an estimated gene tree by 
using computational techniques along with auxiliary information, such as a reference species tree or sequencing data. 
However, gene trees and species trees can differ as a result of gene duplication and loss (GDL), incomplete lineage 
sorting (ILS), and other biological processes. Thus gene tree correction methods need to take estimation error as well 
as gene tree heterogeneity into account. Many prior gene tree correction methods have been developed for the case 
where GDL is present.

Results: Here, we study the problem of gene tree correction where gene tree heterogeneity is instead due to ILS 
and/or HGT. We introduce TRACTION, a simple polynomial time method that provably finds an optimal solution to the 
RF-optimal tree refinement and completion (RF-OTRC) Problem, which seeks a refinement and completion of a singly-
labeled gene tree with respect to a given singly-labeled species tree so as to minimize the Robinson−Foulds (RF) 
distance. Our extensive simulation study on 68,000 estimated gene trees shows that TRACTION matches or improves 
on the accuracy of well-established methods from the GDL literature when HGT and ILS are both present, and ties 
for best under the ILS-only conditions. Furthermore, TRACTION ties for fastest on these datasets. We also show that a 
naive generalization of the RF-OTRC problem to multi-labeled trees is possible, but can produce misleading results 
where gene tree heterogeneity is due to GDL.
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Background
Reconstructing the evolutionary history of a gene is a 
core task in phylogenetics, and our ability to infer these 
evolutionary relationships accurately can have impor-
tant implications for a variety of downstream analyses. 
For example, estimated gene trees are used in the infer-
ence of adaptation, evolutionary event detection (such as 
gene loss, gene duplication, and horizontal gene transfer), 
ortholog identification, analysis of functional trait evolu-
tion, and species tree estimation. However, unlike spe-
cies tree estimation techniques that leverage information 

encoded across the entire genome, gene tree estimation 
based on a single locus may not contain enough signal to 
determine the correct gene tree topology with high con-
fidence [1]. Indeed, many phylogenomic datasets have 
gene trees with average branch support well below 75%, 
which is a common lower bound for branches to be con-
sidered reliable. For example, the Avian Phylogenomic 
Project [2] reported average branch support values below 
30%, and many other studies (surveyed in [3]) have had 
similar challenges. Estimating gene and species trees is 
further complicated by biological processes such as gene 
duplication/loss (GDL), incomplete lineage sorting (ILS), 
and horizontal gene transfer (HGT), that create hetero-
geneous tree topologies across the genome [4]. HGT has 
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long been known to cause problems for bacterial phylo-
genetics, and ILS by itself has emerged as a major issue 
in phylogenomics, affecting most, if not all, genome-scale 
datasets [5].

Because gene trees often have low accuracy, a natural 
problem is to try to improve gene tree estimation using 
an estimated or known species tree. An approach from 
the GDL literature is to modify estimated gene trees with 
respect to a reference species tree, which may either 
be an established tree from prior studies or an esti-
mated species tree (e.g., based on an assembled multi-
locus dataset). Some of these methods use the available 
sequence data as well as the estimated gene tree and 
species tree, and are referred to as integrative methods; 
examples include ProfileNJ [1], TreeFix  [6], and Tree-
Fix-DTL  [7]. Other methods, called gene tree correction 
methods, use just the topologies of the gene tree and spe-
cies tree, and are typically based on parametric models of 
gene evolution; Notung [8, 9] and ecceTERA [10] are two 
well-known methods of this type. Integrative methods 
are generally expected to be more accurate than gene tree 
correction methods when gene tree heterogeneity is due 
to GDL, but as a result of using likelihood calculations 
they are also more computationally intensive. See [10–
16] for an entry into the vast literature on this subject.

Here, we examine gene tree correction where gene tree 
heterogeneity is due to ILS or HGT, and where each gene 
tree has at most one copy of each species. We present a 
new approach to gene tree correction that is based on a 
very simple non-parametric polynomial-time method, 
TRACTION. In addition to correcting gene trees, 
TRACTION is also capable of completing gene trees that 
do not contain all the species present in the reference 
species tree, a condition that may occur in a multi-locus 
study when not all genomes have been sequenced and 
assembled.

The input to TRACTION is a pair (t,  T) of unrooted, 
singly-labeled phylogenetic trees. The leaf set of t is a 
subset of the leaf set of T, tree T is binary, and tree t will 
generally be non-binary. We seek a tree T ′ created by 
refining t and adding any missing leaves so that T ′ has the 
minimum Robinson−Foulds (RF) [17] distance to T. We 
call this the RF-optimal tree refinement and completion 
Problem (RF-OTRC) and show that TRACTION finds an 
optimal solution to RF-OTRC in O(n1.5 log n) time, where 
n is the number of leaves in the species tree T. We also 
explore an extension of this problem statement to handle 
multi-labeled genes by using a generalization of the RF 
distance proposed in [18].

To use TRACTION for gene tree correction in prac-
tice, we assume we are given an estimated gene tree 
with branch support values and an estimated (or known) 
binary species tree, which may have additional species. 

The low support branches in the gene tree are collapsed, 
forming the (unresolved) tree t. TRACTION first refines 
the input gene tree t into a binary tree t ′ , and then it adds 
the missing species to t ′ . Although the algorithm is quite 
simple, the proof of correctness is non-trivial.

We present the results of an extensive simulation study 
(on 68,000 gene trees, each with up to 51 species) in 
which gene tree heterogeneity is either due to only ILS or 
to both ILS and HGT. We explore TRACTION for gene 
tree correction with estimated species trees in compari-
son to Notung, ecceTERA, ProfileNJ, TreeFix, and Tree-
Fix-DTL. Many methods (including TRACTION) tie for 
best on the ILS-only data, but TRACTION dominates 
the other gene tree correction methods with respect to 
topological accuracy on the HGT + ILS data, while also 
tying for fastest. Importantly, TRACTION provides good 
accuracy even when the estimated species tree is far from 
the true gene tree. The simplicity of the approach and its 
good accuracy under a range of model conditions indi-
cate that non-parametric approaches to gene tree correc-
tion may be promising and encourages future research.

TRACTION
Terminology and basics
A phylogenetic tree can be represented as a tree T with 
leaves labeled by some set of organisms S. If each leaf 
label is unique, then the phylogenetic tree is singly-
labeled. Unless noted otherwise, the phylogenetic trees 
we describe throughout this paper are singly-labeled and 
unrooted.

Each edge e in an unrooted, singly-labeled phylogenetic 
tree defines a bipartition πe (also sometimes referred to 
as a split) on the set of leaf labels induced by the deletion 
of e from the tree, but not its endpoints. Each bipartition 
splits the leaf set into two non-empty disjoint parts, A 
and B, and is denoted by A|B. The set of bipartitions of 
a tree T is given by C(T) = { πe : e ∈ E(T ) }, where E(T) is 
the edge set for T. Tree T ′ is a refinement of T if T can be 
obtained from T ′ by contracting a set of edges in E(T ′) . A 
tree T is fully resolved (i.e., binary) if there is no tree that 
refines T other than itself.

A set Y of bipartitions on some leaf set S is compat-
ible if there exists an unrooted tree T leaf-labeled by S 
such that Y ⊆ C(T). A bipartition π of a set S is said to 
be compatible with a tree T with leaf set S if and only if 
there is a tree T ′ such that C(T ′) = C(T ) ∪ {π} (i.e., T ′ is 
a refinement of T that includes the bipartition π ). Simi-
larly, two trees on the same leaf set are said to be com-
patible if they share a common refinement. An important 
result on compatibility is that pairwise compatibility of a 
set of bipartitions over a leaf set ensures setwise compat-
ibility [19, 20]; it then follows that two trees are compat-
ible if and only if the union of their sets of bipartitions is 
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compatible. Furthermore, by [21] (and see discussion in 
[22, 23]), a set C of bipartitions is compatible if and only if 
there is a tree T such that C(T ) = C.

The Robinson−Foulds (RF) distance [17] between two 
trees T and T ′ on the same set of leaves is defined as the 
minimum number of edge-contractions and refinements 
required to transform T into T ′ (where each such opera-
tion changes the number of edges in the tree by exactly 
one, so contracting a single edge or refining a polytomy 
to add a single edge). For singly-labeled trees, the RF dis-
tance equals the number of bipartitions present in only 
one tree (i.e., the symmetric difference). The normalized 
RF distance is the RF distance divided by 2n− 6 , where 
n is the number of leaves in each tree; this produces a 
value between 0 and 1 since the two trees can only disa-
gree with respect to internal edges, and n− 3 is the maxi-
mum number of internal edges in an unrooted tree with 
n leaves.

Given a phylogenetic tree T on taxon set S, T restricted 
to R ⊆ S is the minimal subgraph of T connecting ele-
ments of R and suppressing nodes of degree two. We 
denote this as T |R . If T and T ′ are two trees with R as 
the intersection of their leaf sets, their shared edges are 
edges whose bipartitions restricted to R are in the set 
C(T |R) ∩ C(T ′|R) . Correspondingly, their unique edges 
are edges whose bipartitions restricted to R are not in the 
set C(T |R) ∩ C(T ′|R) . See Fig. 1 for a pictorial depiction 
of unique and shared edges.

RF‑optimal tree refinement and completion (RF‑OTRC) 
problem
We now turn our attention to the optimization problem 
of interest to this paper. This section is limited to the con-
text of singly-labeled trees; we postpone the extension 
to cases where the gene tree can have multiple copies 

of a species at the leaves, which are referred to as multi-
labeled trees (i.e., MUL-trees [24]), until a later section.

The Optimal Tree Refinement and Completion Problem
Input: An unrooted, singly-labeled, binary tree T on leaf
set S and an unrooted, singly-labeled tree t on R ⊆ S.
Output: An unrooted, singly-labeled, binary tree T ′ on S
with two key properties:
1 T ′ contains all the leaves of S and is compatible with

t (i.e., T ′|R is a refinement of t) and
2 T ′ minimizes the RF distance to T among all binary

refinements of t.

If the trees t and T have the same set of taxa, then the 
RF-OTRC problem becomes the RF-optimal tree refine-
ment (RF-OTR) problem, while if t is already binary 
but can be missing taxa, then the RF-OTRC problem 
becomes the RF-optimal tree completion (RF-OTC) 
problem. OCTAL, presented in [25], solves the RF-OTC 
problem in O(n2) time, and an improved approach pre-
sented by Bansal [26] solves the RF-OTC problem in 
linear time. We refer to this faster approach as Bansal’s 
algorithm. In this paper we present an algorithm that 
solves the RF-OTR problem exactly in polynomial time 
and show that the combination of this algorithm with 
Bansal’s algorithm solves the RF-OTRC problem exactly 
in O(n1.5 log n) time, where T has n leaves. We refer to 
the two steps together as Tree Refinement And Comple-
TION (TRACTION).

TRACTION algorithm
The input to TRACTION is a pair of unrooted, singly-
labeled trees (t, T), where t is the estimated gene tree on 
set R of species and T is the binary reference tree on S, 
with R ⊆ S . Note that we allow t to not be binary (e.g., if 

Fig. 1 Type I and Type II superleaves of a tree T with respect to t. Edges in the backbone (defined to be the edges on paths between nodes in the 
common leaf set) are colored green for shared, red for unique; all other edges are colored black. The deletion of the backbone edges in T defines 
the superleaves; one is a Type I superleaf because it is attached to a shared (green) edge and the other is a Type II superleaf because it is attached to 
a unique (red) edge. This figure is from [25], reused under the Creative Commons Attribution (CC-BY) license
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low support edges have already been collapsed) and to be 
missing species (i.e., R ⊂ S is possible).

Step 1: Refine t so as to produce a binary tree t∗ that 
maximizes shared bipartitions with T.
Step 2: Add the missing species from T into t∗ , mini-
mizing the RF distance.

Step 1: Greedy refinement of t
To compute t∗ , we first refine t by adding all biparti-
tions from T |R that are compatible with t; this produces 
a unique tree t ′ . If t ′ is not fully resolved, then there are 
multiple optimal solutions to the RF-OTR problem, as 
we will later prove. The algorithm selects one of these 
optimal solution as follows. First, we add edges from t 
that were previously collapsed (if such edges are avail-
able). Next, we randomly refine the tree until we obtain a 
fully resolved refinement, t∗ . Note that if t ′ is not binary, 
then t∗ is not unique. We now show that the first step of 
TRACTION solves the RF-OTR problem.

Theorem 1 Let T be an unrooted, singly-labeled tree on 
leaf set S, and let t be an unrooted, singly-labeled tree on 
leaf set  R ⊆ S. A fully resolved (i.e. binary) refinement of t 
minimizes the RF distance to T |R if and only if it includes 
all compatible bipartitions from T |R.

Proof Let C0 denote the set of bipartitions in T |R that 
are compatible with t. By the theoretical properties of 
compatible bipartitions (see “Terminology and basics” 
section), this means the set C0 ∪ C(t) is a compat-
ible set of bipartitions that define a unique tree t ′ where 
C(t ′) = C0 ∪ C(t) (since the trees are singly-labeled).

We now prove that for any binary tree B refining t, B 
minimizes the RF distance to T |R if and only if B refines t ′.

Consider a sequence of trees t = t0, t1, t2, . . . , tk , each 
on leaf set R, where ti is obtained from ti−1 by adding one 
edge to ti−1 , and thus adds one bipartition to C(ti−1) . Let 
δi = RF(ti,T |R)− RF(ti−1,T |R) , so that δi indicates the 
change in RF distance produced by adding a specific edge 
to ti−1 to get ti . Hence,

A new bipartition πi added to C(ti−1) is in C(T |R) if and 
only if πi ∈ C0 . If this is the case, then the RF distance will 
decrease by one (i.e., δi = −1 ). Otherwise, πi  ∈ C0 , and 
the RF distance to T |R will increase by one (i.e., δi = 1).

Now suppose B is a binary refinement of t. We can 
write the bipartitions in C(B)\C(t) into two sets, X and 
Y, where X are bipartitions in C0 and Y are bipartitions 

RF(ti,T |R) = RF(t0,T |R)+
∑

j≤i

δj .

not in C0 . By the argument just provided, it follows that 
RF(B,T |R) = RF(t,T |R)− |X | + |Y | . Note that |X ∪ Y | 
must be the same for all binary refinements of t, because 
all binary refinements of t have the same number of 
edges. Thus, RF(B,T |R) is minimized when |X| is maxi-
mized, so B minimizes the RF distance to T |R if and only 
if C(B) contains all the bipartitions in C0 . In other words, 
RF(B,T |R) is minimized if and only if B refines t ′ .  �

Corollary 1 TRACTION finds an optimal solution to 
the RF-OTR problem.

Proof Given input gene tree t and reference tree T on 
the same leaf set, TRACTION produces a tree t ′′ that 
refines t and contains every bipartition in T compatible 
with t; hence by Theorem 1, TRACTION solves the RF-
OTR problem.  �

Step 2: Adding in missing species
The second step of TRACTION can be performed using 
OCTAL or Bansal’s algorithm, each of which finds an 
optimal solution to the RF-OTC problem in polynomial 
time. Indeed, we show that any method that optimally 
solves the RF-OTC problem can be used as an intermedi-
ate step to solve the RF-OTRC problem.

To prove this, we first restate several prior theoretical 
results. In [25] we showed the minimum achievable RF 
distance between T and T ′ is given by:

where m is the number of Type II superleaves in T rela-
tive to t, which we define:

Definition 1 Let T be a binary tree on leaf set S and t be 
a tree on leaf set R ⊆ S . The superleaves of T with respect 
to t are defined as follows (see Fig. 1). The set of edges in 
T that are on a path between two leaves in R define the 
backbone; when this backbone is removed, the remain-
der of T breaks into pieces. The components of this graph 
that contain vertices from S \ R are the superleaves. Each 
superleaf is rooted at the node that was incident to one of 
the edges in the backbone, and is one of two types:

• Type I superleaves: the edge e in the backbone to 
which the superleaf was attached is a shared edge in 
T |R and t

• Type II superleaves: the edge e in the backbone to 
which the superleaf was attached is a unique edge in 
T |R and t

(1)RF(T ,T ′) = RF(T |R, t)+ 2m
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Theorem  2 (Restatement of Theorem  9 in [25]) Given 
unrooted, singly-labeled binary trees t and 7 with the leaf set 
of t a subset of the leaf set S of T, OCTAL(T, t) solves the RF-
OTC problem and runs in O(n2) time, where T has n leaves.

Proof of correctness for TRACTION

Lemma 1 Let T be an unrooted, singly-labeled, binary 
tree on leaf set S with |S| = n, and let t be an unrooted, 
singly-labeled tree on leaf set R ⊆ S. TRACTION returns 
a binary unrooted tree T ′ on leaf set S such that RF(T ′,T ) 
is minimized subject to T ′|R refining t.

Proof By construction TRACTION outputs a tree T ′ 
that, when restricted to the leaf set of t, is a refinement 
of t. Hence, it is clear that T ′|R refines t. Now, it is only 
necessary to prove that RF(T ′ , T) is minimized by TRAC-
TION. Since the intermediate tree t∗ produced in the 
first step of TRACTION is binary, Theorem 2 gives that 
TRACTION using OCTAL (or any method exactly solv-
ing the RF-OTC problem) will add leaves to t∗ in such a 
way as to minimize the RF distance to T; hence it suffices 
to show that t∗ computed by TRACTION has the small-
est RF distance to T among all binary refinements of t.

As given in Eq. 1, the optimal RF distance between T ′ 
and T is the sum of two terms: (1) RF(t∗ , T |R ) and (2) the 
number of Type II superleaves in T relative to t∗ . Theo-
rem  1 shows that TRACTION produces a refinement 
t∗ that minimizes the first term. All that remains to be 
shown is that t∗ is a binary refinement of t minimizing the 
number of Type II superleaves in T relative to t∗.

Consider a superleaf X in T with respect to t. If t were 
already binary, then every superleaf X is either a Type I or 
a Type II superleaf. Also, note that every Type I superleaf 
in T with respect to t will be a Type I superleaf for any 
refinement of t. However, when t is not binary, it is pos-
sible for a superleaf X in T to be a Type II superleaf with 
respect to t but a Type I superleaf with respect to a refine-
ment of t. This happens when the refinement of t intro-
duces a new shared edge with T to which the superleaf X 
is attached in T. Notice that since the set of all possible 
shared edges that could be created by refining t is com-
patible, any refinement that maximizes the number of 
shared edges with T also minimizes the number of Type II 
superleaves. Theorem 1 shows that TRACTION produces 
such a refinement t∗ of t. Thus, TRACTION finds a binary 
unrooted tree T ′ on leaf set S such that RF(T ′ , T) is mini-
mized subject to the requirement that T ′|R refine t.  �

Theorem  3 TRACTION solves the RF-OTRC prob-
lem and runs in O(n1.5 log n) time if used with Bansal’s 

algorithm and O(n2) time if used with OCTAL, where n is 
the number of leaves in the species tree.

Proof The above lemma shows that TRACTION solves 
the RF-OTRC problem. Let t, T, S, and R be as defined 
in the RF-OTRC problem statement. What remains to 
be shown is a running time analysis for the first stage 
of TRACTION (refining t). We claim this step takes 
O(|S| + |R|1.5 log(|R|)) time.

Constructing T |R takes O(|S|) time. Checking compat-
ibility of a single bipartition with a tree on K leaves, and 
then adding the bipartition to the tree if compatible, can 
be performed in only O(|K |0.5 log(|K |)) after a fast pre-
processing step (see Lemmas 3 and 4 from [27]). Hence, 
determining the set of edges of T |R that are compatible 
with t takes only O(|S| + |R|1.5 log(|R|)) time. Therefore, 
the first stage of TRACTION takes O(|S| + |R|1.5 log(|R|)) 
time. Hence, if used with OCTAL, TRACTION takes 
O(|S|2) time and if used with Bansal’s algorithm TRAC-
TION takes O(|S|1.5 log |S|) time.  �

Extending TRACTION to MUL‑trees
Up to this point, we have formulated gene tree correction 
problems only in the context where the input trees are each 
singly-labeled (i.e., have at most one leaf for each species). 
However, in the context of GDL, a gene tree may have mul-
tiple copies of a species at its leaves (i.e., it can be a “MUL-
tree”). We now generalize the RF-OTR problem to allow 
the input unresolved tree t to be a MUL-tree, although we 
still require the species tree T to be singly-labeled.

Recall that the RF distance between two trees is the 
minimum number of contractions and refinements that 
suffice to transform one tree into the other, and that 
this is equal to the bipartition distance for singly-labeled 
trees. This definition requires that the two trees have the 
same number of copies of each species (also referred to 
as “label-multiplicity”), since otherwise there is no such 
edit transformation. However, even when the two MUL-
trees have the same number of copies of each species, we 
cannot rely on the use of the bipartition distance, as two 
MUL-trees can have identical sets of bipartitions but not 
be isomorphic [28].

In the context we will address, we are given a MUL-
tree R (i.e., the gene family tree) and a singly-labeled 
tree T (i.e., the species tree). To extend the RF-OTR 
problem so that we can use it for such an input pair, 
we will draw on some definitions and results from [11, 
28].
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Definition 2 Let r and t be given with r a MUL-tree and t 
a singly-labeled tree, and both with the same set of species 
labeling the leaves. We construct the MUL-tree Ext(t,  r) 
from t as follows: for each species s and the unique leaf x in 
t labeled by s, we replace x by a node vs that is attached to k 
leaves, each labeled by s, where k is the number of leaves in 
r that are labeled by s. We refer to Ext(t, r) as the extension 
of  t  relative to  r. Note that Ext(t, r) and r have the same 
number of copies of each species.

The Optimal Tree Refinement Problem for MUL-Trees
(RF-OTR-MT)
Input: A MUL-tree R and an unrooted, binary singly-
labeled tree T , where both trees have the same set S of
species labeling the leaves.
Output: An unrooted binary tree R′ with two key prop-
erties:
1 R′ refines R, and
2 R′ minimizes the RF distance to Ext(T,R) among

all binary refinements of .

Before we present TRACTION-MT (i.e., TRACTION 
for MUL-trees), we need one more definition.

Definition 3 Let r1 and r2 be MUL-trees, both leaf-
labeled by the same set of species, with the same number 
of copies of each species labeling the leaves. We construct 
r′1 from r1 (and similarly r′2 from r2 ) by relabeling the leaves 
of r1 so that it is singly-labeled by replacing the k leaves 
labeled by s with s1, s2, . . . , sk . Note that r′1 and r′2 are now 
singly-labeled trees and that L(r′1) = L(r′2) . We say the 
pair (r′1, r

′
2) is a consistent full differentiation of (r1, r2).

We now present TRACTION-MT. The input to 
TRACTION-MT is a pair (R,T ) where R is a MUL-
tree and T is a singly-labeled tree, and they are both 
leaf-labeled by a set S of species.

• Step 1: Compute Ext(T ,R) (i.e., the extended ver-
sion of T with respect to R , see Definition 2).

• Step 2: Relabel the leaves in T and Ext(T ,R) in a 
mutually consistent fashion (see Definition 3), thus 
producing trees T ′ and R′.

• Step 3: Apply TRACTION to the pair R′ and T ′ , pro-
ducing tree R∗ on leafset S′ . For every species s ∈ S and 
leaf in R∗ labeled si , replace the label si by s, thus pro-
ducing a tree R∗∗ on leaf-set S that is isomorphic to R∗.

• Step 4: Return R∗∗.

Theorem  4 TRACTION-MT solves the RF-OTR-MT 
problem exactly and has running time O(|R|1.5 log |R|).

Proof Let MUL-tree R and singly-labeled tree T be 
given, and let R∗∗ be the tree returned by TRACTION-
MT for this pair. We will show that R∗∗ is a refinement of 
R that has minimum RF distance to Ext(T ,R) among all 
binary refinements, thus establishing that TRACTION-
MT solves the RF-OTR-MT problem optimally [28].

Steps 1 and 2 together take the input pair R and T 
and creates two new trees R′ and T ′ that form a pair of 
consistent full differentiations of R and Ext(T ,R) . By 
Theorem  3 in [11], RF(R,Ext(T ,R)) = RF(R′,T ′) . 
Since R′ and T ′ are singly-labeled, Step 2 produces a 
tree R∗ that is a refinement of R′ and minimizes the RF 
distance to T ′ . Therefore the tree R∗∗ is a refinement of 
R that minimizes the RF distance to Ext(T ,R) . Hence, 

a Reference tree T b Mul-tree R
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e
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a
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b b
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e
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b2 c1

c1

d

d tree returned by TRACTION

a1

a2

a3
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b2

c2
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Fig. 2 Example of MUL-tree correction using TRACTION-MT given a 
reference tree. Given a singly-labeled, binary tree T on leaf set S, we 
wish to correct a MUL-tree R using TRACTION-MT. First, we build 
the extension of T with respect to R , called “Extended T.” Second, we 
re-label the leaves so that R and Extended T become consistent full 
differentiations. Now we run TRACTION on the pair, producing the 
singly-labeled tree shown in (d). TRACTION-MT would then relabel 
the leaves again (i.e., si is relabeled s for all species s), to produce a 
MUL-tree that refines R
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TRACTION-MT finds an optimal solution to the RF-
OTR-MT problem on this input pair.

Finally, for the running time analysis, the crea-
tion of the two trees R′ and T ′ takes O(|R|) . Then 
running TRACTION on this pair takes an additional 
O(|R|1.5 log |R|) time, as noted in Theorem 3.  �

Figure 2 provides example of a MUL-tree, an extended 
species tree, and TRACTION’s solution to the RF-OTR 
problem for MUL-trees.

Evaluation
TRACTION‑MT under gene duplication and loss: case study
There are model conditions under which TRACTION-
MT will not accurately modify an input estimated gene 

tree, even when given the true species tree as the refer-
ence tree and a collapsed version of the true gene tree. 
For example, if a duplication event takes place at the root 
of a species tree, then genes of the same species will not 
be siblings in the true gene tree. Hence, if TRACTION-
MT is given the true gene tree (i.e., MUL-tree), it will not 
be able to add any bipartitions to it from the extended 
species tree, and will instead return a random refine-
ment (see Fig. 3a–c). For a second example, if a duplica-
tion event takes place closer to the leaves, then genes of 
the same species appear somewhat close to each other in 
the true gene tree. As a result, TRACTION-MT may add 
edges in the wrong place, resulting in incorrect locations 
for duplications (see Fig.  3d–g). The key point to both 
cases is that when TRACTION-MT adds edges from the 

a Species Tree d Species Tree

a b c d e a b c d e

b True Gene Tree e True Gene Tree

a b c d ea b c d e a b

c

d e d e

c  Input to TRACTION-MT f g Input to TRACTION-MT  Output of TRACTION-MT

a

b
c

d e

a

b
c

de

a

b
c

d
d

e
e

d
d

e
e

a

b
c

Fig. 3 Two cases where TRACTION-MT does not have good accuracy on multi-labeled gene trees. In the first case (left column), a duplication event 
(red circle) occurs at the root of the species tree shown in a, producing the true gene tree shown in b. If TRACTION-MT is given the estimated gene 
tree shown in c and the unrooted true species tree (a) as input, then TRACTION-MT will randomly refine the estimated gene tree, because it cannot 
add any bipartitions from the species tree. In the second case (right column), a duplication event (red circle) occurs towards the leaves of the 
species tree shown in d, producing the true gene tree shown in e. If TRACTION-MT is given the estimated gene tree shown in f and the unrooted 
true species tree (d) as input, then TRACTION-MT will add two branches as shown in blue in g, producing an incorrect gene tree. Furthermore, the 
addition of these two incorrect branches would imply two duplication events, one occurring at leaf d and one occurring at leaf e, in the true species 
tree, so that the gene tree returned by TRACTION-MT will not minimize the number of duplication events.
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extended species tree, these imply duplications at the 
leaves of the species tree, and the edges produced by ran-
dom refinements of the MUL-tree have low probability 
(i.e., never more than 13 ) of being in the true species tree.

TRACTION under ILS and HGT: simulations
Overview
We evaluated TRACTION in comparison to Notung, 
ecceTERA, ProfileNJ, TreeFix, and TreeFix-DTL on esti-
mated gene trees under two different model conditions 
(ILS-only and ILS+HGT), using estimated and true spe-
cies trees. In total, we analyzed 68,000 genes: 8000 with 
26 species under ILS-only models and 60,000 with 51 
species under ILS  +  HGT models. All estimated gene 
trees that we correct in these experiments were complete 
(i.e., were not missing species). The motivation for this 
is twofold. First, the methods we benchmarked against 
do not provide an option for completing gene trees with 
missing data. This is understandable since these meth-
ods were developed for GDL, where missing species in a 
gene tree are interpreted as true loss events rather than 
incomplete sampling. Second, an experimental evalua-
tion of OCTAL, the algorithm that performs the comple-
tion step of TRACTION, was previously performed in 
[25].

Datasets
We briefly describe the datasets used in this study; all 
datasets are from prior studies [25, 29] and available 
online. The datasets included singly-labeled genes with 
26 or 51 species (each with a known outgroup), and were 
generated under model conditions where true gene trees 
and true species trees differed due to only ILS (datasets 
with 26 species had two levels of ILS) or due to both ILS 
and HGT (datasets with 51 species had the same level of 
ILS but two different levels of HGT). The true gene tree 
heterogeneity (GT-HET, the topological distance between 
true species trees and true gene trees) ranged from 10% 
(for the ILS-only condition with moderate ILS) to as high 
as 68% (for the ILS+HGT condition with high HGT). 
Each model condition has 200 genes, and we explored 
multiple replicate datasets per model condition with dif-
ferent sequence lengths per gene. See Table 1 for details.

Estimated gene trees and estimated reference species trees
For each gene, we used RAxML v8.2.11 [30] under the 
GTRGAMMA model to produce maximum likelihood 
gene trees, with branch support computed using boot-
strapping. Because sequence lengths varied, this pro-
duced estimated gene trees with different levels of gene 
tree estimation error (GTEE) (defined to be the average 
RF distance between the true gene tree and the estimated 
gene tree), ranging from 32 to 63% as defined by the 

missing branch rate (see Table 1). We estimated a species 
tree using ASTRID v1.4 [31] given the RAxML gene trees 
as input. Because the true outgroup for all species trees 
and gene trees was known, we rooted the species tree and 
all gene trees at the outgroup prior to performing gene 
tree correction.

The gene trees given as input to the different correc-
tion methods were computed as follows. Each gene tree 
estimated by RAxML had branches annotated with its 
bootstrap support, and we identified all the branches 
with bootstrap support less than a given threshold. 
These branches with low support were then collapsed 
in the gene trees before being given to TRACTION, 
Notung, and ProfileNJ. When we ran ecceTERA, we 
gave the binary gene trees with the threshold value (i.e., 
minimum required bootstrap support value); ecceT-
ERA collapses all branches that have support less than 
the threshold value, and explores the set of refinements. 
Thus, the protocol we followed ensured that ecceTERA, 
ProfileNJ, Notung, and TRACTION all used the same set 
of collapsed gene trees. TreeFix and Treefix-DTL used 
the uncollapsed gene trees. We ran all methods using a 
threshold value of 75% (the standard threshold for “low 
support”). We additionally ran TRACTION and Notung 
using collapse thresholds of 50%, 85%, and 90% on the 
ILS-only data.

Table 1 Empirical properties of  the  simulated datasets 
used in  this study: gene tree heterogeneity, the  average 
normalized RF distance between true gene trees and true 
species trees (GT-HET); average gene tree estimation error 
(GTEE); and the average distance of the ASTRID reference 
tree, to the true gene trees

The publications from which the simulated datasets are taken are also indicated. 
In total we analyzed 68,000 genes with varying levels and causes of true gene 
tree heterogeneity (to the true species tree) and gene tree estimation error. The 
ILS-only conditions each had 20 replicates, and the ILS+HGT conditions each 
had 50 replicates

GT‑HET GTEE Distance ASTRID 
to true gene trees

ILS-only, low ILS, 26 species [25]

 # sites varies 0.10 0.32 0.08

ILS-only, high ILS, 26 species [25]

 # sites varies 0.36 0.40 0.33

ILS+HGT, moderate HGT (m5), 51 species [29]

 100 sites 0.54 0.63 0.55

 250 sites 0.54 0.47 0.55

 500 sites 0.54 0.47 0.54

ILS+HGT, high HGT (m6), 51 species [29]

 100 sites 0.68 0.62 0.68

 250 sites 0.68 0.46 0.68

 500 sites 0.68 0.38 0.68
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Gene tree correction and integrative methods
The RAxML gene trees were corrected using TRAC-
TION v1.0, Notung v2.9, ecceTERA v1.2.4, ProfileNJ (as 
retrieved from GitHub after the March 20, 2018 commit 
with ID 560b8b2) [1], TreeFix v1.1.10 (for the ILS-only 
datasets), and TreeFix-DTL v1.0.2 (for the HGT +  ILS 
datasets), each with a species tree estimated using 
ASTRID v1.4 [31] as the reference tree rooted at the out-
group. The integrative methods (TreeFix, TreeFix-DTL, 
and ProfileNJ) also required additional input data related 
to the gene alignments, which we detail in the commands 
below. All estimated gene trees were complete (i.e., there 
were no missing taxa), so TRACTION only refined the 
estimated gene tree and did not add any taxa. We also 
explored using the true model species tree as a refer-
ence tree for TRACTION and Notung on the ILS-only 
datasets.

Evaluation criteria
We used RF tree error (the standard criterion in perfor-
mance studies evaluating phylogeny estimation methods) 
to quantify error in estimated and corrected gene trees 
as compared to the known true gene tree (as defined in 
the simulation protocol) and the impact of TRACTION, 
Notung, ecceTERA, and TreeFix-DTL, on these errors. 
Note that although we used the RF distance within the 
OTR optimization criterion, in that context, it refers to 
the distance between the corrected gene tree and the ref-
erence tree (which is an estimated species tree); in con-
trast, when we used the RF error rate in the evaluation 
criterion, it refers to the distance between the corrected 
gene tree and the true gene tree. Since the reference trees 
used in our experiments are typically very topologically 
different from the true gene tree (8% RF distance for the 
moderate ILS condition, 33% for the high ILS condition, 
54% to 68% for the ILS+HGT conditions, see Table  1), 
optimizing the RF distance to the reference tree is quite 

Fig. 4 Comparison of methods on the ILS-only datasets with respect to Robinson−Foulds (RF) error rates as a function of GTEE. Results are only 
shown for those datasets on which all methods completed. Each model condition (characterized by ILS level) has 20 replicate datasets, each with 
200 genes
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different from optimizing the RF distance to the true 
gene tree. Finally, we also evaluated the methods using 
the matching distance [32] and the quartet distance [33].

Experiments
We performed two main experiments: one in which we 
explored performance on ILS-only datasets and the 
other in which we explored performance on datasets 
with HGT and ILS. In each case, we directly explored 
how the GTEE level impacted absolute and relative accu-
racy of gene tree correction methods. We also indirectly 
explored how GT-HET affects relative and absolute accu-
racy. Heterogeneity is higher on the HGT + ILS datasets 
than on the ILS-only datasets, as HGT adds heterogene-
ity between gene trees and species trees (see Table 1). In 
our third experiment, we evaluated how the branch sup-
port collapse threshold and how using the true species 
tree as the reference tree impacted absolute and relative 
performance among the best performing methods on the 
ILS-only datasets.

Commands
In the following commands, resolved gene trees refers to 
the gene trees estimated using RAxML, unresolved gene 
trees refers to these estimated gene trees with branches 
having bootstrap support less than the threshold (e.g., 
75%) collapsed, and reference species tree refers to the 
species tree estimated using ASTRID. Rooted means the 
input tree was rooted at the outgroup.

RAxML v8.2.11 was run as 

raxml -f a -m GTRGAMMA -p 12345 -x 12345 -N <# bootstrap replicates> \
-s <alignment file> -n <output name>

ASTRID v1.4 was run as 

ASTRID -i <resolved gene trees> -o <output>

Fig. 5 Comparison of methods on the ILS-only datasets with respect to matching distance as a function of GTEE. Results are only shown for those 
datasets on which all methods completed. Each model condition (characterized by ILS level) has 20 replicate datasets, each with 200 genes
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Notung v2.9 was run as 

java -jar Notung-2.9.jar --resolve -s <rooted reference species tree> \
-g <rooted unresolved gene tree> --speciestag postfix \
--treeoutput newick --nolosses

TRACTION v1.0 was run as 

traction.py --refine -r -s 12345 -b <unrooted reference species tree> \
-u <unrooted resolved gene trees> -i <unrooted unresolved gene trees> \
-o <output>

ecceTERA v1.2.4 was run as 

eccetera resolve.trees=0 \
collapse.mode=1 \
collapse.threshold=75 \
dated=0 print.newick=true \
species.file=<rooted reference species tree> \
gene.file=<rooted resolved gene tree>

FastME v2.1.6.1 [34], used to compute a distance 
matrix for ProfileNJ, was run as 

fastme -i <input gene alignment> -O <output distance matrix> -dK

ProfileNJ, using the K2P-corrected distance matrix 
from FastME, was run as 

profileNJ \
-g <rooted unresolved gene tree> -s <rooted reference species tree> \
-d <distance matrix> -o <output> -S <name map> -r none \
-c nj --slimit 1 --plimit 1 --firstbest --cost 1 0.99999

TreeFix v1.1.10 was run on the ILS-only datasets as 

treefix -s <rooted reference species tree> -S <name map> \
-A <alignment file extension> -o <old tree file extension> \
-n <new tree file extension> <resolved gene tree>

Fig. 6 Quartet distance error rates of methods on the ILS-only datasets as a function of GTEE. Results are only shown for those datasets on which all 
methods completed. Each model condition (characterized by ILS level) has 20 replicate datasets, each with 200 genes
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TreeFix-DTL v1.0.2 was run on the HGT +  ILS data-
sets as 

treefixDTL -s <rooted reference species tree> -S <map file> \
-A <alignment file extension> -o <old gene tree file extension> \
-n <new gene tree file extension> <resolved gene tree>

Normalized RF distances were computed using Den-
dropy v4.2.0 [35] as 

n1 = len(t1.internal_edges(exclude_seed_edge=True))
n2 = len(t2.internal_edges(exclude_seed_edge=True))
[fp, fn] = false_positives_and_negatives(t1, t2)
rf = float(fp + fn) / (n1 + n2)

Matching distances were computed using code from 
[32] and [36] as 

matching_distance <tree 1> <tree 2> <number of leaves>

Quartet distances were computed using QDist [33] as 

qdist <tree 1> <tree 2>

Results and discussion
Experiment 1: Comparison of methods on ILS‑only 
datasets
Not all methods completed on all datasets: ecceTERA 
failed to complete on 67 gene trees, ProfileNJ failed 
to complete on two gene trees, and all other methods 
completed on all gene trees. Results shown in Fig. 4 are 
restricted to those datasets on which all methods com-
pleted. For the moderate ILS condition with accuracy 
evaluated using RF distance (Fig. 4top), all methods were 
able to improve on RAxML, and the degree of improve-
ment increased with GTEE. For the high ILS condition 
(Fig. 4bottom), methods improved on RAxML only when 

Fig. 7 Robinson−Foulds (RF) error rates for ecceTERA as a function of GTEE on ILS + HGT datasets on which it completes. We only show those 
GTEE conditions for which ecceTERA completed on all genes
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GTEE was at least 20%. Thus, GTEE and ILS level both 
impacted whether methods improved on RAxML. Fur-
thermore, the methods grouped into two sets: TRAC-
TION, Notung, and TreeFix performing very similarly 
and ProfileNJ and ecceTERA having somewhat higher 
error. We found the relative performance of these meth-
ods follows the same trends for matching (Fig.  5) and 
quartet distances (Fig. 6) as for RF distances. 

Experiment 2: Comparison of methods on the HGT + ILS 
datasets
The HGT + ILS datasets have heterogeneity due to both 
HGT and ILS, with the degree of HGT varying from 
moderate (m5) to high (m6). Here, ecceTERA failed on 
1318 datasets with the failure rates increasing as the 
gene tree estimation error (GTEE) of the initial RAxML 
gene tree increased: ecceTERA failed 0% of the time 
when GTEE was less than 40%, 0.4% of the time when 
GTEE was 40–60%, 23.6% of the time when GTEE was 
60–80%, and 90.8% of the time when GTEE was at least 
80%. Because of the high failure rate, we report results for 
ecceTERA on datasets with GTEE of at most 40%; above 

this level, ecceTERA fails frequently, making compari-
sons between methods potentially biased. Figure 7 shows 
that ecceTERA performed well, though not as well as 
Notung and TRACTION, on these low GTEE datasets.

Figure  8 shows the impact of the remaining methods 
on RAxML gene trees as a function of GTEE as meas-
ured by RF distance. Figs. 9 and 10 measure this impact 
using matching distance and quartet distance, respec-
tively. The relative performance between the remaining 
methods across all evaluation metrics show that TRAC-
TION and Notung were more accurate than ProfileNJ 
and TreeFix-DTL, with the gap between the two groups 
increasing with GTEE. We also see that TRACTION 
had an advantage over Notung for the low GTEE con-
dition and matched the accuracy on the higher GTEE 
conditions. Finally, for the lowest GTEE bin, no method 
improved the RAxML gene tree, some methods made the 
gene trees much less accurate (e.g., ProfileNJ), and only 
TRACTION maintained the accuracy of the RAxML 
gene tree. Overall, on the HGT +  ILS datasets, TRAC-
TION consistently performed well and provided a clear 
advantage over the other methods in terms of accuracy. 

Fig. 8 Robinson−Foulds (RF) error rates methods on ILS + HGT datasets as a function of GTEE. Each boxplot displays the distribution of RF error 
across all replicates for a given method and level of GTEE; ecceTERA is not shown due to a high failure rate on these data
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Experiment 3: Varying collapse threshold and reference 
tree on the ILS datasets
The collapse threshold is an important hyperparam-
eter that may impact the accuracy of gene tree correc-
tion methods. We evaluated the effect of this parameter 
on the two best performing methods from the previ-
ous experiments: TRACTION and Notung. Figure  11 
shows the results on the ILS-only datasets, stratified 
by GTEE. Overall, TRACTION and Notung exhibited 
similar relative performance. Intuitively, increasing 
the collapse threshold (i.e., collapsing more branches) 
tends to reduce the error in the moderate ILS condition 
across all levels of GTEE as well the high ILS condition 
with sufficiently high GTEE. However, a lower thresh-
old (i.e., collapsing fewer branches) improves accuracy 
for the low GTEE and high ILS condition, where the 
original gene tree is well-estimated and the reference 
species tree is more distant from the true gene trees.

The reference tree is also an important input that in 
practice will often itself be estimated. In Fig.  12, we 
found that using the true model species tree achieves 

similar absolute performance as using the estimated 
ASTRID tree as reference. Again, TRACTION and 
Notung had performed similarly with respect to the RF 
distance between the true and the estimated (and then 
corrected) gene tree.

Running times
We selected a random sample of the 51-taxon HGT + ILS 
datasets to evaluate the running time (see Table 2). From 
fastest to slowest, the average running times were 0.5 s 
for TRACTION, 0.8 s for Notung, 1.7 s for ProfileNJ, 3.8 
s for TreeFix-DTL, and 29 s for ecceTERA. Most of the 
methods had consistent running times from one gene 
to another, but ecceTERA had high variability, depend-
ing on the size of the largest polytomy. When the largest 
polytomy was relatively small, it completed in just a few 
seconds, but it took close to a minute when the largest 
polytomy had a size at the limit of 12. Results on other 
HGT +  ILS replicates and model conditions gave very 
similar results.

Fig. 9 Matching distance error of methods on ILS+HGT datasets as a function of GTEE. Boxplots show a comparison of methods; ecceTERA is not 
shown due to a high failure rate on these data
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Overall comments
This simulation study shows that the better methods 
for gene tree correction (TRACTION, Notung, and 
TreeFix) produced more accurate gene trees than the 
initial RAxML gene trees for the ILS-only conditions 
(except for cases where the initial gene tree was already 
very accurate), and that the improvement could be 
very large when the initial gene trees were poorly esti-
mated. However, the impact of gene tree correction was 
reduced for the HGT + ILS scenarios, where improve-
ment over the initial gene tree was only obtained when 
GTEE is fairly high. As shown in Table  1, the average 
normalized RF distance between the reference tree 
(ASTRID) and the true gene trees was never more 
than 33% for the ILS-only scenarios but very high for 
the HGT + ILS scenarios (54% for moderate HGT and 
68% for high HGT). Since a reference tree (i.e., an esti-
mated species tree) was the basis for the correction of 
the gene trees, it is not surprising that improvements 
in accuracy were difficult to obtain for the HGT + ILS 
scenario. On the other hand, given the large distance 
between the true species tree and the true gene tree, 

the fact that improvements were obtained for several 
methods (TRACTION, Notung, and TreeFix-DTL) is 
encouraging.

Conclusions
We presented TRACTION, a method that solves the RF-
OTRC problem exactly in O(n1.5 log n) time, where n is 
the number of species in the species tree; the algorithm 
itself is very simple, but the proof of optimality is non-
trivial. TRACTION performs well on singly-labeled gene 
trees, matching or improving on the accuracy of compet-
ing methods on the ILS-only datasets and dominating the 
other methods on the HGT + ILS datasets. Furthermore, 
although all the methods are reasonably fast on these 
datasets, TRACTION is the fastest on the 51-taxon gene 
trees, with Notung a close second.

The observation that TRACTION performs as well 
(or better) than the competing methods (ecceTERA, 
ProfileNJ, Notung, TreeFix, and TreeFix-DTL) on sin-
gly-labeled gene trees under ILS and HGT is encourag-
ing. However, the competing methods are all based on 
stochastic models of gene evolution that are inherently 

Fig. 10 Quartet distance error rates of methods on ILS+HGT datasets as a function of GTEE. Boxplots show a comparison of methods; ecceTERA is 
not shown due to a high failure rate on these data
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derived from gene duplication and loss (GDL) scenarios 
(and in one case also allowing for HGT), and thus it is 
not surprising that GDL-based methods do not provide 
the best accuracy on the ILS-only or HGT + ILS model 
conditions we explore (and to our knowledge, all the cur-
rent methods for gene tree correction are based on GDL 
models). Yet, TRACTION has good accuracy under a 
wide range of scenarios for singly-labeled gene trees. We 
conjecture that this generally good performance is the 
result of its non-parametric criterion which can help it to 
be robust to model mis-specification (of which gene tree 
estimation error is one aspect).

This study shows that when the reference tree is very 
far from the true gene trees (e.g., our HGT + ILS data), 
gene tree correction typically fails to improve the ini-
tial gene tree and some methods can make the gene tree 
worse. This brings into question why the species tree 
(whether true or estimated) is used as a reference tree. 
We note that while the GDL-based methods may benefit 
from the use of a species tree as a reference tree (since the 
correction is based on GDL scenarios), this type of refer-
ence tree may not be optimal for TRACTION, which has 
no such dependency. Thus, part of our future work will 
be to explore techniques (such as statistical binning [37, 

38]) that might enable the estimation of a better refer-
ence tree for TRACTION in the context of a multi-locus 
phylogenomic analysis.

This study suggests several other directions for future 
research. The GDL-based methods have variants that 
may enable them to provide better accuracy (e.g., alter-
native techniques for rooting the gene trees, selecting 
duplication/loss parameter values, etc.), and future 
work should explore these variants. Most gene tree 
correction methods have been developed specifically 
to address the case where genes have multiple copies 
of species as a result of gene duplication events. We 
showed that a naive extension of TRACTION to han-
dle multi-labeled genes by using a generalization of the 
RF distance based on an extended species tree, such as 
proposed in [18], can lead to misleading results. Future 
work should explore other generalizations of RF dis-
tance that do not suffer from these same limitations, 
and consider other distances between MUL-trees, as 
discussed in [39]. Recent work has shown how Notung 
could be extended to address HGT [40]; a comparison 
between TRACTION and a new version of Notung that 
addresses HGT will need to be made when Notung is 
modified to handle HGT (that capability is not yet 

Fig. 11 TRACTION and Notung achieve similar RF error rates across collapse thresholds for ILS-only datasets. In each case, edges with support less 
than the threshold are collapsed before refinement. TRACTION and Notung completed in all instances, so no gene trees are removed
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available). Finally, the effect of gene tree correction on 
downstream analyses should be evaluated carefully.
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