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Abstract 

High-throughput sequencing technologies have led to explosive growth of genomic databases; one of which will 
soon reach hundreds of terabytes. For many applications we want to build and store indexes of these databases but 
constructing such indexes is a challenge. Fortunately, many of these genomic databases are highly-repetitive—a 
characteristic that can be exploited to ease the computation of the Burrows-Wheeler Transform (BWT), which under-
lies many popular indexes. In this paper, we introduce a preprocessing algorithm, referred to as prefix-free parsing, that 
takes a text T as input, and in one-pass generates a dictionary D and a parse P of T with the property that the BWT 
of T can be constructed from D and P using workspace proportional to their total size and O(|T|)-time. Our experi-
ments show that D and P are significantly smaller than T in practice, and thus, can fit in a reasonable internal memory 
even when T is very large. In particular, we show that with prefix-free parsing we can build an 131-MB run-length 
compressed FM-index (restricted to support only counting and not locating) for 1000 copies of human chromosome 
19 in 2 h using 21  GB of memory, suggesting that we can build a 6.73 GB index for 1000 complete human-genome 
haplotypes in approximately 102 h using about 1 TB of memory.
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Introduction
The money and time needed to sequence a genome have 
shrunk shockingly quickly and researchers’ ambitions 
have grown almost as quickly: the Human Genome Pro-
ject cost billions of dollars and took a decade but now 
we can sequence a genome for about a thousand dol-
lars in about a day. The 1000 Genomes Project [1] was 
announced in 2008 and completed in 2015, and now the 
100,000 Genomes Project is well under way [2]. With no 
compression 100,000 human genomes occupy roughly 
300 terabytes of space, and genomic databases will 
have grown even more by the time a standard research 
machine has that much RAM. At the same time, other 
initiatives have began to study how microbial species 
behave and thrive in environments. These initiatives are 
generating public datasets, which are larger than the 
100,000 Genomes Project. For example, in recent years, 
there has been an initiative to move toward using whole 
genome sequencing to accurately identify and track 
foodborne pathogens (e.g. antibiotic-resistant bacteria) 

[3]. This led to the GenomeTrakr initiative, which is 
a large public effort to use genome sequencing for sur-
veillance and detection of outbreaks of foodborne ill-
nesses. Currently, GenomeTrakr includes over 100,000 
samples, spanning several species available through this 
initiative—a number that continues to rise as datasets 
are continually added [4]. Unfortunately, analysis of this 
data is limited due to their size, even though the similar-
ity between genomes of individuals of the same species 
means the data is highly compressible.

These public databases are used in various applica-
tions—e.g., to detect genetic variation within individu-
als, determine evolutionary history within a population, 
and assemble the genomes of novel (microbial) species 
or genes. Pattern matching within these large databases 
is fundamental to all these applications, yet repeatedly 
scanning these—even compressed—databases is infea-
sible. Thus, for these and many other applications, we 
want to build and use indexes from the database. Since 
these indexes should fit in RAM and cannot rely on word 
boundaries, there are only a few candidates. Many of the 
popular indexes in bioinformatics are based on the Bur-
rows-Wheeler Transform (BWT) [5] and there have been 
a number of papers about building BWTs for genomic 
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databases, e.g., [6] and references therein. However, it is 
difficult to process anything more than a few terabytes of 
raw data per day with current techniques and technology 
because of the difficulty of working in external memory.

Since genomic databases are often highly repetitive, 
we revisit the idea of applying a simple compression 
scheme and then computing the BWT from the result-
ing encoding in internal memory. This is far from being 
a novel idea—e.g., Ferragina, Gagie and Manzini’s bwt-
disk software [7] could already in 2010 take advantage 
of its input being given compressed, and Policriti and 
Prezza [8] showed how to compute the BWT from the 
LZ77 parse of the input using O(n(log r + log z))-time 
and O(r + z)-space, where n is the length of the uncom-
pressed input, r is the number of runs in the BWT and 
z is the number of phrases in the LZ77 parse—but we 
think the preprocessing step we describe here, prefix-free 
parsing, stands out because of its simplicity and flexibil-
ity. Once we have the results of the parsing, which are a 
dictionary and a parse, building the BWT out of them is 
more involved, yet when our approach works well, the 
dictionary and the parse are together much smaller than 
the initial dataset and that makes the BWT computation 
less resource-intensive.

Our contributions
In this paper, we formally define and present prefix-
free parsing. The main idea of this method is to divide 
the input text into overlapping variable-length phrases 
with delimiting prefixes and suffixes. To accomplish this 
division, we slide a window of length w over the text 
and, whenever the Karp-Rabin hash of the window is 0 
modulo p, we terminate the current phrase at the end of 
the window and start the next one at the beginning of 
the window. This concept is partly inspired by rsync’s 
[9] use of a rolling hash for content-slicing. Here, w and 
p are parameters that affect the size of the dictionary of 
distinct phrases and the number of phrases in the parse. 
This takes linear-time and one pass over the text, or it 
can be sped up by running several windows in different 
positions over the text in parallel and then merging the 
results.

Just as rsync can usually recognize when most of a 
file remains the same, we expect that for most genomic 
databases and good choices of w and p, the total length of 
the phrases in the dictionary and the number of phrases 
in the parse will be small in comparison to the uncom-
pressed size of the database. We demonstrate experimen-
tally that with prefix-free parsing we can compute BWT 
using less memory and equivalent time. In particular, 
using our method we reduce peak memory usage up to 
10x over a standard baseline algorithm which computes 
the BWT by first computing the suffix array using the 

algorithm SACA-K [10], while requiring roughly the 
same time on large sets of salmonella genomes obtained 
from GenomeTrakr.

In “Theory of prefix free parsing” section, we show how 
we can compute the BWT of the text from the dictionary 
and the parse alone using workspace proportional only 
to their total size, and time linear in the uncompressed 
size of the text when we can work in internal memory. 
In “Prefix free parsing in practice” section we describe 
our implementation and report the results of our experi-
ments showing that in practice the dictionary and parse 
often are significantly smaller than the text and so may 
fit in a reasonable internal memory even when the text 
is very large, and that this often makes the overall BWT 
computation both faster and smaller. In “Indexing” sec-
tion we describe how we build run-length compressed 
FM-indexes [11] (which only support counting and not 
locating) for datasets consisting of 50, 100, 200 and 500 
using prefix-free parsing. Our results suggest that we 
can build a roughly 6.73-GB index for 1000 complete 
human genomes in about 102 h using about 1.1 tera-
bytes of memory. Prefix-free parsing and all accompanied 
documents are available at https ://gitla b.com/manza i/
Big-BWT.

Review of the Burrows‑Wheeler Transform
As part of the Human Genome Project, researchers 
had to piece together a huge number of relatively tiny, 
overlapping pieces of DNA, called reads, to assemble 
a reference genome about which they had little prior 
knowledge. Once the Project was completed, however, 
they could then use that reference genome as a guide to 
assemble other human genomes much more easily. To 
do this, they indexed the reference genome such that, 
after running a DNA sample from a new person through 
a sequencing machine and obtaining another collection 
of reads, for each of those new reads they could quickly 
determine which part of the reference genome it matched 
most closely. Since any two humans are genetically very 
similar, aligning the new reads against the reference 
genome gives a good idea of how they are really laid out 
in the person’s genome.

In practice, the best solutions to this problem of 
indexed approximate matching work by reducing it to a 
problem of indexed exact matching, which we can for-
malize as follows: given a string T (which can be the 
concatenation of a collection of strings, terminated by 
special symbols), pre-process it such that later, given a 
pattern P, we can quickly list all the locations where P 
occurs in T. We now start with a simple but impractical 
solution to the latter problem, and then refine it until we 
arrive at a fair approximation of the basis of most modern 

https://gitlab.com/manzai/Big-BWT
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assemblers, illustrating the workings of the Burrows-
Wheeler Transform (BWT) along the way.

Suppose we want to index the three strings 
GAT TAC AT, GAT ACA T and GAT TAG ATA, so 
T [0..n− 1] = GATTACAT$1GATACAT$2GATTAGATA$3  , 
where $1 , $2 and $3 are terminator symbols. Perhaps the 
simplest solution to the problem of indexing T is to build 
a trie of the suffixes of the three strings in our collection 
(i.e., an edge-labelled tree whose root-to-leaf paths are 
the suffixes of those strings) with each leaf storing the 
starting position of the suffix labelling the path to that 
leaf, as shown in Fig. 1.

Suppose every node stores pointers to its children and 
its leftmost and rightmost leaf descendants, and every 
leaf stores a pointer to the next leaf to its right. Then 
given P[0..m− 1] , we can start at the root and descend 
along a path (if there is one) such that the label on the 
edge leading to the node at depth i is P[i − 1] , until we 
reach a node v at depth m. We then traverse the leaves in 
v’s subtree, reporting the the starting positions stored at 
them, by following the pointer from v to its leftmost leaf 
descendant and then following the pointer from each leaf 
to the next leaf to its right until we reach v’s rightmost 
leaf descendant.

The trie of the suffixes can have a quadratic number of 
nodes, so it is impractical for large strings. If we remove 

nodes with exactly one child (concatenating the edge-
labels above and below them), however, then there are 
only linearly many nodes, and each edge-label is a sub-
string of the input and can be represented in constant 
space if we have the input stored as well. The resulting 
structure is essentially a suffix tree (although it lacks 
suffix and Weiner links), as shown in Fig. 2. Notice that 
the label of the path leading to a node v is the longest 
common prefix of the suffixes starting at the positions 
stored at v’s leftmost and rightmost leaf descendants, so 
we can navigate in the suffix tree, using only the point-
ers we already have and access to the input.

Although linear, the suffix tree still takes up an 
impractical amount of space, using several bytes for 
each character of the input. This is significantly reduced 
if we discard the shape of the tree, keeping only the 
input and the starting positions in an array, which is 
called the suffix array (SA). The SA for our example 
is shown in Fig.  3. Since the entries of the SA are the 
starting points of the suffixes in lexicographic order, 
with access to T we can perform two binary searches 
to find the endpoints of the interval of the suffix array 
containing the starting points of suffixes starting with 
P: at each step, we consider an entry SA[i] and check if 
T [SA[i]] lexicographically precedes P. This takes a total 
of O(m log n) time done naïvely, and can be sped up 
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Fig. 1 The suffix trie for our example with the three strings GAT TAC AT, GAT ACA T and GAT TAG ATA. The input is shown at the bottom, in red because 
we do not need to store it
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Fig. 2 The suffix tree for our example. We now also need to store the input

18279 17 26 5 13 22 157 24 11 2 19 146 23 10 1 168 25 4 12 321 20

18279 17 26 5 13 22 157 24 11 2 19 146 23 10 1 168 25 4 12 321 20

G A T A C A T $2
10 11 12 13 14 15 16 17

G A T T A C A T $1
1 2 3 4 5 6 7 8 9

G A T T A G A T A $3
18 19 20 21 22 23 24 25 26 27

Fig. 3 The suffix array for our example is the sequence of values stored in the leaves of the tree (which we need not store explicitly). The LF 
mapping is shown as the arrows between two copies of the suffix array; the arrows to values i such that T [SA[i]] = A are in red, to illustrate that 
they point to consecutive positions in the suffix array and do not cross. Since � is the inverse of the LF mapping, it can be obtained by simply 
reversing the direction of the arrows
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with more sophisticated searching and relatively small 
auxiliary data structures.

Even the SA takes linear space, however, which is sig-
nificantly more than what is needed to store the input 
when the alphabet is small (as it is in the case of DNA). 
Let � be the function that, given the position of a value 
i < n− 1 in the SA, returns the position of i + 1 . Notice 
that, if we write down the first character of each suffix 
in the order they appear in the SA, the result is a sorted 
list of the characters in T, which can be stored using 
O(log n) bits for each character in the alphabet. Once 
we have this list stored, given a position i in SA, we can 
return T [SA[i]] efficiently.

Given a position i in SA and a way to evalu-
ate � , we can extract T [SA[i]..n− 1] by writing 
T [SA[i]],T [SA[�(i)]],T [SA[�2(i)]], . . . . Therefore, we 
can perform the same kind of binary search we use 
when with access to a full suffix array. Notice that if 
T [SA[i]] ≺ T [SA[i + 1]] then �(i) < �(i + 1) , mean-
ing that �(1), . . . ,�(n) can be divided into σ increas-
ing consecutive subsequences, where σ is the size of the 
alphabet. Here, ≺ denotes lexicographic precedence. 
It follows that we can store nH0(T )+ o(n log σ) bits, 
where H0(T ) is the 0th-order empirical entropy of T, 
such that we can quickly evaluate � . This bound can be 
improved with a more careful analysis.

Now suppose that instead of a way to evaluate � , 
we have a way to evaluate quickly its inverse, which 
is called the last-to-first (LF) mapping (this name was 
not chosen because, if we start with the position of n 
in the suffix array and repeatedly apply the LF mapping 
we enumerate the positions in the SA in decreasing 
order of their contents, ending with 1; to some extent, 
the name is a lucky coincidence). The LF mapping for 
our example is also shown with arrows in Fig. 3. Since 
it is the inverse of � , the sequence LF(1), . . . , LF(n) can 
be partitioned into σ incrementing subsequences: for 
each character c in the alphabet, if the starting posi-
tions of suffixes preceded by copies of c are stored in 
SA[j1], . . . , SA[jt ] (appearing in that order in the SA), 
then LF(j1) is 1 greater than the number of characters 
lexicographically less than c in T and LF(j2), . . . , LF(jt) 
are the next t − 1 numbers. Figure  3 illustrates this, 
with heavier arrows to values i such that T [SA[i]] = A , 
to illustrate that they point to consecutive positions in 
the suffix array and do not cross.

Consider the interval IP[i..m−1] of the SA containing the 
starting positions of suffixes beginning with P[i..m− 1] , 
and the interval IP[i−1] containing the starting positions 
of suffixes beginning with P[i − 1] . If we apply the LF 
mapping to the SA positions in IP[i..m−1]−1 , the SA posi-
tions we obtain that lie in IP[i−1] for a consecutive subin-
terval, containing the starting positions in T of suffixes 

beginning with P[i − 1..m− 1] . Therefore, we can search 
also with the LF mapping.

If we write the character preceding each suffix of T 
(considering it to be cyclic) in the lexicographic order of 
the suffixes, the result is the Burrows-Wheeler Transform 
(BWT) of T. A rank data structure over the BWT (which, 
given a character and a position, returns the number of 
occurrences of that character up to that position) can 
be used to implement searching with the LF-mapping, 
together with an array C indicating for each character in 
the alphabet how many characters in T are lexicographi-
cally strictly smaller than it. Specifically,

If follows that, to compute IP[i−1..m−1] from IP[i..m−1] , we 
perform a rank query for P[i − 1] immediately before 
the beginning of IP[i..m−1] and add C[P[i + 1]] + 1 to the 
result, to find the beginning of IP[i−1..m−1] ; and we per-
form a rank query for P[i − 1] at the end of IP[i..m−1] 
and add C[P[i + 1]] to the result, to find the end of 
IP[i−1..m−1] . Figure  4 shows the BWT for our example, 
and the sorted list of characters in T. Comparing it to 
Fig. 3 makes the formula above clear: if BWT[i] is the jth 
occurrence of that character in the BWT, then the arrow 
from LF(i) leads from i to the position of the jth occur-
rence of that character in the sorted list. This is the main 
idea behind FM-indexes [11], and the main motivation 
for bioinformaticians to be interested in building BWTs.

Theory of prefix free parsing
We let E ⊆ �w be any set of strings each of length w ≥ 1 
over the alphabet � and let E′ = E ∪ {#, $w} , where # and 
$ are special symbols lexicographically less than any in 
� . We consider a text T [0..n− 1] over � and let D be the 
maximum set such that for d ∈ D the following condi-
tions hold

• d is a substring of #T $w,
• Exactly one proper prefix of d is in E′,
• Exactly one proper suffix of d is in E′,
• No other substring of d is in E′.

Given T and a way to recognize strings in E, we can build 
D iteratively by scanning #T $w to find occurrences of 
elements of E′ , and adding to D each substring of #T $w 
that starts at the beginning of one such occurrence and 
ends at the end of the next one. While we are building D 
we also build a list P of the occurrences of the elements of 
D in T, which we call the parse (although each consecu-
tive pair of elements overlap by w characters, so P is not 
a partition of the characters of #T $w ). In P we identify 
each element of D with its lexicographic rank.

LF(i) = BWT.rankBWT[i](i)+ C[BWT[i]] .
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For example, suppose we have � = {!,A,C,G,T} , 
w = 2 , E = {AC,AG,T!} and

Then, we get

the parse of #T $w is

and, identifying elements of D by their lexicographic 
ranks, the resulting array P is P = [0, 1, 3, 1, 4, 2].

Next, we define S as the set of suffixes of length 
greater than w of elements of D. In our previous exam-
ple we get

Lemma 1 S is a prefix-free set.

Proof If s ∈ S were a proper prefix of s′ ∈ S then, since 
|s| > w , the last w characters of s—which are an element 
of E′—would be a substring of s′ but neither a proper pre-
fix nor a proper suffix of s′ . Therefore, any element of D 

T = GATTACAT!GATACAT!GATTAGATA .

D = {#GATTAC,ACAT!,AGATA$$,T!GATAC,T!GATTAG},

#GATTAC ACAT! T!GATAC ACAT! T!GATTAG AGATA$$

S ={#GATTAC,GATTAC, . . . ,TAC,

ACAT!,CAT!,AT!,

AGATA$$,GATA$$, . . . ,A$$,

T!GATAC, !GATAC, . . . ,TAC,

T!GATTAG, !GATTAG, . . . ,TAG}.

with s′ as a suffix would contain at least three substrings 
in E′ , contrary to the definition of D.  �

Lemma 2 Suppose s, s′ ∈ S and s ≺ s′ . Then sx ≺ s′x′ for 
any strings x, x′ ∈ (� ∪ {#, $})∗.

Proof By Lemma  1, s and s′ are not proper prefixes of 
each other. Since they are not equal either (because 
s ≺ s′ ), it follows that sx and s′x′ differ on one of their first 
min(|s|, |s′|) characters. Therefore, s ≺ s′ implies sx ≺ s′x′ . 
 �

Lemma 3 For any suffix x of #T $w with |x| > w , exactly 
one prefix s of x is in S.

Proof Consider the substring d stretching from the 
beginning of the last occurrence of an element of E′ that 
starts before or at the starting position of x, to the end of 
the first occurrence of an element of E′ that starts strictly 
after the starting position of x. Regardless of whether d 
starts with # or another element of E′ , it is prefixed by 
exactly one element of E′ ; similarly, it is suffixed by 
exactly one element of E′ . It follows that d is an element 
of D. Let s be the prefix of x that ends at the end of that 
occurrence of d in #T $w , so |s| > w and is a suffix of an 
element of D and thus s ∈ S . By Lemma 1, no other prefix 
of x is in S.  �

18279 17 26 5 13 22 157 24 11 2 19 146 23 10 1 168 25 4 12 321 20

18279 17 26 5 13 22 157 24 11 2 19 146 23 10 1 168 25 4 12 321 20

$3$1 $2T CT G AT CT G AA AT GT G TA AA AA AT

$1 $2 $3 A A A A A A A A A A C C G G G G T T T T T T T T

G A T A C A T $2
10 11 12 13 14 15 16 17

G A T T A C A T $1
1 2 3 4 5 6 7 8 9

G A T T A G A T A $3
18 19 20 21 22 23 24 25 26 27

Fig. 4 The BWT and the sorted list of characters for our example. Drawing arrows between corresponding occurrences of characters in the two 
strings gives us the diagram for the LF-mapping
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Because of Lemma 3, we can define a function  f map-
ping each suffix x of #T $w with |x| > w to the unique 
prefix s of x with s ∈ S.

Lemma 4 Let x and x′ be suffixes of #T $w with 
|x|, |x′| > w . Then f (x) ≺ f (x′) implies x ≺ x′.

Proof By the definition of f, f(x) and f (x′) are prefixes of 
x and x′ with |f (x)|, |f (x′)| > w . Therefore, f (x) ≺ f (x′) 
implies x ≺ x′ by Lemma 2.  �

Define T ′[0..n] = T $ . Let g be the function that maps 
each suffix y of T ′ to the unique suffix x of #T $w that 
starts with y, except that it maps T ′[n] = $ to #T $w . 
Notice that g(y) always has length greater than w, so it 
can be given as an argument to f.

Lemma 5 The permutation that lexicographically sorts 
T [0..n− 1] $w , . . . ,T [n− 1] $w , #T $w also lexicographi-
cally sorts T ′[0..n], . . . ,T ′[n− 1..n],T ′[n].

Proof Appending copies of $ to the suf-
fixes of T ′ does not change their relative order, 
and just as #T $w is the lexicographically small-
est of T [0..n− 1] $w , . . . ,T [n− 1] $w , #T $w , 
so T ′[n] = $ is the lexicographically smallest of 
T ′[0..n], . . . ,T ′[n− 1..n],T ′[n] .  �

Let β be the function that, for i < n , maps T ′[i] to the 
lexicographic rank of f (g(T ′[i + 1..n])) in S, and maps 
T[n] to the lexicographic rank of f (g(T ′)) = f (T $w).

Lemma 6 Suppose β maps k copies of a to s ∈ S and 
maps no other characters to s, and maps a total of t char-
acters to elements of S lexicographically less than s. Then 
the (t + 1)st through (t + k)th characters of the BWT of T ′ 
are copies of a.

Proof By Lemmas  4 and  5, if f (g(y)) ≺ f (g(y′)) then 
y ≺ y′ . Therefore, β partially sorts the characters in T ′ 
into their order in the BWT of T ′ ; equivalently, the char-
acters’ partial order according to β can be extended to 
their total order in the BWT. Since every total exten-
sion of β puts those k copies of a in the (t + 1) st through 
(t + k) th positions, they appear there in the BWT.  �

From D and P, we can compute how often each element 
s ∈ S is preceded by each distinct character a in #T $w or, 
equivalently, how many copies of a are mapped by β to 
the lexicographic rank of s. If an element s ∈ S is a suffix 
of only one element d ∈ D and a proper suffix of that—
which we can determine first from D alone—then β maps 
only copies of the the preceding character of d to the rank 

of s, and we can compute their positions in the BWT of 
T ′ . If s = d or a suffix of several elements of D, however, 
then β can map several distinct characters to the rank of 
s. To deal with these cases, we can also compute which 
elements of D contain which characters mapped to the 
rank of s. We will explain in a moment how we use this 
information.

For our example, T = GATTACAT!GATACAT!GATTAGATA , 
we compute the information shown in Table 1. To ease the 
comparison to the standard computation of the BWT of 
T ′ $ , shown in Table 2, we write the characters mapped to 
each element s ∈ S before s itself.

By Lemma  6, from the characters mapped to each 
rank by β and the partial sums of frequencies with 
which β maps characters to the ranks, we can com-
pute the subsequence of the BWT of T ′ that contains 
all the characters β maps to elements of S, which are 
not complete elements of D and to which only one 
distinct character is mapped. We can also leave place-
holders where appropriate for the characters β maps 
to elements of S, which are complete elements of D or 

Table 1 The information we compute for  our example, 
T = GATTACAT!GATACAT!GATTAGATA

Each line shows the lexicographic rank r of an element s ∈ S ; the characters 
mapped to r by β ; s itself; the elements of D from which the mapped characters 
originate; the total frequency with which characters are mapped to r; and the 
preceding partial sum of the frequencies

Rank Mapped 
characters

Suffix Sources Frequency Preceding 
partial sum

0 A #GAT TAC 1 1 0

1 T !GATAC 2 1 1

2 T !GAT TAG 3 1 2

3 T A$$ 5 1 3

4 T ACAT! 4 2 4

5 T AGATA$$ 5 1 6

6 C AT! 4 2 7

7 G ATA$$ 5 1 9

8 G ATAC 2 1 10

9 G ATTAC 1 1 11

10 G ATTAG 3 1 12

11 A CAT# 4 2 13

12 A GATA$$ 5 1 15

13 ! GATAC 2 1 16

14 $ GAT TAC 1 1 17

15 ! GAT TAG 3 1 18

16 A T!GATAC 2 1 19

17 A T!GAT TAG 3 1 20

18 A TA$$ 5 1 21

19 T, A TAC 1; 2 2 22

20 T TAG 3 1 24

21 A TTAC 1 1 25

22 A TTAG 3 1 26
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to which more than one distinct character is mapped. 
For our example, this subsequence is ATT TTT TCC GGG 
GAAA!$!AAA - - TAA . Notice we do not need all 
the information in P to compute this subsequence, only 
D and the frequencies of its elements in P.

Suppose s ∈ S is an entire element of D or a suf-
fix of several elements of D, and occurrences of s are 
preceded by several distinct characters in #T $w , so β 
assigns s’s lexicographic rank in S to several distinct 
characters. To deal with such cases, we can sort the suf-
fixes of the parse P and apply the following lemma.

Lemma 7 Consider two suffixes t and t ′ of #T $w start-
ing with occurrences of s ∈ S , and let q and q′ be the suf-
fixes of P encoding the last w characters of those occur-
rences of s and the remainders of t and t ′ . If t ≺ t ′ then 
q ≺ q′.

Proof Since s occurs at least twice in #T $w , it cannot 
end with $w and thus cannot be a suffix of #T $w . There-
fore, there is a first character on which t and t ′ differ. 
Since the elements of D are represented in the parse by 
their lexicographic ranks, that character forces q ≺ q′ . �

We consider the occurrences in P of the elements 
of D suffixed by s, and sort the characters preceding 
those occurrences of s into the lexicographic order of 
the remaining suffixes of P which, by Lemma 7, is their 
order in the BWT of T ′ . In our example, TAC ∈ S is 
preceded in #T $$ by a T when it occurs as a suffix of 
#GATTAC ∈ D , which has rank 0 in D, and by an A when 
it occurs as a suffix of T!GATAC ∈ D , which has rank 3 
in D. Since the suffix following 0 in P = 0, 1, 3, 1, 4, 2 is 
lexicographically smaller than the suffix following 3, 
that T precedes that A in the BWT.

Since we need only D and the frequencies of its ele-
ments in P to apply Lemma  6 to build and store the 
subsequence of the BWT of T ′ that contains all the 
characters β maps to elements of S, to which only one 
distinct character is mapped, this takes space propor-
tional to the total length of the elements of D. We can 
then apply Lemma 7 to build the subsequence of miss-
ing characters in the order they appear in the BWT. 
Although this subsequence of missing characters could 
take more space than D and P combined, as we generate 
them we can interleave them with the first subsequence 
and output them, thus still using workspace propor-
tional to the total length of P and the elements of D and 
only one pass over the space used to store the BWT.

Notice, we can build the first subsequence from 
D and the frequencies of its elements in P; store it in 
external memory; and make a pass over it while we gen-
erate the second one from D and P, inserting the miss-
ing characters in the appropriate places. This way we 
use two passes over the space used to store the BWT, 
but we may use significantly less workspace.

Summarizing, assuming we can recognize the strings 
in E quickly, we can quickly compute D and P with one 
scan over T. From D and P, with Lemmas 6 and 7, we 
can compute the BWT of T ′ = T $ by sorting the suf-
fixes of the elements of D and the suffixes of P. Since 
there are linear-time and linear-space algorithms for 
sorting suffixes when working in internal memory, this 
implies our main theoretical result:

Theorem  1 We can compute the BWT of T $ from D 
and P using workspace proportional to sum of the total 
length of P and the elements of D, and O(n) time when we 
can work in internal memory.

Table 2 The BWT for T ′
= GATTACAT!GATACAT!GATTAGATA$

Each line shows a position in the BWT; the character in that position; and the 
suffix immediately following that character in T ′

i BWT[i] Suffix

0 A $

1 T !GAT ACA T!GAT TAG ATA$

2 T !GAT TAG ATA$

3 T A$

4 T ACAT!GAT ACA T!GAT TAG ATA$

5 T ACAT!GAT TAG ATA$

6 T AGATA$

7 C AT!GAT ACA T!GAT TAG ATA$

8 C AT!GAT TAG ATA$

9 G ATA$

10 G ATA CAT !GAT TAG ATA$

11 G ATT ACA T!GAT ACA T!GAT TAG ATA$

12 G ATT AGA TA$

13 A CAT!GAT ACA T!GAT TAG ATA$

14 A CAT!GAT TAG ATA$

15 A GATA$

16 ! GAT ACA T!GAT TAG ATA$

17 $ GAT TAC AT!GAT ACA T!GAT TAG ATA$

18 ! GAT TAG ATA$

19 A T!GAT ACA T!GAT TAG ATA$

20 A T!GAT TAG ATA$

21 A TA$

22 T TACAT!GAT ACA T!GAT TAG ATA$

23 A TACAT!GAT TAG ATA$

24 T TAG ATA $

25 A TTA CAT !GAT ACA T!GAT TAG ATA$

26 A TTA GAT A$
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The significance of the above theorem is that if the text 
T contains many repetitions the dictionary of distinct 
phrases D will be relatively small and, if the dictionary 
words are sufficiently long, also the parse P will be much 
smaller than T. Thus, even if T is very large, if D and P fit 
into internal memory using Theorem 1 we can efficiently 
build the BWT for T doing the critical computations in 
RAM after a single sequential scanning of T during the 
parsing phase.

Prefix free parsing in practice
We have implemented our BWT construction based on 
prefix free parsing and applied it to collections of repeti-
tive documents and genomic databases. Our purpose 
is to test our conjectures that (1) with a good choice of 
the parsing strategy the total length of the phrases in the 
dictionary and the number of phrases in the parse will 
both be small in comparison to the uncompressed size 
of the collection, and (2) computing the BWT from the 
dictionary and the parse leads to an overall speed-up and 
reduction in memory usage. In this section we describe 
our implementation and then report our experimental 
results.

Implementation
Given a window size w, we select a prime p and we define 
the set E described in “Theory of prefix free parsing” sec-
tion, as the set of length-w strings such that their Karp-
Rabin fingerprint modulo p is zero. With this choice our 
parsing algorithm works as follows. We slide a window of 
length w over the text, keeping track of the Karp-Rabin 
hash of the window; we also keep track of the hash of the 
entire prefix of the current phrase that we have processed 
so far. Whenever the hash of the window is 0 modulo p, 
we terminate the current phrase at the end of the win-
dow and start the next one at the beginning of the win-
dow. We prepend a NUL character to the first phrase and 
append w copies of NUL to the last phrase. If the text 
ends with w characters whose hash is 0 modulo p, then 
we take those w character to be the beginning of the last 
phrase and append to them w copies of NUL. We note 
that we prepend and append copies of the same NUL 
character; although using different characters simplifies 
the proofs in “Theory of prefix free parsing” section, it is 
not essential in practice.

We keep track of the set of hashes of the distinct 
phrases in the dictionary so far, as well as the phrases’ 
frequencies. Whenever we terminate a phrase, we check 
if its hash is in that set. If not, we add the phrase to the 
dictionary and its hash to the set, and set its frequency 
to 1; if so, we compare the current phrase to the one in 
the dictionary with the same hash to ensure they are 
equal, then increment its frequency (using a 64-bit hash 

the probability of there being a collision is very low, so 
we have not implemented a recovery mechanism if one 
occurs). In both cases, we write the hash to disk.

When the parsing is complete, we have generated the 
dictionary D and the parsing P = p1, p2, . . . , pz , where 
each phrase pi is represented by its hash. Next, we sort 
the dictionary and make a pass over P to substitute the 
phrases’ lexicographic ranks for their hashes. This gives 
us the final parse, still on disk, with each entry stored as 
a 4-byte integer. We write the dictionary to disk phrase 
by phrase in lexicographic order with a special end-of-
phrase terminator at the end of each phrase. In a separate 
file we store the frequency of each phrase in as a 4-byte 
integer. Using four bytes for each integer does not give 
us the best compression possible, but it makes it easy 
to process the frequency and parse files later. Finally, 
we write to a separate file the array W of length |P| such 
that W[j] is the character of pj in position w + 1 from the 
end (recall each phrase has length greater than w). These 
characters will be used to handle the elements of S that 
are also elements of D.

Next, we compute the BWT of the parsing P, with 
each phrase represented by its 4-byte lexicographic rank 
in D. The computation is done using the SACA-K suffix 
array construction algorithm [10] which, among the lin-
ear time algorithms, is the one using the smallest work-
space and is particularly suitable for input over large 
alphabets. Instead of storing BWT (P) = b1, b2, . . . , bz , 
we save the same information in a format more suitable 
for the next phase. We consider the dictionary phrases in 
lexicographic order, and, for each phrase di , we write the 
list of BWT positions where di appears. We call this the 
inverted list for phrase di . Since the size of the inverted 
list of each phrase is equal to its frequency, which is avail-
able separately, we write to file the plain concatenation 
of the inverted lists using again four bytes per entry, for 
a total of 4|P| bytes. In this phase we also permute the 
elements of W so that now W[j] is the character com-
ing from the phrase that precedes bj in the parsing, i.e. 
P[SA[j] − 2].

In the final phase of the algorithm we compute the 
BWT of the input  T. We deviate slightly from the 
description in “Theory of prefix free parsing” section in 
that instead of lexicographically sorting the suffixes in D 
larger than w we sort all of them and later ignore those 
which are of length ≤ w . The sorting is done applying 
the gSACAK algorithm [12] which computes the SA and 
LCP array for the set of dictionary phrases. We then pro-
ceed as in “Theory of prefix free parsing” section. If dur-
ing the scanning of the sorted set S we meet s which is a 
proper suffix of several elements of D we use a heap to 
merge their respective inverted lists writing a character 
to the final BWT file every time we pop a position from 
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the heap. If we meet s which coincides with a dictionary 
phrase d we write the characters retrieved from W from 
the positions obtained from d’s inverted list.

It turns out that the the most expensive phases of the 
algorithm are the first, where we compute the parsing of 
T, and the last, where we compute BWT(T) from the SA 
of D and the inverted lists for D’s phrases. Fortunately, 
both phases can be sped-up using multiple threads in 
parallel. To parallelize the first phase we split the input 
into equal size chunks, and we assign each chunk to a dif-
ferent thread. Using this simple approach, we obtained a 
speed-up of a factor 2 using four threads, but additional 
threads do not yield substantial improvements. There 
are two likely reasons for that: (1) during the parsing all 
threads need to update the same dictionary, and (2) each 
thread has to write to disk its portion of the parsing and, 
unless the system has multiple disks, disk access becomes 
a bottleneck. To parallelize the computation of the final 
BWT(T) we use a different approach. The main thread 
scans the suffix array of the dictionary and as soon as it 
finds a range of equal suffixes it passes such range to an 
helper thread that computes and writes to disk the cor-
responding portion of BWT(T). Again, we were able to 
reduce the running time of this phase by factor 2 using 
four threads. In the next section we only report the run-
ning times for the single thread algorithm since we are 
still working to improve our multi-thread version.

Experiments
In this section, the parsing and BWT computation are 
experimentally evaluated. All experiments were run 
on a server with Intel(R) Xeon(R) CPU E5-2640 v4 @ 
2.40 GHz and 756 GBs of RAM.

Table  3 shows the sizes of the dictionaries and parses 
for several files from the Pizza and Chili repetitive cor-
pus [13], with three settings of the parameters w and p. 

We note that cere contains long runs of Ns and world_
leaders contains long runs of periods, which can either 
cause many phrases, when the hash of w copies of those 
characters is 0 modulo p, or a single long phrase oth-
erwise; we also display the sizes of the dictionaries and 
parses for those files with all Ns and periods removed. 
The dictionaries and parses occupy between 5 and 31% of 
the space of the uncompressed files.

Table  4 shows the sizes of the dictionaries and parses 
for prefixes of a database of Salmonella genomes [4]. The 
dictionaries and parses occupy between 14 and 44% of 
the space of the uncompressed files, with the compres-
sion improving as the number of genomes increases. 
In particular, the dataset of ten thousand genomes 
takes nearly 50 GB uncompressed, but with w = 10 and 
p = 100 the dictionary and parse take only about 7 GB 
together, so they would still fit in the RAM of a com-
modity machine. This seems promising, and we hope the 
compression is even better for larger genomic databases.

Table 5 shows the runtime and peak memory usage for 
computing the BWT from the parsing for the database 
of Salmonella genomes. As a baseline for comparison, 
simplebwt computes the BWT by first computing the 
Suffix Array using algorithm SACA-K [10] which is the 
same tool used internally by our algorithm since it is fast 
and uses O(1) workspace. As shown in Table 5, the peak 
memory usage of simplebwt is reduced by a factor of 4 
to 10 by computing the BWT from the parsing; further-
more, the total runtime is competitive with simplebwt. 
In some instances, for example the databases of 5000, 
10,  000 genomes, computing the BWT from the pars-
ing achieved significant runtime reduction over sim-
plebwt; with w = 10 , p = 100 on these instances the 
runtime reduction is more than factors of 2 and 4 respec-
tively. For our BWT computations, the peak memory 
usage with w = 6 , p = 20 stays within a factor of roughly 

Table 3 The dictionary and  parse sizes for  several files from  the  Pizza and  Chili repetitive corpus, with  three settings 
of the parameters w and p 

All sizes are reported in megabytes; percentages are the sums of the sizes of the dictionaries and parses, divided by the sizes of the uncompressed files

For each file, the sizes are in italics for the settings with the best overall compression

File Size w = 6, p = 20 w = 8, p = 50 w = 10, p = 100

Dict. Parse % Dict. Parse % Dict. Parse %

cere 440 61 77 31 43 159 46 89 17 24

cere_no_Ns 409 33 77 27 43 33 18 60 17 19

dna.001.1 100 8 20 27 13 9 21 21 4 25

einstein.en.txt 446 2 87 20 3 39 9 4 17 5

influenza 148 16 28 30 32 12 29 49 6 37

kernel 247 14 52 26 14 20 13 15 10 10

world_leaders 45 5 5 21 8 2 21 11 1 26

world_leaders_no_dots 23 4 5 34 6 2 31 7 1 33
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2 of the original file size and is smaller than the original 
file size on the larger databases of 1000 genomes.

Qualitatively similar results on files from the Pizza and 
Chili corpus are shown in Table 6.

On the choice of the parameter w and p
Finally, Fig.  5 shows the peak memory usage and runt-
ime for computing the BWT on a collection of 1000 
Salmonella genomes of size 2.7 GBs, for all pairs of 
parameter choices (w,  p), where w ∈ {6, 8, 10} and 
p ∈ {50, 100, 200, 400, 800} . As shown in Fig.  5a, the 
choice (w, p) = (10, 50) results in the smallest peak 

memory usage, while Fig. 5b shows that (w, p) = (10, 200) 
results in the fastest runtime. In general, for either runt-
ime or peak memory usage, the optimal choice of (w, p) 
differs and depends on the input. However, notice that all 
pairs (w,  p) tested here required less than 1.1 times the 
input size of memory and the slowest runtime was less 
than twice the fastest.

Indexing
The BWT is widely used as part of the FM index  [11], 
which is the heart of popular DNA sequencing read 
aligners such as Bowtie  [14, 15], BWA  [16] and SOAP 

Table 4 The dictionary and  parse sizes for  prefixes of  a  database of  Salmonella genomes, with  three settings 
of the parameters w and p 

Again, all sizes are reported in megabytes; percentages are the sums of the sizes of the dictionaries and parses, divided by the sizes of the uncompressed files

For each prefix, the sizes are in italics for the settings with the best overall compression

Number 
of genomes

Size w = 6, p = 20 w = 8, p = 50 w = 10, p = 100

Dict. Parse % Dict. Parse % Dict. Parse %

50 249 68 43 44 77 20 39 91 10 40

100 485 83 85 35 99 39 28 122 19 29

500 2436 273 424 29 314 194 21 377 96 19

1000 4861 475 847 27 541 388 19 643 192 17

5000 24936 2663 4334 28 2915 1987 20 3196 985 17

10,000 49420 4190 8611 26 4652 3939 17 5176 1955 14

Table 5 Time (seconds) and  peak memory consumption (megabytes) of  BWT calculations for  preixes of  a  database 
of Salmonella genomes, for three settings of the parameters w and p and for the comparison method simplebwt 

For each prefix, the time and memory are in italics for the sets which minimize them

Number 
of genomes

w = 6, p = 20 w = 8, p = 50 w = 10, p = 100 simplebwt

Time Peak Time Peak Time Peak Time Peak

50 71 545 63 642 65 782 53 2247

100 118 709 100 837 102 1059 103 4368

500 570 2519 443 2742 402 3304 565 21,923

1000 1155 4517 876 4789 776 5659 1377 43,751

5000 7412 42,067 5436 46,040 4808 51,848 11,600 224,423

10,000 19,152 68,434 12,298 74,500 10,218 84,467 43,657 444,780

Table 6 Time (seconds) and peak memory consumption (megabytes) of BWT calculations on various files from the Pizza 
and Chili repetitive corpus, for three settings of the parameters w and p and for the comparison method simplebwt 

For each prefix, the time and memory are in italics for the sets which minimize them

File w = 6, p = 20 w = 8, p = 50 w = 10, p = 100 simplebwt

Time Peak Time Peak Time Peak Time Peak

cere 90 603 79 559 74 801 90 3962

einstein.en.txt 53 196 40 88 35 53 97 4016

influenza 27 166 27 284 33 435 30 1331

kernel 43 170 29 143 25 144 50 2216

world_leaders 7 50 7 74 7 98 7 405
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2 [17]. In these tools, rank support is added to the BWT 
using sampled arrays of precalculated ranks. Similarly, 
locate support is added using a sampled suffix array (SA). 
Until recently, SA samples for massive, highly repetitive 
datasets were much larger than the BWT, slow to calcu-
late, or both. Gagie, Navarro, and Prezza [18] have shown 
that only the SA values at the ends of runs in the BWT 
need to be stored. We are currently studying how to build 
this sample during the process of computing the BWT 
from the dictionary and the parse. We show that prefix-
free parsing can be incorporated into the construction 
of a counting-only run-length FM index (RLFM) and 
we measure the time and space efficiency of the RLFM 
construction and its “count” query in a DNA sequencing 
context using data from the 1000 Genomes Project. We 
compare the performance of the RLFM based methods to 
the popular Bowtie [14] read aligner.

Implementation
Constructing the counting-only RLFM requires three 
steps: building the BWT from the text, generating the F 
array, and run-length encoding the BWT. We use prefix-
free parsing to build the BWT. The F array is easily built 
in a single pass over the text. Run-length encoding is per-
formed using the implementation by Gagie et  al.  [18], 
which draws upon data structures implemented in the 
Succinct Data Structure Library (SDSL) [19]; the concat-
enated run-heads of the BWT are stored in a Huffman 
shaped wavelet tree, and auxiliary bit-vectors are used to 
refer to the positions of the runs within the BWT. During 
index construction, all characters that are not A, C, G, T, 
or N are ignored.

Typically, the BWT is built from a full SA, and thus 
a sample could be built by simply retaining parts of 

the initial SA. However, prefix-free parsing takes a dif-
ferent approach, so to build a SA sample the method 
would either need to be modified directly or a SA sam-
ple would have to be generated post-hoc. In the latter 
case, we can build a SA sample solely from the BWT 
by “back-stepping” through the BWT with LF map-
pings, and storing samples only at run-starts and run-
ends. The main caveats to this method are that an LF 
mapping would have to be done for every character in 
the text, and that the entire BWT would need to be 
in memory in some form. These drawbacks would be 
especially noticeable for large collections. For now, we 
focus only on counting support, and so SA samples are 
excluded from these experiments except where other-
wise noted.

Experiments
The indexes were built using data from the 1000 
Genomes Project (1  KG)   [20]. Distinct versions of 
human chromosome 19 (“chr19”) were created by using 
the bcftools consensus [21] tool to combine the 
chr19 sequence from the GRCh37 assembly with a sin-
gle haplotype (maternal or paternal) from an individual 
in the 1  KG project. Chr19 is 58 million DNA bases 
long and makes up 1.9% of the overall human genome 
sequence. In all, we built 10 sets of chr19s, containing 
1, 2, 10, 30, 50, 100, 250, 500, and 1000 distinct ver-
sions, respectively. This allows us to measure running 
time, peak memory footprint and index size as a func-
tion of the collection size. Index-building and counting 
experiments were run on a server with Intel(R) Xeon(R) 
CPU E5-2650 v4 @ 2.20 GHz and 512 GBs of RAM.

a b
Fig. 5 Results versus various choices of parameters (w, p) on a collection of 1000 Salmonella genomes (2.7 GB)
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Index building
We compared our computational efficiency to that of 
Bowtie [14] v1.2.2, using the bowtie-build command 
to build Bowtie indexes for each collection. We could 
not measure beyond the 250 distinct versions as Bowtie 
exceeded available memory. Peak memory was measured 
using the Unix time -v command, taking the value 
from its “Maximum resident set size (kbytes)” field. Tim-
ings were calculated and output by the programs them-
selves. The peak memory footprint and running time for 
RLFM index building for each collection are plotted in 
Fig. 6.

Compared to Bowtie, the resources required for RLFM 
index-building grew much more slowly. For example, the 
RLFM required about 20 GB to build an index for 1000 
chr19 sequences, whereas Bowtie required twice that 
amount to build an index for just 250 sequences. For 
data points up to 50 sequences in Fig.  6a, the “pfbwt” 
and “rlfm_total” points coincided, indicating that pre-
fix-free parsing drove peak memory footprint for the 
overall index-building process. After 50 sequences, 
however, “pfbwt” fell below “rlfm_total” and accounted 
for a diminishing fraction of the footprint as the collec-
tion grew. Similarly, prefix-free parsing accounted for a 
diminishing fraction of total index-building time as the 
sequence collection grew (Fig. 6b). These trends illustrate 
the advantage of prefix-free parsing when collections are 
large and repetitive.

We can extrapolate the time and memory required to 
index many whole human genomes. Considering chr19 
accounts for 1.9% of the human genome sequence, and 

assuming that indexing 1000 whole human-genome 
haplotypes will therefore require about 52.6 times the 
time and memory as indexing 1000 chr19s, we extrapo-
late that indexing 1000 human haplotypes would incur 
a peak memory footprint of about 1.01 TB and require 
about 102 h to complete. Of course, the latter figure can 
be improved with parallelization.

We also measured that the index produced for the 1000 
chr19s took about 131  MB of disk space. Thus, we can 
extrapolate that the index for 1000 human haplotypes 
would take about 6.73 GB. While this figure makes us 
optimistic about future scaling, it is not directly compara-
ble to the size of a Bowtie genome index since it excludes 
the SA samples needed for “locate” queries.

Count query time
We measured how the speed of the RLFM “count” opera-
tion scales with the size of the sequence collection. Given 
a string pattern, “count” applies the LF mapping repeat-
edly to obtain the range of SA positions matching the 
pattern. It returns the size of this range.

We measured average “count” time by conducting a 
simple simulation of DNA-sequencing-like data. First 
we took the first chr19 version and extracted and saved 
100,000 random substrings of length 100. That chr19 was 
included in all the successive collections, so these sub-
strings are all guaranteed to occur at least once regardless 
of which collection we are querying.

We then queried each of the collections with the 
100,000 substrings and divided the running time by 
100,000 to obtain the average “count” query time. Query 
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time increases as the collection grows (Fig. 7) but does so 
slowly, increasing from 750 μs for 1 sequence to 933 μs 
for 1000 sequences.

Including the SA sample
Though no SA sample was built for the experiments 
described so far, such a sample is needed for “locate” 

queries that return the text offset corresponding to a 
BWT element. A SA sample can be obtained using the 
“back-stepping” method described above. We imple-
mented a preliminary version of this method to examine 
whether prefix-free parsing is a bottleneck in that sce-
nario. Here, index building consists of three steps: (1) 
building the BWT using prefix-free parsing (“pfbwt”), 
(2) back-stepping to create the SA sample and auxiliary 
structures (“bwtscan”), and (3) run-length encoding the 
BWT (“rle”). We built RLFM indexes for the same chr19 
collections as above, measuring running time and peak 
memory footprint for each of the three index-building 
step independently (Fig. 8).

The “bwtscan” step consistently drives peak memory 
footprint, since it stores the entire BWT in memory as a 
Huffman shaped wavelet tree [19]. The “pfbwt” step has a 
substantially smaller footprint and used the least memory 
of all the steps for collections larger than 50 sequences. 
“pfbwt” is the slowest step for small collections, but 
“bwtscan” becomes the slowest for 10 or more sequences. 
We conclude that as the collection of sequences grows, 
the prefix-free parsing method contributes proportion-
ally less to peak memory footprint and running time, and 
presents no bottlenecks for large collections.

Conclusions
We have described how prefix-free parsing can be used as 
preprocessing step to enable compression-aware compu-
tation of BWTs of large genomic databases. Our results 
demonstrate that the dictionaries and parses are often 
significantly smaller than the original input, and so may 
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Fig. 8 Computational efficiency of the three stages of index building when SA sampling is included. Results are shown for the prefix-free parsing 
(“pfbwt”), back-stepping (“bwtscan”) and run-length encoding (“rle”) steps. “total” is the sum of the three steps
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fit in a reasonable internal memory even when T is very 
large. We show how the BWT can be constructed from 
a dictionary and parse alone. Lastly, we give experiments 
demonstrating how the run length compressed FM-index 
can be constructed from the parse and dictionary. The 
efficiency of this construction shows that this method 
opens up the possibility to constructing the BWT for 
datasets that are terabytes in size; such as GenomeTrakr 
[4] and MetaSub [22].

Finally, we note that when downloading large datasets, 
prefix-free parsing can avoid storing the whole uncom-
pressed dataset in memory or on disk. Suppose we run 
the parser on the dataset as it is downloaded, either as a 
stream or in chunks. We have to keep the dictionary in 
memory for parsing but we can write the parse to disk 
as we go, and in any case we can use less total space than 
the dataset itself. Ideally, the parsing could even be done 
server-side to reduce transmission time and/or band-
width—which we leave for future implementation and 
experimentation.
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