
Prezza et al. Algorithms Mol Biol (2019) 14:3
https://doi.org/10.1186/s13015-019-0137-8

RESEARCH

SNPs detection by eBWT positional
clustering
Nicola Prezza1, Nadia Pisanti1,3, Marinella Sciortino2 and Giovanna Rosone1*

Abstract

Background: Sequencing technologies keep on turning cheaper and faster, thus putting a growing pressure for data
structures designed to efficiently store raw data, and possibly perform analysis therein. In this view, there is a growing
interest in alignment-free and reference-free variants calling methods that only make use of (suitably indexed) raw
reads data.

Results: We develop the positional clustering theory that (i) describes how the extended Burrows–Wheeler Transform
(eBWT) of a collection of reads tends to cluster together bases that cover the same genome position (ii) predicts the
size of such clusters, and (iii) exhibits an elegant and precise LCP array based procedure to locate such clusters in
the eBWT. Based on this theory, we designed and implemented an alignment-free and reference-free SNPs calling
method, and we devised a consequent SNPs calling pipeline. Experiments on both synthetic and real data show that
SNPs can be detected with a simple scan of the eBWT and LCP arrays as, in accordance with our theoretical frame-
work, they are within clusters in the eBWT of the reads. Finally, our tool intrinsically performs a reference-free evalua-
tion of its accuracy by returning the coverage of each SNP.

Conclusions: Based on the results of the experiments on synthetic and real data, we conclude that the positional
clustering framework can be effectively used for the problem of identifying SNPs, and it appears to be a promising
approach for calling other type of variants directly on raw sequencing data.

Availability: The software ebwt2snp is freely available for academic use at: https ://githu b.com/nicol aprez za/ebwt2
snp.

Keywords: BWT, LCP array, SNPs, Reference-free, Assembly-free

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Sequencing technologies keep on turning cheaper and
faster, producing huge amounts of data that put a grow-
ing pressure on data structures designed to store raw
sequencing information, as well as on efficient analy-
sis algorithms: collections of billion of DNA fragments
(reads) need to be efficiently indexed for downstream
analysis. The most traditional analysis pipeline after a
sequencing experiment, begins with an error-prone and
lossy mapping of the reads onto a reference genome.
Among the most widespread tools to align reads on a
reference genome we can mention BWA [1], Bowtie2

[2], SOAP2 [3]. These methods share the use of the FM-
index [4], an indexing machinery based on the Burrows–
Wheeler Transform (BWT) [5]. Other approaches [6, 7]
combine an index of the reference genome with the BWT
of the reads collection in order to boost efficiency and
accuracy. In some applications, however, aligning reads
on a reference genome presents limitations mainly due to
the difficulty of mapping highly repetitive regions, espe-
cially in the event of a low-quality reference genome, not
to mention the cases in which the reference genome is
not even available.

For this reason, indices of reads collections have also
been suggested as a lossless dictionary of sequencing
data, where sensitive analysis methods can be directly
applied without mapping the reads to a reference genome
(thus without needing one), nor assembling [8–11]. In

Open Access

Algorithms for
Molecular Biology

*Correspondence: giovanna.rosone@unipi.it
1 Dipartimento di Informatica, University of Pisa, Pisa, Italy
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-5075-1214
https://github.com/nicolaprezza/ebwt2snp
https://github.com/nicolaprezza/ebwt2snp
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-019-0137-8&domain=pdf

Page 2 of 13Prezza et al. Algorithms Mol Biol (2019) 14:3

[12] the BWT, or more specifically its extension to string
collections (named eBWT [13, 14]), is used to index reads
from the 1000 Genomes Project [15] in order to sup-
port k-mer search queries. An eBWT-based compressed
index of sets of reads has also been suggested as a basis
for both RNA-Seq [16] and metagenomics [17] analy-
ses. There exist also suffix array based data structures
devised for indexing reads collections: the Gk array [18,
19] and the PgSA [20]. The latter does not have a fixed k-
mer size. The tool SHREC [21] also uses a suffix-sorting-
based index to detect and correct errors in sets of reads.
The main observation behind the tool is that sequencing
errors disrupt unary paths at deep levels of the reads’ suf-
fix trie. The authors provide a statistical analysis allowing
to detect such branching points. Finally, there are several
tools [8–11, 22–24] that share the idea of using the de
Bruijn graph (dBG) of the reads’ k-mers. The advantages
of dBG-based indices include allowing therein the char-
acterization of several biologically-interesting features of
the data as suitably shaped and sized bubbles1 (e.g. SNPs,
INDELs, alternative splicing events on RNA-Seq data,
sequencing errors can all be modeled as bubbles in the
dBG of sequencing data [8, 9, 22–24]). The drawback
of these dBG representation, as well as those of suffix
array based indices [18, 19], is the lossy aspect of get-
ting down to k-mers rather than representing the actual
whole collection of reads. Also [6, 7] have this drawback
as they index k-mers. An eBWT-based indexing method
for reads collections, instead, has the advantages to be
easy to compress and, at the same time, lossless: (e)BWT
indexes support querying k-mers without the need to
build different indexes for different values of k.

We introduce the positional clustering framework: an
eBWT-based index of reads collections where we give
statistical characterizations of (i) read suffixes prefixing
the same genome’s suffix as clusters in the eBWT, and (ii)
the onset of these clusters by means of the LCP. This clus-
tering allows to locate and investigate, in a lossless index
of reads collections, genome positions possibly equiva-
lent to bubbles in the dBG [8, 22] independently from the
k-mer length (a major drawback of dBG-based strate-
gies). We thus gain the advantages of dBG-based indices
while maintaining those of (e)BWT-based ones. Besides,
the eBWT index also contains abundance data (useful to
distinguish errors from variants, as well as distinct vari-
ant types) and does not need the demanding read-coher-
ency check at post processing as no micro-assembly has
been performed. To our knowledge, SHREC [21] and the
positional clustering probability framework we introduce

in "eBWT positional clustering" subsection , are the only
attempts to characterize the statistical behavior of suffix
trees of reads sets in presence of errors. We note that,
while the two solutions are completely different from the
algorithmic and statistical points of view, they are also,
in some sense, complementary: SHREC characterizes
errors as branching points at deep levels of the suffix trie,
whereas our positional framework characterizes clusters
of read suffixes prefixing the same genome’s suffix, and
identifies mutations (e.g. sequencing errors or SNPs) in
the characters preceding those suffixes (i.e. eBWT charac-
ters). We note that our cluster characterization could be
used to detect the suffix trie level from where sequencing
errors are detected in SHREC. Similarly, SHREC’s char-
acterization of errors as branching points could be used
in our framework to detect further mutations in addition
to those in the eBWT clusters.

We apply our theoretical framework to the problem of
identifying SNPs. We describe a tool, named ebwt2snp,
designed to detect positional clusters and post-process
them for assembly-free and reference-free SNPs detec-
tion directly on the eBWT of reads collection. Among
several reference-free SNPs finding tools in the literature
[8, 11, 25, 26], the state-of-the-art is represented by the
well documented and maintained KisSNP and DiscoSnp
suite [8, 25, 27], where DiscoSnp++ [26] is the latest
and best performing tool. In order to validate the accu-
racy of positional clustering for finding SNPs, we com-
pared DiscoSnp++ sensitivity and precision to those of
ebwt2snp by simulating a ground-truth set of SNPs and
a read collection. We moreover performed experiments
on a real human dataset in order to evaluate the perfor-
mance of our tool in a more realistic scenario. Results on
reads simulated from human chromosomes show that,
for example, using coverage 22× our tool is able to find
91% of all SNPs (vs 70% of DiscoSnp++) with an accu-
racy of 98% (vs 94% of DiscoSnp++). On real data, an
approximate ground truth was computed from the raw
reads set using a standard aligner-based pipeline. The
sensitivity of DiscoSnp++ and ebwt2snp turn out to
be similar against this ground-truth (with values ranging
from 60 to 85%, depending on the filtering parameters),
but, in general, ebwt2snp finds more high-covered SNPs
not found by the other two approaches.

A preliminary version of this paper appeared in [28]
with limited experiments performed with a prototype
tool. This version includes an extension of our strategy
to diploid organisms, results on a real dataset, and a new
pipeline to generate a .vcf file from our output in the case
a reference genome is available.

1 A bubble in a graph is a pair of disjoint paths sharing the same source node
and target node.

Page 3 of 13Prezza et al. Algorithms Mol Biol (2019) 14:3

Preliminaries
In this section, we define some general terminology we
will use throughout this paper. Let � = {c1, c2, . . . , cσ } be
a finite ordered alphabet with c1 < c2 < · · · < cσ , where
< denotes the standard lexicographic order. For s ∈ �∗ ,
we denote its letters by s[1], s[2], . . . , s[n] , where n is
the length of s, denoted by |s|. We append to s ∈ �∗ an
end-marker symbol $ that satisfies $ < c1 . Note that, for
1 ≤ i ≤ n , s[i] ∈ � and s[n+ 1] = $ /∈ � . A substring of s
is denoted as s[i, j] = s[i] · · · s[j] , with s[1, j] being called a
prefix and s[i, n+ 1] a suffix of s.

We denote by S = {R1,R2, . . . ,Rm} a collection of
m strings (reads), and by $i the end-marker appended
to Ri (for 1 ≤ i ≤ m), with $ i <$ j if i < j . Let us denote
by P the sum of the lengths of all strings in S . The gen-
eralized suffix array GSA of the collection S (see
[29–31]) is an array containing P pairs of integers (r, j),
corresponding to the lexicographically sorted suffixes
Rr[j, |Rr | + 1] , where 1 ≤ j ≤ |Rr | + 1 and 1 ≤ r ≤ m . In
particular, gsa(S)[i] = (r, j) (for 1 ≤ i ≤ P) if the suffix
Rr[j, |Rr | + 1] is the i-th smallest suffix of the strings in
S . Such a notion is a natural extension of the suffix array
of a string (see [32]). The Burrows–Wheeler Transform
(BWT) [5], a well known text transformation largely used
for data compression and self-indexing compressed data
structure, has also been extended to a collection S of
strings (see [13]). Such an extension, known as extended
Burrows–Wheeler Transform (eBWT) or multi-string
BWT, is a reversible transformation that produces a
string that is a permutation of the letters of all strings in
S : the eBWT of a collection S is denoted by ebwt(S) , and
is obtained by concatenating the symbols cyclically pre-
ceding each suffix in the list of lexicographically sorted
suffixes of all strings in S . The eBWT of a collection S can
also be defined in terms of the generalized suffix array of
S [14]: if gsa(S)[i] = (j, t) then ebwt(S)[i] = Rj[t − 1] ;
when t = 1 , then ebwt(S)[i] = $j . For gsa , ebwt , and lcp ,
the LF mapping (resp. FL) is a function that associates to
each (e)BWT symbol the position preceding (resp. fol-
lowing) it on the text.

The longest common prefix (LCP) array of a collection
S of strings (see [30, 31, 33]), denoted by lcp(S) , is an
array storing the length of the longest common prefixes
between two consecutive suffixes of S in lexicographic
order. For each i = 2, . . . ,P , if gsa(S)[i − 1] = (p1, p2)
and gsa(S)[i] = (q1, q2) , lcp(S)[i] is the length of the
longest common prefix of suffixes starting at positions
p2 and q2 of the strings Rp1 and Rq1 , respectively. We set
lcp(S)[1] = 0.

For gsa , ebwt , and lcp , the set S will be omitted when
clear from the context.

Methods
In this section, we describe our strategy that, given a set
of reads sequenced from a genome, allows to find reads
clusters with shared context ("eBWT positional cluster-
ing" subsection). Moreover, we show how this theoretical
framework can be used to design a tool for SNPs detec-
tion ("A pipeline for SNPs detection" subsection). Our
approach is alignment-free and reference-free, as it does
not need to align the reads among each other nor map
them on a reference genome: it only makes use of eBWT,
LCP and GSA of the reads collection.

eBWT positional clustering
Let R be a read sequenced from a genome G[1, n]. We
say that R[j] is a read-copy of G[i] iff R[j] is copied from
G[i] during the sequencing process (and then possi-
bly changed due to sequencing errors). Let us consider
the eBWT of a set of reads {R1, . . . ,Rm} of length2 r,
sequenced from a genome G. Assuming that c is the cov-
erage of G[i], let us denote with Ri1 [j1], . . . ,Ric [jc] the c
read-copies of G[i]. Should not there be any sequencing
error, if we consider k such that the genome fragment
G[i + 1, i + k] occurs only once in G (that is, nowhere
else than right after G[i]) and if r is large enough so that
with high probability each Rit [jt] is followed by at least k
nucleotides, then we observe that the c read copies of G[i]
would appear contiguously in the eBWT of the reads. We
call this phenomenon eBWT positional clustering.

We make the following assumptions: (i) the sequenc-
ing process is uniform, i.e. the positions from where each
read is sequenced are uniform and independent random
variables (ii) the probability ǫ that a base is subject to a
sequencing error is a constant (iii) a sequencing error
changes a base to a different one uniformly (i.e. with
probability 1/3 for each of the three possible variants),
and (iv) the number m of reads is large (hence, in our the-
oretical analysis we can assume m → ∞).

Definition 3.1 (eBWT cluster) The eBWT cluster of
i, with 1 ≤ i ≤ n being a position on G, is the substring
ebwt[a, b] such that gsa[a, b] is the range of read suffixes
prefixed by G[i + 1, i + k] , where k < r is the smallest
value for which G[i + 1, i + k] appears only once in G. If
no such value of k exists, we take k = r − 1 and say that
the cluster is ambiguous.

If no value k < r guarantees that G[i + 1, i + k]
appears only once in G, then the eBWT cluster of i does

2 For simplicity of exposition, here we assume that all the reads have the same
length r. With little more effort, it can be shown that our results hold even
when r is the average read length.

Page 4 of 13Prezza et al. Algorithms Mol Biol (2019) 14:3

not contain only read-copies of G[i] but also those of
other t − 1 characters G[i2], . . . ,G[it] . We call t the mul-
tiplicity of the eBWT cluster. Note that t = 1 for non-
ambiguous clusters.

Due to sequencing errors, and to the presence of
repetitions with mutations in real genomes, a clean
eBWT positional clustering is not realistic. However,
we show that, even in the event of sequencing errors,
in the eBWT of a collection of reads sequenced from
a genome G, the read-copies of G[i] still tend to be
clustered together according to a suitable Poisson
distribution.

Theorem 3.2 (eBWT positional clustering) Let
Ri1 [j1], . . . ,Ric [jc] be the c read-copies of G[i]. An expected
number X ≤ c of these read copies will appear in the
eBWT cluster ebwt[a, b] of i, where X ∼ Poi(�) is a Pois-
son random variable with mean

and where k is defined as in Definition 3.1.

Proof The probability that a read covers G[i] is r/n.
However, we are interested only in those reads such that,
if R[j] is a read-copy of G[i], then the suffix R[j + 1, r + 1]
contains at least k nucleotides, i.e. j ≤ r − k . In this way,
the suffix R[j + 1, r + 1] will appear in the GSA range
gsa[a, b] of suffixes prefixed by G[i + 1, i + k] or, equiv-
alently, R[j] will appear in ebwt[a, b] . The probability
that a random read from the set is uniformly sampled
from such a position is (r − k)/n . If the read contains
a sequencing error inside R[j + 1, j + k] , however, the
suffix R[j + 1, r + 1] will not appear in the GSA range
gsa[a, b] . The probability that this event does not happen
is (1− ǫ)k . Since we assume that these events are inde-
pendent, the probability of their intersection is therefore

This is a Bernoullian event, and the number X of read-
copies of G[i] falling in ebwt[a, b] is the sum of m inde-
pendent events of this kind. Then, X follows a Poisson
distribution with mean � = m · r−k

n (1− ǫ)k . �

Theorem 3.2 states that, if there exists a value k < r
such that G[i + 1, i + k] appears only once in G (i.e.
if the cluster of i is not ambiguous), then X of the
b− a+ 1 letters in ebwt[a, b] are read-copies of G[i].
The remaining (b− a+ 1)− X letters are noise intro-
duced by suffixes that mistakenly end up inside gsa[a, b]

� = m ·
r − k

n
(1− ǫ)k

Pr(R[j] ∈ ebwt[a, b]) =
r − k

n
(1− ǫ)k

due to sequencing errors. It is not hard to show that
this noise is extremely small under the assumption that
G is a uniform text; we are aware that this assump-
tion—as well as those required by Theorem 3.2—is not
completely realistic, but we will experimentally show
in "Experimental evaluation" section that also on real
datasets our approach produces accurate results (as
predicted by our simplified theoretical framework). See
"SNP calling (ebwt2snp)" subsection for our complete
strategy in a real scenario.

Note that the expected coverage of position G[i] is also
a Poisson random variable, with mean �′ = mr

n equal to
the average coverage. On expectation, the size of non-
ambiguous eBWT clusters is thus �/�′ = (r−k)(1−ǫ)k

r < 1
times the average coverage. E.g., with k = 14 , ǫ = 0.0033
(see [34, Table 1, HiSeq, R2]), and r = 100 the expected
cluster size is 100 · �/�′ ≈ 80% the average coverage.

Finally, it is not hard to prove, following the proof of
Theorem 3.2, that in the general case with multiplicity
t ≥ 1 the expected cluster size follows a Poisson distribu-
tion with mean t · � (because the read-copies of t posi-
tions are clustered together).

Note that in this section we use the reference genome
for our theoretical analysis only. In practice, the reference
genome could be unknown, and our tool (described in
the next sections) will not need it.

So far, we have demonstrated the eBWT positional
clustering property but we don’t have a way to efficiently
locate the eBWT clusters. A naive strategy could be to
fix a value of k and define clusters to be ranges of k-mers
in the GSA. This solution, however, fails to separate read
suffixes differing after k positions (this is, indeed, a draw-
back of all k-mer-based strategies). The aim of Theo-
rem 3.3 is precisely to fill this gap, allowing us to move
from theory to practice. Intuitively, we show that clusters
lie between local minima in the LCP array. This strategy
automatically detects, in a data-driven way, the value k
satisfying Definition 3.1 (crucially, k is not the same for
all clusters).

Our result holds if two conditions on the cluster
ebwt[a, b] of a position under investigation are satisfied:

1. The cluster does not have noise, i.e. X = b− a+ 1 ,
and

2. Let (p1, j1), (p2, j2) ∈ gsa[a, b] . For any x such that
k ≤ x < r , if both Rp1 [j1, r] and Rp2 [j2, r] contain
their leftmost sequencing errors in Rp1 [j1 + x] and
Rp2 [j2 + x] , then Rp1 [j1 + x] �= Rp2 [j2 + x].

Intuitively, Condition (2) states that two sequencing
errors on two read-copies of the same genome letter
do not produce the same nucleotide (intuitively, this is
unlikely to happen with low sequencing error rates and

Page 5 of 13Prezza et al. Algorithms Mol Biol (2019) 14:3

not too high coverages). In [28, Prop. 4] we proved that
with probability high enough Condition (2) is satisfied
in practice.

Theorem 3.3 Let ebwt[a, b] be the eBWT cluster of
a position i meeting Conditions (1) and (2). Then, there
exists a value a < p ≤ b such that lcp[a+ 1, p] is a non-
decreasing sequence and lcp[p+ 1, b] is a non-increasing
sequence.

Proof Let us denote by pM the largest index in (a, b]
such that lcp[pM] = M , where M is the maximum value
of LCP in (a, b] (if M occurs multiple times, take the
rightmost occurrence). We claim the theorem holds for
p = pM . Let us denote by q and j, 1 ≤ q ≤ m , 1 ≤ j ≤ r ,
the positive integers such that gsa[pM] = (q, j) . This
means, by using Condition (2), that the read Rq contains
the longest prefix Rq[j, j +M − 1] without sequenc-
ing errors, j +M ≤ r + 1 . Consider any other suffix
Ru[ju, r + 1] in the range and let Ru[ju + x] be the left-
most mismatch letter in Ru[ju, r + 1] , with x ≥ k . Note
that if Ru[ju, r + 1] does not contain sequencing errors,
then ju + x − 1 = r , otherwise Ru[ju + x] has been
mutated with an error. We suppose that the mutation
at position ju + x generated a letter lexicographically
smaller than that of the genome (the other case is sym-
metric). By Condition (2), x ≤ M + 1 and no other suffix
Rv[jv , r + 1] in the range satisfies Rv[jv + x] = Ru[ju + x] .
Then, Ru[ju, r + 1] falls right after a suffix Ru′ [ju′ , r + 1]
such that either Ru′ [ju′ , r] properly prefixes Ru[ju, r + 1]
or the leftmost mismatch occurs at position x′ ≤ x . Simi-
larly, Ru[ju, r + 1] falls right before a suffix Ru′′ [ju′′ , r + 1]
such that Ru[ju + x] < Ru′′ [ju′′ + x] and whose leftmost
mismatch position x′′ satisfies x ≤ x′′ ≤ M + 1 . This
shows that, before suffix Rq[j, r + 1] , other suffixes are
ordered by increasing position of their leftmost mis-
match letter (since x′ ≤ x ≤ x′′) and, then, by the lexico-
graphic order among mismatch letters, which in particu-
lar implies that before suffix Rq[j, r + 1] the lcp values
are non-decreasing. Symmetrically, with a similar reason-
ing one can easily prove that after suffix Rq[j, r + 1] the
lcp values are non-increasing. �

According to Theorem 3.3, clusters are delimited by
local minima in the LCP array of the reads set. This
gives us a strategy for finding clusters that is independ-
ent from k. Importantly, the proof of Theorem 3.3 also
gives us the suffix in the range (the p-th suffix) whose
longest prefix without sequencing errors is maximized.
As we will show in the next section, this will be useful
to efficiently compute a consensus of the reads in the
cluster.

Observe that by applying Theorem 3.3 we also find
ambiguous clusters. However, the expected length of
these clusters is a multiple of � , so they can be reliably
discarded with a significance test based on the Poisson
distribution of Theorem 3.2.

A pipeline for SNPs detection
When the reads dataset contains variations (e.g. two
allele of the same individual, or two or more distinct indi-
viduals, or different isoforms of the same gene in RNA-
Seq data, or different reads covering the same genome
fragment in a sequencing process, etc.), the eBWT posi-
tional clustering described in "eBWT positional cluster-
ing" subsection can be used to detect, directly from the
raw reads (hence, without assembly and without the need
of a reference genome), positions G[i] exhibiting possibly
different values, but followed by the same context: they
will be in a cluster delimited by LCP minima and con-
taining possibly different letters (corresponding to the
read copies of the variants of G[i] in the reads set). We
now describe how to use this theoretical framework to
discover SNPs just scanning eBWT, LCP and GSA of the
sets of reads, without aligning them nor mapping them
onto a reference genome.

Since (averagely) half of the reads comes from the for-
ward (F) strand, and half from the reverse-complement
(RC) strand, we denote with the term right (resp. left)
breakpoint those variants found in a cluster formed by
reads coming from the F (resp. RC) strand, and therefore
sharing the right (resp. left) context adjacent to the vari-
ant. A non-isolated SNP [25] is a variant at position i such
that the closest variant is within k bases from i, for some
fixed k (we use k = 31 in our validation procedure, see
below). The SNP is isolated otherwise. Note that, while
isolated SNPs are found twice with our method (one
as a right breakpoint and one as a left breakpoint), this
is not true for non-isolated SNPs: variants at the sides
of a group of non-isolated SNPs are found as either left
or right breakpoint, while SNPs inside the group will
be found with positional clustering plus a partial local
assembly of the reads in the cluster. In the next two sub-
sections we give all the details of our strategy.

Our main suite performing the SNP-calling step is
called ebwt2snp, and is described in more detail in
"SNP calling (ebwt2snp)" subsection. ebwt2snp requires
a pre-processing phase to be executed beforehand
(described in "Pre-processing (eBWT computation)" sub-
section), where we compute the required data structures.
If a reference genome is available, after the execution of
ebwt2snp one can further run a post-processing phase
called snp2vcf (described in "Post-processing (snp2vcf)"
subsection) in order to obtain a .vcf file containing the
identified SNPs. Figure 1 depicts the whole pipeline.

Page 6 of 13Prezza et al. Algorithms Mol Biol (2019) 14:3

Pre‑processing (eBWT computation)
Since we do not aim at finding matching pairs of clusters
on the forward and reverse strands, we augment the input
adding the reverse-complement of the reads: for a reads
set S , we add SRC as well. Hence, given two reads sets S
and T , in the pre-processing phase we compute ebwt(R) ,
lcp(R) , and gsa(R) , for R = {S ∪ SRC ∪ T ∪ T RC} .
This task can be achieved using, for example, BCR3 [30],
eGSA4 [31] or gsacak5 [35]. We also compute gsa(R)
because we will need it (see "SNP calling (ebwt2snp)"
subsection) to extract left and right contexts of the SNP.
Though this could be achieved by performing (in external
memory) multiple steps of LF- and FL-mappings on the
eBWT, this would significantly slow down our tool. Note
that our approach can also be generalized to more than
two reads collections.

SNP calling (ebwt2snp)
Our SNPs calling approach takes as input ebwt(R) ,
lcp(R) , and gsa(R) and outputs SNPs in KisSNP2 for-
mat [27]: a fasta file containing a pair of sequences per
SNP (one per sample, containing the SNP and its con-
text). The SNP calling, implemented in the ebwt2snp
suite, is composed by the following modules (to be exe-
cuted sequentially): ebwt2clust and clust2snp.

ebwt2clust: partitions ebwt(R) in clusters corre-
sponding to the same genome position as follows. A scan
of ebwt(R) and lcp(R) finds clusters using Theorem 3.3,
and stores them as a sequence of ranges of the eBWT.
While computing the clusters, we also apply a threshold
of minimum LCP (by default, 16), cutting clusters tails
with LCP values below the threshold; this filtering dras-
tically reduces the number of stored clusters (and hence
memory usage and running time), avoiding to output
many short clusters corresponding to noise. The outputs
is a .clusters file.

clust2snp: it takes as input the clusters file produced
by ebwt2clust, ebwt(R) , lcp(R) , gsa(R) , and R , pro-
cessing clusters from first to last as follows:

1. We compute empirically the cluster size distribu-
tion. Experimentally, we observed that this distribu-
tion has exactly the mean predicted by Theorem 3.2.
However, due to the fact that on real data the cover-
age is not uniform (as required by the assumptions
of Theorem 3.2), we observed a higher variance with
respect to the Poisson distribution of Theorem 3.2.
For this reason, in practice we refer to the empirical
observed distribution of cluster sizes, rather than the
theoretical one.

2. We test the cluster’s length using the distribution
computed in step 1; if the cluster’s length falls in one
of the two tails at the sides of the distribution (by
default, the two tails summing up to 5% of the dis-
tribution), then the cluster is discarded; moreover,
due to k-mers that are not present in the genome
but appear in the reads because of sequencing errors
(that introduce noise around cluster length equal
to 1), we also fix a minimum value of length for the
clusters (by default, four letters per sample).

3. In the remaining clusters, we find the most frequent
nucleotides b1 and b2 of samples 1 and 2, respectively,
and check whether b1 �= b2 ; if so, then we have a
candidate SNP: for each sample, we use the GSA to
retrieve the coordinate of the read containing the
longest right-context without errors; moreover, we
retrieve, and temporarily store in a buffer, the coor-
dinates of the remaining reads in the cluster associ-
ated with a long enough LCP value (by default, at
least k = 30 bases). For efficiency reasons, the user
can also specify an upper bound to the number of
reads to be extracted. In case of diploid samples and
heterozygous sites, up to two nucleotides b1i , b

2
i per

individual (i = 1, 2 being the individual’s index) are
selected (i.e. the two most frequent), and we repeat
the above procedure for any pair of nucleotides
b
j′

1 �= b
j′′

2 exhibiting a difference among the two indi-
viduals.

4. After processing all events, we scan the fasta file stor-
ing R to retrieve the reads of interest (those whose
coordinates are in the buffer); for each cluster, we
compute a consensus of the read fragments preced-
ing the SNP, for each of the two samples. This allows
us to compute a left-context for each SNP (by default,

Fig. 1 Our complete pipeline, including pre-processing and post-processing phases

3 https ://githu b.com/giova nnaro sone/BCR_LCP_GSA.
4 https ://githu b.com/felip elouz a/egsa.
5 https ://githu b.com/felip elouz a/sacak -lcp.

https://github.com/giovannarosone/BCR_LCP_GSA
https://github.com/felipelouza/egsa
https://github.com/felipelouza/sacak-lcp

Page 7 of 13Prezza et al. Algorithms Mol Biol (2019) 14:3

of length k + 1 = 31), and it also represents a fur-
ther validation step: if the assembly cannot be built
because a consensus cannot be found, then the clus-
ter is discarded. The number C of reads in accordance
with the computed consensus (i.e. within small Ham-
ming distance—by default 2—from the consensus) is
also stored to output. This value can be used to fil-
ter the output at post-processing time (i.e. to require
that each SNP is supported by at least a certain num-
ber of reads). Note that these left-contexts preceding
SNPs (which are actually right-contexts if the cluster
is formed by reads from the RC strand) allow us to
capture non-isolated SNPs. Each SNP is returned as
a pair of DNA fragments (one per sample) of length
2k + 1 (where, by default, k = 30), with the SNP in
the middle position.

The output of clust2snp is a .snp file (this is actually a
fasta file containing pairs of reads testifying the varia-
tions). We remark that, given the way our procedure is
defined, the fragments of length 2k + 1 that we output
are always substrings (at small Hamming distance—by
default, 2) of at least C reads (C being the above-men-
tioned number of reads in accordance with the computed
consensus). This means that our method cannot output
chimeric fragments: all SNPs we output are effectively
supported by at least a certain number of reads. This
number is stored to output and can be used to filter the
result at post-processing time.

Post‑processing (snp2vcf)
Finally, for the cases where a reference genome is avail-
able, we have designed a second pipeline snp2vcf that
processes the results of ebwt2snp to produce a .vcf
file6. Since the input of ebwt2snp is just a reads set, the
tool cannot directly obtain the SNPs positions (in the
genome) required for building the .vcf file. For this, we
need a reference genome and an alignment tool.

snp2fastq: Converts the .snp file produced by
clust2snp into a .fastq file (with
dummy base qualities) ready to be
aligned.

bwa-mem7: Is a well-known tool that maps
low-divergent sequences against a
large reference genome [1, 36]. The
output is a .sam file.

sam2vcf: Converts the .sam file produced
in the previous step into a .vcf file
containing the variants.

Complexity
In the clustering step, we process the eBWT and LCP and
on-the-fly output clusters to disk. The SNP-calling step
performs one scan of the eBWT, GSA, and clusters file
to detect interesting clusters, plus one additional scan of
the reads set to retrieve contexts surrounding SNPs. Both
these phases take linear time in the size of the input and
do not use disk space in addition to the input and output.
Due to the fact that we store in a buffer the coordinates of
reads inside interesting clusters, this step uses an amount
of RAM proportional to the number of SNPs times the
average cluster size � times the read length r (e.g. a few
hundred MB in our case study of "Experimental evalu-
ation" section). Notice that our method is very easy to
parallelize, as the analysis of each cluster is independent
from the others.

Experimental evaluation
In this section we test the performance of our method
using simulated ("Experiments on real data" subsection)
and real ("Experiments on synthetic data" subsection)
datasets. In the first case, the starting point is the ground
truth, that is a real .vcf file, while the synthetic data is
consequently generated, starting from a real sequence,
using such file and a sequencing simulator. In the second
case, the starting point is real raw reads data for which
the real ground truth is not available, and hence, in order
to validate our results, we have generated a synthetic
one by means of a standard pipeline. Note that, since the
use of a synthetic ground truth can generate errors, our
approach is also able to provide a further estimate of the
accuracy of the identified SNPs, on the basis of the num-
ber of reads needed to identify them, as detailed in the
following.

We compare ebwt2snp with DiscoSnp++, that is
an improvement of the DiscoSnp algorithm: while Dis-
coSnp only detects (both heterozygous and homozy-
gous) isolated SNPs from any number of read datasets
without a reference genome, DiscoSnp++ detects and
ranks all kinds of SNPs as well as small indels. As shown
in [26], DiscoSnp++ performs better than state-of-the-
art methods in terms of both computational resources
and quality of the results.

DiscoSnp++ is a pipeline of several independent
tools. As a preprocessing step, the dBG of the input
datasets is built, and presumed erroneous k-mers are
removed. Then, DiscoSnp++ detects bubbles generated
by the presence of SNPs (isolated or not) and indels, and

6 .vcf stands for Variant Call Format: the standard text format for storing
genome sequence variations with meta-information about position in the ref-
erence genome.
7 http://bio-bwa.sourceforge.net/.

http://bio-bwa.sourceforge.net/

Page 8 of 13Prezza et al. Algorithms Mol Biol (2019) 14:3

it outputs a fasta file containing the variant sequences
(KisSNP2 module). A final step (kissreads2) maps
back the reads from all input reads sets on the variant
sequences, mainly in order to determine the read cover-
age per allele and per reads set of each variant. This mod-
ule also computes a rank per variant, indicating whether
it exhibits discriminant allele frequencies in the datasets.
The last module generates a .vcf of the predicted vari-
ants. If no reference genome is provided, this step is sim-
ply a change of format from fasta to .vcf (VCFcreator
module).

Our framework has been implemented in C++ and
is available at https ://githu b.com/nicol aprez za/ebwt2
snp. All tests were done on a DELL PowerEdge R630
machine, used in non exclusive mode. Our platform is
a 24-core machine with Intel(R) Xeon(R) CPU E5-2620
v3 at 2.40 GHz, with 128 GB of shared memory. The
system is Ubuntu 14.04.2 LTS. Notice that a like-for-
like comparison of the time consumption between our
implementation and DiscoSnp++ is not possible, since
DiscoSnp++ is multi-thread and our tool is currently
designed to use one core only. For instance, on the real
dataset, DiscoSnp++ (in the case where b = 1) needs
about 17-18 hours for computing the SNPs when only
one core is used (where the percentage of CPU usage got
equal to 99%) rather than 2 h with multi-threading ena-
bled (where the percentage of CPU usage got equal to
1, 733%). DiscoSnp++ needs, for the construction of
the de Bruijn graph in the preprocessing phase, about 32
min with multi-threading enabled (where the percentage
of CPU usage got equal to 274%) rather than about 1 h
and 19 min when only one core is used (where the per-
centage of CPU got equal to 99%).

We experimentally observed that the pre-processing
step (see Table 1) is more computationally expensive than
the actual SNP calling step. The problem of computing
the eBWT is being intensively studied, and improving
its efficiency is out of the aim of this paper. However, a
recent work [12] suggests that directly storing raw read
data with a compressed eBWT leads to considerable
space savings, and could therefore become the stand-
ard in the future. Our strategy can easily be adapted to
directly take as input these compressed formats (which,
as opposed to data structures such as the de Bruijn graph,
are lossless file representations and therefore would
replace the original read set). Building the dBG requires
a few minutes (using multicore) and, in order to keep the
RAM usage low, no other information other than k-mer
presence is stored in the dBG used by DiscoSnp++. On
the other hand, the construction of the eBWT, LCP and
GSA arrays can take several hours (using a single core).
As a consequence, overall DiscoSnp++ is faster than
our pipeline when also including pre-processing. Further
extensions of this work will include removing the need
for the GSA/LCP arrays, which at the moment repre-
sent a bottleneck in the construction phase, and taking as
input a compressed eBWT.

Experiments on synthetic data
We propose a first experiment simulating two human
chromosomes haploid reads sets obtained mutating
(with real .vcf files) real reference chromosomes8. The

Table 1 Pre-processing comparative results of ebwt2snp (i.e. building the eBWT using either eGSA or BCR) and DiscoSnp++
(i.e. building the de Bruijn graph)

Wall clock is the elapsed time from start to completion of the instance, while RAM is the peak Resident Set Size (RSS). Both values were taken with /usr/bin/time
command. Note that for the last collection we have used a variant of BCR that keeps the ebwt(S) in internal memory. eGSA and gsacak have not been tested on the
last dataset since they required too much disk space and RAM, respectively
a We recall that DiscoSnp++ makes use of multiple cores while ebwt2snp is currently designed to use one core only, thus explaining the difference in speed

Dataset Coverage per sample #reads Preprocessing Wall clocka

(h:mm:ss)
RAM
(MB)

HG00096 (ch. 22) 29× 15,000,000 gsacak 0:53:34 100,607

eGSA 1:41:37 30,720

BCR 4:18:00 1,970

DiscoSnp++ 0:01:09 5,170

HG00100 (ch. 16) 22× 20,000,000 gsacak 1:13:04 112,641

eGSA 3:39:04 30,720

BCR 6:10:28 3,262

DiscoSnp++ 0:02:01 6,111

HG00419+NA19017 (ch. 1) 43×–47× 93,657,983 BCR 105:28:30 73,977

DiscoSnp++ 0:32:37 621

8 ftp.1000g enome s.ebi.ac.uk//vol1/ftp/techn ical/refer ence/phase 2_refer ence_
assem bly_seque nce/hs37d 5.fa.gz.

https://github.com/nicolaprezza/ebwt2snp
https://github.com/nicolaprezza/ebwt2snp
ftp://ftp.1000genomes.ebi.ac.uk//vol1/ftp/technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.gz
ftp://ftp.1000genomes.ebi.ac.uk//vol1/ftp/technical/reference/phase2_reference_assembly_sequence/hs37d5.fa.gz

Page 9 of 13Prezza et al. Algorithms Mol Biol (2019) 14:3

final goal of the experiments is to reconstruct the vari-
ants contained in the original (ground truth) .vcf files.
We generated the mutated chromosomes using the 1000
genome project (phase 3) .vcf files9 related to chromo-
somes 16 and 22, suitably filtered to keep only SNPs of
individuals HG00100 (ch.16) and HG00096 (ch.22). From
these files, we simulated Illumina sequencing with Sim-
Seq [37], both for reference and mutated chromosomes:
individual HG00096 (ch.22) at a 29× getting 15,000,000
reads of length 100-bp, and individual HG00100 (ch.16) a
22× getting 20,000,000 reads of length 100-bp. To simu-
late the reads, we used the HiSeq error profile10 publicly
available in the SimSeq’s repository. Note that our experi-
ments, including the synthetic data generation, are eas-
ily reproducible given the links of the datasets, simulator,
and error profile we have provided.

Validation
Here we describe the validation tool snp_vs_vcf we
designed to measure the sensitivity and precision of any
tool returning SNPs in KisSNP2 format. Note that we
output SNPs as pairs of reads containing the actual SNPs
plus their contexts (one sequence per sample). This can
be formalized as follows: the output is a series of pairs of
triples (we call them calls) (L′, s′,R′), (L′′, s′′,R′′) where L′ ,
R′ , L′′ , R′′ are the left/right contexts of the SNP in the two
samples, and letters s′ , s′′ are the actual variant. Given
a .vcf file containing the ground truth, the most precise
way to validate this kind of output is to check that the tri-
ples actually match contexts surrounding true SNPs on
the reference genome (used here just for accuracy valida-
tion purposes). That is, for each pair in the output calls:

1. If there is a SNP s′ → s′′ in the .vcf of the first
sample with contexts L′,R′ (or their RC), then
(L′, s′,R′), (L′′, s′′,R′′) is a true positive (TP).

2. Any pair (L′, s′,R′), (L′′, s′′,R′′) that does not match
any SNP in the ground truth (as described above) is a
false positive (FP).

3. Any SNP in the ground truth that does not match
any call is a false negative (FN).

We implemented the above validation strategy with a
(quite standard) reduction of the problem to the 2D
range reporting problem: we insert in a two-dimensional
grid two points per SNP (from the .vcf) using as coordi-
nates the ranks of its right and (reversed) left contexts
among the sorted right and (reversed) left contexts of all

SNPs (contexts from the first sample) on the F and RC
strands. Given a pair (L′, s′,R′), (L′′, s′′,R′′) , we find the
two-dimensional range corresponding to all SNPs in the
ground truth whose right and (reversed) left contexts are
prefixed by R′ and (the reversed) L′ , respectively. If there
is at least one point in the range matching the variation
s′ → s′′ , then the call is a TP (case 1 above; note that, in
order to be a TP, a SNP can be found either on the F or
on the RC strand, or both); otherwise, it is a FP (case 2
above). Since other tools such as DiscoSnp++ do not
preserve the order of samples in the output, we actually
check also the variant s′′ → s′ and also search the range
corresponding to L′′ and R′′ . Finally, pairs of points (same
SNP on the F/RC strands) that have not been found by
any call are marked as FN (case 3 above). We repeat the
procedure for any other SNP found between the two
strings L′s′R′ and L′′s′′R′′ , in order to find non-isolated
SNPs.

Results
We run DiscoSnp++ with default parameters (hence
k-mers size set to 31) except for P = 3 (it searches up to
P SNPs per bubble) and parameter b, for which we ran all
the three versions (b = 0 forbids variants for which any
of the two paths is branching; b = 2 imposes no limita-
tion on branching; b = 1 is inbetween).

ebwt2snp takes as input few main parameters, among
which the most important are the lengths of right and left
SNPs contexts in the output (−L and −R), and (−v) the
maximum number of non-isolated SNPs to seek in the
left contexts (same as parameter P of DiscoSnp++). In
order to make a fair comparison between DiscoSnp++
and ebwt2snp, with ebwt2snp we decided to output
(exactly as for DiscoSnp++) 30 nucleotides following
the SNP (-R 30), 31 nucleotides preceding and includ-
ing the SNP (−L 31) (i.e. the output reads are of length
61, with the SNP in the middle position), and −v 3 (as
we used P = 3 with DiscoSnp++). We validated our
calls after filtering the output so that only SNPs sup-
ported by at least cov = 4 and 6 reads were kept.

In Table 2, we show the number of TP, FP and FN as
well as sensitivity (SEN), precision (PREC), and the
number of non-isolated SNPs found by the tools. The
outcome is that ebwt2snp is always more precise and
sensitive than DiscoSnp++. Moreover, while in our case
precision is stable and always quite high (always between
94 and 99%), for DiscoSnp++ precision is much lower
in general, and even drops with b = 2 , especially with
lower coverage, when inversely sensitivity grows. Sen-
sitivity of DiscoSnp++ gets close to that of ebwt2snp
only in case b = 2 , when its precision drops and memory
and time get worse than ours.9 ftp.1000g enome s.ebi.ac.uk/vol1/ftp/relea se/20130 502/.

10 https ://githu b.com/jstjo hn/SimSe q/blob/maste r/examp les/hiseq _mito_
defau lt_bwa_mappi ng_mq10_1.txt.

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
https://github.com/jstjohn/SimSeq/blob/master/examples/hiseq_mito_default_bwa_mapping_mq10_1.txt
https://github.com/jstjohn/SimSeq/blob/master/examples/hiseq_mito_default_bwa_mapping_mq10_1.txt

Page 10 of 13Prezza et al. Algorithms Mol Biol (2019) 14:3

Note that precision and sensitivity of DiscoSnp++
are consistent with those reported in [26]. In their
paper (Table 2), the authors report a sensitivity of
79.31% and a precision of 72.11% for DiscoSnp++ eval-
uated on a Human chromosome with simulated reads
(i.e. using an experimental setting similar to ours). In
our experiments, using parameter b = 1 , DiscoSnp++
’s sensitivity and precision are, on average between the
two datasets, 80.77% and 73.1% , respectively. Therefore,
such results almost perfectly match those obtained by
the authors of [26]. The same Table 2 of [26] shows that
DiscoSnp++ can considerably increase precision at
the expense of sensitivity by filtering low-ranking calls.
By requiring rank > 0.2 , the authors show that their
tool achieves a sensitivity of 65.17% and a precision of
98.73% . While we have not performed this kind of fil-
tering in our experiments, we note that also in this case
ebwt2snp’s sensitivity would be higher than that of
DiscoSnp++. Precision of the two tools, on the other
hand, would be comparable.

Finally, we note that also DiscoSnp++ has been
evaluated by the authors of [26] using the SimSeq simu-
lator (in addition to other simulators which, however,
yield similar results). We remark that SimSeq simu-
lates position-dependent sequencing errors, while our
theoretical assumptions are more strict and require
position-independent errors. Similarly, we assume a
uniform random genome, while in our experiments we
used real human chromosomes. Since in both cases our
theoretical assumptions are more stringent than those
holding on the datasets, the high accuracy we obtain is

a strong evidence that our theoretical analysis is robust
to changes towards less-restrictive assumptions.

Experiments on real data
In order to evaluate the performance of our pipeline on
real data, we reconstructed the SNPs between the chro-
mosome 1 of the two 1000 genomes project’s individuals
HG00419 and NA19017 using as starting point the high-
coverage reads sets available at ftp://ftp.1000g enome s.ebi.
ac.uk/vol1/ftp/phase 3/data/. The two datasets consist of
44,702,373 and 48,955,610 single-end reads, respectively,
of maximum length 250 bases. This corresponds to a
coverage of 43× and 47× for the two individuals, respec-
tively. The input dataset of our pipeline, which includes
the union of these reads and their reverse-complements,
summing up to 43 Gb.

Since, in this case, the real ground truth SNP set is
not known, we compare the outputs of our tool and
DiscoSnp++ against those of a standard SNP-calling
pipeline based on the aligner bwa-mem and the post-
processing tools samtools, bcftools, and vcftools.
We thus developed a validation pipeline that does not
rely on a known ground-truth .vcf (which in the real case
does not exist). To generate the synthetic ground-truth
.vcf, we use a standard (aligner and SNP-caller) pipeline
described below.

Validation
Our validation pipeline proceeds as follows.

Table 2 Post-processing comparative results of ebwt2snp (i.e. building clusters from the eBWT and performing SNP
calling) and DiscoSnp++ (i.e. running KisSNP2 and kissreads2 using the pre-computed de Bruijn graph)

Wall clock (mm:ss) is the elapsed time from start to completion of the instance, while RAM is the peak Resident Set Size (RSS). Both values were taken with /usr/
bin/time command. We recall that DiscoSnp++ makes use of multiple cores while ebwt2snp is currently designed to use one core only, thus explaining the difference
in speed

Tool Param. Wall clock RAM
(MB)

TP FP FN SEN (%) PREC (%) Non-isol.
SNP

Individual HG00096 vs reference (chromosome 22, 50818468bp), coverage 29× per sample

 DiscoSnp++ b = 0 5:07 101 32,773 3719 13,274 71.17 89.81 4707/8658

b = 1 16:39 124 37,155 10,599 8892 80.69 77.80 5770/8658

b = 2 20:42 551 40,177 58,227 5870 87.25 40.83 6325/8658

 ebwt2snp cov = 4 35:56 314 42,309 1487 3738 91.88 96.60 7233/8658

cov = 6 22:19 300 40,741 357 5306 88.47 99.13 6884/8658

Individual HG00100 vs reference (chromosome 16, 90338345bp), coverage 22× per sample

 DiscoSnp++ b=0 6:20 200 48,119 10,226 18,001 72.78 82.47 6625/11,055

b=1 31:57 208 53,456 24,696 12,664 80.85 68.40 7637/11,055

b=2 51:45 1256 57,767 124,429 8353 87.37 31.71 8307/11,055

 ebwt2snp cov = 4 33:24 418 59,668 898 6452 90.24 98.51 9287/11,055

cov = 6 44:53 337 53,749 190 12,371 81.29 99.64 8169/11,055

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/

Page 11 of 13Prezza et al. Algorithms Mol Biol (2019) 14:3

1. We align the reads of the first individual on the
human reference’s chromosome 1 (using bwa-mem).

2. From the above alignment file, we compute a .vcf file
describing the variations of the first individual with
respect to the human reference’s chromosome 1
(using samtools and bcftools).

3. We apply the .vcf to the reference, generating the
first individual’s chromosome sequence (using
vcftools).

4. We align the reads of the second individual on the
first individual sequence obtained at the previous
step.

5. From the above alignment, we obtain the “ground-
truth” .vcf file containing the variations of the first
individual with respect to the second one. Again, for
this step we used a pipeline based on samtools and
bcftools.

6. We evaluate sensitivity and precision of the file in
KisSNP2 format (generated by ebwt2snp or Dis-
coSnp++) against the ground truth .vcf generated at
the previous step. This final validation is carried out
using our own module snp_vs_vcf.

The exact commands used to carry out all validation
steps can be found in the script pipeline.sh avail-
able in our software repository. Note that the accuracy of
the aligner/SNP-caller pipeline greatly affects the com-
puted ground truth, which is actually a synthetic ground

truth, and (unlike in the simulated datasets) will neces-
sarily contain errors with respect to the real (unknown)
ground truth. Note also that ebwt2snp outputs the cov-
erage of each SNP (i.e. how many reads were used to call
the SNP). This information can also be used to estimate
the output’s precision (i.e. the higher the coverage is, the
more likely it is that the SNP is a true positive).

Results
ebwt2clust terminated in 55 min and used 3 MB of
RAM, while clust2snp terminated in 2 h and 43 min
and used 12 GB of RAM. Filtering the output by mini-
mum coverage (to obtain the different rows of Table 3)
required just a few seconds. The whole ebwt2snp pipe-
line, pre-processing excluded, required therefore about 3
hours and used 12 GB of RAM.

Table 3 (resp. Table 4) shows the comparison between
ebwt2clust (resp. DiscoSnp++) and the SNPs pre-
dicted by an aligner-based pipeline.

The results of ebwt2clust are shown with a filtering
by minimum coverage ranging from 3 to 12, while Dis-
coSnp++ performances are shown with parameter b
ranging from 0 to 2.

With parameter b = 0 , DiscoSnp++ exhibits a sen-
sitivity of 62.62% , close to ebwt2clust ’s sensitivity
around cov = 11 (i.e. they output approximately the
same number of true positives). With these parameters,
DiscoSnp++ outputs less false positives (and has thus

Table 3 Sensitivity and precision of the ebwt2snp pipeline

Values are computed using as ground truth the SNPs predicted by a classic aligner-based pipeline

Cov SEN (%) PREC (%) TP FP FN Non-isol Non isol (%)

3 84.34 45.19 317,490 385,060 58,938 45,363 65.34

4 83.18 50.67 313,131 304,811 63,297 44,491 64.08

5 80.53 60.36 303,130 199,042 73,298 42,394 61.06

6 77.94 66.62 293,385 146,972 83,043 40,403 58.20

7 75.22 70.93 283,145 116,042 93,283 38,405 55.32

8 72.32 73.99 272,223 95,675 104,205 36,427 52.47

9 69.18 76.33 260,405 80,746 116,023 34,391 49.54

10 65.80 78.16 247,685 69,203 128,743 32,281 46.50

11 59.83 79.82 225,232 56,929 151,196 28,846 41.55

12 55.45 81.21 208,725 48,284 167,703 26,360 37.97

Table 4 Sensitivity and precision of the DiscoSnp++ pipeline

Values are computed using as ground truth the SNPs predicted by a classic aligner-based pipeline

b Wall clock RAM (MB) SEN (%) PREC (%) TP FP FN Non-isol Non isol (%)

0 00:42:46 608 62.62 87.21 235,749 34,547 140,679 18,561 26.73

1 02:13:23 866 71.94 74.57 270,811 92,310 105,617 31,640 45.57

2 11:09:09 13,830 77.31 45.41 291,022 349,754 85,406 34,840 50.18

Page 12 of 13Prezza et al. Algorithms Mol Biol (2019) 14:3

higher precision) than ebwt2clust. This is related the
fact that ebwt2clust outputs more SNPs (i.e. TP+FP)
than DiscoSnp++, and a higher fraction of these SNPs
do not find a match in the ground truth and are thus clas-
sified as false positive. We stress out that, in this particu-
lar case, each SNP output by ebwt2clust is covered
by at least 22 reads (at least 11 from each individual),
and therefore it is unlikely to really be a false positive.
Finally, ebwt2clust finds more non-isolated SNPs than
DiscoSnp++.

With parameter b = 1 , DiscoSnp++ exhibits a sen-
sitivity and precision similar to those of ebwt2clust ’s
output filtered on cov = 8 . The major difference between
the two tools consists in the higher number of non-iso-
lated SNPs found by ebwt2clust (52.47% versus 45.57%
of DiscoSnp++).

To conclude, DiscoSnp++ with parameter b = 2
exhibits a sensitivity similar to that of ebwt2clust ’s
output filtered on cov = 6 . In this case, ebwt2clust
has a higher precision with respect to the ground truth,
but it also outputs a smaller absolute number of SNPs.
Again, ebwt2clust finds more non-isolated SNPs than
DiscoSnp++.

Conclusions and further works
We introduced a positional clustering framework for the
characterization of breakpoints of genomic sequences in
their eBWT, paving the way to several possible applica-
tions in assembly-free and reference-free analysis of NGS
data. The experiments proved the feasibility and potential
of our approach.

We note that our analysis automatically adapts to the
case where also indels are present in the reads (i.e. not
just substitutions, but possibly also insertions and dele-
tions). To see why this holds true, note that our analysis
only looks at the first base that changes between the two
individuals in a cluster containing similar read suffixes.
Since we do not look at the following bases, indels behave
exactly like SNPs in Theorems 3.2 and 3.3: indels between
the two individuals will produce clusters containing two
distinct letters (i.e. we capture the last letter of the indel
in one individual, which by definition differs from the
corresponding letter in the other individual). By extract-
ing also the left-context preceding the ebwt cluster and
performing a local alignment, one can finally discover the
event type (SNP or INDEL). We plan to implement this
feature in a future extension of our tool.

Further work will focus on improving the prediction
in highly repeated genome regions and using our frame-
work to perform haplotyping, correcting sequencing
errors, detecting alternative splicing events in RNA-Seq
data, and performing sequence assembly. We also plan
to improve the efficiency of our pipeline by replacing

the GSA/LCP arrays—which at the moment force our
pre-processing step to be performed in external mem-
ory—by an FM-index. By switching to internal-memory
compressed data structures, we expect to speed up both
eBWT computation and ebwt2snp analysis. Finally,
since the scan of the eBWT and the LCP that detects the
cluster is clearly a local search, we plan to implement a
parallelisation of our SNPs calling tool expecting a much
lower running time.

Authors’ contributions
All authors designed the study and wrote the manuscript. NPr implemented
the tool. All authors read and approved the final manuscript.

Author details
1 Dipartimento di Informatica, University of Pisa, Pisa, Italy. 2 Dipartimento di
Matematica e Informatica, University of Palermo, Palermo, Italy. 3 ERABLE Team,
INRIA, Lyon, France.

Acknowledgements
GR, NPi, MS are partially, and NPr is totally, supported by the project MIUR-SIR
CMACBioSeq (“Combinatorial methods for analysis and compression of bio-
logical sequences”) Grant n. RBSI146R5L.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 31 October 2018 Accepted: 18 January 2019

References
 1. Li H, Durbin R. Fast and accurate short read alignment with Burrows–

Wheeler transform. Bioinformatics. 2009;25(14):1754–60.
 2. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat

Methods. 2012;9(4):357–9.
 3. Li R, Yu C, Li Y, Lam TW, Yiu S, Kristiansen K, Wang J. SOAP2: an improved

ultrafast tool for short read alignment. Bioinformatics. 2009;25(15):1966–7.
 4. Ferragina P, Manzini G. Opportunistic data structures with applications. In:

FOCS. 2000. pp. 390–8.
 5. Burrows M, Wheeler DJ. A block sorting data compression algorithm.

Tech. report, DIGITAL System Research Center. 1994.
 6. Kimura K, Koike A. Analysis of genomic rearrangements by using

the Burrows–Wheeler transform of short-read data. BMC Bioinform.
2015;16(suppl.18):S5.

 7. Kimura K, Koike A. Ultrafast SNP analysis using the Burrows–Wheeler
transform of short-read data. Bioinformatics. 2015;31(10):1577–83.

 8. Peterlongo P, Schnel N, Pisanti N, Sagot M, Lacroix V. Identifying SNPs
without a reference genome by comparing raw reads. In: SPIRE, LNCS.
vol. 6393. 2010. pp. 147–58.

 9. Sacomoto GAT, Kielbassa J, Chikhi R, Uricaru R, Antoniou P, Sagot M, Peter-
longo P, Lacroix V. KISSPLICE: de-novo calling alternative splicing events
from RNA-seq data. BMC Bioinform. 2012;13(S–6):S5.

 10. Leggett RM, MacLean D. Reference-free SNP detection: dealing with the
data deluge. BMC Genom. 2014;15(4):S10.

 11. Iqbal Z, Turner I, McVean G, Flicek P, Caccamo M. De novo assembly
and genotyping of variants using colored de Bruijn graphs. Nat Genet.
2012;44(2):226–32.

 12. Dolle DD, Liu Z, Cotten M, Simpson JT, Iqbal Z, Durbin R, McCarthy SA,
Keane TM. Using reference-free compressed data structures to analyze

Page 13 of 13Prezza et al. Algorithms Mol Biol (2019) 14:3

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ? Choose BMC and benefit from:

sequencing reads from thousands of human genomes. Genome Res.
2017;27(2):300–9.

 13. Mantaci S, Restivo A, Rosone G, Sciortino M. An extension of the Bur-
rows–Wheeler transform. Theor Comput Sci. 2007;387(3):298–312.

 14. Bauer MJ, Cox AJ, Rosone G. Lightweight algorithms for construct-
ing and inverting the BWT of string collections. Theor Comput Sci.
2013;483:134–48.

 15. The 1000 Genomes Project Consortium. A global reference for human
genetic variation. Nature. 2015;526:68–74.

 16. Cox AJ, Jakobi T, Rosone G, Schulz-Trieglaff OB. Comparing DNA
sequence collections by direct comparison of compressed text indexes.
In: WABI, LNBI. vol. 7534. 2012. pp. 214–24.

 17. Ander C, Schulz-Trieglaff OB, Stoye J, Cox AJ. metaBEETL: high-through-
put analysis of heterogeneous microbial populations from shotgun DNA
sequences. BMC Bioinform. 2013;14(5):S2.

 18. Philippe N, Salson M, Lecroq T, Léonard M, Commes T, Rivals E. Querying
large read collections in main memory: a versatile data structure. BMC
Bioinform. 2011;12:242.

 19. Välimäki N, Rivals E. Scalable and versatile k-mer Indexing for high-
throughput sequencing data. In: ISBRA, LNCS. vol. 7875. 2013. pp. 237–48.

 20. Kowalski TM, Grabowski S, Deorowicz S. Indexing arbitrary-length k-mers
in sequencing reads. PLoS ONE. 2015;10(7):e0133198.

 21. Schröder J, Schröder H, Puglisi SJ, Sinha R, Schmidt B. SHREC: a short-read
error correction method. Bioinformatics. 2009;25(17):2157–63.

 22. Lemaitre C, Ciortuz L, Peterlongo P. Mapping-free and assembly-free
discovery of inversion breakpoints from raw NGS reads. In: AlCoB. 2014.
pp. 119–30.

 23. Birmelé E, Crescenzi P, Ferreira RA, Grossi R, Lacroix V, Marino A, Pisanti
N, Sacomoto GAT, Sagot M. Efficient bubble enumeration in directed
graphs. In: SPIRE, LNCS. vol. 7608. 2012. pp. 118–29.

 24. Leggett RM, Ramirez-Gonzalez RH, Verweij W, Kawashima CG, Iqbal Z,
Jones JDG, Caccamo M, MacLean D. Identifying and classifying trait linked
polymorphisms in non-reference species by walking coloured de Bruijn
graphs. PLoS ONE. 2013;8(3):1–11.

 25. Uricaru R, Rizk G, Lacroix V, Quillery E, Plantard O, Chikhi R, Lemaitre C,
Peterlongo P. Reference-free detection of isolated SNPs. Nucl Acids Res.
2015;43(2):e11.

 26. Peterlongo P, Riou C, Drezen E, Lemaitre C. DiscoSnp++: de novo detec-
tion of small variants from raw unassembled read set(s). bioRxiv. 2017.

 27. Gardner SN, Hall BG. When whole-genome alignments just won’t work:
kSNP v2 Software for alignment-free SNP discovery and phylogenetics of
hundreds of microbial genomes. PLoS ONE. 2013;8(12):e81760.

 28. Prezza N, Pisanti N, Sciortino M, Rosone G. Detecting mutations by eBWT.
In: WABI 2018, Leibniz international proceedings in informatics (LIPIcs),
vol. 113. pp. 3:1–3:15. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany. 2018.

 29. Shi F. Suffix arrays for multiple strings: a method for on-line multiple
string searches. In: ASIAN, LNCS. vol. 1179. 1996. pp. 11–22.

 30. Cox AJ, Garofalo F, Rosone G, Sciortino M. Lightweight LCP construction
for very large collections of strings. J Discrete Algorithms. 2016;37:17–33.

 31. Louza FA, Telles GP, Hoffmann S, Ciferri CDA. Generalized enhanced
suffix array construction in external memory. Algorithms Mol Biol.
2017;12(1):26.

 32. Manber U, Myers G. Suffix arrays: a new method for on-line string
searches. In: SODA. 1990. pp. 319–27.

 33. Egidi L, Manzini G. Lightweight BWT and LCP merging via the Gap algo-
rithm. In: SPIRE, LNCS. vol. 10508. 2017. pp. 176–90.

 34. Schirmer M, D’Amore R, Ijaz UZ, Hall N, Quince C. Illumina error profiles:
resolving fine-scale variation in metagenomic sequencing data. BMC
Bioinform. 2016;17(1):125.

 35. Louza FA, Gog S, Telles GP. Inducing enhanced suffix arrays for string col-
lections. Theor Comput Sci. 2017;678:22–39.

 36. Li H, Durbin R. Fast and accurate long-read alignment with Burrows–
Wheeler transform. Bioinformatics. 2010;26(5):589–95.

 37. Earl DA, Bradnam K, John JS, Darling A, Lin D, Faas J, Yu HO, Vince B,
Zerbino DR, Diekhans M, Nguyen N. Assemblathon 1: a competi-
tive assessment of de novo short read assembly methods. Gen Res.
2011;21(12):2224–41.

	SNPs detection by eBWT positional clustering
	Abstract
	Background:
	Results:
	Conclusions:
	Availability:

	Background
	Preliminaries
	Methods
	eBWT positional clustering
	A pipeline for SNPs detection
	Pre-processing (eBWT computation)
	SNP calling (ebwt2snp)
	Post-processing (snp2vcf)
	Complexity

	Experimental evaluation
	Experiments on synthetic data
	Validation
	Results

	Experiments on real data
	Validation
	Results

	Conclusions and further works
	Authors’ contributions
	References

