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Abstract 

Background: Tumors exhibit extensive intra‑tumor heterogeneity, the presence of groups of cellular populations 
with distinct sets of somatic mutations. This heterogeneity is the result of an evolutionary process, described by a 
phylogenetic tree. In addition to enabling clinicians to devise patient‑specific treatment plans, phylogenetic trees of 
tumors enable researchers to decipher the mechanisms of tumorigenesis and metastasis. However, the problem of 
reconstructing a phylogenetic tree T given bulk sequencing data from a tumor is more complicated than the classic 
phylogeny inference problem. Rather than observing the leaves of T directly, we are given mutation frequencies that 
are the result of mixtures of the leaves of T. The majority of current tumor phylogeny inference methods employ the 
perfect phylogeny evolutionary model. The underlying Perfect Phylogeny Mixture (PPM) combinatorial problem typically 
has multiple solutions.

Results: We prove that determining the exact number of solutions to the PPM problem is #P‑complete and hard to 
approximate within a constant factor. Moreover, we show that sampling solutions uniformly at random is hard as well. 
On the positive side, we provide a polynomial‑time computable upper bound on the number of solutions and intro‑
duce a simple rejection‑sampling based scheme that works well for small instances. Using simulated and real data, 
we identify factors that contribute to and counteract non‑uniqueness of solutions. In addition, we study the sampling 
performance of current methods, identifying significant biases.

Conclusions: Awareness of non‑uniqueness of solutions to the PPM problem is key to drawing accurate conclusions 
in downstream analyses based on tumor phylogenies. This work provides the theoretical foundations for non‑unique‑
ness of solutions in tumor phylogeny inference from bulk DNA samples.
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Background
Cancer is characterized by somatic mutations that accu-
mulate in a population of cells, leading to the forma-
tion of genetically distinct clones within the same tumor 
[1]. This intra-tumor heterogeneity is the main cause of 
relapse and resistance to treatment [2]. The evolution-
ary process that led to the formation of a tumor can be 
described by a phylogenetic tree whose leaves correspond 

to tumor cells at the present time and whose edges are 
labeled by somatic mutations. To elucidate the mecha-
nisms behind tumorigenesis [2, 3] and identify treatment 
strategies [4, 5], we require algorithms that accurately 
infer a phylogenetic tree from DNA sequencing data of 
a tumor.

Most cancer sequencing studies, including those from 
The Cancer Genome Atlas [6] and the International Can-
cer Genome Consortium [7], use bulk DNA sequencing 
technology, where samples are a mixture of millions of 
cells. While in classic phylogenetics, one is asked to infer 
a phylogenetic tree given its leaves, with bulk sequencing 
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data we are asked to infer a phylogenetic tree given 
mixtures of its leaves in the form of mutation frequen-
cies (Fig. 1). More specifically, one first identifies a set of 
loci containing somatic mutations present in the tumor 
by sequencing and comparing the aligned reads of a 
matched normal sample and one or more tumor samples. 
Based on the number reads of each mutation locus in a 
sample, we obtain mutation frequencies indicating the 
fraction of cells in the tumor sample that contain each 
mutation. From these frequencies, the task is to infer 
the phylogenetic tree under an appropriate evolutionary 
model that generated the data.

The most commonly used evolutionary model in cancer 
phylogenetics is the two-state perfect phylogeny model, 
where mutations adhere to the infinite sites assumption 
[8–16]. That is, for each mutation locus the actual muta-
tion occurred exactly once in the evolutionary history 
of the tumor and was subsequently never lost. In prac-
tice, we construct a tumor phylogeny for mutation clus-
ters rather than individual mutations. While the infinite 
sites assumption might be violated for individual muta-
tions, a violation of this assumption for all the mutations 
in a cluster is rare. The underlying combinatorial prob-
lem of the majority of current methods is the Perfect 
Phylogeny Mixture (PPM) problem. Given an m× n 
frequency matrix F, we are asked to explain the composi-
tion of the m tumor samples and the evolutionary history 

of the n mutations. More specifically, we wish to factor-
ize F into a mixture matrix U and a perfect phylogeny 
matrix B. Not only is this problem NP-complete [10], 
but multiple perfect phylogeny trees may be inferred 
from the same input matrix F (Fig. 1). Tumor phylogenies 
have been used to identify mutations that drive cancer 
progression [17, 18], to assess the interplay between the 
immune system and the clonal architecture of a tumor 
[19, 20] and to identify common evolutionary patterns 
in tumorigenesis and metastasis [21, 22]. To avoid any 
bias in such downstream analyses, all possible solutions 
must be considered. While non-uniqueness of solutions 
to PPM has been recognized in the field [11, 23], a rigor-
ous analysis of its extent and consequences on sampling 
by current methods has been missing.

In this paper, we study the non-uniqueness of solutions 
to the PPM problem. On the negative side, we prove that 
the counting problem is #P-complete, hard to approxi-
mate within a constant factor and that it is hard sample to 
solutions uniformly at random (unless RP = NP). On the 
positive side, we give an upper bound on the number of 
solutions that can be computed in polynomial time, and 
introduce a simple rejection-based sampling scheme that 
samples solutions uniformly for modest numbers n of 
mutations. Using simulations and real data from a recent 
lung cancer cohort [18], we identify factors that contrib-
ute to non-uniqueness. In addition, we empirically study 

Fig. 1 Overview of the Perfect Phylogeny Mixture (PPM) problem. By comparing the aligned reads obtained from bulk DNA sequencing data of a 
matched normal sample and m tumor samples, we identify n somatic mutations and their frequencies F =

[

fp,c
]

 . In the PPM problem, we are asked 
to factorize F into a mixture matrix U and a complete perfect phylogeny matrix B, explaining the composition of the m tumor samples and the 
evolutionary history of the n mutations present in the tumor, respectively. Typically, an input frequency matrix admits multiple distinct solutions. 
Here, matrix F has three solutions: (U, B), (U′ , B′) and (U′′ , B′′) , where only (U, B) is the correct solution
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how the joint application of single-cell and long-read 
sequencing technologies with traditional bulk sequenc-
ing technology affects non-uniqueness. Finally, we find 
that current Markov chain Monte Carlo methods fail to 
sample uniformly from the solution space.

A preliminary version of this study was published as an 
extended abstract in RECOMB-CG [24].

Preliminaries and problem statement
In this section, we review the Perfect Phylogeny 
Mixture problem, as introduced in [10] (where it was 
the called the Variant Allele Frequency Factoriza-
tion Problem or VAFFP). As input, we are given a fre-
quency matrix F =

[

fp,c
]

 composed of allele frequencies 
of n single-nucleotide variants (SNVs) measured in m 
bulk DNA sequencing samples. In the following, we refer 
to SNVs as mutations. Each frequency fp,c indicates the 
proportion of cells in sample p that have mutation c.

Definition 1 An m× n matrix F =
[

fp,c
]

 is a frequency 
matrix provided fp,c ∈ [0, 1] for all samples p ∈ [m] and 
mutations c ∈ [n].

The evolutionary history of all n mutations is described 
by a phylogenetic tree. We assume the absence of homo-
plasy—i.e. no back mutations and no parallel evolu-
tion—and define a complete perfect phylogeny tree T as 
follows.

Definition 2 A rooted tree T on n vertices is a complete 
perfect phylogeny tree provided each edge of T is labeled 
with exactly one mutation from [n] and no mutation 
appears more than once in T.

We call the unique mutation r ∈ [n] that does not label 
any edge of a complete perfect phylogeny tree T the 
founder mutation. Equivalently, we may represent a com-
plete perfect phylogeny tree by an n× n binary matrix B 
subject to the following constraints.

Definition 3 An n× n binary matrix B = [bc,d] is an 
n-complete perfect phylogeny matrix provided:

1. There exists exactly one r ∈ [n] such that 
∑n

c=1 br,c = 1.
2. For each d ∈ [n] \ {r} there exists exactly one c ∈ [n] 

such that 
∑n

e=1 bd,e −
∑n

e=1 bc,e = 1 , and bd,e ≥ bc,e 
for all e ∈ [n].

3. bc,c = 1 for all c ∈ [n].

These three conditions correspond to distinctive fea-
tures in complete perfect phylogenetic trees. Condition 1 
states the existence of a single root vertex. Condition  2 

indicates that any mutation d other than the root has 
a unique parent c. Condition  3 removes symmetry to 
ensure a one-to-one correspondence between complete 
perfect phylogeny matrices and complete perfect phylo-
genetic trees.

While the rows of a perfect phylogeny matrix B cor-
respond to the leaves of a perfect phylogeny tree T (as 
per Definition 1), a complete perfect phylogeny matrix B 
includes all vertices of T. The final ingredient is an m× n 
mixture matrix U defined as follows.

Definition 4 An m× n matrix U = [up,c] is a mixture 
matrix provided up,c ∈ [0, 1] for all samples p ∈ [m] and 
mutations c ∈ [n] , and 

∑n
c=1 up,c ≤ 1 for all samples 

p ∈ [m].

Each row of U corresponds to a bulk sample whose 
entries indicate the fractions of the corresponding clones 
represented by the rows in B. Since we omit the normal 
clone (not containing any mutations), each row of U 
sums up to at most 1, the remainder being the fraction 
of the normal clone in the sample. Thus, the forward 
problem of obtaining a frequency matrix F from a com-
plete perfect phylogeny matrix B and mixture matrix U is 
trivial. That is, F = UB . We are interested in the inverse 
problem, which is defined as follows.

Problem  1 (Perfect Phylogeny Mixture (PPM)) 
Given a frequency matrix F, find a complete perfect phy-
logeny matrix B and mixture matrix U such that F = UB.

El-Kebir et al. [10] showed that a solution to PPM cor-
responds to a constrained spanning arborescence of a 
directed graph GF obtained from F, as illustrated in Addi-
tional file  1: Figure  S2. This directed graph GF is called 
the ancestry graph and is defined as follows.

Definition 5 The ancestry graph GF obtained from fre-
quency matrix F =

[

fp,c
]

 has n vertices V (GF ) = {1, . . . , n} 
and there is a directed edge (c, d) ∈ E(GF ) if and only if 
fp,c ≥ fp,d for all samples p ∈ [m].

As shown in [10], the square matrix B is invertible and 
thus matrix U is determined by F and B. We denote the 
set of children of the vertex corresponding to a mutation 
c ∈ [n] \ {r} by δ(c) , and we define δ(r) = {r(T )}.

Proposition 1 (Ref. [10]) Given frequency matrix F =
[

fp,c
]

 
and complete perfect phylogeny matrix  B = [bc,d], matrix 
U = [up,c] where up,c = fp,c −

∑

d∈δ(c) fp,d is the unique 
matrix U such that F = UB.
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For matrix U to be a mixture matrix, it is necessary 
and sufficient to enforce non-negativity as follows.

Theorem  2 (Ref. [10]) Let F =
[

fp,c
]

 be a frequency 
matrix and GF be the corresponding ancestry graph. 
Then, complete perfect phylogeny matrix B and associated 
matrix U are a solution to PPM instance F if and only if B 
T of GF satisfying

The above inequality is known as the sum condi-
tion (SC), requiring that each mutation has frequency 
greater than the sum of the frequencies of its children 
in all samples. In this equation, δout(c) denotes the set 
of children of vertex c in rooted tree T. A spanning 
arborescence T of a directed graph GF  is defined as a 
subset of edges that induce a rooted tree that spans all 
vertices of GF .

(SC)fp,c ≥
∑

d∈δout(c)

fp,d ∀p ∈ [m], c ∈ [n].

While finding a spanning arborescence in a directed 
graph can be done in linear time (e.g., using a depth-first 
or breadth-first search), the problem of finding a span-
ning arborescence in GF adhering to (SC) is NP-hard [10, 
23]. Moreover, the same input frequency matrix F may 
admit more than one solution (Fig. 2).

Methods
We start by giving a combinatorial characterization of 
solutions to the PPM problem (“Characterization of the 
solution space” section), followed by a complexity analy-
sis of the counting and sampling version #PPM (“Com-
plexity” section). “Additional constraints on the solution 
space” section describes additional constraints that 
reduce the number of solutions. Finally,  “Uniform sam-
pling of solutions” section introduces a rejection sam-
pling scheme that is able to sample uniformly at random.

Characterization of the solution space
Let F be a frequency matrix and let GF  be the corre-
sponding ancestry graph. By Theorem  2, we have that 

Fig. 2 Example PPM instance F has three solutions. Frequency matrix F corresponds to a simulated n = 5 instance (#9) and has m = 2 samples. The 
ancestry graph GF has six spanning arborescences. Among these, only trees T1 , T2 and T3 satisfy the sum condition (SC), whereas trees T4 , T5 and T6 
violate (SC) leading to negative entries in U4 , U5 and U6 . Tree T1 is the simulated tree of this instance. Trees T2 and T3 differ from T1 by only one edge, 
and thus each have an edge recall of 3/4 = 0.75
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solutions to the PPM instance F are spanning arbores-
cences T in the ancestry graph GF  that satisfy (SC). In 
this section, we describe additional properties that fur-
ther characterize the solution space. We start with the 
ancestry graph GF .

Fact 3 If there exists a path from vertex c to vertex d 
then (c, d) ∈ E(GF ).

A pair of mutations that are not connected by a path 
in GF correspond to two mutations that must occur on 
distinct branches in any solution. Such pairs of incompa-
rable mutations are characterized as follows.

Fact 4 Ancestry graph GF does not contain the edge 
(c, d) nor the edge (d, c) if and only if there exist two sam-
ples p, q ∈ [m] such that fp,c > fp,d and fq,c < fq,d .

We define the branching coefficient as follows.

Definition 6 The branching coefficient γ (GF ) is the 
fraction of unordered pairs (c,  d) of distinct mutations 
such that (c, d)  ∈ E(GF ) and (d, c)  ∈ E(GF ).

In the single-sample case, where frequency matrix 
F has m = 1 sample, we have that γ (GF ) = 0 . This is 
because either f1,c ≥ f1,d or f1,d ≥ f1,c for any ordered 
pair (c, d) of distinct mutations. Since an arborescence is 
a rooted tree, we have the following fact.

Fact 5 For GF to contain a spanning arborescence there 
must exist a vertex in GF from which all other vertices are 
reachable.

Note that GF may contain multiple source vertices 
from which all other vertices are reachable. Such source 
vertices correspond to repeated columns in F whose 
entries are greater than or equal to every other entry in 
the same row. In most cases the ancestry graph GF does 
not contain any directed cycles because of the following 
property.

Fact 6 Ancestry graph GF is a directed acyclic graph 
(DAG) if and only if F has no repeated columns.

In the case where GF is a DAG and contains at least one 
spanning arborescences, we know that all spanning arbo-
rescence T of GF share the same root vertex. This root 
vertex r is the unique vertex of GF with in-degree 0.

Fact 7 If GF is a DAG and contains a spanning arbo-
rescence then there exists exactly one vertex r in GF from 
which all other vertices are reachable.

Figure 2 shows the solutions to a PPM instance F with 
m = 2 tumor samples and n = 5 mutations. Since F has 
no repeated columns, the corresponding ancestry graph 
GF is a DAG. Vertex r = 1 is the unique vertex of GF 
without any incoming edges. There are three solutions 
to F, i.e. T1 , T2 and T3 are spanning arborescences of GF , 
each rooted at vertex r = 1 and each satisfying (SC). How 
do we know that F has three solutions in total? This leads 
to the following problem.

Problem 2 (#-Perfect Phylogeny Mixture (#PPM)) 
Given a frequency matrix  F, count the number of pairs 
(U, B) such that B is a complete perfect phylogeny matrix, 
U is a mixture matrix and F = UB.

Since solutions to F correspond to a subset of spanning 
arboscences of GF that satisfy (SC), we have the following 
fact.

Fact 8 The number of solutions to a PPM instance F is at 
most the number of spanning arborescences in the ances-
try graph GF .

Kirchhoff’s elegant matrix tree theorem [25] uses lin-
ear algebra to count the number of spanning trees in a 
simple graph. Tutte extended this theorem to count span-
ning arborescences in a directed graph G = (V ,E) [26]. 
Briefly, the idea is to construct the n× n Laplacian matrix 
L = [ℓi,j] of G, where

Then, the number of spanning arborescences Ni rooted 
at vertex i is det(L̂i) , where L̂i is the matrix obtained from 
L by removing the i-th row and column. Thus, the total 
number of spanning arborescences in G is 

∑n
i=1 det(L̂i).

By Fact 6, we have that GF is a DAG if F has no repeated 
columns. In addition, by Fact  7, we know that GF must 
have a unique vertex r with no incoming edges. We have 
the following technical lemma.

Lemma 9 Let GF be a DAG and let r(GF ) be its unique 
source vertex. Let π be a topological ordering of the ver-
tices of GF . Let L′ = [ℓ′i,j] be the matrix obtained from 
L = [ℓi,j] by permuting its rows and columns according 
to π , i.e. ℓ′i,j = ℓπ(i),π(j). Then, L′ is an upper triangular 
matrix and π(1) = r(GF ).

Proof Assume for a contradiction that L′ is not upper 
triangular. Thus, there must exist vertices i, j ∈ [n] such 
that j > i and ℓ′j,i �= 0 . By definition of L and L′ , we have 

(1)ℓi,j =







degin(j), if i = j,
−1, if i �= j and (i, j) ∈ E
0, otherwise.
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that ℓ′j,i = −1 . Thus (π(j),π(i)) ∈ E(GF ) , which yields a 
contradiction with π being a topological ordering of GF . 
Hence, L′ is upper triangular. From Fact 7 it follows that 
π(1) = r(GF ) .  �

Since the determinant of an upper triangular matrix 
is the product of its diagonal entries, it follows from the 
previous lemma that det(L̂′1) =

∏n−1
i=1 ℓ̂′i,i . Combining this 

fact with Tutte’s directed matrix-tree theorem, yields the 
following result.

Theorem  10 Let F be a frequency matrix without any 
repeated columns and let r be the unique mutation such 
that fp,r ≥ fp,c for all mutations c and samples p. Then the 
number of solutions to F is at most the product of the in-
degrees of all vertices c  = r in GF .

In Fig. 2, the number of spanning arborescences in GF is 
degin(2) · degin(3) · degin(4) · degin(5) = 1 · 2 · 1 · 3 = 6  . 
To compute the number of spanning arborescences of 
GF that satisfy (SC), we can simply enumerate all span-
ning arborescences using, for instance, the Gabow-Myers 
algorithm [27] and only output those that satisfy (SC). 
El-Kebir et  al. [23] extended this algorithm such that it 
maintains (SC) as an invariant while growing arbores-
cences. Applying both algorithms on the instance in Fig. 2 
reveals that trees T1 , T2 and T3 comprise all solutions to F. 
We note that the enumeration algorithm in [23] has not 
been shown to be an output-sensitive algorithm.

Complexity
Deciding whether a frequency matrix F can be factorized 
into a complete perfect phylogeny matrix B and a mix-
ture matrix U is NP-complete [10] even in the case where 
m = 2 [23]. We showed this by reduction from Subset-
Sum, defined as follows.

Problem 3 (SubsetSum) Given a set of unique positive 
integers S, and a positive integer t <

∑

s∈S s , find a subset 
D of S such that 

∑

s∈D s = t.

As such, the corresponding counting problem #PPM is 
NP-hard. Here, we prove a stronger result, i.e. #PPM is 
#P-complete.

Theorem 11 #PPM is #P-complete even when m = 2.

To understand this result, recall the complexity class 
NP. This class is composed of decision problems that 
have witnesses that can be verified in polynomial time. 
The complexity class #P consists of counting problem 
that are associated with decision problems in NP. That is, 
rather than outputting yes/no for a given instance, we are 

interested in the number of witnesses of the instance. The 
class #P-complete is similarly defined as NP-complete 
and is composed of the hardest counting problems in #P. 
That is, if one #P-complete problem is solvable in polyno-
mial time then all problems in #P are solvable in polyno-
mial time. How do we show that a counting problem #Y  
is #P-complete? To do so, we need to show two things. 
First, we need to show that the underlying decision 
problem is in NP. Second, we need to show that another 
#P-complete problem #X is just as hard as #Y  . One way 
of showing this is using a polynomial-time parsimonious 
reduction from #X to #Y  , defined as follows.

Definition 7 Let X and Y be decision problems in NP, 
and let #X and #Y  be the corresponding counting prob-
lems. Let �∗ (�∗) be the set of instances of X (Y). Given 
instances x ∈ �∗ and y ∈ �∗ , let X(x) and Y(y) be the cor-
responding set of witnesses. A reduction σ : �∗ → �∗ 
from #X to #Y  is parsimonious if |X(x)| = |Y (σ (x))| and 
σ(x) can be computed in time polynomial in |x| for all 
x ∈ �∗.

We prove Theorem 11 in two steps by considering the 
counting version #SubsetSum of SubsetSum. First, we 
show that #SubsetSum is #P-complete by giving a par-
simonious reduction from #Mono-1-in-3SAT, a known 
#P-complete problem [28].

Lemma 12 There exists a parsimonious reduction from 
#Mono-1-in-3SAT to # SubsetSum.

Proof See Additional file 1.  �

Second, we show that the previously used reduction to 
prove NP-completeness [23] from SubsetSum of PPM is 
also a parsimonious reduction.

Lemma 13 There exists a parsimonious reduction from 
#S ubsetSum to #PPM restricted to m = 2 samples.

Proof See Additional file 1.  �

Combining these two results yields the theorem. 
One way to deal with this hardness result is to resort to 
approximation algorithms. In particular, for counting 
problems the following randomized approximation algo-
rithms are desirable.

Definition 8 (Ref. [29]) A fully polynomial randomized 
approximation scheme (FPRAS) for a counting problem 
is a randomized algorithm that takes as input an instance 
x of the problem and error tolerance ε > 0 , and outputs 
a number N ′ in time polynomial in 1/ε and |x| such that 
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Pr
[

(1+ ε)−1N ≤ N ′ ≤ (1+ ε)N
]

≥ 0.75 , where N is the 
answer to the counting problem.

Suppose we have an FPRAS for #PPM. What would the 
implications be? Recall the complexity class RP, which is 
composed of decision problems that admit randomized 
polynomial time algorithms that return no if the correct 
answer is no and otherwise return yes with probability at 
least 1/2. We can use the FPRAS for PPM to construct 
a randomized polynomial time algorithm for the deci-
sion problem PPM, returning yes if the FPRAS gives 
a non-zero output, and returning no otherwise. Obvi-
ously, this algorithm is always correct for no-instances, 
and returns the correct result at least 75% of the times 
for yes-instances. Since PPM is NP-complete, this would 
imply that RP = NP.

Corollary 14 There exists no FPRAS for #PPM unless 
RP = NP.

Regarding the sampling problem of PPM, it would be 
desirable to sample solutions almost uniformly at ran-
dom, which can be achieved by the following set of 
algorithms.

Definition 9 (Ref. [29]) A fully-polynomial almost uni-
form sampler (FPAUS) for a sampling problem is a rand-
omized algorithm that takes as input an instance x of the 
problem and a sampling tolerance δ > 0 , and outputs a 
solution in time polynomial in |x| and log δ−1 such that 
the difference of the probability distribution of solutions 
output by the algorithm and the uniform distribution on 
all solutions is at most δ.

However, the existence of an FPAUS to sample the 
solutions of PPM would similarly imply that RP=NP (i.e. 
setting δ ≤ 0.5).

Corollary 15 There exists no FPAUS to sample solu-
tions of PPM unless RP = NP.

Additional constraints on the solution space
Long-read sequencing Most cancer sequencing studies 
are performed using next-generation sequencing tech-
nology, producing short reads containing between 100 
and 1000 basepairs. Due to the small size of short reads, 
it is highly unlikely to observe two mutations that occur 
on the same read (or read pair). With (synthetic) long 
read sequencing technology, including 10× Genomics, 
Pacbio and Oxford Nanopore, one is able to obtain reads 
with millions of basepairs. Thus, it becomes possible to 
observe long reads that contain more than one mutation.

As described in [30], the key insight is that a pair (c, d) 
of mutations that occur on the same read orginate from 
a single DNA molecule of a single cell, and thus c and d 
must occur on the same path in the phylogenetic tree. Such 
mutation pairs provide very strong constraints to the PPM 
problem. For example in Fig.  2, in addition to frequency 
matrix F, we may be given that mutations 2 and 5 have 
been observed on a single read. Thus, in T1 and T2 the pair 
is highlighted in green because it is correctly placed on the 
same path from the root on the inferred trees. However, the 
two mutations occur on distinct branches on T3 , which is 
therefore ruled out as a possible solution.

Single-cell sequencing With single-cell sequencing, we are 
able to identify the mutations that are present in a single 
tumor cell. If in addition to bulk DNA sequencing sam-
ples, we are given single cell DNA sequencing data from 
the same tumor, we can constrain the solution space to 
PPM considerably. In particular, each single cell imposes 
that its comprising mutations must correspond to a con-
nected path in the phylogenetic tree. These constraints 
have been described recently in [31].

For an example of these constraints, consider frequency 
matrix F described in Fig.  2. In addition to frequency 
matrix F, we may observe a single cell with mutations 
{1, 2, 3, 5} . T1 is the only potential solution as this is the 
only tree which places all four mutations on a single path, 
highlighted in blue. Trees T2 and T3 would be ruled out 
because the mutation set {1, 2, 3, 5} does not induce a 
connected path in these two trees.

We note that the constraints described above for sin-
gle-cell sequencing and long-read sequencing assume 
error-free data. In practice, one must incorporate an 
error model and adjust the constraints accordingly. How-
ever, the underlying principles will remain the same.

Uniform sampling of solutions
Typically, the number m of bulk samples equals 1, but 
there exist multi-region datasets where m may be up to 
10. On the other hand, the number n of mutations ranges 
from 10 to 1000. In particular, for solid tumors in adults 
we typically observe thousands of point mutations in the 
genome. As such, exhaustive enumeration of solutions is 
infeasible in practice. To account for non-uniqueness of 
solutions and to identify common features shared among 
different solutions, it would be desirable to have an algo-
rithm that samples uniformly from the solution space. 
However, as the underlying decision problem is NP-com-
plete, the problem of sampling uniformly from the solu-
tion space for arbitrary frequency matrices F is NP-hard. 
Thus, one must resort to heuristic approaches.

One class of such approaches employs Markov chain 
Monte Carlo (MCMC) for sampling from the solution 
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space [9, 14, 15]. Here, we describe an alternative method 
based on rejection sampling. This method is guaranteed 
to sample uniformly from the solution space. Briefly, the 
idea is to generate a spanning arborescence T from GF 
uniformly at random and then test whether T satisfies 
(SC). In the case where T satisfies (SC), we report T as a 
solution and otherwise reject T.

For the general case where GF may have a directed 
cycle, we use the cycle-popping algorithm of Propp and 
Wilson [32]. Note that this only happens when there are 
mutations with identical frequencies across all samples, 
i.e. identical columns in the frequency matrix F. This 
algorithm generates a uniform spanning arborescence in 
time O(τ (G̃F )) where τ (G̃F ) is the expected hitting time 
of G̃F . More precisely, G̃F is the multi-graph obtained 
from GF by including self-loops such that the out-degrees 
of all its vertices are identical.

For the case where GF is a DAG with a unique source 
vertex r, there is a much simpler sampling algorithm. We 
simply assign each vertex c  = r to a parent π(c) ∈ δin(c) 
uniformly at random. It is easy to verify that the result-
ing function π encodes a spanning arborescence of GF . 
Thus, the running time of this procedure is O(E(GF )) . In 
both cases, the probability of success equals the fraction 
of spanning arborescences of GF that satisfy (SC) among 
all spanning arborescences of GF.

An implementation of the rejection sampling for the 
case where GF is a DAG is available on https ://githu 
b.com/elkeb ir-group /OncoL ib.

Results
Figures 1 and 2 show anecdotal examples of non-unique-
ness of solutions to the Perfect Phylogeny Mixture 
problem. The following questions arise: is non-unique-
ness a widespread phenomenon in PPM instances? 
Which factors contribute to non-uniqueness and how 
does information from long-read sequencing and single-
cell sequencing reduce non-uniqueness? Finally, are cur-
rent MCMC methods able to sample uniformly from the 
space of solutions?

To answer these questions, we used real data from a 
lung cancer cohort [18] and simulated data generated 
by a previously published tumor simulator [33]. For the 
latter, we generated 10 complete perfect phylogeny trees 
T ∗ for each number n ∈ {3, 5, 7, 9, 11, 13} of mutations. 
The simulator assigned each vertex v ∈ V (T ∗) a fre-
quency f (v) ≥ 0 such that 

∑

v∈V (T∗) f (v) = 1 . For each 
simulated complete perfect phylogeny tree T ∗ , we gen-
erated m ∈ {1, 2, 5, 10} bulk samples by partitioning the 
vertex set V (T ∗) into m disjoint parts followed by nor-
malizing the frequencies in each sample. This yielded a 
frequency matrix F for each combination of n and m. In 
total, we generated 10 · 6 · 4 = 240 instances (Additional 

file 1: Tables S1–S7). The data and scripts to generate the 
results are available on https ://githu b.com/elkeb ir-group /
PPM-NonUn iq.

What contributes to non‑uniqueness?
In both real and simulated data, we find that the two 
main factors that influence non-uniqueness are the num-
ber n of mutations and the number m of samples taken 
from the tumor. The former contributes to non-unique-
ness while the latter reduces it, as we will show in the 
following.

We considered a lung cancer cohort of 100 patients 
[18], where tumors have undergone multi-region bulk 
DNA sequencing. Subsequently, the authors used 
PyClone [34] to cluster mutations with similar cancer cell 
fractions. The number n of mutation clusters varied from 
2 to 13 clusters and the number m of samples varied from 
1 to 7 (Fig.  3a). To account for uncertainty in mutation 
cluster frequencies, we consider a 90% confidence inter-
val obtained from the cancer cell fractions of clustered 
mutations and solve an interval version of the PPM prob-
lem (described in Ref. [23]). To see how the number m of 
bulk samples affects the number of solutions, we down-
sample by randomly removing 1 or 2 samples. We find 
that this dataset exhibits extensive non-uniqueness of 
solutions, with the number of solutions ranging from 1 to 
3280 (Fig. 3b and Additional file 1: Table S1 and S2). We 
find that the number of solutions increased with increas-
ing number n of mutation clusters, whereas it decreased 
when downsampling the number m of samples (Fig. 3b).

We observed similar trends in simulated data. That is, 
as we increased the number n of mutations from 3 to 
13 in our simulations, we observed that the number of 
solutions increased exponentially (Fig. 4a). On the other 
hand, the number m of samples had an opposing effect: 
with increasing m the number of solutions decreased.

To understand why we observed these two counteract-
ing effects, we computed the number of spanning arbo-
rescences in each ancestry graph GF . Figure  4b shows 
that the number of spanning arborescences exhibited an 
exponential increase with increasing number n of muta-
tions, whereas increased number m of samples decreased 
the number of spanning arborescences. The latter can be 
explained by studying the effect of the number m of sam-
ples on the branching coefficient γ (GF ) . Figure 4c shows 
that the branching coefficient increased with increasing 
m, with branching coefficient γ (GF ) = 0 for all m = 1 
instances F. This finding illustrates that additional sam-
ples reveal branching of mutations. That is, in the case 
where m = 1 one does not observe branching in GF , 
whereas as m → ∞ each sample will be composed of a 
single cell with binary frequencies and the ancestry graph 
GF will be a rooted tree.

https://github.com/elkebir-group/OncoLib
https://github.com/elkebir-group/OncoLib
https://github.com/elkebir-group/PPM-NonUniq
https://github.com/elkebir-group/PPM-NonUniq
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Adding mutations increases the complexity of the 
problem, as reflected by the number of solutions. To 
quantify how distinct each solution T is to the simu-
lated tree T ∗ , we computed the edge recall of T defined 
as |E(T ) ∩ E(T ∗)|/|E(T ∗)| (note that |E(T ∗)| = n− 1 by 
definition). A recall value of 1 indicates that the inferred 
tree T is identical to the true tree T ∗ . Figure  4d shows 
that the median recall decreased with increasing number 
n of mutations. However, as additional samples provide 
more information, the recall increased with increasing 
number m of samples.

How to reduce non‑uniqueness?
As discussed in  “Additional constraints on the solution 
space” section, the non-uniqueness of solutions can be 

reduced through various sequencing techniques such 
as single-cell sequencing and long-read sequencing. We 
considered the effect of both technologies on the n = 9 
instances (Additional file 1: Table S6).

By taking longer reads of the genome, long-read 
sequencing can identify mutations which coexist in a 
clone if they appear near one another on the genome. If 
two mutations are observed together on a long read, then 
one mutation is ancestral to the other. That is, on the true 
phylogenetic tree T ∗ there must exist a path from the 
root to a leaf containing both mutations. We varied the 
number of mutation pairs observed together from 0 to 
5 and observed that increasing this number reduced the 
size of the solution space (Fig. 5a). In addition, incorpo-
rating more simulated long-read information resulted in 
increased recall of the inferred trees (Fig. 5b).

Single-cell sequencing illuminates all of the mutations 
present in a single clone in a tumor. This reveals a path 
from the root of the true phylogenetic tree T ∗ down to a 
leaf. Fig.  6a shows the effect that single-cell sequencing 
has on the size of the solution space. We found that, as we 
increased the number of known paths (sequenced single 
cells) in the tree from 0 to 5, the solution space decreased 
exponentially. Additionally, the inferred trees were more 
accurate with more sequenced cells, as shown in Fig. 6b 
by the increase in median edge recall. These effects are 
more pronounced when fewer samples are available.

In summary, while both single-cell and long-read 
sequencing reduce the extent of non-uniqueness in the 
solution space, single-cell sequencing achieves a larger 
reduction than long-read sequencing.

How does non‑uniqueness affect current methods?
To study the effect of non-uniqueness, we considered 
two current methods, PhyloWGS [14] and Canopy [15], 
both of which use Markov chain Monte Carlo to sample 
solutions from the posterior distribution. Rather than 
operating from frequencies F =

[

fp,c
]

 , these two methods 
take as input two integers ap,c and dp,c for each mutation 
c and sample p. These two integers are, respectively, the 
number of reads with mutation c and the total number 
of reads. Given A = [ap,c] and D = [dp,c] , PhyloWGS and 
Canopy aim to infer a frequency matrix F̂  and phyloge-
netic tree T with maximum data likelihood Pr(D,A | F̂) 
such that T satisfies (SC) for matrix F̂  . In addition, the 
two methods cluster mutations that are inferred to have 
similar frequencies across all samples. To use these 
methods in our error-free setting, where we are given 
matrix F =

[

fp,c
]

 , we set the total number of reads for 
each mutation c in each sample p to a large number, i.e. 
dp,c = 1, 000, 000 . The number of variant reads is simply 
set as ap,c = fp,c · dp,c . Since both PhyloWGS and Can-
opy model variant reads ap,c as draws from a binomial 
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distribution parameterized by dp,c and f̂p,c , the data likeli-
hood is maximized when F̂ = F  . We also discard gener-
ated solutions where mutations are clustered. Hence, we 
can use these methods in the error-free case.

We ran PhyloWGS, Canopy, and our rejection sampling 
method (“Uniform sampling of solutions” section) on all 
n = 7 instances (Additional file 1: Table S5). We used the 
default settings for PhyloWGS (2500 MCMC samples, 
burnin of 1000) and Canopy (burnin of 100 and 1 out of 5 
thinning), with 20 chains per instance for PhyloWGS and 
15 chains per instance for Canopy. For each instance, we 
ran the rejection sampling algorithm until it generated 
10,000 solutions that satisfy (SC).

Figure  7 shows one n = 7 instance (#81) with varying 
number m ∈ {1, 2, 5, 10} of samples. For this instance, 
all the trees output by PhyloWGS satisfied the sum con-
dition. However, the set of solutions was not sampled 

uniformly, with only 67 out 297 trees generated for m = 1 
samples. For m = 5 , this instance had six unique solu-
tions, with PhyloWGS only outputting trees that corre-
sponded to a single solution among these six solutions 
(Additional file  1:  Fig.  S5). Similarly, Canopy failed to 
sample solutions uniformly at random. In addition, Can-
opy failed to recover any of the two m = 10 solutions and 
recovered incorrect solutions for m = 5 . The rejection 
sampling method recovered all solutions for each value of 
m. In addition, we performed a Chi-square goodness of 
fit test comparing the distribution of trees generated by 
rejection sampling to the uniform distribution. The large 
p-values indicate that the rejection sampling procedure 
sampled solutions uniformly at random. Additional file 1: 
Figures S6–S8 show similar patterns for the other n = 7 
instances.

There are two possible factors contributing to the non-
uniformity of the sampling results of PhyloWGS and 
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Canopy. First, the Tree-Structured Stick Breaking (TSSB) 
process used by PhyloWGS to generate the tree topology 
does not give a uniform prior over the space of trees. Sec-
ond, the two MCMC algorithms might not converge onto 
the stationary distribution in reasonable time. Indeed, 
by our hardness result for the sampling problem of PPM 
(Corollary 15), we expect the mixing time to grow expo-
nentially with increasing number n of mutations and 
increasing number m of samples.

Given a frequency matrix F, the success probability 
of the rejection sampling approach equals the fraction 
between the number of solutions and the number of 
spanning arborescences in GF , as shown empirically in 
Additional file  1: Table  S9. As such, this approach does 
not scale with increasing n. Indeed, Fig.  8a shows that 
the fraction of spanning trees which also fulfill the sum 
condition is initially high when the number of mutations 
is low. With n = 11 mutations, the fraction is approxi-
mately 10−2 and rejection sampling can be considered 

to be feasible. However, as the number of mutations is 
increased further, rejection sampling become infeasi-
ble as the fraction can drop to 10−10 for n = 21 muta-
tions (Fig.  8b). Therefore, a better sampling approach is 
required.

Conclusions
In this work, we studied the problem of non-unique-
ness of solutions to the Perfect Phylogeny Mix-
ture (PPM) problem. In this problem, we are given a 
frequency matrix F that determines a directed graph GF 
called the ancestry graph. The task is to identify a span-
ning arborescence T of GF whose internal vertices satisfy 
a linear inequality whose terms are entries of matrix F. 
We formulated the #PPM problem of counting the num-
ber of solutions to an PPM instance. We proved that the 
counting problem is #P-complete and that no FPRAS 
exists unless RP = NP. In addition we argued that no 
FPAUS exists for the sampling problem unless RP = NP. 
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On the positive side, we showed that the number of solu-
tions is at most the number of spanning arborescences 
in GF , a number that can be computed in polynomial 
time. For the case where GF is a directed acyclic graph, 
we gave a simple algorithm for counting the number of 

spanning arborescences. This algorithm formed the basis 
of a rejection sampling scheme that samples solutions to 
a PPM instance uniformly at random.

Using simulations, we showed that the number 
of solutions increases with increasing number n of 
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mutations but decreases with increasing number m 
of samples. In addition, we showed that the median 
recall of all solutions increases with increasing m but 
decreases with increasing n. We showed how con-
straints from single-cell and long-read sequencing 
reduce the number of solutions. Finally, we showed that 
current MCMC methods fail to sample uniformly from 
the solution space. This is problematic as it leads to 
biases that propagate to downstream analyses.

There are a couple of avenues for future research. 
First, our hardness proof uses a reduction from Sub-
setSum, which has a pseudo-polynomial time algo-
rithm. Recognizing that in practice the frequency 
matrix is composed of fractional values with small 
denominators (corresponding to the sequencing cov-
erage), it will be interesting to study whether a similar 
pseudo-polynomial time algorithm may be devised for 
the PPM problem. Second, while the rejection sampling 
algorithm achieves uniformity, it does not scale to prac-
tical problem instance sizes. Further research is needed 
to develop sampling algorithms that achieve near-uni-
formity and have reasonable running time for practical 
problem instances. Third, just as single-cell sequencing 
and long-read sequencing impose constraints on the 
solution space of PPM, it will be worthwhile to include 
additional prior knowledge to further constrain the 
solution space (such as the use of constraints on migra-
tion for metastatic cancers [33, 35]). Finally, the PPM 
problem and the simulations in this paper assumed 
error-free data. Further research is needed to study 
the effect of sequencing, sampling and mapping errors. 
It is to be expected that the problem of non-unique-
ness is further exacerbated with additional sources of 
uncertainty.
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