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Linear time minimum segmentation enables 
scalable founder reconstruction
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Abstract 

Background:  We study a preprocessing routine relevant in pan-genomic analyses: consider a set of aligned hap-
lotype sequences of complete human chromosomes. Due to the enormous size of such data, one would like to 
represent this input set with a few founder sequences that retain as well as possible the contiguities of the original 
sequences. Such a smaller set gives a scalable way to exploit pan-genomic information in further analyses (e.g. read 
alignment and variant calling). Optimizing the founder set is an NP-hard problem, but there is a segmentation formu-
lation that can be solved in polynomial time, defined as follows. Given a threshold L and a set R = {R1, . . . , Rm} of m 
strings (haplotype sequences), each having length n, the minimum segmentation problem for founder reconstruc-
tion is to partition [1, n] into set P of disjoint segments such that each segment [a, b] ∈ P has length at least L and the 
number d(a, b) = |{Ri[a, b] : 1 ≤ i ≤ m}| of distinct substrings at segment [a, b] is minimized over [a, b] ∈ P . The dis-
tinct substrings in the segments represent founder blocks that can be concatenated to form max{d(a, b) : [a, b] ∈ P} 
founder sequences representing the original R such that crossovers happen only at segment boundaries.

Results:  We give an O(mn) time (i.e. linear time in the input size) algorithm to solve the minimum segmentation 
problem for founder reconstruction, improving over an earlier O(mn

2).

Conclusions:  Our improvement enables to apply the formulation on an input of thousands of complete human 
chromosomes. We implemented the new algorithm and give experimental evidence on its practicality. The imple-
mentation is available in https ://githu b.com/tsnor ri/found er-seque nces.
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Background
A key problem in pan-genomics is to develop a suffi-
ciently small, efficiently queriable, but still descriptive 
representation of the variation common to the subject 
under study [1]. For example, when studying human pop-
ulation, one would like to take all publicly available varia-
tion datasets (e.g. [2–4]) into account. Many approaches 
encode the variation as a graph [5–10] and then one can 
encode the different haplotypes as paths in this graph 
[11]. An alternative has been proposed [12] based on a 
compressed indexing scheme for a multiple alignment of 

all the haplotypes [13–17]. In either approach, scalability 
is hampered by the encoding of all the haplotypes.

We suggest to look for a smaller set of representative 
haplotype sequences to make the above pan-genomic 
representations scalable.

Finding such set of representative haplotype sequences 
that retain the original contiguities as well as possible, is 
known as the founder sequence reconstruction problem 
[18]. In this problem, one seeks a set of d founders such 
that the original m haplotypes can be mapped with mini-
mum amount of crossovers to the founders. Here a cross-
over means a position where one needs to jump from one 
founder to another to continue matching the content of 
the haplotype in question. Unfortunately, this problem 
is NP-hard even to approximate within a constant factor 
[19].
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For founder reconstruction to be scalable to the pan-
genomic setting, one would need an algorithm to be 
nearly linear to the input size. With this is mind, we study 
a relaxation of founder reconstruction that is known to 
be polynomial time solvable: Namely, when limiting 
all the crossovers to happen at the same locations, one 
obtains a minimum segmentation problem specific to 
founder reconstruction [18]. A dynamic programming 
algorithm solves this problem in O(n2m) time [18], where 
m is the number of haplotypes and n is the length of each 
of them.

In this paper, we improve the running time of solving 
the minimum segmentation problem of founder recon-
struction to O(mn) (linear in the input size).

We also implement the new algorithm, as well as a fur-
ther heuristic that aims to minimize crossovers over the 
segment boundaries (yielded by the optimal solution to 
the minimum segmentation problem). In our experi-
ments, we show that the approach is practical on human 
genome scale setting. Namely, we apply the implemen-
tation on a multiple alignment representing 5009 hap-
lotypes of human chromosome 6, and the result is 130 
founder sequences with the average distance of two 
crossovers being 9624 bases. Preserving such long con-
tiguities in just 2.5% of the original input space is prom-
ising for the accuracy and scalability of the short read 
alignment and variant calling motivating our study.

The main technique behind the improvement is the use 
of positional Burrows–Wheeler transform (pBWT) [20], 
and more specifically its extension to larger alphabets 
[21]. While the original dynamic programming solution 
uses O(nm) time to look for the best preceding segment 
boundary for each column of the input, we observe that 
at most m values in pBWT determine segment bounda-
ries where the number of distinct founder substrings 
change. Minimums on the already computed dynamic 
programming values between each such interesting con-
secutive segment boundaries give the requested result. 
However, it turns out that we can maintain the mini-
mums directly in pBWT internal structures (with some 
modifications) and have to store only the last L com-
puted dynamic programming values, thus spending only 
O(m+ L) additional space, where L is the input threshold 
on the length of each segment. The segmentation is then 
reconstructed by standard backtracking approach in O(n) 
time using an array of length n.

Preliminary version of this work appeared in WABI 
2018 [22].

Methods
Notation and problem statement
For a string s = c1c2 · · · cn , denote by |s| its length n. We 
write s[i] for the letter ci of s and s[i,  j] for the substring 

cici+1 . . . cj . An analogous notation is used for arrays. For 
any numbers i and j, the set of integers {x ∈ Z : i ≤ x ≤ j} 
(possibly empty) is denoted by [i, j].

The input for our problem is the set R = {R1, . . . ,Rm} 
of strings of length n, called recombinants. A set 
F = {F1, . . . , Fd} of strings of length n is called a founder 
set of R if for each string Ri ∈ R , there exists a parti-
tion Pi of the segment [1,  n] into disjoint subsegments 
such that, for each [a, b] ∈ Pi , the string Ri[a, b] is equal 
to Fj[a, b] for some j ∈ [1, d] . The partition Pi together 
with the mapping of the segments [a, b] ∈ Pi to substrings 
Fj[a, b] is called a parse of Ri in terms of F  , and a set of 
parses for all Ri ∈ R is called a parse of R in terms of F  . 
The integers a and b+ 1 , for [a, b] ∈ Pi , are called cross-
over points; thus, in particular, 1 and n+ 1 are always 
crossover points.

It follows from the definition that, in practice, it makes 
sense to consider founder sets only for pre-aligned 
recombinants. Throughout the paper we implicitly 
assume that this is the case, although all our algorithms, 
clearly, work in the unaligned setting too but the produce 
results may hardly make any sense.

We consider the problem of finding a “good” founder set 
F  and a “good” corresponding parse of R according to a 
reasonable measure of goodness. Ukkonen [18] pointed 
out that such measures may contradict each other: for 
instance, a minimum founder set obviously has size 
d = maxj∈[1,n] |{R1[j], . . . ,Rm[j]}| , but parses correspond-
ing to such set may have unnaturally many crossover 
points; conversely, R is a founder set of itself and the only 
crossover points of its trivial parse are 1 and n+ 1 , but the 
size m of this founder set is in most cases unacceptably 
large. Following Ukkonen’s approach, we consider com-
promise parameterized solutions. The minimum founder 
set problem is, given a bound L and a set of recombinants 
R , to find a smallest founder set F  of R such that there 
exists a parse of R in terms of F  in which the distance 
between any two crossover points is at least L (the crosso-
ver points may belong to parses of different recombinants, 
i.e., for [a, b] ∈ Pi and [a′, b′] ∈ Pj , where Pi and Pj are 
parses of Ri and Rj , we have either a = a′ or |a− a′| ≥ L).

It is convenient to reformulate the problem in terms of 
segmentations of R . A segment of R = {R1, . . . ,Rm} is a 
set R[j, k] = {Ri[j, k] : Ri ∈ R} . A segmentation of R is 
a collection S of disjoint segments that covers the whole 
R , i.e., for any distinct R[j, k] and R[j′, k ′] from S, [j, k] 
and [j′, k ′] do not intersect and, for each x ∈ [1, n] , there 
is R[j, k] from S such that x ∈ [j, k] . The minimum seg-
mentation problem [18] is, given a bound L and a set of 
recombinants R , to find a segmentation S of R such that 
max{|R[j, k]| : R[j, k] ∈ S} is minimized and the length 
of each segment from S is at least L; in other words, the 
problem is to compute
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where SL is the set of all segmentations in which all seg-
ments have length at least L.

The minimum founder set problem and the minimum 
segmentation problem are connected: any segmentation 
S with segments of length at least L induces in an obvi-
ous way a founder set of size max{|R[j, k]| : R[j, k] ∈ S} 
and a parse in which all crossover points are located 
at segment boundaries (and, hence, at distance at 
least L from each other); conversely, if F  is a founder 
set of R and {j1, . . . , jp} is the sorted set of all crosso-
ver points in a parse of R such that jq − jq−1 ≥ L for 
q ∈ [2, p] , then S = {R[jq−1, jq−1] : q ∈ [2, p]} is a seg-
mentation of R with segments of length at least L and 
max{|R[j, k]| : R[j, k] ∈ S} ≤ |F |.

Our main result is an algorithm that solves the mini-
mum segmentation problem in O(mn) time (linear 
in the input size). The solution normally does not 
uniquely define a founder set of R : for instance, if the 
built segmentation of R = {baaaa, baaab, babab} 
is S = {R[1, 1],R[2, 3],R[4, 5]} , then the possible 
founder sets induced by S are F1 = {baaab, babaa} 
and F2 = {baaaa, babab} . In other words, to construct 
a founder set, one concatenates fragments of recom-
binants corresponding to the found segments in a certain 
order. We return to this ordering problem in the section 
describing experiments and now focus on the details of 
the segmentation problem.

Hereafter, we assume that the input alphabet � is the 
set [0, |�|−1] of size O(m), which is a natural assump-
tion considering that the typical alphabet size is 4 in 
our problem. It is sometimes convenient to view the set 
R = {R1, . . . ,Rm} as a matrix with m rows and n columns. 
We say that an algorithm processing the recombinants R 
is streaming if it reads the input from left to right “colum-
nwise”, for each k from 1 to n, and outputs an answer for 
each set of recombinants {R1[1, k], . . . ,Rm[1, k]} immedi-
ately after reading the “column” {R1[k], . . . ,Rm[k]} . The 
main result of the paper is the following theorem.

Theorem  1 Given a bound L and recombinants 
R = {R1, . . . ,Rm} , each having length n, there is an algo-
rithm that computes (1) in a streaming fashion in O(mn) 
time and O(m+ L) space. Using an additional array of 
length n, one can also find in O(n) time a segmentation on 
which (1) is attained, thus solving the minimum segmen-
tation problem.

Minimum segmentation problem
Given a bound L and a set of recombinants 
R = {R1, . . . ,Rm} each of which has length  n, Ukkonen 

(1)
min
S∈SL

max{|R[j, k]| : R[j, k] ∈ S}, [18] proposed a dynamic programming algorithm that 
solves the minimum segmentation problem in O(mn2) 
time based on the following recurrence relation:

It is obvious that M(n) is equal to the solution (1); the seg-
mentation itself can be reconstructed by “backtracking” 
in a standard way [18]. We build on the same approach.

For a given k ∈ [1, n] , denote by jk ,1, . . . , jk ,rk the 
sequence of all positions j ∈ [1, k − L] in which the value 
of |R[j, k]| changes, i.e., 1 ≤ jk ,1 < · · · < jk ,rk ≤ k − L and 
|R[jk ,h, k]| �= |R[jk ,h+1, k]| for h ∈ [1, rk ] . We comple-
ment this sequence with jk ,0 = 0 and jk ,rk+1 = k − L+ 1 , 
so that jk ,0, . . . , jk ,rk+1 can be interpreted as a splitting 
of the range [0, k − L] into segments in which the value 
|R[j + 1, k]| stays the same: namely, for h ∈ [0, rk ] , one has 
|R[j + 1, k]| = |R[jk ,h+1, k]| provided jk ,h ≤ j < jk ,h+1 . 
Hence, minjk ,h≤j<jk ,h+1

max{M(j), |R[j + 1, k]|} = max

{|R[jk ,h+1, k]|, minjk ,h≤j<jk ,h+1
M(j)} and, therefore, (2) can 

be rewritten as follows:

Our crucial observation is that, for k ∈ [1, n] and 
j ∈ [1, k] , one has |R[j + 1, k]| ≤ |R[j, k]| ≤ m . There-
fore, m ≥ |R[jk ,1, k]| > · · · > |R[jk ,rk+1, k]| ≥ 1 and 
rk < m . Hence, M(k) can be computed in O(m) time 
using (3), provided one has the following components:

 i. the sorted sequence jk ,1, . . . , jk ,rk
 ii. the numbers |R[jk ,h+1, k]| , for h ∈ [0, rk ]

 iii. the values min{M(j) : jk ,h ≤ j < jk ,h+1} , for h ∈ [0, rk ].

In the remaining part of the section, we describe a 
streaming algorithm that reads the strings {R1, . . . ,Rm} 
“columnwise” from left to right and computes the com-
ponents (i),  (ii),  and  (iii) immediately after reading each 
“column” {R1[k], . . . ,Rm[k]} , for k ∈ [1, n] , and all in 
O(mn) total time and O(m+ L) space.

To reconstruct a segmentation corresponding to the 
found solution M(n), we build along with the values M(k) 
an array of size n whose kth element, for each k ∈ [1, n] , 
stores 0 if M(k) = |R[1, k]| , and stores a number 
j ∈ [1, k−L] such that M(k) = max{M(j), |R[j+1, k]|} 
otherwise; then, the segmentation can be recon-
structed from the array in an obvious way in O(n) 
time. In order to maintain the array, our algorithm 
computes, for each k ∈ [1, n] , along with the values 

(2)

M(k) =











+∞ if k < L,
|R[1, k]| if L ≤ k < 2L,
min

0≤j≤k−L
max{M(j), |R[j + 1, k]|} if k ≥ 2L.

(3)

M(k) =















+∞ if k < L,

|R[1, k]| if L ≤ k < 2L,

min
0≤h≤rk

max{|R[jk ,h+1, k]|, min
jk ,h≤j<jk ,h+1

M(j)} if k ≥ 2L.
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min{M(j) : jk ,h ≤ j < jk ,h+1} , for h ∈ [0, rk ] , positions j 
on which these minima are attained (see below). Further 
details are straightforward and, thence, omitted.

Positional Burrows–Wheeler transform
Let us fix k ∈ [1, n] . Throughout this subsection, the 
string Ri[k]Ri[k − 1] · · ·Ri[1] , which is the reversal of 
Ri[1, k] , is denoted by R′

i,k , for i ∈ [1,m] . Given a set of 
recombinants R = {R1, . . . ,Rm} each of which has length 
n, a positional Burrows–Wheeler transform (pBWT), as 
defined by Durbin [20], is a pair of integer arrays ak [1,m] 
and dk [1,m] such that:

1. ak [1,m] is a permutation of [1,  m] such that 
R′
ak [1],k

≤ · · · ≤ R′
ak [m],k lexicographically;

2. dk [i] , for i ∈ [1,m] , is an integer such that 
Rak [i][dk [i], k] is the longest common suffix of 
Rak [i][1, k] and Rak [i−1][1, k] , and dk [i] = k + 1 if 
either this suffix is empty or i = 1.

Example 1 Consider the following example, where 
m = 6 , k = 7 , and � = {a, c, t} . It is easy to see that the 

pBWT implicitly encodes the trie depicted in the right 
part of Fig. 1, and such interpretation drives the intuition 
behind this structure: The trie represents the reversed 
sequences R1[1, k], . . . ,R6[1, k] (i.e., read from right to 
left) in lexicographic order. Leaves (values ak ) store the 
corresponding input indices. The branches correspond 
to values dk (the distance from the root subtracted from 
k + 1 ). Our main algorithm in this paper makes implic-
itly a sweep-line over the trie stopping at the branching 
positions.

Durbin [20] showed that ak and dk can be computed 
from ak−1 and dk−1 in O(m) time on the binary alphabet. 
Mäkinen and Norri [21] further generalized the construc-
tion for integer alphabets of size O(m), as in our case. For 
the sake of completeness, we describe in this subsection 
the generalized solution [21] (see Algorithm  1), which 
serves then as a basis for our main algorithm. We also 
present a modification of this solution (see Algorithm 2), 
which, albeit seems to be slightly inferior in theory 
(we could prove only O(m log |�|) time upper bound), 
showed better performance in practice and thus, as we 
believe, is interesting by itself. 

Fig. 1 The pBWT for a set of recombinants R = {R1, . . . , R6} with k = 7 and the corresponding trie containing the reversed strings 
R1[1, k], . . . , R6[1, k] in lexicographic order
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Lemma 2 The arrays ak [1,m] and dk [1,m] can be 
computed from ak−1[1,m] and dk−1[1,m] in O(m) 
time, assuming the input alphabet is [0, |�|−1] with 
|�| = O(m).

Proof Given ak−1 and dk−1 , we are to show that Algo-
rithm  1 correctly computes ak and dk . Since, for 
any i, j ∈ [1,m] , we have R′

i,k ≤ R′
j,k iff either Ri[k] < Rj[k] , 

or Ri[k] = Rj[k] and R′
i,k−1 ≤ R′

j,k−1 lexicographically,  
it is easy to see that the array ak can be deduced from 
ak−1 by radix sorting the sequence of pairs 
{(Rak−1[i][k],R

′
ak−1[i],k−1)}

m
i=1 . Further, since, by definition 

of ak−1 , the second components of the pairs are already 
in a sorted order, it remains to sort the first components 
by the counting sort. Accordingly, in Algorithm  1, the 
first loop counts occurrences of letters in the sequence 
{Ri[k]}

m
i=1 using an auxiliary array C[0, |�|] ; as is standard 

in the counting sort, the second loop modifies the array C 
so that, for each letter b ∈ [0, |�|−1] , C[b] + 1 is the first 
index of the “bucket” that will contain all ak−1[i]  
such that Rak−1[i][k] = b ; finally, the third loop fills  
the buckets incrementing the indices C[b] ← C[b] + 1 , 
for b = Rak−1[i][k] , and performing the assignments 
ak [C[b]] ← ak−1[i] , for i = 1, . . . ,m . Thus, the array ak is 
computed correctly. All is done in O(m+ |�|) time, 
which is O(m) since the input alphabet is [0, |�|−1] and 
|�| = O(m).

The last three lines of the algorithm are responsible  
for computing dk . Denote the length of the  
longest common prefix of any strings s1 and s2 by 
LCP(s1, s2) . The computation of dk relies on the following 
well-known fact: given a sequence of strings s1, . . . , sr 
such that s1 ≤ · · · ≤ sr lexicographically, one has 
LCP(s1, sr) = min{LCP(si−1, si) : 1 < i ≤ r} . Suppose 
that the last loop of the algorithm, which iterates through 
all i from 1 to m, assigns ak [i′] ← ak−1[i] , for a given 
i ∈ [1,m] and some i′ = C[b] . Let j be the maximum inte-
ger such that j < i and Rak−1[j][k] = Rak−1[i][k] (if any). 
The definition of ak implies that ak [i′ − 1] = ak−1[j] if 
such j exists. Hence, LCP(R′

ak [i
′−1],k

,R′
ak [i

′],k
) = 1+min

{LCP(R′
ak−1[ℓ−1],k−1

,R′
ak−1[ℓ],k−1

) : j<ℓ≤i} if such  
number j does exist, and LCP(R′

ak [i
′−1],k ,R

′
ak [i

′],k) = 0 
otherwise. Therefore, since dk [i

′] equals 
k + 1− LCP(R′

ak [i
′],k ,R

′
ak [i

′−1],k) , we have either 
dk [i

′] = max{dk−1[ℓ] : j < ℓ ≤ i} or dk [i
′] = k + 1 

according to whether the required j exists. To find j, we 
simply maintain an auxiliary array P[0, |�|−1] such that 
on the ith loop iteration, for any letter b ∈ [0, |�|−1] , 
P[b] stores the position of the last seen b in the sequence 
Rak−1[1][k],Rak−1[2][k], . . . ,Rak−1[i−1][k] , or P[b] = 0 if b 
occurs for the first time. Thus, dk is computed correctly.

In order to calculate the maximums 
max{dk−1[ℓ] : P[b] ≤ ℓ ≤ i} in O(1) time, we build a 
range maximum query (RMQ) data structure on the array 
dk−1[1,m] in O(m) time [23]. Therefore, the running time 
of Algorithm 1 is O(m).  �
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In practice the bottleneck of the algorithm is the RMQ 
data structure, which, although answers queries in O(1) 
time, has a sensible constant under the big-O in the con-
struction time. We could naively compute the maximums 
by scanning the ranges dk−1[P[b]+1, i] from left to right 
but such algorithm works in quadratic time since same 
ranges of dk−1 might be processed many times in the 
worst case. Our key idea is to store the work done by a 
simple scanning algorithm to reuse it in future queries. 
We store this information right in the arrays ak−1 and 
dk−1 rewriting them; in particular, since ak−1 is accessed 
sequentially from left to right in the last loop, the range 
ak−1[1, i] is free to use after the ith iteration.

More precisely, after the ith iteration of the 
last loop, the subarrays ak−1[1, i] and dk−1[1, i] 
are modified so that the following invariant 
holds: for any j ∈ [1, i] , j < ak−1[j] ≤ i + 1 and 
dk−1[j] = max{d′k−1[ℓ] : j ≤ ℓ < ak−1[j]} , where 
d′k−1 denotes the original array dk−1 before modi-
fications; note that the invariant holds if one sim-
ply puts ak−1[j] = j + 1 without altering dk−1[j] . 
Then, to compute max{d′k−1[ℓ] : j ≤ ℓ ≤ i} , we 
do not have to scan all elements but can “jump” 
through the chain j, ak−1[j], ak−1[ak−1[j]], . . . , i 
and use maximums precomputed in 
dk−1[j], dk−1[ak−1[j]], dk−1[ak−1[ak−1[j]]], . . . , dk−1[i]  ; 
after this, we redirect the “jump pointers” in ak−1 to 
i + 1 and update the maximums in dk−1 accordingly. 
This idea is implemented in Algorithm  2. Notice the 
new line ak−1[i] ← i + 1 in the main loop (it is com-
mented), which erases ak−1[i] and makes it a part of the 
“jump table”. The correctness of the algorithm is clear. 
But it is not immediate even that the algorithm works in 
O(m logm) time. The next lemma states that the bound is 
actually even better, O(m log |�|).

Lemma 3 Algorithm 2 computes the arrays ak [1,m] and 
dk [1,m] from ak−1[1,m] and dk−1[1,m] in O(m log |�|) 
time, assuming the input alphabet is [0, |�|−1] with 
|�| = O(m).

Proof Fix i ∈ [1,m] . The ith iteration of the last loop 
in the algorithm computes the maximum in a range 
d′k−1[i

′, i] , where d′k−1 is the original array dk−1 before 
modifications and i′ = P[b] + 1 for some b and P. Let 
ℓi = i − i′ . Denote ℓ̃ = 1

m

∑m
i=1 ℓi , the “average query 

length”. We are to prove that the running time of the 
algorithm is O(m log ℓ̃) , which implies the result since 
mℓ̃ =

∑m
i=1 ℓi and 

∑m
i=1 ℓi ≤ |�|m . The latter inequality 

follows from the fact that the query ranges correponding 
to the same symbol are non-overlapping.

We say that a position j is touched if the function maxd 
is called with its first argument equal to j. Since for 
each i the first call to maxd is with different j, it suffices 
to prove that the total number of touches is O(m log ℓ̃) . 
While processing the query maxd(i−ℓi, i) , we may 
have touched many positions. Denote the sequence of 
all such position, for the given i, by i1, . . . , ir ; in other 
words, at the time of the query maxd(i−ℓi, i) , we have 
i1 = i − ℓi , ij = ak−1[ij−1] for j ∈ [2, r] , ir = i , and hence 
i1 < · · · < ir . We say that, for j ∈ [1, r−1] , the touch of ij 
in the query maxd(i−ℓi, i) is scaling if there exists an inte-
ger q such that i − ij > 2q and i − ij+1 ≤ 2q (see Fig.  2). 
We count separately the total number of scaling and non-
scaling touches in all i.

For position j, denote by p(j) the number of 
non-scaling touches of j. We are to prove that 
P =

∑m
j=1 p(j) ≤ 2m log ℓ̃ . Let qh(j) denote the value 

of ak−1[j] − j in the hth non-scaling touch of j, for 
h ∈ [1, p(j)] . Suppose that this hth touch happens 
during the processing of a query maxd(i − ℓi, i) . By 
the definition, j + qh(j) follows j in the sequence of 
touched positions. Since the touch of j is non-scal-
ing, we have i − j > i − ak−1[j] = i − j − qh(j) > 2q , 
where q is the largest integer such that i − j > 2q . 
Since i − j ≤ 2q+1 , there holds qh(j) < 2q . Since 
maxd(i − ℓi, i) assigns ak−1[j] ← i + 1 , we have 
ak−1[j] − j > i − j > 2q after the query. In other words, 
we had ak−1[j] − j = qh(j) < 2q before the query and 
have ak−1[j] − j > 2q after. This immediately implies 
that qh(j) ≥ 2h−1 , for h ∈ [1, p(j)] , and, therefore, every 
position can be touched in the non-scaling way at most 
O(logm) times, implying P = O(m logm) . But we can 
deduce a stronger bound. Since the sum of all val-
ues ak−1[j] − j for all positions j touched in a query 
maxd(i − ℓi, i) is equal to ℓi , we can bound the total sum 
of values qh(j) by 

∑m
j=1

∑p(j)
h=1 qh(j) ≤

∑m
i=1 ℓi = mℓ̃ . 

On the other hand, we have 
∑m

j=1

∑p(j)
h=1 qh(j) ≥

∑m
j=1

∑p(j)
h=1 2

h−1 =
∑m

j=1 2
p(j) −m  . 

The well-known property of the convexity of the 
exponent is that the sum 

∑m
j=1 2

p(j) is minimized 

i

i−2q i−2q−1 i−2q−2. . .

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10
Fig. 2 RMQ query on a range [i − ℓi , i] ; scaling touches are red
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whenever all p(j) are equal, i.e., 
∑m

j=1 2
p(j) ≥

∑m
j=1 2

P/m . 
Hence, once P > 2m log ℓ̃ , we obtain 
∑m

j=1

∑p(j)
h=1 qh(j) ≥

∑m
j=1 2

P/m −m > mℓ̃2 −m , which 
is larger than mℓ̃ for ℓ̃ ≥ 2 (for the case ℓ̃ < 2 the claim 
follows directly), contradicting 

∑m
j=1

∑p(j)
h=1 qh(j) ≤ mℓ̃ . 

Thus, P =
∑m

j=1 p(j) ≤ 2m log ℓ̃.
It remains to consider scaling touches. The definition 

implies that each query maxd(i−ℓi, i) performs at most 
log ℓi scaling touches. Thus, it suffices to upperbound 
∑m

i=1 log ℓi . Since the function log is concave, the sum 
∑m

i=1 log ℓi is maximized whenever all ℓi are equal, i.e., 
∑m

i=1 log ℓi ≤
∑m

i=1 log(
1
m

∑m
j=1 ℓj) = m log ℓ̃ , hence the 

result follows.  �

Modification of the pBWT
We are to modify the basic pBWT construction algo-
rithm in order to compute the sequence jk ,1, . . . , jk ,rk of all 
positions j ∈ [1, k − L] in which |R[j, k]| �= |R[j + 1, k]| , 
and to calculate the numbers |R[jk ,h+1, k]| and 
min{M(j) : jk ,h ≤ j < jk ,h+1} , for h ∈ [0, rk ] (assuming 
jk ,0 = 0 and jk ,rk+1 = k − L+ 1 ); see the beginning of the 
section. As it follows from  (3), these numbers are suffi-
cient to calculate M(k), as defined in (2) and (3), in O(m) 
time. The following lemma reveals relations between the 
sequence jk ,1, . . . , jk ,rk and the array dk.

Lemma 4 Consider recombinants R = {R1, . . . ,Rm} , 
each having length n. For k ∈ [1, n] and j ∈ [1, k − 1] , 
one has |R[j, k]| �= |R[j + 1, k]| iff j = dk [i] − 1 for some 
i ∈ [1,m].

Proof Suppose that |R[j, k]| �= |R[j + 1, k]| . It 
is easy to see that |R[j, k]| > |R[j + 1, k]| , which 
implies that there are two indices h and h′ such that 
Rh[j + 1, k] = Rh′ [j + 1, k] and Rh[j] �= Rh′ [j] . Denote 
by a−1

k [h] the number x such that ak [x] = h . With-
out loss of generality, assume that a−1

k [h] < a−1
k [h′] . 

Then, there exists i ∈ [a−1
k [h] + 1, a−1

k [h′]] such that  
Rak [i−1][j + 1, k] = Rak [i][j + 1, k] and Rak [i−1][j] �=

Rak [i][j] . Hence, dk [i] = j + 1.

Suppose now that j ∈ [1, k − 1] and 
j = dk [i] − 1 , for some i ∈ [1,m] . Since j < k and 
dk [1] = k + 1 , we have i > 1 . Then, by defini-
tion of dk , Rak [i−1][j + 1, k] = Rak [i][j + 1, k] and 
Rak [i−1][j] �= Rak [i][j] , i.e., Rak [i][j + 1, k] can be 
“extended” to the left in two different ways, thus pro-
ducing two distinct strings in the set R[j, k] . Therefore, 
|R[j, k]| > |R[j + 1, k]| .  �

Denote by r the number of distinct integers in the 
array dk . Clearly, r may vary from 1 to m. For integer ℓ , 
define M′(ℓ) = M(ℓ) if 1 ≤ ℓ ≤ k − L , and M′(ℓ) = +∞ 

otherwise ( M′ is introduced for purely technical reasons). 
Our modified algorithm does not store dk but stores the 
following four arrays (but we still often refer to dk for the 
sake of analysis):

• sk [1, r] contains all distinct elements from dk [1,m] in 
the increasing sorted order;

• ek [1,m] : for j ∈ [1,m] , ek [j] is equal to the unique 
index such that sk [ek [j]] = dk [j];

• tk [1, r] : for j ∈ [1, r] , tk [j] is equal to the number of 
times sk [j] occurs in dk [1,m];

• uk [1, r] : for j ∈ [1, r] , 
uk [j] = min{M′(ℓ) : sk [j−1]−1 ≤ ℓ < sk [j]−1}  , 
assuming sk [0] = 1.

The arrays sk and ek together emulate dk . The array tk will 
be used to calculate some numbers |R[j, k]| required to 
compute M(k).

Example 2 In Example  1, where m = 6 , k = 7 , and 
� = {a, c, t} , we have r = 4 , sk = [3, 5, 7, 8] , tk = [2, 1, 1, 2] , 
ek = [4, 4, 2, 1, 3, 1] . It is easy to see that the array sk marks 
positions of the branching nodes in the trie from Fig. 1 in the 
increasing order (in the special case sk [1] = 1 , sk [1] does not 
mark any such node). Suppose that L = 3 , so that k − L = 4 . 
Then, uk [1] = M(1) , uk [2] = min{M(2),M(3)} , 
uk [3] = min{M(4),M′(5)} = M(4) since M′(5) = +∞ , 
and uk [4] = M′(6) = +∞ . The use of uk is discussed in the 
sequel.

For convenience, let us recall Eq.  (3) defined in the 
beginning of this section:

where jk ,0 = 0 , jk ,rk+1 = k − L+ 1 , and jk ,1, . . . , jk ,rk is 
the increasing sequence of all positions j ∈ [1, k − L] in 
which |R[j, k]| �= |R[j + 1, k]| . In order to compute M(k), 
one has to find the minima minjk ,h≤j<jk ,h+1

M(j) and cal-
culate |R[jk ,h+1, k]| . As it follows from Lemma  4 and 
the definition of sk , all positions j ∈ [1, k − 1] in which 
|R[j, k]| �= |R[j + 1, k]| are represented by the numbers 
sk [i] − 1 such that 1 < sk [i] ≤ k (in the increasing order); 
hence, the sequence jk ,1, . . . , jk ,rk corresponds to either 
sk [1] − 1, . . . , sk [rk ] − 1 or sk [2] − 1, . . . , sk [rk + 1] − 1 , 
depending on whether sk [1] �= 1 . Then, the minima 
minjk ,h≤j<jk ,h+1

M(j) are stored in the corresponding  
elements of uk (assuming sk [0] = 1 ): uk [i] = min{M′(ℓ) : 
sk [i−1]−1 ≤ ℓ < sk [i]−1} = min{M(ℓ) : sk [i−1]−1 ≤ ℓ 
< min{sk [i]−1, k − L+ 1}} = minjk ,h≤j<jk ,h+1

M(j) , pro-
vided sk [i − 1] − 1 = jk ,h . It is clear that uk [i] �= +∞ 

(3 revisited)

M(k) =















+∞ if k < L,

|R[1, k]| if L ≤ k < 2L,

min
0≤h≤rk

max{|R[jk ,h+1, k]|, min
jk ,h≤j<jk ,h+1

M(j)} if k ≥ 2L,
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only if the segment [sk [i − 1] − 1, sk [i] − 2] intersects 
the range [1, k − L] and, thus, corresponds to a seg-
ment [jk ,h, jk ,h+1 − 1] , for h ∈ [0, rk ] . Therefore, since 
M′(ℓ) = +∞ for ℓ < 1 and ℓ > k − L and, thus, such val-
ues M′(ℓ) do not affect, in a sense, the minima stored in 
uk , one can rewrite (3) as follows:

It remains to compute the numbers |R[sk [j] − 1, k]| , for 
j ∈ [1, |sk |].

Lemma 5 Consider a set of recom-
binants R = {R1, . . . ,Rm} , each of which has 
length  n. For k ∈ [1, n] and j ∈ [1, |sk |] , one has 
|R[sk [j] − 1, k]| = tk [j] + tk [j + 1] + · · · + tk [|tk |].

Proof Denote ℓ = k − sk [j] + 1 , so that 
R[sk [j] − 1, k] = R[k − ℓ, k] . Suppose that ℓ = 0 . Note 
that Rak [1][k] ≤ · · · ≤ Rak [m][k] . Since dk [i] = k + 1 iff 

(4)

M(k) =











+∞ if k < L,

|R[1, k]| if L ≤ k < 2L,

min
1≤j≤|uk |

max{|R[sk [j] − 1, k]|,uk [j]} if k ≥ 2L.

either i = 1 or Rak [i−1][k] �= Rak [i][k] , it is easy to see that 
|R[k , k]| , the number of distinct letters Ri[k] , is equal 
to the number of time k + 1 = sk [|sk |] occurs in dk , i.e., 
tk [|tk |].

Suppose that ℓ > 0 . It suffices to show that 
|R[k − ℓ, k]| − |R[k − ℓ+ 1, k]| = tk [j] . For i ∈ [1,m] , 
denote by R′

i the string Ri[k]Ri[k − 1] · · ·Ri[k − ℓ] . Fix 
w ∈ R[k − ℓ+ 1, k] . Since R′

ak [1]
≤ · · · ≤ R′

ak [m] lexi-
cographically, there are numbers h and h′ such that 
Rak [i][k − ℓ+ 1, k] = w iff i ∈ [h, h′] . Further, we have 
Rak [h][k − ℓ] ≤ Rak [h+1][k − ℓ] ≤ · · · ≤ Rak [h

′][k − ℓ]  . 
Thus, by definition of dk , for i ∈ [h+ 1, h′] , 
we have Rak [i−1][k − ℓ] �= Rak [i][k − ℓ] iff 
dk [i] = k − ℓ+ 1 = sk [j] . Note that dk [h] > sk [j] . 
Therefore, the number of strings Ri[k − ℓ, k] from 
R[k − ℓ, k] having suffix w is equal to one plus the num-
ber of integers sk [j] in the range dk [h, h′] , which implies 
|R[k − ℓ, k]| − |R[k − ℓ+ 1, k]| = tk [j] .  �

By  (4) and Lemma  5, one can calculate M(k) in O(m) 
time using the arrays tk and uk . 
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It remains to describe how we maintain ak , ek , sk , tk ,uk.

Lemma 6 Algorithm  3 computes the arrays 
ak , ek , sk , tk ,uk from the numbers M(k − L) and 
M(k − 1) , and from the arrays ak−1, ek−1, sk−1, tk−1,uk−1 
in O(m) time, assuming the input alphabet is [0, |�|−1] 
with |�| = O(m).

Proof Let us analyze Algorithm  3 that computes 
ak , ek , sk , tk ,uk . By definition, dk−1[i] = sk−1[ek−1[i]] 
for i ∈ [1,m] . The first line of the algorithm initial-
izes sk so that dk−1[i] = sk [ek−1[i]] , for i ∈ [1,m] , and 
sk [|sk |] = k + 1 . Since after this initialization sk , obvi-
ously, is in the sorted order, one has, for i, j ∈ [1,m] , 
ek−1[i] ≤ ek−1[j] iff dk−1[i] ≤ dk−1[j] and, therefore, for 
ℓ ∈ [i, j] , one has dk−1[ℓ] = max{dk−1[ℓ

′] : i ≤ ℓ′ ≤ j} iff 
ek−1[ℓ] = max{ek−1[ℓ

′] : i ≤ ℓ′ ≤ j} . Based on this obser-
vation, we fill ek in lines 3–12 so that dk [i] = sk [ek [i]] , for 
i ∈ [1,m] , using exactly the same approach as in Algo-
rithm 1, where dk is computed, but instead of the assign-
ment dk [C[b]] ← k + 1 , we have ek [C[b]] ← |sk | since 
sk [|sk |] = k + 1 . Here we also compute ak in the same 
way as in Algorithm 1.

The loop in line 13 fills tk so that, for i ∈ [1, |sk |] , tk [i] is 
the number of occurrences of the integer i in ek ( tk was 
zero initialized in line  3). Since, for i ∈ [1,m] , we have 
dk [i] = sk [ek [i]] at this point, tk [i] is also the number of 
occurrences of the integer sk [i] in dk [1,m].

By definition, sk must contain only elements from dk , 
but this is not necessarily the case in line 14. In order to 
fix sk and tk , we simply have to remove all elements sk [i] 
for which tk [i] = 0 , moving all remaining elements of sk 
and non-zero elements of tk to the left accordingly. Sup-
pose that, for some h and i, we have ek [h] = i and the 
number sk [i] is moved to sk [j] , for some j < i , as we fix sk . 
Then, ek [h] must become j. We utilize an additional tem-
porary array tmp[1, |sk |] to fix ek . The loop in lines 16–23 
fixes sk and tk in an obvious way; once sk [i] is moved to 
sk [j] during this process, we assign tmp[i] = j . Then, sk , 
tk , uk ( uk is discussed below) are resized in line 24, and 
the loop in line 25 fixes ek using tmp.

Recall that [sk [j − 1] − 1, sk [j] − 2] , for j ∈ [1, |sk |] , is a 
system of disjoint segments covering [0, k − 1] (assum-
ing sk [0] = 1 ). It is now easy to see that this system is 
obtained from the system [sk−1[j − 1] − 1, sk−1[j] − 2] , 
with j ∈ [1, |sk−1|] (assuming sk−1[0] = 1 ), by adding the 
new segment [k − 1, k − 1] and joining some segments 
together. The second line of the algorithm copies uk−1 
into uk and adds M′(k − 1) to the end of uk , so that, for 
j ∈ [1, |uk−1|] , uk [j] is equal to the minimum of M′(ℓ) 
for all ℓ from the segment [sk−1[j − 1] − 1, sk−1[j] − 2] 
and uk [|uk−1|+1] = M′(k − 1) is the minimum in the 

segment [k − 1, k − 1] . (This is not completely cor-
rect since M′ has changed as k was increased; namely, 
M′(k − L) was equal to +∞ but now is equal to 
M(k − L) ). As we join segments removing some ele-
ments from sk in the loop  16–23, the array uk must be 
fixed accordingly: if [sk [j − 1] − 1, sk [j] − 2] is obtained 
by joining [sk−1[h− 1] − 1, sk−1[h] − 2] , for j′ ≤ h ≤ j′′ , 
then uk [j] = min{uk−1[h] : j

′ ≤ h ≤ j′′} . We perform 
such fixes in line  17, accumulating the latter minimum. 
We start accumulating a new minimum in line 20, assign-
ing uk [j + 1] ← uk−1[i + 1] . If at this point the ready 
minimum accumulated in uk [j] corresponds to a segment 
containing the position k − L , we have to fix uk taking 
into account the new value M′(k − L) = M(k − L) ; we 
do this in line  21. To avoid accessing out of range ele-
ments in uk and uk−1 in line 20, we add a “dummy” ele-
ment in, respectively, uk and uk−1 in line 15.  �

Besides all the arrays of length m, Algorithm  3 
also requires access to M(k − L) and, possibly, to 
M(k − 1) . During the computation of M(k) for 
k ∈ [1, n] , we maintain the last L calculated numbers 
M(k − 1),M(k − 2), . . . ,M(k − L) in a circular array, 
so that the overall required space is O(m+ L) ; when k 
is incremented, the array is modified in O(1) time in an 
obvious way. Thus, Lemma 6 implies Theorem 1

If, as in our case, one does not need sk , tk ,uk for all k, 
the arrays sk , tk , uk can be modified in-place, i.e., sk , tk , 
uk can be considered as aliases for sk−1 , tk−1 , uk−1 , and 
yet the algorithm remains correct. Thus, we really need 
only 7 arrays in total: ak , ak−1 , ek , ek−1 , s, t, u, where s, 
t, u serve as sk , tk , uk and the array tmp can be organ-
ized in place of ak−1 or ek−1 . It is easy to maintain along 
with each value uk [j] a corresponding position ℓ such that 
uk [j] = M′(ℓ) ; these positions can be used then to restore 
the found segmentation of R using backtracking (see the 
beginning of the section). To compute ek , instead of using 
an RMQ data structure, one can adapt in an obvious way 
Algorithm 2 rewriting the arrays ak−1 and ek−1 during the 
computation, which is faster in practice but theoretically 
takes O(m log |�|) time by Lemma 3. We do not discuss 
further details as they are straightforward.

From segmentation to founder set
Now we are given a segmentation S of R and we wish 
to produce a founder set F  that obeys the segment 
boundaries. Recall that such founder set corresponds 
to a parse P of R with respect to segmentation S . We 
conjecture that finding an optimal parse/founder set 
that minimizes the number of crossovers at segment 
boundaries is an NP-hard problem, but unfortunately 
we have not been able to prove this claim. There-
fore, we continue by proposing three natural strate-
gies of which two latter have interesting theoretical 
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properties. The first of the strategies is a naive base-
line, second is a greedy strategy, and third one is based 
on maximum weight perfect matching in a bipartite 
graph analogous to one by Ukkonen [18]. This lat-
ter strategy provides an optimal solution for a special 
case, and greedy gives a 2-approximation for the same 
special case. We will present all the three strategies 
first for the special case and then describe how to turn 
the general case to this special case (however loosing 
all optimality guarantees while doing so). We compare 
the naive baseline with the perfect matching in our 
experiments.

Assume (for our special case) that each segment in S 
induces exactly M(n) distinct substrings in R . Then the 
naive baseline strategy to produce a founder set is to 
concatenate the distinct substrings of segment 1 with 
the distinct substrings of segment 2 in random order, 
and continue this process form left to right until M(n) 
founder sequences of length n are produced. For the lat-
ter two strategies, the idea is that instead of a random 
permutation, we aim to find a permutation that gives 
a concatenation order that minimizes the number of 
crossovers at each segment boundary. For this purpose, 
it is sufficient to consider two consecutive segments [a, b] 
and [b+ 1, c] as two partitions of the rows of R . Namely, 
consider a distinct substring X of a segment [a, b] and an 
induced set A ⊆ {1, 2, . . .m} such that Ri[a, b] = X for 
all i ∈ A . Analogously, consider a distinct substring Y of 
a segment [b+ 1, c] and an induced set B ⊆ {1, 2, . . .m} 
such that Ri[b+ 1, c] = Y  for all i ∈ B . If the concatena-
tion XY forms the content F[a, c] of some founder F, then 
this concatenation causes m− |A ∩ B| crossovers. Hence, 
to minimize crossovers, one seeks to maximize the inter-
section between two partitions, studied next.

Problem of maximum intersection between two par-
titions. Let a be an integer. Given two partitions E1 and 
E2 of {1, . . . , a} with |E1| = |E2| , the problem of Maxi-
mum Intersection Between two Partitions (MIBP) is 
to find the bijection f from E1 to E2 which maximizes 
∑

x∈E1
|x ∩ f (x)|.

By using the bipartite graph defined between the 
elements of E1 and the elements of E2 and such 
that for x ∈ E1 and y ∈ E2 , the weight of this edge is 
w(x, y) = |x ∩ y| , a maximum weight perfect matching of 
this graph gives an optimal solution of MIBP, and hence 
this problem can be solved in polynomial time.

We can define the greedy algorithm related to MIBP as 
the the greedy algorithm related to the problem of maxi-
mum weight perfect matching in the previous bipartite 
graph. As the greedy algorithm for maximum weight 
perfect matching is 12-approximation [24], we have the 
same ratio of approximation for the greedy algorithm for 
MIBP.

Lemma 7 Let E1 and E2 be two partitions of {1, . . . , a} 
with |E1| = |E2| . We can compute the greedy algorithm for 
MIBP of E1 and E2 in O(a) time.

Proof Let E be a partition of {1, . . . , a} and ≺ be a 
total order on E, we denote by GE the array of ele-
ments of E of size a such that for all i, GE[i] = ei 
where i ∈ ei ∈ E . Let be x ∈ E1 and y ∈ E2 . We have  
w(x, y) = |x ∩ y| = |{i ∈ {1, . . . , a} | i ∈ x ∩ y}| = |{i ∈ {1, 
. . . , a} | GE1 [i] = x and GE2 [i] = y}| . It follows that the 
number of edges of no zero weight is at most a. By using 
Radix sort, we can compute in O(a) the sorted array of 
elements of {1, . . . , a} following the order where i < j iff 
GE1 [i] ≺ GE1 [j] or GE1 [i] = GE1 [j] and GE2 [i] ≺ GE2 [j] . 
With this array, as for all x ∈ E1 and y ∈ E2 w(x, y) ≤ a , 
we can compute (by further Radix sort and renaming 
steps) in O(a) the ordered list [(x1, y1), . . . , (xq , yq)] such 
that w(x1, y1) ≥ · · · ≥ w(xq , yq) > 0 with q ≤ a . By tak-
ing the elements in the order of this list, we can com-
pute in O(a) two arrays f and f −1 of size |E1| such that 
{(i, f [i]) | i ∈ E1} and {(f −1[i], i) | i ∈ E2} represent the 
same solution of the greedy algorithm for MIBP. �

Optimal founder set for the special case. Now we can 
solve independently the MIBP problem for each pair of 
consecutive segments, resulting to the following theo-
rems, where the first one follows directly also from earlier 
constructions [18], and the latter from Lemma 7.

Theorem  8 ([18]) Given a segmentation S of R such 
that each segment induces exactly K distinct substrings in 
R , then we can construct an optimal parse P of R (and 
hence the corresponding set of founders) in polynomial 
time.

Theorem  9 Given a segmentation S of R such that 
each segment induces exactly K distinct substrings in R , 
then we can construct a greedy parse P of R (and hence 
the corresponding set of founders) that has at most twice 
as many crossovers than the optimal parse in O(|S| ×m) 
time and O(|S| ×m) space.

In the general case, there are segments inducing less 
than M(n) distinct substrings. We turn such segments 
to the special case by duplicating some of the sub-
strings. The choices made have dependencies between 
segments, and this is the reason we believe this general 
case is NP-hard to solve optimally. Hence, we aim just 
to locally optimize the chances of minimizing crosso-
vers by duplicating distinct substrings in proportion they 
cover R . That is, consider a segment inducing k < M(n) 
distinct substrings and the corresponding partition-
ing E of {1, . . . ,m} . Consider the largest set x of E. We 
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make kx = ⌈
|x|
m (M(n)− k)⌉ copies of the correspond-

ing distinct substring. We continue by decreasing car-
dinality, stop when the sum of the duplication counts is 
greater than or equal to M(n) and update the last one 
such that k +�iki = M(n) (see Fig. 3). The fact that the 
corresponding partitioning is now a multi-partitioning 
(containing same set multiple times), does not affect the 
functioning of the greedy or perfect matching algorithms 
for the MIBP problem.

Results
We implemented the segmentation algorithm using 
Algorithm  2 to build the pBWT arrays and computed 
the minimum number of founders with the given value 
of L using the recursion in Eq. 3. This part of the imple-
mentation corresponds to Lemma 3, and thus the over-
all time complexity of the implemented approach is 
O(mn log |�|) . After computing the minimum number of 
founders, we use backtracking to determine the optimal 
segmentation. Since we use the pBWT arrays to deter-
mine the distinct substrings in each segment, as part of 
the first phase of building the arrays we also store samples 
and now update them to the segment boundary positions 
in parallel. We proceed to join adjacent segments from 
left to right until the number of distinct substrings in one 

segment would exceed the minimum number of found-
ers, and finally we concatenate the substrings to gener-
ate founder sequences. The implementation outputs for 
each segment the distinct founder sequence fragments, 
and associates to each fragment the set of haplotypes 
containing that fragment as a substring at that location 
(these are easily deduced given the segmentation and the 
positional BWT structures). Our implementation uses 
integer vectors from the SDSL library [25].

As our goal is to produce reference sequences for align-
ing short reads, we wanted to find a good value of L to 
generate a segmentation suitable for this purpose. In par-
ticular, we wanted to have the length of most segments 
clearly above a typical read length, such that most reads 
could be aligned without hitting a recombination site.

We used the chromosome 6 variants from the phase 
3 data of the 1000 Genomes Project [2] as the start-
ing point. We converted the variant data to a multiple 
sequence alignment with vcf2multialign,1 which resulted 
in 5009 haplotype sequences of equal length (including 
the reference sequence) of approximately 171  million 
characters. In order to reduce the running time of our 
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Fig. 3 The duplication of the fragments and the link between optimal solution of perfect matching and the concatenation of the fragments to 
obtain the set of founder sequences

1 https ://githu b.com/tsnor ri/vcf2m ultia lign.

https://github.com/tsnorri/vcf2multialign
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tool, we discarded columns of identical characters as they 
would not affect the number of recombination sites. This 
reduced each sequence to approximately 5.38  million 
characters.

We used an increasing number of the generated 
sequences as an input to our tool with the value of L fixed 
to 10 to verify the usability of the tool in terms of run-
ning time and memory consumption. The tests were run 
on a Ubuntu Linux 16.04 server. The server had 96 Intel 
Xeon E7-4830 v3 CPUs running at 2.10GHz and 1.4 TB 
of memory. In addition to our own RMQ data structure, 
we tested with a general-purpose RMQ from the SDSL 
library. As seen in Fig. 4, our special-purpose RMQ data 

structure performed somewhat better in terms of speed 
compared to the general-purpose library implementa-
tion. From this experiment it is conceivable that process-
ing of thousands of complete human genomes takes only 
few CPU days. As we did not optimize the memory usage 
of our tool, the maximum resident set size with 5009 
inputs was around 257 GB which corresponds to approx-
imately 10.25 bytes per input character. We expect that 
the memory consumption may be reduced without much 
affecting the performance.

Our second experiment was to see the effect of the 
minimum length L on the number of founders as well as 
the length of the segments. The results have been sum-
marized in Table 1. We tested with a number of values of 
L ranging from 10 to 80. After generating the founders, 
we mapped the segment co-ordinates back to the original 
sequences to determine the segment lengths. The results 
are shown in Figs. 5 and 6. We note that while the aver-
age segment length of 2395 bases with L = 10 is fitting 
our purpose, there is a peak of short segments of approxi-
mately 250 bases. The peak is magnified in Fig. 7. We also 
tested smaller values of L to conclude that decreasing L 
further rapidly makes the situation more difficult. On the 
other hand, setting L = 10 resulted in only 130 founders, 
which makes aligning reads much faster than using all of 
the haplotypes for indexing.   

We proceeded with two tests in which we measured 
the number of recombinations needed to express each 
of the original sequences with the generated founder 
sequences depending on the method of concatenating 
the fragments into the set of founder sequences. Using 
the method given earlier, we began by duplicating some 
fragments so that each segment had exactly the same 
amount of fragments. For these tests, we implemented 
the three concatenation strategies: a Random match-
ing which corresponds to concatenating the consecutive 
fragments in random order, a Perfect matching which 

Fig. 4 The running time of our implementation plotted against the 
number of input sequences with L = 10 and using either our RMQ 
data structure or rmq_succinct_sct from SDSL. The data points 
have been fitted with a least-squares linear model, and the grey band 
shows the 95% confidence interval

Table 1 Summarized results with 5009 input sequences

We measured the average segment length from the segmentation, median number of recombinations from mapping the input sequences to the founder sequences, 
and average distance between recombinations by dividing the length of the original sequences by the average number of recombinations. The last three columns 
report the results for the perfect matching approach

L Number of founders Average segment length Median number 
of recombinations

Average distance 
between recombinations

10 130 2395 15,794 9624

12 246 4910 11,716 14,025

14 331 6467 9759 17,126

16 462 9312 7801 21,860

18 766 14,383 5593 30,571

20 1057 20,151 4411 39,090

40 1513 30,228 3228 54,386

80 3093 67,994 1176 146,655
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takes an optimal solution of the maximum weight perfect 
matching problem as the order for the concatenation of 
the fragments, and a Greedy matching which solves the 
matching problem greedily. For evaluating the differ-
ent concatenation strategies, we mapped each one of the 
original sequences to the founders, using a simple greedy 
algorithm that is also optimal [19]. In the first test, we 
fixed the value of L to 10 and mapped an increasing num-
ber of input sequences to a set of founder sequences gen-
erated with the same input sequences. In the second one, 
we used all of the 5009 input sequences and varied the 

value of L. The results are shown in Figs. 8 and 9. Consid-
ering the 17768 and 43333 recombinations achieved with 
perfect and random matching, respectively, given 5009 
input sequences and L = 10 (see Table  1), we conclude 
that the heuristic part of optimizing the concatenation 
of founder blocks yields an improvement of around 2.44 
compared to a random concatenation of segments with 

Fig. 5 Maximum (shown in black)/median/minimum number 
of distinct subsequences in one segment given a set of founder 
sequences generated with a set of 5009 input sequences

Fig. 6 Distribution of segment lengths in the range [0, 10000) 
given a set of founder sequences generated from a set of 5009 
input sequences and varying the value of L. Only the resulting 
segmentations with the values L ∈ {6, 8, 9, 10, 11, 12, 14, 16} have 
been plotted since the other ones were not visible. The mean values 
are shown with the dashed lines

Fig. 7 Distribution of segment lengths in the range [0, 500) given 
a set of founder sequences generated from a set of 5009 input 
sequences and varying the value of L 

Fig. 8 Number of recombinations in one input sequence given 
a set of founder sequences generated with a varying number of 
input sequences and L = 10 . Here the median is displayed inside 
each box, the lower and upper hinges correspond to the first and 
third quartiles, and the data points outside the range of 1.5 times 
the distance between the first and the third quartiles from the 
hinges have been plotted individually. The mean values are shown 
with black diamonds for 3000, 4000 and 5009 input sequences. The 
experiments were done with the eight inputs listed on the x axis. 
The plotted boxes have been shifted slightly in order to prevent 
overprinting
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duplications. Greedy approach works even slighly bet-
ter than perfect matching in our experiments: the num-
ber of recombinations on the same setting is 17268. As 
the numbers are very close, we refer to perfect matching 
numbers in the sequel. 

The results look promising, as using 130 found-
ers instead of 5009 haplotypes as the input to our pan-
genome indexing approach [12] will result into significant 
saving of resources; this solves the space bottleneck, and 
the preprocessing of founder reconstruction also saves 
time in the heavy indexing steps.

Our intention was to compare our tool to an imple-
mentation of Ukkonen’s algorithm [19]. However, initial 
testing with four input sequences showed that the latter 
implementation is not practical with a data set of this 
size.

Conclusions
As our experiments indicate that one can reduce 5009 
haplotypes down to 130 founders with the average dis-
tance of two crossovers being 9624 bases, one can expect 
short read alignment and variant calling to become prac-
tical on such pan-genomic setting. We are investigat-
ing this on our tool PanVC [12], where one can simply 
replace its input multiple alignment with the one made 
of the founder sequences. With graph-based approaches, 
slightly more effort is required: Input variations are 
encoded with respect to the reference, so one first needs 
to convert variants into a multiple alignment, apply 
the founder reconstruction algorithm, and finally con-
vert the multiple alignment of founder sequences into 
a directed acyclic graph. PanVC toolbox provides the 

required conversions. Alternatively, one can construct 
the pan-genome graph using other methods, and map the 
founder sequences afterwards to the paths of the graph: 
If original haplotype sequences are already spelled as 
paths, each founder sequence is a concatenation of exist-
ing subpaths, and can hence be mapped to a continuous 
path without alignment (possibly requiring adding a few 
missing edges).

Finally, it will be interesting to see how much the conti-
guity of the founder sequences can still be improved with 
different formulations of the segmentation problem. We 
are investigating a variant with the number of founder 
sequenced fixed.

Abbreviations
pBWT: positional Burrows–Wheeler transform; LCP: longest common prefix; 
RMQ: range maximum query; MIBP: maximum intersection between two 
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