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Abstract 

Background: The evolutionary distance between two genomes can be estimated by computing a minimum length 
sequence of operations, called genome rearrangements, that transform one genome into another. Usually, a genome 
is modeled as an ordered sequence of genes, and most of the studies in the genome rearrangement literature consist 
in shaping biological scenarios into mathematical models. For instance, allowing different genome rearrangements 
operations at the same time, adding constraints to these rearrangements (e.g., each rearrangement can affect at most 
a given number of genes), considering that a rearrangement implies a cost depending on its length rather than a unit 
cost, etc. Most of the works, however, have overlooked some important features inside genomes, such as the pres-
ence of sequences of nucleotides between genes, called intergenic regions.

Results and conclusions: In this work, we investigate the problem of computing the distance between two 
genomes, taking into account both gene order and intergenic sizes. The genome rearrangement operations we 
consider here are constrained types of reversals and transpositions, called super short reversals (SSRs) and super short 
transpositions (SSTs), which affect up to two (consecutive) genes. We denote by super short operations (SSOs) any SSR 
or SST. We show 3-approximation algorithms when the orientation of the genes is not considered when we allow 
SSRs, SSTs, or SSOs, and 5-approximation algorithms when considering the orientation for either SSRs or SSOs. We also 
show that these algorithms improve their approximation factors when the input permutation has a higher number of 
inversions, where the approximation factor decreases from 3 to either 2 or 1.5, and from 5 to either 3 or 2.
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Background
Given two genomes G1 and G2 , one way to estimate their 
evolutionary distance is to compute the minimum num-
ber of large scale events, called genome rearrangements, 
that are needed to transform G1 into G2 . The minimality is 
required due to the commonly accepted parsimony prin-
ciple, while the allowed genome rearrangements depend 
on the model, i.e. on the classes of events that supposedly 
happen during evolution.

Prior to counting rearrangement events, one needs 
to model the input genomes. Previous works [1–3] 
have defined genomes as ordered sequences of ele-
ments (genes). Variants within this setting can occur. For 
instance, each gene may appear either once or several 

times in a genome. In the latter case, genomes are mod-
eled as strings, while in the former case they are modeled 
as permutations. Besides, genomes modeled as permuta-
tions may be signed or unsigned (the sign of an element 
represents the orientation of that gene in the DNA strand 
it lies on).

Concerning genome rearrangements, the most com-
monly studied events are reversal, which consists in tak-
ing a continuous sequence in the genome, reversing it, 
and putting it back at the same location [4], and trans-
position, which consists in taking a continuous sequence 
in the genome and putting it back in a different location 
[5]. A more recent and general type of genome rearrange-
ment is the DCJ (Double-Cut and Join) [3], that cuts a 
genome between adjacent genes a and b, and adjacent 
genes c and d, and joins either a to c and b to d, or a to d 
and b to c.
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Since the mid-nineties, a very large amount of work 
has been done for computing distances between pairs 
of genomes, depending on the genome model and the 
allowed set of rearrangements. We refer the reader to 
Fertin et al. book [6] for a survey of algorithmic aspects.

In populations where the number of rearrangement 
events that affect a very large portion of the genes are 
rare, we can restrict events to span at most k genes, for 
some value of k [7, 8]. During an analysis with closely-
related pairs of bacterial genomes, the number of short 
inversions (inversions affecting up to three genes) was 
discovered to be very high, especially inversions of a 
single gene (which we call 1-reversal) [9]. There are also 
other works showing the prevalence of short inversions 
in bacterial genomes [10] and eukaryotes genomes   [11, 
12].

As previously mentioned, most of the works have 
assumed that a genome is an ordered sequence of genes. 
It has been argued that this model could underestimate 
the “true” evolutionary distance, and that other genome 
features should be taken into account to circumvent this 
problem [13, 14]. Indeed, genomes carry more infor-
mation than just their ordered sequences of genes. In 
particular, consecutive genes are separated by DNA 
sequences called intergenic regions, each having different 
lengths in terms of number of nucleotides. These lengths 
may be used along with gene order to generate a more 
realistic model for genomes.

This recently led some authors to model a genome as 
an ordered sequence of genes, together with an ordered 
list of its intergenic sizes, and to consider the problem 
of computing the DCJ distance, either in the case where 
insertions and deletions of nucleotides are forbidden 
[15], or allowed [16].

Biller and coauthors [13] used the intergenic regions 
to define what they called fragile regions, regions where 
rearrangements are more likely to act. After identify-
ing these fragile regions, practical tests showed that 
considering rearrangements on non-fragile regions can 
yield incoherent distance estimations. When using the 
equiprobable model (i.e., rearrangements can occur in 
any position with the same probability), practical tests 
[16] showed that statistical properties of the inferred sce-
narios for DCJs using intergenic regions are closer to the 
true ones than scenarios which do not use them.

In this work, we also consider genomes as ordered 
sequences of genes together with their intergenic sizes, in 
cases where the gene sequence is an unsigned or signed 
permutation and the considered rearrangement opera-
tions are super short reversal (or SSR, i.e. a reversal of 
(gene) length at most two), super short transposition (or 
SST, i.e. a transposition affecting only two genes), or both 
(super short operation or SSO). In this context, our goal is 

to determine the minimum number of SSRs/SSTs/SSOs 
that transform one genome into another.

This paper is organized as follows. In Section 2 we pro-
vide the notations that we will use throughout the paper, 
and we introduce novel ideas that will prove useful for 
studying the problem. In sections  3-7 we derive lower 
and upper bounds on the sought distance for five dif-
ferent variants, which help us design an approximation 
algorithm of constant factor for each of these five prob-
lems. Section  8 presents a practical analysis of the five 
algorithms on simulated instances. Section  9 concludes 
the paper.

Definitions
We represent a genome G with n genes as an instance 
with (i) an n-tuple and (ii) n+ 1 intergenic regions. If 
there is no duplicated genes, the n-tuple is a (possi-
bly signed) permutation π = (π1π2 · · · πn−1πn) , with 
|πi| ∈ {1, 2, ..., (n−1), n} , for 1 ≤ i ≤ n , and |πi| = |πj| if, 
and only if, i = j . If gene orientation is known, each ele-
ment from π has a + or − sign that indicates the gene 
orientation it represents, and we say that π is a signed 
permutation; π is an unsigned permutation otherwise.

We denote by ι the identity permutation, in which all 
elements are in ascending order and with positive signs. 
The extended permutation is obtained from π by adding 
two new elements: π0 = 0 and πn+1 = (n+1).

The intergenic region rπi  is located before element πi 
from the extended permutation π , for 1 ≤ i ≤ n+ 1 . 
We denote by ℓ(rπi ) the length of intergenic region rπi  , 
i.e., the number of nucleotides in rπi  , with ℓ(rπi ) ∈ N for 
1 ≤ i ≤ n+ 1 . Let rπ = (ℓ(rπ1 ), ..., ℓ(r

π
n+1)) . An instance 

here is then formed by (π , rπ ).
A reversal ρ(i, j, x, y) applied over an instance (π , rπ ) , 

with 1 ≤ i ≤ j ≤ n , 0 ≤ x ≤ ℓ(rπi ) , 0 ≤ y ≤ ℓ(rπj+1) , and 
{x, y} ∈ N , is an operation that generates (π ′, rπ

′
) by (i) 

reversing the order and the orientation of the elements 
in the subset of adjacent elements {πi, ...,πj} ; (ii) revers-
ing the order of intergenic regions in the subset of adja-
cent intergenic regions {rπi+1, ..., r

π
j } when j > i + 1 ; (iii) 

cutting two intergenic regions: rπi  after x nucleotides 
and rπj+1 after y nucleotides such that ℓ(rπ ′

i ) = x + y and 
ℓ(rπ

′

j+1) = (ℓ(rπi )−x)+ (ℓ(rπj+1)−y).

A reversal ρ(i, j, x, y) is also called a g-reversal, where 
g = (j − i)+ 1 . A super short reversal is a 1-reversal or a 
2-reversal, i.e. a reversal that affects only one or two ele-
ments from π.

A transposition τ (i, j, k , x, y, z) applied over an instance 
(π , rπ ) , with 1 ≤ i < j < k ≤ n+ 1 , 0 ≤ x ≤ ℓ(rπi ) , 
0 ≤ y ≤ ℓ(rπj ) , 0 ≤ z ≤ ℓ(rπk ) , and {x, y, z} ∈ N , is an oper-
ation that generates (π ′, rπ

′
) by (i) exchanging subsets of 

adjacent elements {πi, ...,πj−1} and {πj , ...,πk−1} ; (ii) mov-
ing subsets of adjacent intergenic regions {rπj+1, ..., r

π
k−1} 
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and {rπi+1, ..., r
π
j−1} to start at positions (i + 1) and 

(i + k − j + 1) , respectively; (iii) cutting three intergenic 
regions: rπi  , rπj  , and rπk  such that ℓ(rπ ′

i ) = x + ℓ(rπj )−y , 
ℓ(rπ

′

i+k−j) = ℓ(rπi )−x + z , and ℓ(rπ ′

k ) = ℓ(rπk )−z + y.
A transposition τ (i, j, k , x, y, z) is called a g-transposi-

tion, where g = k − i , and we say that a g-transposition is 
super short if g = 2.

Figure  1 shows a sequence of two super short rever-
sals and one super short transposition that transforms 
the permutation π = (1 3 4 2 5) with rπ = (3, 5, 2, 1, 2, 8) 
into ι = (1 2 3 4 5) with rι = (3, 2, 6, 4, 5, 1).

Given an instance (π , rπ ) , a pair of elements (πi,πj) 
from π is called an inversion if πi > πj and i < j , with 
{i, j} ∈ [1..n] . We denote the number of inversions in a 
permutation π by inv(π) . For the example in Fig. 1a, pairs 
(3, 2) and (4, 2) are the only inversions, thus inv(π) = 2.

Given two instances (π , rπ ) and (α, rα) representing 
genomes G1 and G2 respectively such that π and α have 
the same number of elements, (ℓ(rπi )− ℓ(rαi )) is the 
imbalance between intergenic regions rπi  and rαi  , with 
1 ≤ i ≤ m.

Given two instances (π , rπ ) and (α, rα) such 
that (i) π and α have the same number of ele-
ments and (ii) 

∑m
i=1 ℓ(r

π
i ) =

∑m
i=1 ℓ(r

α
i ) , let 

�j(r
π , rα) =

∑j
i=1(ℓ(r

π
i )− ℓ(rαi )) denote the cumu-

lative sum of imbalances between intergenic regions 
of π and α from positions 1 to j, with 1 ≤ j ≤ m . Since ∑m

i=1 ℓ(r
π
i ) =

∑m
i=1 ℓ(r

α
i ) , we have that �m(r

π , rα) = 0.

From now on, we will consider that (i)  the target per-
mutation α is such that α = ι ; (ii) π and ι have the same 
number of elements; and (iii) 

∑m
i=1 ℓ(r

π
i ) =

∑m
i=1 ℓ(r

α
i ) . 

By doing this, we can compute the distance of π , denoted 
by d(π) , that consists in finding the minimum number of 
super short operations that sorts π and transforms rπ into 
rι.

Let (π , rπ ) and (ι, rι) be two instances such that 
π and ι have the same number of elements and ∑m

i=1 ℓ(r
π
i ) =

∑m
i=1 ℓ(r

ι
i ) . The intergenic graph, denoted 

by I(π , rπ , rι) = (V ,E) , is such that V is composed by 
two sets of vertices: intergenic vertices (one for each 
rπi ∈ rπ ), and permutation vertices (one for each πi of 
the extended permutation π ). The set E is composed by 
inversion edges: an edge e = (rπi , r

π
i+2) ∈ E if there is a 

j  = i such that (πi,πj) or (πj ,πi+1) is an inversion, with 
1 ≤ i ≤ n−1 and 1 ≤ j ≤ n.

We divide vertices of an intergenic graph I(π , rπ , rι) 
into components. A component starts and ends with per-
mutation vertices. Besides, the first component starts 
with the permutation vertex π0 , and the last compo-
nent ends with the permutation vertex πn+1 . Consecu-
tive components share exactly one permutation vertex, 
i.e., the last permutation vertex πi of a component is the 
first permutation vertex of its adjacent component to the 
right.

If a component c starts with vertex πi and ends with 
vertex πj , with i < j , then rπk ∈ c for i < k ≤ j and πk ∈ c 

a

b

c

d
Fig. 1 A sequence of two super short reversals and one super short transposition that transforms π = (1 3 4 2 5) , with rπ = (3, 5, 2, 1, 2, 8) into 
ι = (1, 2, 3, 4, 5) , with rι = (3, 2, 6, 4, 5, 1) . Intergenic regions are represented by rectangles, whose dimensions vary according to their sizes. The 
1-reversal ρ(5, 5, 2, 7) applied in a transforms π into π ′ = π , and it cuts π after position 2 at rπ5  and after position 7 at rπ6  , resulting in ℓ(rπ

′

5 ) = 9 , 
ℓ(rπ

′

6 ) = 1 , and rπ
′
= (3, 5, 2, 1, 9, 1) . The 2-reversal ρ(3, 4, 1, 5) applied in b transforms π ′ into π ′′ = (1 3 2 4 5) , and it cuts π ′ after position 1 at 

r
π ′

3  and after position 5 at rπ
′

5  , resulting in ℓ(rπ
′′

3 ) = 6 , ℓ(rπ
′′

5 ) = 5 , and rπ
′′
= (3, 5, 6, 1, 5, 1) . Finally, the 2-transposition τ(2, 3, 4, 0, 4, 1) applied in c 

transforms π ′′ into ι , and it cuts π ′′ in position 0 at rπ
′′

2  , after position 4 at rπ
′′

3  , and after position 1 at rπ
′′

4  , resulting in ℓ(rπ
′′

3 ) = 6 , ℓ(rπ
′′

5 ) = 5 , and 
r
π ′′

= (3, 5, 6, 1, 5, 1) . as shown in d 
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for i < k < j . Besides, any two intergenic vertices that 
are connected to each other by an inversion edge must 
belong to the same component. Thus, if c ends with πj , 
then e = (rπj , r

π
j+2) �∈ E.

The idea is that components break (π , rπ ) according 
to I(π , rπ , rι) into smaller pieces, where it is possible to 
make a local redistribution of intergenic regions and ele-
ments from π (with no need to exchange them between 
components) transforming (π , rπ ) into (ι, rι) . This 
requires that any component c starting with πi and end-
ing with πj must have 

∑j
k=i+1 ℓ(r

π
k )− ℓ(rιk) = 0.

Formally, given an intergenic graph I(π , rπ , rι) , a com-
ponent c is a minimal set of vertices from V in which: 
(i) any two intergenic vertices that are connected to each 
other by an inversion edge must belong to the same com-
ponent, (ii)  if (rπi , r

π
j ) ∈ g , with i < j , then {πi−1,πj} ∈ c 

and for any i < k < j {rπk ,πk} ∈ c , and (iii)  the sum of 
imbalances of its intergenic regions from rπ with respect 
to rι is equal to zero, i.e. 

∑
∀ k s.t. rπk ∈c

ℓ(rπk )− ℓ(rιk) = 0.
A component with one intergenic vertex is called 

trivial, and is called non-trivial otherwise. The number 
of intergenic vertices in a component c is denoted by 
cr . A component c is odd if cr is odd, and it is even oth-
erwise. The number of components in an intergenic 
graph I(π , rπ , rι) is denoted by C(I(π , rπ , rι)) , the num-
ber of odd components is denoted by Codd(I(π , r

π , rι)) , 
and the number of even components is denoted by 

Ceven(I(π , r
π , rι)) . Figure 2 shows three examples of inter-

genic graphs.
In the next two lemmas, we analyze the impact of 

applying super short operations on the number of 
components.

Lemma 1 Given an instance (π , rπ ) and a tar-
get instance (ι, rι) , let (π ′, rπ

′
) be the resulting 

instance after applying a 1-reversal. It follows that 
C(I(π ′, rπ

′
, rι)) ≤ C(I(π , rπ , rι))+ 1.

Proof Recall that a 1-reversal ρ(i, i, x, y) is applied over 
intergenic regions rπi  and rπi+1 , with 1 ≤ i ≤ n . Besides, 
since 1-reversals do not create nor remove inversions 
from π , intergenic graphs I(π ′, rπ

′
, rι) = (V ′,E′) and 

I(π , rπ , rι) = (V ,E) satisfy E = E′.
If rπi ∈ c and rπi+1 �∈ c , this 1-reversal is applied over 

two different components, which means that rπi  is the last 
intergenic region of c, so �i(r

π , rι) = 0 . If x + y �= ℓ(rπi ) , 
we have that C(I(π ′, rπ

′
, rι)) = C(I(π , rπ , rι))− 1 , as 

shown in Fig. 3a.
Consider now that {rπi , r

π
i+1} ∈ c . If i < n and 

(rπ
′

i , rπ
′

i+2) ∈ E′ , or i > 1 and (rπ
′

i−1, r
π ′

i+1) ∈ E′ , then 
C(π ′, rπ

′
, rι) = C(π , rπ , rι) . Otherwise, we have two cases 

to consider: C(π ′, rπ
′
, rι) = C(π , rπ , rι) , if �i(r

π ′
, rι) �= 0 

(as shown in Fig. 3b); and C(π ′, rπ
′
, rι) = C(π , rπ , rι)+ 1 

if �i(r
π ′
, rι) = 0 (as shown in Fig. 3c).  �

a

b

c
Fig. 2 Intergenic graphs I(π , rπ , rι) , I(π ′ , rπ

′
, rι) , and I(ι, rι , rι) , with π = (3 1 2 4 5 7 6) , rπ = (15, 6, 4, 12, 8, 13, 9, 2), π ′ = (1 3 2 4 5 7 6) , 

r
π ′

= (10, 6, 9, 12, 8, 13, 9, 2) , ι = (1 2 3 4 5 6 7) , and rι = (10, 15, 8, 7, 5, 9, 13, 2) . Black squares represent intergenic vertices, and the number inside 
it indicate their sizes. Rounded rectangles in blue represent components. Note that in (a) there are three edges in I(π , rπ , rι) , and C(I(π , rπ , rι)) = 2 , 
and Codd(I(π , rπ , rι)) = 2 since there are five intergenic vertices in c1 and three intergenic vertices in c2 . We also have in (a) all values for 
(ℓ(rπ

i
)− ℓ(rι

i
)) and �i(r

π , rι) , with 1 ≤ i ≤ 8 . The instance (π ′ , rπ
′
) is the result of applying ρ(1, 2, 8, 2) to (π , rπ ) . In (b) we can see that compared to 

I(π , rπ , rι) , I(π ′ , rπ
′
, rι) has one more component, and e1 was removed. In (c) we can see that when we reach the target instance (ι, rι) the number of 

components is equal to the number of intergenic regions in ι (i.e., C(I(ι, rι , rι)) = n+ 1 = 8)
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Lemma 2 Given an instance (π , rπ ) and a target 
instance (ι, rι) , let (π ′, rπ

′
) be the resulting instance after 

applying either a 2-reversal or a 2-transposition. It follows 
that C(I(π ′, rπ

′
, rι)) ≤ C(I(π , rπ , rι))+ 2.

Proof If a 2-reversal or 2-transposition is applied 
to intergenic regions of two different components 
in I(π , rπ , rι) , then we are necessarily creating a 
new inversion, and the graph I(π ′, rπ

′
, rι) has either 

C(I(π ′, rπ
′
, rι)) = C(I(π , rπ , rι))− 2 (as shown in Fig. 4a) 

or C(I(π ′, rπ
′
, rι)) = C(I(π , rπ , rι))− 1 (as shown in 

Fig. 4b).
Consider now that this operation is applied to inter-

genic regions of a same component in I(π , rπ , rι) , and 
exchanges elements πi and πi+1 , with 1 ≤ i < n− 1 . 
If the intergenic graph I(π ′, rπ

′
, rι) = (V ′,E′) has 

(rπ
′

i , rπ
′

i+2) ∈ E′ , then C(I(π ′, rπ
′
, rι)) = C(I(π , rπ , rι)) . 

Otherwise, we have three cases to consider:

1. C(I(π ′, rπ
′
, rι)) = C(I(π , rπ , rι)) , if �i(r

π ′
, rι) �= 0 

and �i+1(r
π ′
, rι) �= 0 (as shown in Fig. 4c);

2. C(I(π ′, rπ
′
, rι)) = C(I(π , rπ , rι))+ 1 if either 

�i(r
π ′
, rι) = 0 or �i+1(r

π ′
, rι) = 0 (as shown in 

Fig. 4d);
3. C(I(π ′, rπ

′
, rι)) = C(I(π , rπ , rι))+ 2 otherwise (as 

shown in Fig. 4e). �

In the following sections, we will explore five differ-
ent problems concerning super short operations but also 
considering intergenic regions, namely Sorting by Super 
Short Reversals (SbSSR), Sorting by Super Short Trans-
positions (SbSST), Sorting by Super Short Reversals and 
Super Short Transpositions (SbSSO), Sorting by Signed 
Super Short Reversals (SbSigSSR), and Sorting by Signed 
Super Short Reversals and Super Short Transpositions 
(SbSigSSO). Table  1 summarizes our results concerning 
general permutations (GP), permutations with nℓ inver-
sions for some ℓ ≥ 1 ( ℓIP), permutations with at least n 
inversions (1IP), and permutations with at least 2n inver-
sions (2IP).

Sorting by Super Short Reversals
In this section, we analyze the version of the problem 
when only super short reversals (i.e., 1-reversals and 
2-reversals) are allowed to transform (π , rπ ) into (ι, rι) . 
First, we state that if a non-trivial component c of an 
intergenic graph I(π , rπ , rι) has no edge (i.e., there is no 
inversion inside c), then it is always possible to split c into 
two components with a 1-reversal.

Lemma 3 If a component c of an intergenic graph 
I(π , rπ , rι) with cr ≥ 2 contains no edge, then there is 
always a pair of consecutive intergenic regions to which we 
can apply a 1-reversal that splits c into two components c′ 
and c′′ such that c′r + c′′r = cr.

a

b

c
Fig. 3 Example of intergenic graphs for all possible values of C(I(π ′ , rπ

′
, rι)) with respect to C(I(π , rπ , rι)) where (π ′ , rπ

′
) is the resulting 

instance after applying a 1-reversal to (π , rπ ) . When the 1-reversal is applied over two components at the same time and rπ
′

i
�= r

π
i

 , 
C(I(π ′ , rπ

′
, rι)) = C(I(π , rπ , rι))− 1 , as shown in a. Otherwise, we have that C(I(π ′ , rπ

′
, rι)) = C(I(π , rπ , rι))+ k , k ∈ {0, 1} , as shown in b and c 
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Proof Let pi be the index in rπ of the i-th intergenic 
region inside component c. The last intergenic region 
of c is at position pcr . By definition of a component, and 
since c contains no edge, for any p1 ≤ j < pcr we have 
that �j(r

π , rι)  = 0 . Note that since cr > 1 we have that 
�p1(r

π , rι) = (ℓ(rπp1)− ℓ(rιp1)) �= 0.
If �p1(r

π , rι) > 0 , let pi = p1 and let k be the index of 
element from π located right after rπp1 . Apply the reversal 
ρ(k , k , ℓ(rιp1), 0).

Otherwise, we have that �p1(r
π , rι) < 0 , and we need to 

find two intergenic regions rπpi and rπpi+1
 for 1 ≤ i < cr such 

that �pi(r
π , rι) < 0 and �pi+1(r

π , rι) ≥ 0 . Since, by defi-
nition of a component, �pcr (r

π , rι) = 0 , such pair always 

exists. Let k be the index of element from π located right 
after rpi . Apply the reversal ρ(k , k , ℓ(rπpi),−�pi(r

π , rι)).
In both cases, the resulting permutation π ′ has 

�pi(r
π ′
, rι) = 0 , �pi+1(r

π ′
, rι) = �pi+1(r

π , rι)+�pi(r
π , rι) , 

and for any i + 2 ≤ j ≤ cr we have that �pj (r
π ′
, rι) =

�pj (r
π , rι) ; thus, as before, all intergenic regions from rπ ′

pi+1
 

to rπ ′

pcr
 must belong to the same component.

This 1-reversal splits c into two components: c′ with all 
intergenic regions in positions p1 to pi , and c′′ with all 
intergenic regions in positions pi+1 to pcr .  �

a

b

c

d

e
Fig. 4 Example of intergenic graphs for all possible values of C(I(π ′ , rπ

′
, rι)) with respect to C(I(π , rπ , rι)) where (π ′ , rπ

′
) is the resulting instance 

after applying a 2-reversal or a 2-transposition to (π , rπ ) . When the 2-reversal or 2-transposition is applied over two components at the same time 
C(I(π ′ , rπ

′
, rι)) < C(I(π , rπ , rι)) , as shown in a and b. Otherwise, we have that C(I(π , rπ , rι)) ≤ C(I(π ′ , rπ

′
, rι)) ≤ C(I(π , rπ , rι))+ 2 , as shown in c–e 
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Let �odd(r
π , rι) =

∑n+1
i=1, i (mod 2)=1(ℓ(r

π
i )− ℓ(rιi )) 

denote the cumulative sum of imbalances of intergenic 
regions from π and ι in odd positions only. Using Lem-
mas 1, 2 and 3, we show in the following two lemmas the 
minimum and maximum number of super short reversals 
needed to transform π into ι and rπ into rι.

Lemma 4 Let (π , rπ ) be an instance, (ι, rι) be the target 
instance, m the number of intergenic regions in rπ and rι , 
and let ϕr = 0 if �odd(r

π , rι) = 0 and ϕr = 1 otherwise. It 
follows that d(π) ≥ max{m−C(I(π ,rπ ,rι))

2 , inv(π)+ ϕr}.

Proof In order to sort π , we need to remove all inver-
sions, and since a 2-reversal can remove only one inver-
sion, we have that d(π) ≥ inv(π) . Besides, since 2-rever-
sals exchange material between intergenic regions of 
same parity only, then d(π) ≥ inv(π)+ ϕr , with ϕr = 1 
if �odd(r

π , rι)  = 0 (in this case we will need at least one 
1-reversal to exchange material between an intergenic 
region located at an odd position and an intergenic 
region located at an even position), and ϕr = 0 otherwise.

On the other hand, by Lemmas 1 and 2, we can increase 
the number of components by at most two with a super 
short reversal, so to reach m trivial components we need 
at least m−C(I(π ,rπ ,rι))

2  super short reversals.  �

Lemma 5 Let (π , rπ ) be an instance, (ι, rι) 
be the target instance, and let m be the num-
ber of intergenic regions in rπ and rι . We have that 
d(π) ≤ inv(π)+m− C(I(π , rπ , rι)).

Proof While π  = ι , π has at least one pair of con-
secutive elements (πi,πi+1) that is an inversion. Sup-
pose that we first remove all inversions from π using 
inv(π) 2-reversals of type ρ(i, i + 1, ℓ(rπi ), 0) i.e., without 
modifying its intergenic regions lengths. Let π ′ be the 
resulting permutation, that has rπ ′

= rπ . The number 
of components in I(π ′, rπ

′
, rι) cannot be smaller than 

C(I(π , rπ , rι)) , since any 2-reversal removing an inver-
sion is applied inside a same component. By Lemma  3, 
we can go from C(I(π ′, rπ

′
, rι)) to m components using 

m− C(I(π ′, rπ
′
, rι)) 1-reversals, which results in no more 

than m−C(I(π , rπ , rι)) 1-reversals.  �

Finally, using Lemmas 4 and 5, we prove that it is pos-
sible to obtain 3-approximation for this problem.

Theorem  1 Let (π , rπ ) be an instance, (ι, rι) be the 
target instance, and let m = n+ 1 be the number of 
intergenic regions in rπ and rι . The value of d(π) is 
3-approximable.

Proof Let k = C(I(π , rπ , rι)) , and let ϕr = 0 , if 
�odd(r

π , rι) = 0 , or ϕr = 1 otherwise. If m−k
2 ≥ inv(π)+ ϕr 

then, by Lemma  4, d(π) ≥ m−k
2  , and, by Lemma  5, 

d(π) ≤ m− k + inv(π) ≤ m− k + m−k
2 ≤ 3m−k

2  . Oth-
erwise, m−k

2 < inv(π)+ ϕr , so m− k < 2inv(π)+ 2ϕr . 
By Lemma  4, d(π) ≥ inv(π)+ ϕr , and, by Lemma  5, 
d(π) ≤ m− k + inv(π) ≤ 2inv(π)+ 2ϕr + inv(π) ≤

3inv(π)+ 2ϕr .  �

Algorithm  1 describes a 3-approximation algo-
rithm that transforms an instance (π , rπ ) into (ι, rι) 
using super short reversals. Computing inv(π) takes 
O(n log n) and it takes up to O(n2) to build I(π , rπ , rι) . 
Computing �i(r

π , rι) and C(I(π , rπ , rι)) take O(n), and 
it takes constant time to update them. The while loop 
in line 5 (resp. line 14) iterates up to O(n2) times, so the 
overall complexity of Algorithm 1 is O(n2).

Let δn denote the set of all permutations π with n ele-
ments, and let δn,k denote the number of all permutations 
π ∈ δn such that inv(π) ≤ k . For n = 12 there are 762,007 
permutations in δ12,12 , which corresponds to 0.16% of the 
12! permutations from δ12 , and for n > 12 the number 
of permutations in δn,n never corresponds to more than 
0.05% of the n! permutations from δn [17]. Besides, for 
n > 18 the number of permutations in δn,2n never exceeds 
0.03% of the n! permutations from δn [17].
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Algorithm  1 has a better approximation factor when 
the number of inversions is at least n, as explained in the 
following theorem.

Theorem 2 Let (π , rπ ) be an instance, (ι, rι) be the target 
instance, and let m = n+ 1 be the number of intergenic 
regions in rπ and rι . If inv(π) ≥ n , Algorithm  1 has an 
approximation factor of (1+ 1

ℓ
) , where ℓ = inv(π)

n ≥ 1.

Proof Let k = C(I(π , rπ , rι)) , and let ϕr = 0 if 
�odd(r

π , rι) = 0 and ϕr = 1 otherwise. Suppose now that 
inv(π) = nℓ for some ℓ ≥ 1 . Since m−k

2 < n , by Lemma 4 
we have that d(π) ≥ nℓ . Algorithm 1 applies nℓ 2-rever-
sals and up to m− k < n 1-reversals, which results in no 
more than nℓ+ n− 1 < n(ℓ+ 1) super short reversals. �

Corollary 2.1 Let (π , rπ ) be an instance, (ι, rι) be 
the target instance, and let m = n+ 1 be the number 
of intergenic regions in rπ and rι . If inv(π) ≥ n (resp. 
inv(π) ≥ 2n ) Algorithm 1 has an approximation factor of 
at most 2 (resp. 1.5).

Sorting by Super Short Transpositions
In this section, we analyze the version of the problem 
when only Super Short Transpositions are allowed. First, 
we investigate how 2-transpositions split non-trivial 
components from an intergenic graph I(π , rπ , rι).

Lemma 6 If a component c of an intergenic graph 
I(π , rπ , rι) with cr > 2 (resp. cr = 2 ) has no edge, then we 
can apply two 2-transpositions that split c into three com-
ponents c′ , c′′ , and c′′′ such that c′r + c′′r + c′′′r = cr (resp. 
two components c′ and c′′ such that c′r = c′′r = 1).

Proof Note that any 2-transposition will increase or 
decrease the number of inversions by one. By Lemma 2, 
a 2-transposition that removes an inversion can increase 
the number of components by at most two units, and a 
2-transposition creating an inversion cannot increase the 
number of components. Since there is no inversion in c, 
for each 2-transposition removing an inversion from c we 
have a 2-transposition creating that inversion before.

Now we explain how to increase the number of com-
ponents by two units when cr ≥ 3 . Let pi be the index 
in rπ of the i-th intergenic region inside component c. 
If there is no intergenic region rj inside c in which the 
cumulative sum is negative, apply τ (p1, p2, p3, x, y, 0) 
in such a way that x = min{ℓ(rιp1)+ ℓ(rιp2), ℓ(r

π
p1
)} 

and y = ℓ(rπp2)+ ℓ(rιp1)+ ℓ(rιp2)− x . Now apply 
τ (p1, p2, p3, ℓ(r

ι
p1
), 0, 0) . These two 2-transpositions split c 

into three components: c′ with rp1 , c′′ with rp2 and c′′′ with 

the remaining intergenic regions from c. Note that c′ and 
c′′ are odd, and c′′′ has the same parity as c.

Otherwise, we can find a pair of consecutive intergenic 
regions rpi and rpi+1 inside c such that �pi(r

π , rι) < 0 
and �pi+1(r

π , rι) ≥ 0 , and since �pcr (r
π , rι) = 0 , 

such pair always exists. If cr is even or if cr is odd 
but pi is even, apply τ (pi−1, pi, pi+1, x, y, 0) such that 
x = ℓ(rπpi−1

) and y = ℓ(rπpi)+�pi−1(r
π , rι) , followed 

by τ (pi−1, pi, pi+1, x
′, 0, y′) such that x′ = ℓ(rιpi−1

) and 
y′ = ℓ(rιpi).

If cr and pi are odd, apply τ (pi, pi+1, pi+2, x, y, 0) such 
that x = ℓ(rπpi) and y = ℓ(rπpi+1

)+�pi(r
π , rι) , followed 

by τ (pi−1, pi, pi+1, x
′, 0, y′) such that x′ = ℓ(rιpi) and 

y′ = ℓ(rιpi+1
) . These two 2-transpositions split c into three 

components so if cr is even then we will end up with two 
odd components and one even component, and if c is 
odd we will end up with three odd components due to 
the choice of the position defined above.

If cr = 2 and p1 > 1 we apply τ (p1 − 1, p1, p2, x, y, 0) 
such that x = ℓ(rπp1−1) and y = ℓ(rπp1) , followed by 
τ (p1 − 1, p1, p2, x

′, 0, y′) such that x′ = x and y′ = ℓ(rιp1) . 
If cr = 2 and p1 = 1 we apply τ (p1, p2, p2 + 1, ℓ(rπp1), 0, 0) 
followed by τ (p1, p2, p2 + 1, ℓ(rιp1), 0, 0) . These two trans-
positions transform c into two trivial components.  �

The following lemma gives the number of transposi-
tions needed to transform a permutation π and its inter-
genic regions rπ into ι with its intergenic regions rι when 
inv(π) = 0.

Lemma 7 Let (π , rπ ) be an instance, (ι, rι) be the 
target instance, and let m = n+ 1 be the number of 
intergenic regions in rπ and rι . If inv(π) = 0 , then 
d(π) = m− C(I(π , rπ , rι))+ Ceven(I(π , r

π , rι)).

Proof If a 2-transposition applied on a component c of 
I(π , rπ , rι) increases the number of components by two 
units, we can assume by the proof of Lemma  6 that it 
transforms c into three components c′ , c′′ , and c′′′ such 
that two of them are odd components and the other has 
the same parity as cr.

If c is odd, and if we can always increase the number 
of components by two units, we end up with a compo-
nent with only one intergenic region, but if c is even, 
at some point we will have to increase the number of 
components by one unit, creating two odd compo-
nents. This means that for each even component we 
need to apply two 2-transpositions that increase the 
number of components by one unit only. Since we 
can always apply pairs of transpositions that do not 
increase the number of even components, it follows that 
d(π) = m− C(I(π , rπ , rι))+ Ceven(I(π , r

π , rι)) .  �
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Lemmas 8 and 9 respectively show the lower and upper 
bounds for finding d(π) using super short transpositions.

Lemma 8 Let (π , rπ ) be an instance, (ι, rι) be the 
target instance, and let m = n+ 1 be the num-
ber of intergenic regions in rπ and rι . It follows that 
d(π) ≥ max{m−C(I(π ,rπ ,rι))+Ceven(I(π ,r

π ,rι))
2 , inv(π)}.

Proof In order to sort π we need to remove all inver-
sions, and since a 2-transposition can remove only 
one inversion, we necessarily have that d(π) ≥ inv(π) . 
Besides, by Lemma  2, we can increase the number of 
components by at most two with a super short trans-
position. Let k = C(I(π , rπ , rι))− Ceven(I(π , r

π , rι)) . 
To reach m trivial components, and considering also 
Lemma  7, we need at least m+k

2  super short transposi-
tions. Thus, d(π) ≥ max{m+k

2 , inv(π)} .  �

Lemma 9 Let (π , rπ ) be an instance, (ι, rι) be the 
target instance, and let m = n+ 1 be the num-
ber of intergenic regions in rπ and rι . We have that 
d(π) ≤ inv(π)+m− C(I(π , rπ , rι))+ Ceven(I(π , r

π , rι)).

Proof Suppose that we first remove all inver-
sions of π using inv(π) 2-transpositions of type 
τ (i, i + 1, i + 2, ℓ(rπi ), 0, 0) , and let π ′ be the resulting 
permutation. The value of C(I(π ′, rπ

′
, rι)) cannot be 

smaller than C(I(π , rπ , rι)) since any 2-transposition 
removing an inversion is applied inside a same compo-
nent. Let k = C(I(π , rπ , rι))− Ceven(I(π , r

π , rι)) and let 
k ′ = C(I(π ′, rπ

′
, rι))− Ceven(I(π

′, rπ
′
, rι))

Let us analyze the parity of any component that a 
2-transposition breaks: (i) if it transforms an odd com-
ponent into two, then one component must be odd; (ii) 
if it transforms an even component into two, then both 
components are odd or even; (iii) if it transforms an even 
component into three, then two components must be 
odd; (iv) if it transforms an odd component into three, 
then either two components are even or the three com-
ponents are odd. This means that k ′ ≥ k.

By Lemma 7, we can go from C(I(π ′, rπ
′
, rι)) to m com-

ponents using m− k ′ 2-transpositions, which results, by 
the analysis above, in no more than m− k 2-transposi-
tions.  �

Finally, using Lemmas 8 and 9, we prove that it is possi-
ble to obtain a 3-approximable solution for this problem.

Theorem 3 Let (π , rπ ) be an instance, (ι, rι) be the target 
instance, and let m = n+ 1 be the number of intergenic 
regions in rπ and rι . The value of d(π) is 3-approximable.

Proof Let k = C(I(π , rπ , rι))− Ceven(I(π , r
π , rι)) . If 

m−k
2 ≥ inv(π) then, by Lemma  8, d(π) ≥ m−k

2  , and, by 
Lemma  5, d(π) ≤ m− k + inv(π) ≤ m− k + m−k

2 ≤ 3m−k
2

 . 
Otherwise, m−k

2 < inv(π) , so m− k < 2 inv(π) . By  
Lemma  8, d(π) ≥ inv(π) , and, by Lemma  9, 
d(π) ≤ m− k + inv(π) ≤ 2 inv(π)+ inv(π) ≤ 3 inv(π) .
  �

Algorithm  2 describes a 3-approximation algorithm 
that transforms an instance (π , rπ ) into (ι, rι) using Super 
Short Transpositions. Similarly to Algorithm  1, Algo-
rithm 2 has a time complexity of O(n2).

Algorithm  2 has a better approximation factor when 
the number of inversions is strictly greater than n, as 
stated in the following theorem.

Theorem 4 Let (π , rπ ) be an instance, (ι, rι) be the target 
instance, and let m = n+ 1 be the number of intergenic 
regions in rπ and rι . If inv(π) > n , Algorithm  2 has an 
approximation factor of (1+ 1

ℓ
) , where ℓ = inv(π)

n ≥ 1.

Proof Similar to proof of Theorem  2, given that 
m− C(I(π , rπ , rι))+ Ceven(I(π , r

π , rι)) ≤ n+ 1 .  �
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Corollary 4.1 Let (π , rπ ) be an instance, (ι, rι) be the tar-
get instance, and let m = n+ 1 be the number of intergenic 
regions in rπ and rι . If inv(π) ≥ n (resp. inv(π) ≥ 2n ) Algo-
rithm 2 has an approximation factor of at most 2 (resp. 1.5).

Sorting by Super Short Reversals and Super Short 
Transpositions
In this section we analyze the version of the problem 
when both super short reversals and Super Short Trans-
positions are allowed to transform any (π , rπ ) into (ι, rι).

Lemma 10 Let (π , rπ ) be an instance, (ι, rι) be 
the target instance, and let m = n+ 1 be the num-
ber of intergenic regions in rπ and rι . It follows that 
d(π) ≥ max{m−C(I(π ,rπ ,rι))

2 , inv(π)}.

Proof Directly from Lemmas 2, 4, and 8.  �

Lemma 11 Let (π , rπ ) be an instance, (ι, rι) be 
the target instance, and let m = n+ 1 be the num-
ber of intergenic regions in rπ and rι . We have that 
d(π) ≤ inv(π)+m− C(I(π , rπ , rι)).

Proof Suppose that first we remove all inversions of 
π using inv(π) 2-reversals of type ρ(i, i + 1, ℓ(rπi ), 0) , 
and let π ′ (resp. rπ ′

) ) be the resulting permutation 
(resp. intergenic regions). Let k = C(I(π , rπ , rι)) and let 
k ′ = C(I(π ′, rπ

′
, rι)) . We have that k ′ ≥ k , since 2-rever-

sals removing inversions are always applied inside a same 
component.

Analogous to Lemma 9, and assuming that k ′ = k + ℓ for  
some ℓ ≥ 0 , then Ceven(I(π

′, rπ
′
, rι)) ≤ Ceven(I(π , r

π , rι))+ ℓ . 
We use the procedure described in Lemma  9 on com-
ponents c with cr ≥ 3 , applying two 2-transpositions 
that increase the number of components by two units. 
For components c with cr = 2 , we apply a 1-reversal as 
described in Lemma  1, breaking them into two odd 
components.

The above procedure applies inv(π) 2-reversals, 
n− k ′ − Ceven(I(π

′, rπ
′
, rι)) 2-transpositions, and 

Ceven(I(π
′, rπ

′
, rι)) 1-reversals, which results in no more 

than inv(π)+m− C(I(π), rι)) .  �

Now we prove that it is possible to obtain a 3-approx-
imable solution for this problem.

Theorem 5 Let (π , rπ ) be an instance, (ι, rι) be the target 
instance, and let m = n+ 1 be the number of intergenic 
regions in rπ and rι . The value of d(π) is 3-approximable.

Proof Similar to proof of Theorem  1, using Lem-
mas 10 and 11.  �

Algorithm  3 describes a 3-approximation algorithm 
that transforms an instance (π , rπ , rι) into (ι, rι, rι) using 
both super short reversals and super short transpositions. 
As algorithms 1 and  2, it has a time complexity of O(n2).

As in the previous algorithms, Algorithm 3 has a better 
approximation factor when the number of inversions is at 
least n, as explained in the following theorem.

Theorem 6 Let (π , rπ ) be an instance, (ι, rι) be the target 
instance, and let m = n+ 1 be the number of intergenic 
regions in rπ and rι . If inv(π) ≥ n Algorithm  3 has an 
approximation factor of (1+ 1

ℓ
) , where ℓ = inv(π)

n ≥ 1.

Proof Analogous to proof of Theorem 2.  �

Corollary 6.1 Let (π , rπ ) be an instance, (ι, rι) be 
the target instance, and let m = n+ 1 be the number 
of intergenic regions in rπ and rι . If inv(π) ≥ n (resp. 
inv(π) ≥ 2n ) Algorithm 3 has an approximation factor of 
at most 2 (resp. 1.5).
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Sorting by Signed Super Short Reversals
In this section, we analyze the version of the problem 
when super short reversals are allowed to transform 
(π , rπ ) into (ι, rι) , where π and ι are signed permutations.

Given a signed permutation π , let Seven−π  be the set of ele-
ments from π such that ||πi| − i| is even and πi < 0 , and let 
Sodd

+

π  be the set of elements from π such that ||πi| − i| is 
odd and πi > 0 . Sets Seven−π  and Sodd+π  capture the negative 
and positive elements from π that end with negative signs 
after any sequence of 2-reversals that puts all elements in 
their correct positions (i.e., remove all inversions). Let ϕneg 
be the number of elements in Seven−π ∪ Sodd

+

π .
The following lemma, proved by Galvão et al. [8], gives 

the exact number of super short reversals needed to 
transform π into ι.

Lemma 12 Given a signed permutation π , 
d(π) = inv(π)+ ϕneg.

This lemma helps us to state the following lower bound 
for our problem.

Lemma 13 Let (π , rπ ) be an instance, (ι, rι) be 
the target instance, and let m = n+ 1 be the num-
ber of intergenic regions in rπ and rι . We have that 
d(π) ≥ inv(π)+max{ϕr ,ϕneg }.

Proof Directly from Lemmas 4 and 12.  �

The following lemma states an upper bound for this 
problem.

Lemma 14 Let (π , rπ ) be an instance, (ι, rι) be 
the target instance, and let m = n+ 1 be the num-
ber of intergenic regions in rπ and rι . We have that 
d(π) ≤ inv(π)+max{ϕr ,ϕneg } + 2(m− C(I(π , rπ , rι)).

Proof Let k = C(I(π , rπ , rι)) and let ℓ = max{ϕr , ϕneg } . 
Suppose that we first remove all inversions of π using inv(π) 
2-reversals of type ρ(i, i + 1, ℓ(rπi ), 0) , and let π ′ (resp. rπ ′ ) 
be the resulting permutation (resp. intergenic regions).

Let k ′ = C(I(π ′, rπ
′
, rι) . We have that k ′ ≥ k . We 

apply m− k ′ ≤ m− k 1-reversals that split every non-
trivial component from I(π ′, rπ

′
, rι) into two compo-

nents according to Lemma 3, and let π ′′ (resp. rπ ′′ ) be the 
resulting permutation (resp. intergenic regions).

At this point, we have a permutation π ′′ 
such that rπ

′′
= rι , and π ′′ has no more than 

ℓ+ (m− k ′) ≤ ℓ+ (m− k) negative elements. We just 
need to apply up to ℓ+ (m− k ′) 1-reversals of type 
ρ(i, i, ℓ(rπ

′′

i ), 0) (i.e., without modifying the length of its 
intergenic regions) to each negative element from π ′ , and 
the lemma follows.  �

Using Lemmas  13  and  14, we prove that the value of 
d(π) is 5-approximable.

Theorem 7 Let (π , rπ ) be an instance, (ι, rι) be the target 
instance, and let m = n+ 1 be the number of intergenic 
regions in rπ and rι . The value of d(π) is 5-approximable.

Proof Let k = C(I(π , rπ , rι)) , and let ℓ = max{ϕr , ϕneg } . 
If m−k

2 ≥ inv(π)+ ℓ then, by Lemma  12, d(π) ≥ m−k
2  , 

and, by Lemma  14, d(π) ≤ 2(m− k)+ inv(π)+ ℓ ≤

2(m− k)+ m−k
2

≤ 5
m−k
2

.
Otherwise, m−k

2 < inv(π)+ ℓ , so 2(m− k) < 4(inv(π)+ ℓ) . 
By Lemma  12, d(π) ≥ inv(π)+ ℓ , and, by Lemma  14, 
d(π) ≤ 2(m− k)+ inv(π)+ ℓ ≤ 4(inv(π)+ ℓ)+ inv(π)

+ℓ ≤ 5(inv(π)+ ℓ) . �

Algorithm  4 describes a 5-approximation algorithm 
that transforms a signed instance (π , rπ , rι) into (ι, rι, rι) 
using Signed Super Short Reversals. As in previous algo-
rithms, the time complexity of Algorithm 4 is O(n2).
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As in the previous algorithms, Algorithm 4 has a bet-
ter approximation factor when the number of inver-
sions is at least n, as explained in the following theorem.

Theorem 8 Let (π , rπ ) be an instance, (ι, rι) be the target 
instance, and let m = n+ 1 be the number of intergenic 
regions in rπ and rι . If inv(π) ≥ n , Algorithm  3 has an 
approximation factor of (1+ 2

ℓ
) , where ℓ = inv(π)

n ≥ 1.

Proof Let k = C(I(π , rπ , rι)) . Suppose now that 
inv(π) = nℓ for some ℓ ≥ 1 . Since m−k

2 < n , by Lemma 4 
we have that d(π) ≥ nℓ . Algorithm 4 applies nℓ 2-rever-
sals, up to m− k < n 1-reversals, and up to n 1-reversals 
to flip the sign of each negative element, which results 
in no more than nℓ+ n− 1+ n < n(ℓ+ 2) super short 
reversals.  �

Corollary 8.1 Let (π , rπ ) be an instance, (ι, rι) be 
the target instance, and let m = n+ 1 be the number 
of intergenic regions in rπ and rι . If inv(π) ≥ n (resp. 
inv(π) ≥ 2n ) Algorithm 4 has an approximation factor of 
at most 3 (resp. 2).

Sorting by Signed Super Short Reversals and Super 
Short Transpositions
In this section, we analyze the version of the problem 
when both super short reversals and Super Short Trans-
positions are allowed to sort signed permutations.

Let H(π) be the inversion graph [18] of the signed 
permutation π , such that V (H(π)) = {π1,π2, ...,πn} and 
E(H(π)) is formed by pairs of elements from π that are 
inversions. In H(π) , a component is defined as a maximal 
subgraph in which any two vertices are connected to each 
other by paths. A component from H(π) is negative if it 
contains an odd number of negative elements (vertices), 
and it is positive otherwise.

Let ϕodd be the number of negative components of 
H(π) . The following lemma, proved by Galvão et al. [8], 
gives the exact number of super short reversals and Super 
Short Transpositions needed to transform π into ι , which 
is a lower bound for our problem.

Lemma 15 Given a signed permutation π , 
inv(π)+ ϕodd super short operations are required to 
transform π into ι.

Now we state in the following lemma an upper bound 
for this problem.

Lemma 16 Let (π , rπ ) be an instance, (ι, rι) be 
the target instance, and let m = n+ 1 be the num-
ber of intergenic regions in rπ and rι . We have that 
d(π) ≤ inv(π)+ ϕodd + 2(m− C(I(π , rπ , rι))).

Proof Suppose that we first remove all inversions of π 
using the polynomial algorithm presented in [8], that 
uses inv(π)+ ϕodd super short operations such that all 
2-reversals are of type ρ(i, i + 1, ℓ(rπi ), 0) , all 2-transpo-
sitions are of type τ (i, i + 1, i + 2, ℓ(rπi ), 0, 0),  and all the 
ϕodd 1-reversals are ignored (i.e., not applied),  and let π ′ 
be the resulting permutation.

The number of components I(π ′, rπ
′
, rι) in π ′ cannot 

be smaller than C(I(π , rπ , rι)) , since the 2-reversals and 
2-transpositions are applied inside a same component 
only. Let k ′ = C(I(π ′, rπ

′
, rι)) ≥ C(I(π , rπ , rι)).

By Lemma  3, we can go from k ′ to m components 
using m− k ′ 1-reversals, which results in no more than 
m−C(I(π , rπ , rι)) 1-reversals. After that, we will have 
a permutation π ′′ with  up to min{n,m− k ′ + ϕodd} 
negative elements, so we can apply  up to 
min{n,m− k ′ + ϕodd} 1-reversals of type ρ(i, i, ℓ(rιi ), 0) to 
each negative element of π ′′ .  �

Using Lemmas 15 and 16, we prove that it is possible 
to obtain a 5-approximable solution for this problem.

Theorem 9 Let (π , rπ ) be an instance, (ι, rι) be the target 
instance, and let m = n+ 1 be the number of intergenic 
regions in rπ and rι . The value of d(π) is 5-approximable.

Proof Let k = C(I(π , rπ , rι)) , and let ℓ = ϕodd . If 
m−k
2 ≥ inv(π)+ ℓ then, by Lemma  15, d(π) ≥ m−k

2  , 
and, by Lemma  16, d(π) ≤ 2(m− k)+ inv(π)+ ℓ ≤

2(m− k)+ m−k
2

≤ 5
m−k
2

.
Otherwise, m−k

2 < inv(π)+ ℓ , so 2(m− k) <

4(inv(π)+ ℓ) . By Lemma 15, d(π) ≥ inv(π)+ ℓ , and, by 
Lemma 16, d(π) ≤ 2(m− k)+ inv(π)+ ℓ ≤ 4(inv(π)+ ℓ)+ inv(π)

+ℓ ≤ 5(inv(π)+ ℓ) .  �

Algorithm  5 describes a 5-approximation algorithm 
that transforms a signed instance (π , rπ , rι) into (ι, rι, rι) 
using both signed super short reversals and Super 
Short Transpositions. Regarding the complexity, by 
previous algorithms we know that lines 1-3 and 6-17 
take up to O(n2) , and according to [8] the while loop in 
line 4 takes O(n3) , which is then the time complexity of 
Algorithm 5.
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As for previous algorithms, Algorithm 5 also has a bet-
ter approximation factor when the number of inversions 
is at least n. This is the purpose of the following theorem.

Theorem 10 Let (π , rπ ) be an instance, (ι, rι) be the tar-
get instance, and let m = n+ 1 be the number of inter-
genic regions in rπ and rι . If inv(π) ≥ n , Algorithm 5 has 
an approximation factor of (1+ 2

ℓ
) , where ℓ = inv(π)

n ≥ 1.

Proof Let k = C(I(π , rπ , rι)) . Suppose now that 
inv(π) = nℓ . Since m−k

2 < n , by Lemma  4 we have that 
d(π) ≥ ℓ . Algorithm  4 applies nℓ operations between 
2-reversals and 2-transpositions, up to m− k < n 
1-reversals, and up to n 1-reversals to flip the sign of 
each negative element, which results in no more than 
nℓ+ n− 1+ n < n(ℓ+ 2) super short operations.  �

Corollary 10.1 Let (π , rπ ) be an instance, (ι, rι) be 
the target instance, and let m = n+ 1 be the number 
of intergenic regions in rπ and rι . If inv(π) ≥ n (resp. 
inv(π) ≥ 2n ) Algorithm 5 has an approximation factor of 
at most 3 (resp. 2).

Experimental tests
We implemented the five proposed algorithms and 
tested them unsing simulated permutations, in order to 
observe their performances. We generated two differ-
ent permutation datasets, which we call fully-random 
instances (FRI) and almost random instances (ARI). 
Each dataset has 1,000,000 instances (π , rπ ) , π is a per-
mutation with 100 elements and rπ is a sequence of 101 
intergenic regions sizes.

The dataset FRI was generated in the following 
way: (i) let (ι, rι) be an initial instance, being ι with 
100 elements, and each rιi received a random inte-
ger k ∈ [0..100] . (ii) Generate (π , rπ ) by applying w 
consecutive super short operations to (ι, rι) , with 
randomly generated indices for both positions and 
intergenic sizes, always respecting the current val-
ues. We created 10,000 instances for each value of 
w ∈ {10, 20, 30, . . . , 990, 1000}.

For Sorting by (Signed) Super Short Reversals we 
applied 0.8w 2-reversals and 0.2w 1-reversals, and at each 
step one of them was chosen at random while both were 
available. For Sorting by Super Short Transpositions we 
applied w 2-transpositions. For Sorting by (Signed) Super 
Short Operations we applied 0.5w 2-transpositions, 0.4w 
2-reversals, and 0.1w 1-reversals, and at each step one of 
them was chosen at random while more than one were 
available.

The dataset ARI was generated in a similar way as FRI, 
but when the algorithm had to apply either a 2-reversal 
or a 2-transposition we randomly chose a pair among 
all pairs of adjacent elements that were not an inversion. 
Since w < max{inv(π),π ∈ δn} =

n(n−1)
2  , at least one pair 

always exists.
Given any instance (π , rπ ) from ARI created using 

w SSOs, we know exactly how many inversions (π , rπ ) 
has—it is the number of 2-reversals and 2-transpositions 
applied. The number of inversions on instances from FRI, 
however, is not known, but we can compute the expected 
number of inversions in a permutation with n elements 
after k random swaps (i.e., 2-reversals and 2-transposi-
tions) applied to the identity permutation [19]:

where ca = cosαa , sa = sin αa , xab = 1− 4
n (1− cacb) , 

and αa =
(2a+1)π
2n+2 .

Figures  5  and  6 show the experimental results for 
instances of type FRI and ARI, respectively. We show the 
average distance returned for each algorithm described 
in this paper, plus the average and maximum approxima-
tion factors calculated based on the lower bound of each 
problem for each instance.

E[in,k ] =
n(n+ 1)

4
−

1

8(n+ 1)2

n∑

i,j=0

(cj + ci)
2

s2k s
2
i

xkji,
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On Figs.  5  and  6, Algorithm  1 is denoted by SbSSR, 
Algorithm  4 is denoted by SbSigSSR, Algorithm  2 is 
denoted by SbSST, Algorithm 3 is denoted by SbSSO, and 
Algorithm 5 is denoted by SbSigSSO. In Fig. 5, the curve 
Inv.  1 represents the expected number of inversions for 
SbSSR and SbSigSSR, the curve Inv.  2 represents the 
expected number of inversions for SbSST, and the curve 
Inv. 3 denotes the expected number of inversions for 
SbSSO and SbSigSSO. These three curves were generated 
using the formula E[in,k ] described above. In Fig.  6 the 

curves Inv. 1, 2, and 3 follow the same idea as the curves 
in Fig.  5, but instead of expected number of inversions 
they represent the exact number of inversions.

As distance is directly related to the number of inver-
sions, in Fig. 5a we see that, although in practice we have 
applied up to 1000 operations, the distance values were 
never greater than 300 on average—the average returned 
distances for each algorithm follow the trend dotted line 
that represents the expected number of inversions of that 
instances. Algorithms for signed permutations returned 

a

b

c
Fig. 5 a average returned distance, b maximum returned approximation, and c average returned approximation for instances in FRI. In a dotted 
curves represent the expected number of inversions, dashed curves represent the algorithms for signed permutations, and line curves represent 
the algorithms for unsigned permutations. Colors relate problems having the expected number of inversions given by the dotted line of same color. 
This means that SbSSR and SbSigSSR are expected to have inversions as in Inv. 1, SbSST is expected to have inversions as in Inv. 2, and SbSSO and 
SbSigSSO are expected to have inversions as in Inv. 3. All the approximations in b and c were calculated based on the lower bound of each problem
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a

b

c
Fig. 6 a average returned distance, b maximum returned approximation, and c average returned approximation for instances in ARI. In a dotted 
curves represent the exact number of inversions, dashed curves represent the algorithms for signed permutations, and line curves represent the 
algorithms for unsigned permutations. Colors relate problems having the expected number of inversions given by the dotted line of same color. 
This means that SbSSR and SbSigSSR have inversions as in Inv. 1, SbSST has inversions as in Inv. 2, and SbSSO and SbSigSSO have inversions as in Inv. 
3. All the approximations in b and c were calculated based on the lower bound of each problem
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distances with a slightly higher value than the same algo-
rithms for unsigned permutations, which is expected 
given that in addition to inversions and intergenic sizes, 
they also need to take care of elements with negative 
signs.

Concerning the approximation factors in Fig.  5b, c, it 
can be noted that despite the theoretical approximation 
factors of 3 and 5, the average approximation factors of 
instances in FRI were between 1 and 2.2. Furthermore, 
in our tests, no instance for SbSSR and SbSSO, whose 
theoretical approximation factors are 3, had approxima-
tion factor above 2.5, and no instance for SbSigSSR and 
SbSigSSO, whose theoretical approximation factors are 5, 
obtained approximation above 3.3 and 3, respectively.

In Fig. 6a we have another scenario where the returned 
distance follows the number of applied SSOs, but this 
behavior is due to our choice of applying only opera-
tions that do not destroy previously created inversions. 
One interesting thing about this figure is that distances 
returned by the algorithm for SSOs were very close to the 
number of inversions, especially when w ≥ 400 , some-
thing that did not happened on FRI. In Fig. 6b, c, we see 
that this dataset returned maximum and average approx-
imations systematically better than for dataset FRI: no 
instance had an approximation factor greater than 2.5, 
and on average all algorithms have average approxima-
tion factors less than 1.7. For w ≥ 120 (resp. w ≥ 240 ), 
where we expect to have around n (resp. 2n) inversions, 
none of the instances had approximation factor above 
2 (resp. 1.5), as we expected given Lemmas  2, 4, 6, 8, 
and 10.

Conclusion
In this paper, we analyzed the minimum number of 
super short reversals and/or Super Short Transpositions 
needed to sort a signed or unsigned permutation π and, 
at the same time, transform its intergenic regions lengths 
rπ according to rι.

We defined some bounds and a graph structure that 
allowed us to build five algorithms (one for each consid-
ered problem) that guarantee approximation factors of 3 
for unsigned permutations (using either SSRs, SSTs, or 
both) and 5 for signed permutations (using either SSRs 
or SSOs). These algorithms have better approximation 
factors for instances for which the number of inver-
sions is at least n or 2n. In the former case, it is equal to 
2 for unsigned permutations (using either SSRs, SSTs, 
or both), and to 3 for signed permutations (using SSRs 
or SSOs); in the latter case it is equal to 1.5 for unsigned 
permutations, and to 2 for signed permutations. All of 
these algorithms were tested in simulated instances, 
showing that, on average, they behave better than their 
theoretical approximation factors predict.

Some questions remain open. For instance, what is the 
computational complexity of each of these five problems? 
Besides, how can we incorporate indels (insertions and 
deletions) of intergenic regions to these problems, to be 
able to compare two genomes that share the same set 
of genes but may differ on their total intergenic regions 
length?
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