
Rosen and Paten Algorithms Mol Biol (2019) 14:11
https://doi.org/10.1186/s13015-019-0144-9

RESEARCH

An average-case sublinear forward
algorithm for the haploid Li and Stephens
model
Yohei M. Rosen1,2* and Benedict J. Paten2

Abstract

Background: Hidden Markov models of haplotype inheritance such as the Li and Stephens model allow for compu-
tationally tractable probability calculations using the forward algorithm as long as the representative reference panel
used in the model is sufficiently small. Specifically, the monoploid Li and Stephens model and its variants are linear in
reference panel size unless heuristic approximations are used. However, sequencing projects numbering in the thou-
sands to hundreds of thousands of individuals are underway, and others numbering in the millions are anticipated.

Results: To make the forward algorithm for the haploid Li and Stephens model computationally tractable for these
datasets, we have created a numerically exact version of the algorithm with observed average case sublinear runtime
with respect to reference panel size k when tested against the 1000 Genomes dataset.

Conclusions: We show a forward algorithm which avoids any tradeoff between runtime and model complexity. Our
algorithm makes use of two general strategies which might be applicable to improving the time complexity of other
future sequence analysis algorithms: sparse dynamic programming matrices and lazy evaluation.

Keywords: Forward algorithm, Haplotype, Complexity, Sublinear algorithms

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Probabilistic models of haplotypes describe how varia-
tion is shared in a population. One application of these
models is to calculate the probability P(o|H), defined as
the probability of a haplotype o being observed, given
the assumption that it is a member of a population rep-
resented by a reference panel of haplotypes H. This com-
putation has been used in estimating recombination rates
[1], a problem of interest in genetics and in medicine. It
may also be used to detect errors in genotype calls.

Early approaches to haplotype modeling used coales-
cent [2] models which were accurate but computation-
ally complex, especially when including recombination.
Li and Stephens wrote the foundational computationally
tractable haplotype model [1] with recombination. Under
their model, the probability P(o|H) can be calculated

using the forward algorithm for hidden Markov models
(HMMs) and posterior sampling of genotype probabili-
ties can be achieved using the forward–backward algo-
rithm. Generalizations of their model have been used for
haplotype phasing and genotype imputation [3–7].

The Li and Stephens model
Consider a reference panel H of k haplotypes sam-
pled from some population. Each haplotype hj ∈ H is a
sequence (hj,1, . . . , hj,n) of alleles at a contiguous sequence
1, . . . , n of genetic sites. Classically [1], the sites are bial-
lelic, but the model extends to multiallelic sites [8].

Consider an observed sequence of alleles
o = (o1, . . . , on) representing another haplotype. The
monoploid Li and Stephens model (LS) [1] specifies a
probability that o is descended from the population rep-
resented by H. LS can be written as a hidden Markov
model wherein the haplotype o is assembled by copy-
ing (with possible error) consecutive contiguous subse-
quences of haplotypes hj ∈ H .

Open Access

Algorithms for
Molecular Biology

*Correspondence: yohei@ucsc.edu
1 UCSC Genomics Institute, 1156 High St, Santa Cruz, CA 95064, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-3870-2169
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-019-0144-9&domain=pdf

Page 2 of 12Rosen and Paten Algorithms Mol Biol (2019) 14:11

Definition 1 (Li and Stephens HMM) Define xj,i as
the event that the allele oi at site i of the haplotype o
was copied from the allele hj,i of haplotype hj ∈ H . Take
parameters

and from them define the transition and recombination
probabilities

We will write µi(j) as shorthand for p(oi|xj,i) . We
will also define the values of the initial probabilities
p(xj,1, o1|H) =

µ1(j)
k

 , which can be derived by noting that
if all haplotypes have equal probabilities 1k of randomly
being selected, and that this probability is then modified
by the appropriate emission probability.

Let P(o|H) be the probability that haplotype o was pro-
duced from population H. The forward algorithm for hid-
den Markov models allows calculation of this probability
in O(nk2) time using an n× k dynamic programming
matrix of forward states

The probability P(o|H) will be equal to the sum
∑

j pn[j]
of all entries in the final column of the dynamic program-
ming matrix. In practice, the Li and Stephens forward
algorithm is O(nk) (see "Efficient dynamic programming"
section).

Li and Stephens like algorithms for large populations
The O(nk) time complexity of the forward algorithm
is intractable for reference panels with large size k. The
UK Biobank has amassed k = 500, 000 array samples.
Whole genome sequencing projects, with a denser dis-
tribution of sites, are catching up. Major sequencing
projects with k = 100, 000 or more samples are nearing
completion. Others numbering k in the millions have
been announced. These large population datasets have
significant potential benefits: They are statistically likely
to more accurately represent population frequencies and

(1)
ρ∗
i−1→i probability of any recombination

between sites i − 1 and i

(2)
µi probability of a mutation from

one allele to another at site i

(3)
p(xj,i|xj′,i−1)

=

{

1− (k − 1)ρi if j = j′

ρi if j �= j′
where ρi =

ρ∗
i−1→i

k − 1

(4)

p(oi|xj,i)

=

{

1− (A− 1)µi if oi = hj,i
µi if oi �= hj,i

where A = number of alleles

(5)pi[j] = P(xj,i, o1, . . . , oi|H)

those employing genome sequencing can provide phas-
ing information for rare variants.

In order to handle datasets with size k even fractions
of these sizes, modern haplotype inference algorithms
depend on models which are simpler than the Li and
Stephens model or which sample subsets of the data. For
example, the common tools Eagle-2, Beagle, HAPI-UR
and Shapeit-2 and -3 [3–7] either restrict where recom-
bination can occur, fail to model mutation, model long-
range phasing approximately or sample subsets of the
reference panel.

Lunter’s “fastLS” algorithm [8] demonstrated that hap-
lotypes models which include all k reference panel haplo-
type could find the Viterbi maximum likelihood path in
time sublinear in k, using preprocessing to reduce redun-
dant information in the algorithm’s input. However, his
techniques do not extend to the forward and forward–
backward algorithms.

Our contributions
We have developed an arithmetically exact forward algo-
rithm whose expected time complexity is a function of
the expected allele distribution of the reference panel.
This expected time complexity proves to be significantly
sublinear in reference panel size. We have also developed
a technique for succinctly representing large panels of
haplotypes whose size also scales as a sublinear function
of the expected allele distribution.

Our forward algorithm contains three optimizations,
all of which might be generalized to other bioinformat-
ics algorithms. In "Sparse representation of haplotypes"
section, we rewrite the reference panel as a sparse matrix
containing the minimum information necessary to
directly infer all allele values. In "Efficient dynamic pro-
gramming" section, we define recurrence relations which
are numerically equivalent to the forward algorithm but
use minimal arithmetic operations. In "Lazy evaluation
of dynamic programming rows", we delay computation
of forward states using a lazy evaluation algorithm which
benefits from blocks of common sequence composed of
runs of major alleles. Our methods apply to other mod-
els which share certain redundancy properties with the
monoploid Li and Stephens model.

Sparse representation of haplotypes
The forward algorithm to calculate the probability P(o|H)
takes as input a length n vector o and a k × n matrix of
haplotypes H. In general, any algorithm which is sublin-
ear in its input inherently requires some sort of preproc-
essing to identify and reduce redundancies in the data.
However, the algorithm will truly become effectively sub-
linear if this preprocessing can be amortized over many

Page 3 of 12Rosen and Paten Algorithms Mol Biol (2019) 14:11

iterations. In this case, we are able to preprocess H into a
sparse representation which will on average contain bet-
ter than O(nk) data points.

This is the first component of our strategy. We use a
variant of column-sparse-row matrix encoding to allow
fast traversal of our haplotype matrix H. This encoding
has the dual benefit of also allowing reversible size com-
pression of our data. We propose that this is one good
general data representation on which to build other com-
putational work using very large genotype or haplotype
data. Indeed, extrapolating from our single-chromosome
results, the 1000 Genomes Phase 3 haplotypes across all
chromosomes should simultaneously fit uncompressed in
11 GB of memory.

We will show that we can evaluate the Li and Stephens
forward algorithm without needing to uncompress this
sparse matrix.

Sparse column representation of haplotype alleles
Consider a biallelic genetic site i with alleles {A,B} . Con-
sider the vector h1,i, h2,i, . . . , hk ,i ∈ {A,B}k of alleles of
haplotypes j at site i. Label the allele A, B which occurs
more frequently in this vector as the major allele 0, and
the one which occurs less frequently as the minor allele 1.
We then encode this vector by storing the value A or B of
the major allele 0, and the indices j1, j2, . . . of the haplo-
types which take on allele value 1 at this site.

We will write φi for the subvector hj1,i, hj2,i, . . . of alleles
of haplotypes consisting of those haplotypes which pos-
sess the minor allele 1 at site i. We will write |φi| for the
multiplicity of the minor allele. We call this vector φi the
information content of the haplotype cohort H at the site
i.

Relation to the allele frequency spectrum
Our sparse representation of the haplotype reference
panel benefits from the recent finding [9] that the dis-
tribution over sites of minor allele frequencies is biased
towards low frequencies.1

Clearly, the distribution of |φi| is precisely the allele fre-
quency spectrum. More formally,

Lemma 1 Let E[f](k) be the expected mean minor allele
frequency for k genotypes. Then

(6)E

[

1

n

n
∑

i=1

|φi|

]

= E[f](k)

Corollary 1 If O(E[f]) < O(k) , then O(
∑

i
|φi|)

< O(nk) in expected value.

Dynamic reference panels
Adding or rewriting a haplotype is constant time per site
per haplotype unless this edit changes which allele is the
most frequent. It can be achieved by addition or removal
or single entries from the row-sparse-column representa-
tion, wherein, since our implementation does not require
that the column indices be stored in order, these opera-
tions can be made O(1) . This allows our algorithm to
extend to uses of the Li and Stephens model where one
might want to dynamically edit the reference panel. The
exception occurs when φi = k

2—here it is not absolutely
necessary to keep the formalism that the indices stored
actually be the minor allele.

Implementation
For biallelic sites, we store our φi ’s using a length-n vector
of length |φi| vectors containing the indices j of the haplo-
types hj ∈ φi and a length-n vector listing the major allele
at each site (see Fig. 1 panel iii) Random access by key i to
iterators to the first elements of sets φi is O(1) and itera-
tion across these φi is linear in the size of φi . For multial-
lelic sites, the data structure uses slightly more space but
has the same speed guarantees.

Generating these data structures takes O(nk) time but
is embarrassingly parallel in n. Our “*.slls” data structure
doubles as a succinct haplotype index which could be dis-
tributed instead of a large vcf record (though genotype
likelihood compression is not accounted for). A vcf → slls
conversion tool is found in our github repository.

Efficient dynamic programming
We begin with the recurrence relation of the clas-
sic forward algorithm applied to the Li and Stephens
model [1]. To establish our notation, recall that we
write pi[j] = P(xj,i, o1, . . . , oi|H) , that we write µi(j)
as shorthand for p(oi|xj,i) and that we have initialized
p1[j] = p(xj,1, o1|H) =

µ1(j)
k

 . For i > 1 , we may then write:

We will reduce the number of summands in (8) and
reduce the number indices j for which (7) is evaluated.
This will use the information content defined in "Sparse
column representation of haplotype alleles" section.

(7)pi[j] = µi(j)
(

(1− kρi)pi−1[j] + ρiSi−1

)

(8)Si =

k
∑

j=1

pi[j]

1 We observe similar results in our own analyses in "Minor allele frequency
distribution for the 1000 Genomes dataset" section.

Page 4 of 12Rosen and Paten Algorithms Mol Biol (2019) 14:11

Lemma 2 The summation (8) is calculable using strictly
fewer than k summands.

Proof Suppose first that µi(j) = µi for all j. Then

Now suppose that µi(j) = 1− µi for some set of j. We
must then correct for these j. This gives us

The same argument holds when we reverse the roles of µi
and 1− µi . Therefore we can choose which calculation to
perform based on which has fewer summands. This gives
us the following formula:

where

 �

(9)

Si =

k
∑

j=1

pi[j] = µi

k
∑

j=1

(

(1− kρi)pi−1[j] + ρiSi−1

)

(10)= µi((1− kρi)Si−1 + kρiSi−1) = µiSi−1

(11)Si = µiSi−1 +
1− µi − µi

1− µi

∑

j where µi(j)�=µi

pi[j]

(12)Si = αSi−1 + β
∑

j∈φi

pi[j]

(13)α = µi β =
1− 2µi

1− µi
if φi have allele a

(14)

α = 1− µi β =
2µi − 1

µi
if φi do not have allele a

We note another redundancy in our calculations. For
the proper choices of µ′

i,µ
′′
i among µi, 1− µi , the recur-

rence relations (7) are linear maps R → R

of which there are precisely two unique maps, fi corre-
sponding to the recurrence relations for those xj such
that j ∈ φi , and Fi to those such that j /∈ φi.

Lemma 3 If j /∈ φi and j /∈ φi−1 , then Si can be calcu-
lated without knowing pi−1[j] and pi[j] . If j /∈ φi−1 and
j′ �= j , then pi[j′] can be calculated without knowing
pi−1[j].

Proof Equation (12) lets us calculate Si−1 with-
out knowing any pi−1[j] for any j /∈ φi−1 . From Si−1
we also have fi and Fi . Therefore, we can calculate
pi[j

′] = fi(pi−1[j
′]) or Fi(pi−1[j

′]) without knowing pi−1[j]
provided that j′ �= j . This then shows us that we can cal-
culate pi[j′] for all j′ ∈ φi without knowing any j such that
j /∈ φi and j /∈ φi−1 . Finally, the first statement follows
from another application of (12) (Fig. 2). �

Corollary 2 The recurrences (8) and the minimum set
of recurrences (7) needed to compute (8) can be evaluated
in O(|φi|) time, assuming that pi−1[j] have been computed
∀j ∈ φi.

We address the assumption on prior calculation of the
necessary pi−1[j] ’s in "Lazy evaluation of dynamic pro-
gramming rows" section.

Time complexity
Recall that we defined E[f](k) as the expected mean
minor allele frequency in a sample of size k. Suppose that
it is comparatively trivial to calculate the missing pi−1[j]

(15)fi : x �−→ µ′
i(1− kρ)x + µ′

iρSi−1

(16)Fi : x �−→ µ′′
i (1− kρ)x + µ′′

i ρSi−1

G A T T A C A G A T T A C A

G A C T A C A G A A T A C T
G A C T A C A G G T T C T A
A C T T A C T G A T G A C A
A A T A A C A C A T T A C A
G C T T G C T G A T T A C A
A A T T A A A G A T T A C A
G C T T A C A G A T T A C A

G A T T A C A G A T T A C A

G A C T A C A G A A T A C T
G A C T A C A G G T T C T A
A C T T A C T G A T G A C A
A A T A A C A C A T T A C A
G C T T G C T G A T T A C A
A A T T A A A G A T T A C A
G C T T A C A G A T T A C A

G A T T A C A G A T T A C A

3 3 1 4 5 6 3 4 2 1 3 2 2 1
4 5 2 5
6 7

Fig. 1 Information content of array of template haplotypes. (i) Reference panel {h1, . . . , h5} with mismatches to haplotype o shown in yellow. (ii)
Alleles at site i of elements of φi(oi) in black. (iii) Vectors to encode φi(oi) at each site

Page 5 of 12Rosen and Paten Algorithms Mol Biol (2019) 14:11

values. Then by Corollary 2 the procedure in Eq. (12) has
expected time complexity O

(
∑

i |φi|
)

= O

(

nE[f](k)
)

.

Lazy evaluation of dynamic programming rows
Corollary 2 was conditioned on the assumption that spe-
cific forward probabilities had already been evaluated.
We will describe a second algorithm which performs this
task efficiently by avoiding performing any arithmetic
which will prove unnecessary at future steps.2

Equivalence classes of longest major allele suffixes

Lemma 4 Suppose that hj /∈ φℓ ∪ φℓ+1 ∪ . . . ∪ φi−1 .
Then the dynamic programming matrix entries
pℓ[j], pℓ+1[j], . . . , pi−1[j] need not be calculated in order
to calculate Sℓ, Sℓ+1, . . . , Si−1.

Proof By repeated application of Lemma (3). �

Corollary 3 Under the same assumption on j,
pℓ[j], pℓ+1[j], . . . , pi−1[j] need not be calculated in order
to calculate Fℓ+1, . . . , Fi . This is easily seen by definition
of Fi.

Lemma 5 Suppose that pℓ−1[j] is known, and
xj /∈ φℓ ∪ φℓ+1 ∪ . . . ∪ φi−1 . Then pi−1[j] can be calcu-
lated in the time which it takes to calculate Fi−1 ◦ . . . ◦ Fℓ.

Proof pi−1[j] = Fi−1 ◦ . . . ◦ Fℓ(pℓ−1[j]) �

It is immediately clear that calculating the pi[j] lends well
to lazy evaluation. Specifically, the xj /∈ φi are data which
need not be evaluated yet at step i. Therefore, if we can
aggregate the work of calculating these data at a later iter-
ation of the algorithm, and only if needed then, we can
potentially save a considerable amount of computation.

Definition 2 (Longest major allele suffix classes) Define
Eℓ→i−1 = φℓ−1 ∩

[

⋃i−1
ι=ℓ φι

]c
 That is, let Eℓ→i−1 be the

class of all haplotypes whose sequence up to site i − 1
shares the suffix from ℓ to i − 1 inclusive consisting only
of major alleles, but lacks any longer suffix composed
only of major alleles.

Remark 1 Eℓ→i−1 is the set of all hj where pℓ−1[j] was
needed to calculate Sℓ−1 but no p(·)[j] has been needed to
calculate any S(·) since.

Note that for each i, the equivalence classes Eℓ→i−1
form a disjoint cover of the set of all haplotypes hj ∈ H .

Remark 2 ∀hj ∈ Eℓ→i−1 , pi−1[j] = Fi−1 ◦ . . . ◦ Fℓ(pℓ−1[j])

Definition 3 Write Fa→b as shorthand for Fb ◦ . . . ◦ Fa.

The lazy evaluation algorithm
Our algorithm will aim to:

1. Never evaluate pi[j] explicitly unless hj ∈ φi.
2. Amortize the calculations pi[j] = fi ◦ Fi−1 ◦ . . .

◦Fℓ(pℓ−1[j]) over all hj ∈ Eℓ→i−1.
3. Share the work of calculating subsequences of com-

positions of maps Fi−1 ◦ . . . ◦ Fℓ with other composi-
tions of maps Fi′−1 ◦ . . . ◦ Fℓ′ where ℓ′ ≤ ℓ and i′ ≥ i.

To accomplish these goals, at each iteration i, we main-
tain the following auxiliary data. The meaning of these
are clarified by reference to Figs. 3, 4 and 5.

1. The partition of all haplotypes hj ∈ H into equiva-
lence classes Eℓ→i−1 according to longest major allele
suffix of the truncated haplotype at i − 1 . See Defini-
tion 2 and Fig. 3.

2. The tuples Tℓ = (Eℓ→i−1, Fℓ→m,m) of equiva-
lence classes Eℓ→i−1 stored with linear map pre-
fixes Fℓ→m = Fm ◦ . . . ◦ Fℓ of the map Fℓ→i−1 which
would be necessary to fully calculate pi[j] for the j
they contain, and the index m of the largest index in
this prefix. See Fig. 5.

3. The ordered sequence m1 > m2 > . . . , in reverse
order, of all distinct 1 ≤ m ≤ i − 1 such that m is
contained in some tuple. See Figs. 3, 5.

4. The maps Fmin{ℓ}→mmin , . . . , Fm2+1→m1 , Fm1+1→i−1
which partition the longest prefix Fi−1 ◦ . . . ◦ Fmin{ℓ}
into disjoint submaps at the indices m. See Fig. 3.

(i) (ii)

Fig. 2 Work done to calculate the sum of haplotype probabilities at a
site for the conventional and our sublinear forward algorithm. Using
the example that at site i, φi(oi) = {h3} , we illustrate the number
of arithmetic operations used in (i) the conventional O(nk) Li and
Stephens HMM recurrence relations. ii Our procedure specified in
Eq. (12). Black lines correspond to arithmetic operations; operations
which cannot be parallelized over j are colored yellow

2 This approach is known as lazy evaluation.

Page 6 of 12Rosen and Paten Algorithms Mol Biol (2019) 14:11

These are used to rapidly extend prefixes Fℓ→m into
prefixes Fℓ→i−1.

Finally, we will need the following ordering on tuples Tℓ
to describe our algorithm:

Definition 4 Impose a partial ordering < on the
Tℓ = (Eℓ→i−1, Fℓ→m,m) by Tℓ < Tℓ′ iff m < m′ . See Fig. 4.

We are now ready to describe our lazy evaluation algo-
rithm which evaluates pi[j] = fi ◦ Fℓ→i−1(pℓ−1[j]) just-
in-time while fulfilling the aims listed at the top of this
section, by using the auxiliary state data specified above.

Fig. 3 Longest major allele suffix classes, linear map compositions. Illustrations clarifying the meanings of the equivalence classes Eℓ→i−1 (left) and
the maps Fa→b . Indices m are sites whose indices are b’s in stored maps of the form Fa→b

Fig. 4 Partial ordering of tuples of (equivalence class, linear map, index) used as state information in our algorithm. The ordering of the tuples
Tℓ = (Eℓ→i−1, Fℓ→m ,m) . Calculation of the depth d of an update which requires haplotypes contained in the equivalence classes defining the two
tuples shown in solid yellow

Page 7 of 12Rosen and Paten Algorithms Mol Biol (2019) 14:11

The algorithm is simple but requires keeping track of a
number of intermediate indices. We suggest referring to
the Figs. 3, 4 and 5 as a visual aid. We state it in six steps
as follows.

Step 1: Identifying the tuples containing φ—O(φi)
time complexity

Identify the subset U(φ) of the tuples Tℓ for which there
exists some hj ∈ φi such that hj ∈ Eℓ→i−1.

Step 2: Identifying the preparatory map suffix calcula-
tions to be performed—O(φi) time complexity

Find the maximum depth d of any Tℓ ∈ U(φ)
with respect to the partial ordering above.
Equivalently, find the minimum m such that
Tℓ = (Eℓ→i−1, Fℓ→m,m) ∈ U(φ) . See Fig. 4.

Step 3: Performing preparatory map suffix calcula-
tions—O(d) time complexity

1 O(d) : Let m1, . . . ,md be the last d indices m in the
reverse ordered list of indices m1,m2, By itera-
tively composing the maps Fm1+1→i−1, Fm2+1→m1
which we have already stored, construct the telescop-
ing suffixes Fm1+1→i−1, Fm2+1→i−1, . . . , Fmd+1→i−1
needed to update the tuples (Eℓ→i−1, Fℓ→m,m) to
(Eℓ→i−1, Fℓ→i−1, i − 1).

2 O(d) : For each m1 ≤ mi ≤ md , choose an arbi-
trary (Eℓ→i−1, Fℓ→mi ,mi) and update it to
(Eℓ→i−1, Fℓ→i−1, i − 1).

Fig. 5 Key steps involved in calculating pi[j] by delayed evaluation. An illustration of the manipulation of the tuple T2 = (Eℓ→i−1, Fℓ→m ,m) by the
lazy evaluation algorithm, and how it is used to calculate pi[j] from pℓ−1[j] just-in-time. In this case, we wish to calculate p6[2] . This is a member of
the equivalence class E2→5 , since it hasn’t needed to be calculated since time 1. In step 4 of the algorithm, we therefore must update the whole
tuple T2 by post-composing the partially completed prefix F2→4 of the map F2→5 which we need using our already-calculated suffix map F5 . In step
5, we use F2→5 to compute p6[2] = f6 ◦ F2→5(p1[j]) . In step 6, we update the tuple T2 to reflect its loss of h2 , which is now a member of E6→6

Page 8 of 12Rosen and Paten Algorithms Mol Biol (2019) 14:11

Step 4: Performing the deferred calculations for
the tuples containing hj ∈ φi—O(φi) time
complexity

If not already done in Step 3.2, for every Tℓ ∈ U(φ) ,
extend its map element from (Eℓ→i−1, Fℓ→m,m) to
(Eℓ→i−1, Fℓ→i−1, i − 1) in O(1) time using the maps cal-
culated in Step 3.1. See Fig. 5.

Step 5: Calculating pi[j] just-in-time—O(φi) time
complexity

Note: The calculation of interest is performed here.
Using the maps Fℓ→i−1 calculated in Step 3.2 or 4,

finally evaluate the value pi[j] = fi ◦ Fℓ→i−1(pℓ−1[j]) . See
Fig. 5.

Step 6: Updating our equivalence class/update
map prefix tuple auxiliary data struc-
tures—O(φi + d) time complexity

1. Create the new tuple (Ei→i, Fi→i = identity map , i).
2. Remove the hj ∈ φi from their equivalence classes

Eℓ→i−1 and place them in the new equivalence class
Ei→i . If this empties the equivalence class in question,
delete its tuple. To maintain memory use bounded by
number of haplotypes, our implementation uses an
object pool to store these tuples.

3. If an index mi no longer has any corresponding tuple,
delete it, and furthermore replace the stored maps
Fmi−1+1→mi and Fmi+1 → mi+1 with a single map
Fmi−1+1→mi+1 . This step is added to reduce the upper
bound on the maximum possible number of composi-
tions of maps which are performed in any given step.

The following two trivial lemmas allow us to bound d
by k such that the aggregate time complexity of the lazy
evaluation algorithm cannot exceed O(nk) . Due to the
irregularity of the recursion pattern used by the algo-
rithm, is likely not possible to calculate a closed-form
tight bound on

∑

i d , however, empirically it is asymp-
totically dominated by

∑

i φi as shown in the results
which follow.

Lemma 6 The number of nonempty equivalence classes
Eℓ→i−1 in existence at any iteration i of the algorithm is
bounded by the number of haplotypes k.

Proof Trivial but worth noting. �

Lemma 7 The number of unique indices m in existence
at any iteration i of the algorithm is bounded by the num-
ber of nonempty equivalence classes Eℓ→i−1.

Results
Implementation
Our algorithm was implemented as a C++ library located
at https ://githu b.com/yohei rosen /subli near-Li-Steph ens.
Details of the lazy evaluation algorithm will be found there.

We also implemented the linear time forward algo-
rithm for the haploid Li and Stephens model in C++
as to evaluate it on identical footing. Profiling was per-
formed using a single Intel Xeon X7560 core running at
2.3 GHz on a shared memory machine. Our reference
panels H were the phased haplotypes from the 1000
Genomes [10] phase 3 vcf records for chromosome 22
and subsamples thereof. Haplotypes o were randomly
generated simulated descendants.

Minor allele frequency distribution for the 1000 Genomes
dataset
We found it informative to determine the allele frequency
spectrum for the 1000 Genomes dataset which we will
use in our performance analyses. We simulated haplo-
types o of 1,000,000 bp length on chromosome 22 and
recorded the sizes of the sets φi(oi) for k = 5008 . These
data produced a mean |φi(oi)| of 59.9, which is 1.2% of the
size of k. We have plotted the distribution of |φi(oi)| which
we observed from this experiment in (Fig. 6). It is skewed
toward low frequencies; the minor allele is unique at 71%
of sites, and it is below 1% frequency at 92% of sites.

Comparison of our algorithm with the linear time forward
algorithm
In order to compare the dependence of our algorithm’s
runtime on haplotype panel size k against that of the
standard linear LS forward algorithm, we measured
the CPU time per genetic site of both across a range of
haplotype panel sizes from 30 to 5008. This analysis was
achieved as briefly described above. Haplotype panels
spanning the range of sizes from 30 to 5008 haplotypes
were subsampled from the 1000 Genomes phase 3 vcf
records and loaded into memory in both uncompressed
and our column-sparse-row format. Random sequences
were sampled using a copying model with mutation and
recombination, and the performance of the classical for-
ward algorithm was run back to back with our algorithm
for the same random sequence and same subsampled
haplotype panel. Each set of runs was performed in tripli-
cate to reduce stochastic error.

Figure 7 shows this comparison. Observed time com-
plexity of our algorithm was O(k0.35) as calculated from
the slope of the line of best fit to a log–log plot of time
per site versus haplotype panel size.

For data points where we used all 1000 Genomes pro-
ject haplotypes (k = 5008), on average, time per site

https://github.com/yoheirosen/sublinear-Li-Stephens

Page 9 of 12Rosen and Paten Algorithms Mol Biol (2019) 14:11

is 37 μs for our algorithm and 1308 μs for the linear LS
algorithm. For the forthcoming 100,000 Genomes Pro-
ject, these numbers can be extrapolated to 251 μs for our
algorithm and 260,760 μs for the linear LS algorithm.

Lazy evaluation of dynamic programming rows
We also measured the time which our algorithm spent
within the d-dependent portion of the lazy evaluation
subalgorithm. In the average case, the time complexity
of our lazy evaluation subalgorithm does not contribute
to the overall algebraic time complexity of the algorithm
(Fig. 8, right). The lazy evaluation runtime also contrib-
utes minimally to the total actual runtime of our algo-
rithm (Fig. 8, left).

Sparse haplotype encoding
Generating our sparse vectors
We generated the haplotype panel data structures from
"Sparse representation of haplotypes" section using the

vcf-encoding tool vcf2slls which we provide. We
built indices with multiallelic sites, which increases their
time and memory profile relative to the results in "Minor
allele frequency distribution for the 1000 Genomes data-
set" section but allows direct comparison to vcf records.
Encoding of chromosome 22 was completed in 38 min on
a single CPU core. Use of M CPU cores will reduce runt-
ime proportional to M.

Size of sparse haplotype index
In uncompressed form, our whole genome *.slls
index for chromosome 22 of the 1000 genomes dataset
was 285 MB in size versus 11 GB for the vcf record using
uint16_t’s to encode haplotype ranks. When com-
pressed with gzip, the same index was 67 MB in size ver-
sus 205 MB for the vcf record.

In the interest of speed (both for our algorithm and the
O(nk) algorithm) our experiments loaded entire chromo-
some sparse matrices into memory and stored haplotype

Fig. 6 Biallelic site minor allele frequency distribution from 1000 Genomes chromosome 22. Note that the distribution is skewed away from
the 1

f
 distribution classically theorized. The data used are the genotypes of the 1000 Genomes Phase 3 VCF, with minor alleles at multiallelic sites

combined

Fig. 7 Runtime per site for conventional linear algorithm vs our sparse-lazy algorithm. Runtime per site as a function of haplotype reference panel
size k for our algorithm (blue) as compared to the classical linear time algorithm (black). Both were implemented in C++ and benchmarked using
datasets preloaded into memory. Forward probabilities are calculated for randomly generated haplotypes simulated by a recombination–mutation
process, against random subsets of the 1000 genomes dataset

Page 10 of 12Rosen and Paten Algorithms Mol Biol (2019) 14:11

indices as uint64_t’s. This requires on the order of 1
GB memory for chromosome 22. For long chromosomes
or larger reference panels on low memory machines, the
algorithm can operate by streaming sequential chunks of
the reference panel.

Discussions and Conclusion
To the best of our knowledge, ours is the first forward
algorithm for any haplotype model to attain sublinear
time complexity with respect to reference panel size. Our
algorithms could be incorporated into haplotype infer-
ence strategies by interfacing with our C++ library. This
opens the potential for tools which are tractable on hap-
lotype reference panels at the scale of current 100,000 to
1,000,000+ sample sequencing projects.

Applications which use individual forward probabilities
Our algorithm attains its runtime specifically for the
problem of calculating the single overall probability
P(o|H , ρ,µ) and does not compute all nk forward prob-
abilities. We can prove that if m many specific forward
probabilities are also required as output, and if the time
complexity of our algorithm is O(

∑

i |φi|) , then the time
complexity of the algorithm which also returns the m for-
ward probabilities is O(

∑

i |φi| +m).
In general, haplotype phasing or genotype imputation

tools use stochastic traceback or other similar sampling
algorithms. The standard algorithm for stochastic trace-
back samples states from the full posterior distribution
and therefore requires all forward probabilities. The algo-
rithm output and lower bound of its speed is therefore
O(nk) . The same is true for many applications of the for-
ward–backward algorithm.

There are two possible approaches which might allow
runtime sublinear in k for these applications. Using
stochastic traceback as an example, first is to devise an
O(f (m)) sampling algorithm which uses m = g(k) for-
ward probabilities such that O(f ◦ g(k)) < O(k) . The sec-
ond is to succinctly represent forward probabilities such
that nested sums of the nk forward probabilities can be
queried from O(φ) < O(nk) data. This should be pos-
sible, perhaps using the positional Burrows–Wheeler
transform [11] as in [8], since we have already devised
a forward algorithm with this property for a different
model in [12].

Generalizability of algorithm
The optimizations which we have made are not strictly
specific to the monoploid Li and Stephens algorithm.
Necessary conditions for our reduction in the time com-
plexity of the recurrence relations are

Condition 1 The number of distinct transition probabili-
ties is constant with respect to number of states k.

Condition 2 The number of distinct emission probabili-
ties is constant with respect to number of states k.

Favourable conditions for efficient time complexity of
the lazy evaluation algorithm are

Condition 1 The number of unique update maps added
per step is constant with respect to number of states k.

Condition 2 The update map extension operation is
composition of functions of a class where composition is
constant-time with respect to number of states k.

Fig. 8 Runtime per site for the overall algorithm and for the recursion-depth dependent portion. Time per site for the lazy evaluation subalgorithm
(yellow) vs. the full algorithm (blue). The experimental setup is the same as previously described, with the subalgorithm time determined by
internally timing the recursion-depth d dependent portions of the lazy evaluation subalgorithm.

Page 11 of 12Rosen and Paten Algorithms Mol Biol (2019) 14:11

The reduction in time complexity of the recurrence
relations depends on the Markov property, however we
hypothesize that the delayed evaluation needs only the
semi-Markov property.

Other haplotype forward algorithms
Our optimizations are of immediate interest for other
haplotype copying models. The following related algo-
rithms have been explored without implementation.

Example 1 (Diploid Li and Stephens) We have yet to
implement this model but expect average runtime at least
subquadratic in reference panel size k. We build on the
statement of the model and its optimizations in [13]. We
have found the following recurrences which we believe
will work when combined with a system of lazy evalua-
tion algorithms:

Lemma 8 The diploid Li and Stephens HMM may be
expressed using recurrences of the form

which use on the intermediate sums defined as

where α(·),β(·), γ(·) depend only on the diploid genotype oi.

Implementing and verifying the runtime of this exten-
sion of our algorithm will be among our next steps.

Example 2 (Multipopulation Li and Stephens) [14] We
maintain separate sparse haplotype panel representations
φA
i (oi) and φB

i (oi) and separate lazy evaluation mecha-
nisms for the two populations A and B. Expected runtime
guarantees are similar.

This model, and versions for > 2 populations, will be
important in large sequencing cohorts (such as NHLBI
TOPMed) where assuming a single related population is
unrealistic.

(17)
pi[j1, j2] = αppi−1[j1, j2] + βp(Si−1(j1)+ Si−1(j2))+ γpSi−1

(18)

Si := αcSi−1 + βc
∑

j∈φi

Si−1(j)

+ γc
∑

(j1,j2)∈φ
2

i

pi−1[j1, j2] O(|φi|
2)

(19)

Si(j) := αcSi−1 + βcSi−1(j)

+ γc
∑

j2∈φi

pi−1[j, j2] forO(k|φi|)many j

Example 3 (More detailed mutation model) It may also
be desirable to model distinct mutation probabilities for
different pairs of alleles at multiallelic sites. Runtime is
worse than the biallelic model but remains average case
sublinear.

Example 4 (Sequence graph Li and Stephens analogue)
In [12] we described a hidden Markov model for a haplo-
type-copying with recombination but not mutation in the
context of sequence graphs. Assuming we can decom-
pose our graph into nested sites then we can achieve a
fast forward algorithm with mutation. An analogue of
our row-sparse-column matrix compression for sequence
graphs is being actively developed within our research
group.

While a haplotype HMM forward algorithm alone
might have niche applications in bioinformatics, we
expect that our techniques are generalizable to speed-
ing up other forward algorithm-type sequence analysis
algorithms.

Authors’ contributions
YR designed and prototyped the algorithm described in this article and
performed its speed benchmarking. BP conceived of the theoretical need for
such an algorithm and designed its integration into ongoing variant calling
research. Both authors read and approved the final manuscript.

Author details
1 UCSC Genomics Institute, 1156 High St, Santa Cruz, CA 95064, USA. 2 NYU
School of Medicine, 550 First Ave, New York, NY 10016, USA.

Acknowledgements
This work was supported by the National Human Genome Research Institute
of the National Institutes of Health under Award Number 5U54HG007990, the
National Heart, Lung, and Blood Institute of the National Institutes of Health
under Award Number 1U01HL137183-01, and grants from the W.M. Keck foun-
dation and the Simons Foundation. We would like to thank Jordan Eizenga for
his helpful discussions throughout the development of this work.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The dataset used as template haplotypes for the performance profiling
during the current study are available in the 1000 Genomes Phase 3 variant
call release, ftp://ftp.1000g enome s.ebi.ac.uk/vol1/ftp/relea se/20130 502/ The
runtime data produced during the current study are available from the corre-
sponding author on reasonable request. The randomly generated subsampled
haplotype cohorts and haplotypes used in these analyses persisted only in
memory and were not saved to disk due to their immense aggregate size.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 1 November 2018 Accepted: 13 March 2019

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/

Page 12 of 12Rosen and Paten Algorithms Mol Biol (2019) 14:11

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ? Choose BMC and benefit from:

References
 1. Li N, Stephens M. Modeling linkage disequilibrium and identifying

recombination hotspots using single-nucleotide polymorphism data.
Genetics. 2003;165(4):2213–33.

 2. Kingman JFC. The coalescent. Stoch Process Appl. 1982;13(3):235–48.
 3. Loh P-R, Danecek P, Palamara PF, Fuchsberger C, Reshef YA, Finucane

HK, Schoenherr S, Forer L, McCarthy S, Abecasis GR. Reference-based
phasing using the haplotype reference consortium panel. Nat Genet.
2016;48(11):1443.

 4. Browning BL, Browning SR. A unified approach to genotype imputation
and haplotype-phase inference for large data sets of trios and unrelated
individuals. Am J Human Genet. 2009;84(2):210–23.

 5. Williams AL, Patterson N, Glessner J, Hakonarson H, Reich D. Phas-
ing of many thousands of genotyped samples. Am J Human Genet.
2012;91(2):238–51.

 6. Delaneau O, Zagury J-F, Marchini J. Improved whole-chromosome
phasing for disease and population genetic studies. Nat Methods.
2013;10(1):5.

 7. O’Connell J, Sharp K, Shrine N, Wain L, Hall I, Tobin M, Zagury J-F, Dela-
neau O, Marchini J. Haplotype estimation for biobank-scale data sets. Nat
Genet. 2016;48(7):817.

 8. Lunter G. Fast haplotype matching in very large cohorts using the li and
stephens model. bioRxiv 2016. https ://doi.org/10.1101/04828 0. https ://
www.biorx iv.org/conte nt/early /2016/04/12/04828 0.full.pdf.

 9. Keinan A, Clark AG. Recent explosive human population growth
has resulted in an excess of rare genetic variants. Science.
2012;336(6082):740–3.

 10. Consortium GP, et al. A global reference for human genetic variation.
Nature. 2015;526(7571):68.

 11. Durbin R. Efficient haplotype matching and storage using the positional
Burrows–Wheeler transform (PBWT). Bioinformatics. 2014;30(9):1266–72.

 12. Rosen Y, Eizenga J, Paten B. Modelling haplotypes with respect to refer-
ence cohort variation graphs. Bioinformatics. 2017;33(14):118–23.

 13. Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR. Mach: using sequence and
genotype data to estimate haplotypes and unobserved genotypes.
Genet Epidemiol. 2010;34(8):816–34.

 14. Donnelly P, Leslie S. The coalescent and its descendants. 2010. arXiv
preprint arXiv :1006.1514.

https://doi.org/10.1101/048280
https://www.biorxiv.org/content/early/2016/04/12/048280.full.pdf
https://www.biorxiv.org/content/early/2016/04/12/048280.full.pdf
http://arxiv.org/abs/1006.1514

	An average-case sublinear forward algorithm for the haploid Li and Stephens model
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	The Li and Stephens model
	Li and Stephens like algorithms for large populations

	Our contributions

	Sparse representation of haplotypes
	Sparse column representation of haplotype alleles
	Relation to the allele frequency spectrum
	Dynamic reference panels

	Implementation

	Efficient dynamic programming
	Time complexity

	Lazy evaluation of dynamic programming rows
	Equivalence classes of longest major allele suffixes
	The lazy evaluation algorithm

	Results
	Implementation
	Minor allele frequency distribution for the 1000 Genomes dataset
	Comparison of our algorithm with the linear time forward algorithm
	Lazy evaluation of dynamic programming rows

	Sparse haplotype encoding
	Generating our sparse vectors
	Size of sparse haplotype index

	Discussions and Conclusion
	Applications which use individual forward probabilities
	Generalizability of algorithm
	Other haplotype forward algorithms

	Authors’ contributions
	References

