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Abstract 

A key factor in computational drug design is the consistency and reliability with which intermolecular interactions 
between a wide variety of molecules can be described. Here we present a procedure to efficiently, reliably and auto-
matically assign partial atomic charges to atoms based on known distributions. We formally introduce the molecular 
charge assignment problem, where the task is to select a charge from a set of candidate charges for every atom of 
a given query molecule. Charges are accompanied by a score that depends on their observed frequency in similar 
neighbourhoods (chemical environments) in a database of previously parameterised molecules. The aim is to assign 
the charges such that the total charge equals a known target charge within a margin of error while maximizing 
the sum of the charge scores. We show that the problem is a variant of the well-studied multiple-choice knapsack 
problem and thus weakly NP-complete. We propose solutions based on Integer Linear Programming and a pseudo-
polynomial time Dynamic Programming algorithm. We demonstrate that the results obtained for novel molecules not 
included in the database are comparable to the ones obtained performing explicit charge calculations while decreas-
ing the time to determine partial charges for a molecule from hours or even days to below a second. Our software is 
openly available.
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Introduction
Molecule-based computational modelling and simula-
tion studies play a central role in modern drug design and 
development. In particular, molecular dynamics (MD) 
simulations and free energy calculations are increas-
ingly being used to screen potential ligand molecules in 
terms of their interactions with proposed target mol-
ecules (e.g. cell surface receptors or enzymes involved 
in metabolism) [1, 2]. They are also used to model struc-
tural changes in the target molecule associated with 
the binding of a given drug in order to understand the 
mechanism of action. The accuracy and utility of such 
modelling studies depends directly on the fidelity with 

which intermolecular interactions can be represented [3, 
4]. While ideally one might wish to represent such inter-
actions on the level of quantum mechanics, the size and 
complexity of protein-ligand complexes necessitates the 
use of classical dynamics in conjunction with empirical 
potentials. These so-called force fields are parameterised 
to reproduce the interactions between atoms in a system 
of interest (e.g. protein, membrane, drug) and involve 
bonds, angles, dihedrals, van der Waals and Coulomb 
interactions.

Of particular importance is the assignment of partial 
atomic charges to describe the latter interactions. Partial 
atomic or point charges are used to represent the elec-
trostatic potential around a molecule and the Coulomb 
interactions between these point charges dominate the 
calculation of intermolecular interactions. The difficulty 
is that the effective partial charge on an atom needed 
to represent the electrostatic potential surrounding a 
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molecule is heavily dependent on the local environment 
in which an atom is found. For small molecules (< 40 
atoms) partial atomic charges can generally be inferred 
de novo from quantum-mechanical computations  [5]. 
However, when using e.g. commonly applied Density 
Functional Theory (DFT) such calculations scale cubic in 
the number of valence electrons [6], increasing the com-
putational costs significantly. In addition, as molecules 
become larger the accuracy with which charges can be 
assigned decreases.

A standard approach to address this problem is to man-
ually assign charges to atoms based on their similarity to 
atoms (or groups) in a set of reference molecules contain-
ing equivalent chemical moieties. The challenge in mak-
ing such assignments is twofold: (1) the charges assigned 
to equivalent chemical groups in alternative reference 
molecules may vary, making the choice of a reference 
molecule difficult and (2) the charges assigned to neigh-
bouring atoms must be consistent. In particular, the total 
charge on the molecule must be integer. In recent years, 
a number of machine learning approaches emerged 
that infer charges based on a set of reference molecules 
[7–9]. However, these approaches often struggle to deal 
with the ambiguity of similar groups that have different 
charges in different molecules and the requirement that 
the overall charge must be integer.

In this paper, we consider the problem of—given a 
large set of reference molecules with known charge dis-
tributions—how to efficiently, automatically and opti-
mally assign partial atomic charges which are consistent 
with both the neighbouring atoms and the total charge. 
As a reference we have used molecules parameter-
ised using the Automated Topology Builder (ATB) and 
repository [3]. The ATB contains a large number of mol-
ecules (< 50 atoms) for which partial charges have been 
assigned de novo. In previous work, we have contributed 
to improving the reliability of this repository by ensuring 
the consistency and utility of the partial charges assigned 
to atoms by identifying atoms that could be used to form 
charge groups, which can be collectively assigned inte-
ger formal charges ( . . . ,−1, 0, 1, . . .)  [10]. We have also 
developed methods to match molecular substructures, 
taking into account that the partial charge of an atom is 
heavily dependent on its neighbours and the nature of its 
local chemical environment [11]. This made it possible to 
study the distribution of charges within local molecular 
environments for all molecules in the ATB ( ≈ 260,000 
molecules; 9,000,000 atoms and 9,100,000 bonds) and to 
find, given a query molecule, all possible matching frag-
ments (sub-graphs).

Here we build on this previous work and our ability 
to match sub-fragments of a query molecule against the 

available database, to consider how the information con-
tained in already parameterised molecules can be used 
best to infer the charges within a novel molecule. The 
most direct approach would be to assign a simple average 
partial charge on individual atoms identified as equiva-
lent using a given similarity criterion. However, quantum 
mechanics dictates that the total charge on a molecule 
must be integer. Simply attributing to each atom the 
value of an average partial charge from the known distri-
bution fails as it results in the accumulation of errors and 
a total charge deviating from the required value.

Instead, we have considered solutions to the molecu-
lar charge assignment problem, which allow charges that 
deviate from the average to be selected while their sum 
is constrained to lie close to a target total charge. Among 
the possible set of solutions we prefer those that maxi-
mize a score that depends on the observed frequencies of 
the chosen charges. We show that the problem is similar 
to a multiple-choice knapsack problem (MCKP) [12, 13]. 
We introduce ǫ-MCKP, a variant of the standard MCKP 
with an error margin ǫ . We provide an Integer Linear 
Programming (ILP) formulation of ǫ-MCKP and adapt 
the MCKP pseudo-polynomial Dynamic Programming 
(DP) algorithm to ǫ-MCKP. By evaluating the difference 
of the charges assigned by solving the ǫ-MCKP approach 
for the charge assignment problem to the de novo com-
puted ATB charges, we find that they are comparable 
while decreasing the time to determine partial charges 
for a molecule by several orders of magnitude, that is, 
from hours or even days for the latter to below a sec-
ond for the ǫ-MCKP solution. Finally, we show that our 
automated method yields similar results on a large exam-
ple molecule as an expert-supervised semi-automatic 
approach [14].

Our code is publicly available under the Apache 2.0 
open source license [15].

Assigning charges
We consider molecules as graphs. Let G = (V ,E, t) be a 
molecular graph, where vertices V correspond to atoms, 
edges E correspond to bonds and t : V → � colors verti-
ces with atom types. A straightforward alphabet of atom 
types � would be the chemical elements. In this work, we 
used ATB-assigned GROMOS atom types which provide 
a more detailed classification of some chemical elements 
(N, C, O, S) depending on their hybridization (number of 
bonded nodes), and therefore provides a more detailed 
description of the local environment.

The partial charge of an atom is heavily dependent on 
its bonded neighbours and the nature of its local environ-
ment. Formally, we define the k-neighbourhood as:
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Definition 1 (k-neighbourhood) Let 
N (v) = {u | (u, v) ∈ E} be the neighbourhood of an 
atom v. We define the k-neighbourhood recursively as 
Nk(v) = Nk−1(v) ∪

⋃

u∈Nk−1(v)
N (u) , with N0(v) = v.

Informally, the k-neighbourhood of an atom v is the set 
of all atoms for which a path of length ≤ k to v exists. Let 
G[Nk(v)] be the subgraph induced by the k-neighbour-
hood of v.

To collect all possible partial charge values, we consider 
all k-neighbourhoods in the set of previously parameter-
ised molecules. For this we iterate over all atoms v of all 
molecular graphs in the ATB and construct a list of sub-
graphs G[Nk(v)] with associated partial charges of the 
corresponding atom v. We construct a database with an 
entry for each isomorphism class in the subgraph list. For 
each isomorphism class we collect the partial charges of 
its subgraphs and condense the values to a histogram. 
Since the point charges assigned by the ATB are rounded 
to three digits after the decimal point, we round the par-
tial charge values accordingly.

Given a query molecule with a known target total 
charge, the challenge is to assign the most representa-
tive partial charge to each atom while staying close to the 
target total charge (Fig.  1). For that purpose, we iterate 
over all atoms of the query molecular graph and generate 
the subgraphs G[Nk(v)] . We match each subgraph to its 
isomorphism class in our database of k-neighbourhood 
subgraphs. If there is no match, we iteratively retry with 
G[Nk−1(v)] until k = 0 . Now each atom in our query 
molecule has a histogram of possible partial charges. The 
task is now to assign the charges such that we maximize 

the frequencies of the assigned charges while the sum 
of assigned partial charges equals the target charge with 
some error margin.

Problem formulation and complexity
We map each atom i to a set of items j with weights wi,j 
corresponding to partial charges and profits pi,j cor-
responding to their frequency-based scores. The target 
total charge corresponds to capacity c. Note that the 
charge assignment problem is now similar to a multiple-
choice knapsack problem (MCKP). The decision version 
of MCKP is defined as:

Problem  1 (MCKP) Given a decision variable K ≥ 0 , 
capacity c ≥ 0 , m sets N1, . . . ,Nm of items j ∈ Ni with 
profit pi,j ≥ 0 and weight wi,j ≥ 0 , select exactly one 
item from each set, such that the sum of weights of the 
selected items does not exceed c and the sum of profits of 
the selected items is equal or larger than K.

MCKP is known to be weakly NP-complete  [12, 13, 
16]. However, although the problem of assigning charges 
is similar to MCKP, there are two differences. First, 
weights and capacity can be negative numbers. Second, 
the sum of weights of selected items must hit the capacity 
with some error margin, resulting in an upper and lower 
capacity limit. We define a variant of MCKP, which is 
equivalent to the charge assignment problem as:

Problem  2 (ǫ-MCKP) Given a decision variable 
K ≥ 0 , capacity −∞ ≤ c ≤ ∞ , error ǫ ≥ 0 , m sets 
N1, . . . ,Nm of items j ∈ Ni with profit pi,j ≥ 0 and weight 

Fig. 1 General overview. Given a query molecule, our method assigns atomic partial charges based on matching isomorphic subgraphs (red) with 
a known partial charge distribution collected from the ATB database of parameterised molecules
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−∞ ≤ wi,j ≤ ∞ , select exactly one item from each set, 
such that the sum of weights of the selected items is in 
the range [c − ǫ, c + ǫ] and the sum of profits of the 
selected items is equal or larger than K.

Theorem 1 ǫ-MCKP is weakly NP-complete.

Proof Showing that ǫ-MCKP is in NP is straightfor-
ward. Given an instance of ǫ-MCKP and a candidate 
solution Ŝ , we can easily check in polynomial time 
whether c − ǫ ≤

∑

wi,j∈Ŝ
wi,j ≤ c + ǫ and 

∑

pi,j∈Ŝ
pi,j ≥ K  

as well as if Ŝ contains exactly one item from each set 
N1, . . . ,Nm . We show that ǫ-MCKP is weakly NP-hard 
as follows: We reduce MCKP ≤p ǫ-MCKP. Given an 
instance of the standard MCKP with capacity c, we trans-
form it to an ǫ-MCKP instance with capacity c′ = 1

2 c and 
ǫ = 1

2c . Then, c′ − ǫ = 0 and c′ + ǫ = c , making both 
instances equivalent.  �

Both problems obviously can be transformed into opti-
mization problems by omitting the decision variable K 
and maximizing the sum of profits. The definition of ǫ-
MCKP allows us to solve the charge assignment problem.

Solving ǫ‑MCKP
In this section we present two algorithmic strategies to 
solve ǫ-MCKP: the first is based on an Integer Linear 
Programming (ILP) formulation, which can be solved by 
general ILP solvers, while the second is a purely combi-
natorial Dynamic Programming (DP) algorithm.

Formulating ǫ-MCKP as an ILP is straightforward. Let 
xi,j be a binary variable with value 1 if and only if item j in 
set Ni is selected. We formulate the problem as: 

The second algorithm is an adaption of the pseudo-
polynomial DP of the standard MCKP to ǫ-MCKP. The 

(1a)max

m
∑

i=1

∑

j∈Ni

xi,jpi,j

(1b)subject to

m
∑

i=1

∑

j∈Ni

xi,jwi,j ≥ c − ǫ

(1c)
m
∑

i=1

∑

j∈Ni

xi,jwi,j ≤ c + ǫ

(1d)
∑

j∈Ni

xi,j = 1 for 1 ≤ i ≤ m

(1e)xi,j ∈ {0, 1} for 1 ≤ i ≤ m, j ∈ Ni

standard MCKP assumes numbers to be non-negative 
integers. If a given ǫ-MCKP instance does not comply 
with the non-negativity and integrality constraints, we 
transform the instance as follows:

First, we convert floating point weights wi,j , capac-
ity c and error ǫ to integers by multiplying with an 
appropriate factor. Since point charges in this work are 
rounded to three digits after the decimal point, a fac-
tor of 103 is sufficient. Second, we transform the weights 
wi,j and capacity c to non-negative numbers. For every 
set Nj with j = 1, . . . ,m , we determine the minimum 
weight w∗

i = minj∈Ni wi,j . We define the new weights as 
w̃i,j = wi,j − w∗

i  . Then, the weights are guaranteed to be 
non-negative. As we have to select one item per set, we 
can define the new capacity as c̃ = c −

∑m
i=1 w

∗
i .

Therefore, we assume in the following (without loss 
of generality) that weights wi,j , capacity c and error ǫ are 
non-negative integers. Let P be a two-dimensional DP-
table of size m× (c + ǫ) . P[k,  d] holds the maximum 
profit that we can achieve with sets 0 to k and a sum of 
weights of exactly d:

We compute P recursively. Let P[k, d] be defined as:

P[k,  d] is calculated by considering all items of the cur-
rent set Nk and computing the maximum profit that can 
be achieved when adding those profits to possible previ-
ous solutions with k − 1 sets and sum of weights d − wk ,j . 
The profit is −∞ if there is no possible solution for 
P[k, d]. Contrary to the standard MCKP DP we initialize 
P as:

This ensures that only solutions in which the sum of 
selected weights equals exactly d are possible. We find 
the maximum profit p∗ by:

The DP can be easily implemented using one dimension, 
as the recursion only looks back one step in the dimen-
sion k (the number of sets we currently consider). The 
space requirement of the DP algorithm is O(c + ǫ) . The 

(2)

P[k , d] = max






k
�

i=0

�

j∈Ni

xi,jpi,j :

k
�

i=0

�

j∈Ni

xi,jwi,j = d,
�

j∈Nk

xi,j = 1 for all 0 ≤ i ≤ k







(3)

P[k , d] = max
{

P[k − 1, d − wk ,j] + pk ,j for j ∈ Ni and d − wk ,j ≥ 0

−∞

(4)P[0, d] =

{

0 if d = 0
−∞ otherwise

(5)
p∗ = max

{

P[m, d] : max{c − ǫ, 0} ≤ d ≤ c + ǫ
}
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running time complexity is O(n(c + ǫ)) , with n being the 
total number of items.

Results and discussion
To evaluate our method, we conducted a leave-one-out-
analysis using a snapshot of the ATB database contain-
ing roughly 145,000 molecules with charges assigned 
based on electrostatic-potential fitting using quantum 
mechanical calculations at theory level 1 and 2  [3]. We 
focus on this set of previously computed molecules, 
since the computational effort of large-scale quantum-
mechanical calculations is significant. We created a 
database of k-neighbourhood subgraphs associated with 
partial charge histograms with variable bin widths and 
a fixed k = 3 . Bin widths were determined according to 
the Friedman–Diaconis rule  [17] and bin centers were 
aligned to the median charge.

Figure  2 shows the distribution of charges over all 
3-neighbourhood graphs in the snapshot of the ATB that 
are centered at the sample mean of each 3-neighbour-
hood graph. Evidently, the distribution is heavy-tailed 
and not Gaussian. Therefore, as profits pi,j for the ǫ-
MCKP problem we decided in favor of the log of the bin 
counts instead of scoring functions which assume nor-
mally distributed data such as the z-score.

For each molecule in the snapshot, we filtered out all 
charge values associated with its 3-neighbourhood sub-
graphs for each molecule and computed the atomic 
partial charges using the remaining data. For the 67,572 
molecules that could be fully covered with a fixed 
shell size of k = 3 (that is, for each atom a matching 

3-neighborhood was found), we compared the assigned 
values to the original atomic partial charges in the ATB 
database.

All computations were performed on a compute cluster 
with 16 cores at 3.2 GHz and 64 GB RAM per node. The 
ILP was solved using COIN-OR  [18]. We recorded the 
running times of the ILP and DP algorithm, see Fig. 3. As 
expected, the running time of the DP scales linearly with 
103 · n · (c̃ + ǫ) , where n is the number of items, 103 is the 
blowup factor and c̃ is the capacity c transformed to non-
negativity with c̃ = c −

∑m
i=1 w

∗
i  and w∗

i = minj∈Ni wi,j . 
The running times of the ILP show more variation and 
a marginal positive correlation to the number of items n, 
which equals the number of variables in the ILP. The DP 
was always significantly faster than the ILP in the leave-
one-out-evaluation. It should be noted however, that 
both methods are orders of magnitude faster than the 
de novo electrostatic-potential based charge assignment 
using quantum-mechanical computations. For example, 
for the molecule ATB ID 25338 with 120 atoms, the de 
novo method required ∼ 140 days while solving our ǫ-
MCKP approach was finished in ∼ 0.12 (ILP) and ∼ 0.06 
(DP) seconds with both methods using a single core.

In the leave-one-out evaluation, we compared the 
naive approaches of estimating the atomic partial charges 
by simply choosing the mean, median or mode of the 
charge distributions per atom, with our method of solv-
ing ǫ-MCKP instances, see Fig. 4. In case of multimodal 
charge distributions, we selected the mode closest to the 
median. As expected, while the naive methods are, on 
average, able to find charges with a slightly lower distance 

Fig. 2 Charge distribution over all 3-neighborhood graphs. Distribution of charges over all 3-neighbourhood graphs centered at the sample mean 
of each 3-neighbourhood graph (left) and Q–Q-plot with the quantiles of the charge distribution over all 3-neighbourhood graphs on the y-axis 
and the quantiles of a fitted normal distribution on the x-axis
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to the original partial charges, their use often results in 
a total molecular charge far away from the target total 
charge (with errors of more than 1e in many cases). Our 
method on the other hand is able to assign partial charge 
values which are similar to the ones computed by the 
naive methods while achieving a total molecular charge 
close to the target total charge (with a maximal allowed 
difference of ǫ = 0.01e).

As an example of the charges assigned by our method, 
Fig.  5 shows the two molecules with the atomic partial 

charges that are on average closest to and farthest from 
the original ATB charges. The computed charges for the 
molecule with the closest distance fit well to the origi-
nal ATB charges. ǫ-MCKP assigns identical charges to 
atoms H1, H2 and H3. The 3-neighbourhood graphs of 
all three atoms have the same isomorphism class. This is 
an advantage of our ǫ-MCKP approach, since quantum-
mechanical de novo charge assignment does not guaran-
tee that similar charges are assigned to equivalent atoms 
(although in this case the ATB charges are also identical). 

Fig. 3 Running times. Running times of the ILP solved with COIN-OR and the DP dependent on the number of items n, showing that the DP is 
significantly faster than the ILP (left). The running time of the DP actually depends on the number of items times the scaled capacity 103 · n · (c̃ + ǫ) 
(right). Note that one instance is not shown for visibility reasons. The excluded instance has 3640 items and running times of 0.42 s and 1.26 s for the 
DP and ILP, respectively

Fig. 4 Accuracy evaluation. Results of the leave-one-out experiment with k = 3 showing mean distances in elementary charge units (left) and 
violin plots of all distances (right) of original charges found in the ATB to charges calculated by different methods: solving ǫ-MCKP, and selecting the 
mean, median, and mode of the possible charge values for each atom. For ǫ-MCKP, the maximal allowed difference ǫ to the target total molecular 
charge was set to 0.01. The distances are categorized by chemical element, and given for the total molecular charge as well (Total)
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For the molecule with the farthest distance the largest 
individual distance is 0.31e. We observe that the large 
distances are often caused by the original ATB charges 
being on the outer edges of the charge distributions, 
while ǫ-MCKP on the other hand most of the time picks 
charges close to the largest mode of the distribution, see 
bottom side of Fig. 5. Note that Fig. 5 shows the distri-
butions used in the leave-one-out evaluation without the 
original ATB charges of the depicted molecule. Addition-
ally, the charge distributions of atoms with large charge 
distances have been computed with a low number of 
observed charges, resulting in multimodal distributions 
with several large peaks. We expect this effect to disap-
pear when more data is available in the constantly grow-
ing ATB repository.

Most of the outer atoms—especially the hydrogens—
showed a narrow unimodal distribution of ATB charges 
and ǫ-MCKP picked charges close to the original ATB 
charge. The more buried atoms showed a larger vari-
ability. For some buried atoms, we observed a similar 
behavior as for e.g. S1, C5, and C6 in Fig. 5, that ǫ-MCKP 
selects a charge closer to the distribution mean than the 
original ATB charge was. However, for several atoms we 
observed the limit of our data-driven approach. If only a 
few charge values are available for a certain k-neighbour-
hood, then the distributions are multimodal with very 
similar or equal peak heights, reflecting the variability 
of the quantum-mechanically derived charges. Then, ǫ
-MCKP may freely choose between co-optimal solu-
tions. On the other hand, if only exactly one charge value 
is available, ǫ-MCKP has to choose this value. While the 
probability of this occurring will decrease with the addi-
tion of more data, in this case (with the current dataset) it 
could be advisable to use a smaller neighborhood size k. 
With choosing an appropriate k, the user may balance the 
specificity of large k-neighbourhoods against the robust-
ness of small k-neighbourhoods.

In general, charges on the outer atoms of a molecule 
can be assigned quite well while charges of the inner 
atoms deviate more from the ATB charges. This may be 
explained by the larger variability of the inner atoms in 
the ATB dataset, an artifact of the de novo electrostatic-
potential based charge assignment [19].

Additionally, we compared ǫ-MCKP to the expert-
supervised semi-automated method OFraMP  [14]. For 
a query molecule, OFraMP visually suggests maximal 

common substructures matching molecules in the ATB 
database. This allows an expert to construct a molecu-
lar parameterisation by selecting the appropriate partial 
charges from the substructures and redistributing the 
distance of the sum of assigned partial charges within 
the query to the target total molecular charge. For the 
anti-cancer drug Paclitaxel (with 113 atoms), we com-
pared our ǫ-MCKP solution to the mean partial atomic 
charges from five different assignments obtained by an 
expert using OFraMP [14], see Fig. 6. To find the match-
ing k-neighborhoods we iterated over shell size k from 3 
to 1 for each atom until an isomorphic k-neighborhood 
was found.

Overall, ǫ-MCKP and the expert assignments agree 
quite well with absolute distances less than 0.01e for 28 
atoms and less than 0.1e for 98 atoms. However, two bur-
ied carbon atoms show absolute distances of approxi-
mately 0.5e. We identified two possible causes. First, the 
differences may be explained by the larger variability of 
the partial charges of buried atoms in the ATB dataset, 
which is in line with Fig. 6 where atoms in the center of 
the molecule show the highest differences. For example, 
one of the two buried carbon atoms in question already 
shows a high variability in the five expert-supervised 
assignments with a standard deviation of 0.17e. Second, 
we observed a correlation of the distances to the num-
ber of molecules in the ATB where the k-neighborhoods 
were found and how specific the k-neighborhood is, i.e. 
how large the shell size k is. The fewer ATB molecules 
support a k-neighborhood and the smaller its shell size is, 
the larger is the difference between our method and the 
expert assignments. This confirms that our method may 
well perform even better when using a larger dataset of 
molecules.

Conclusions
The ability to accurately calculate the electrostatic inter-
actions between a ligand and its receptor is a key com-
ponent of computer-aided drug development. In this 
paper, we have investigated the problem of automatically 
assigning partial charges. The charge assignment prob-
lem is similar to the multiple-choice knapsack problem. 
We introduced a variant tailored to the charge assign-
ment problem, the ǫ-multiple-choice knapsack problem 
( ǫ-MCKP). Like most knapsack problems, ǫ-MCKP is 
weakly NP-complete. We presented two algorithmic 

(See figure on next page.)
Fig. 5 Example molecules. Molecules with closest (top) and furthest (bottom) average distance between ATB and ǫ-MCKF determined charges in 
the leave-one-out evaluation. Atoms (nodes) are color-coded by their chemical element (red for oxygen, blue for nitrogen, black for carbon, yellow 
for sulfur and grey for hydrogen). Atoms are overlaid with the histograms of the leave-one-out charges of their respective 3-neighbourhoods. The 
original ATB charge and the computed charges are shown by blue and red vertical lines in the histograms
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solutions to ǫ-MCKP, an Integer Linear Programming 
(ILP) formulation and a Dynamic Programming (DP) 
algorithm.

We conducted a leave-one-out evaluation on a snap-
shot of the ATB database. The computed atomic par-
tial charges were close to the original ATB charges and 
the total charge virtually the same as the target total 
charge. This suggests that our method provides consist-
ent parameters for MD simulations, docking studies and 
other related applications. One additional advantage of 
our approach is that equivalent nodes in the graph will be 
assigned similar charges and the charge distribution will 
therefore mirror the symmetry of the molecular graph. 
The additional comparison to expert-assigned charges 
for a large and complex drug molecule (Paclitaxel) sup-
ports these conclusions, but it also showed that the qual-
ity of the computed charges correlates to the size of the 
database used by our method. As the ATB is constantly 
growing, we are confident that our method may also con-
stantly improve.

The DP algorithm performed faster than the ILP on a 
set of 160,000 molecules contained within the ATB. On 

average, both implementations required only a fraction 
of a second to assign charges to molecules containing 
50–100 atoms, while quantum-mechanical computations 
required many days. This is important when screening 
large molecular databases. For instance, ChEMBL  [20], 
a manually curated chemical database of bioactive mol-
ecules with drug-like properties, contains in excess of 
1.6 million compounds. The majority of these have more 
than 50 atoms making quantum-mechanical computa-
tions difficult. Other computational drug design data-
bases are larger again  [21]. For example, ZINC, a free 
database of commercially-available compounds, contains 
more than 35 million compounds [22].

Our method builds on a repository of previously com-
puted molecular parameters and assigns consistent par-
tial atomic charges in a swift manner to facilitate MD 
simulations and related applications in drug design.
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