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Abstract 

Background: Haplotype assembly, reconstructing haplotypes from sequence data, is one of the major computa-
tional problems in bioinformatics. Most of the current methodologies for haplotype assembly are designed for diploid 
individuals. In recent years, genomes having more than two sets of homologous chromosomes have attracted many 
research groups that are interested in the genomics of disease, phylogenetics, botany and evolution. However, there 
is still a lack of methods for reconstructing polyploid haplotypes.

Results: In this work, the minimum error correction with genotype information (MEC/GI) model, an important com-
binatorial model for haplotyping a single individual, is used to study the triploid individual haplotype reconstruction 
problem. A fast and accurate enumeration-based algorithm enumeration haplotyping triploid with least difference 
(EHTLD) is proposed for solving the MEC/GI model. The EHTLD algorithm tries to reconstruct the three haplotypes 
according to the order of single nucleotide polymorphism (SNP) loci along them. When reconstructing a given 
SNP site, the EHTLD algorithm enumerates three kinds of SNP values in terms of the corresponding site’s genotype 
value, and chooses the one, which leads to the minimum difference between the reconstructed haplotypes and the 
sequenced fragments covering that SNP site, to fill the SNP loci being reconstructed.

Conclusion: Extensive experimental comparisons were performed between the EHTLD algorithm and the well 
known HapCompass and HapTree. Compared with algorithms HapCompass and HapTree, the EHTLD algorithm can 
reconstruct more accurate haplotypes, which were proven by a number of experiments.
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Background
As a large number of sequencing data are available, the 
investigation of genetic variations has become one of the 
main topics in bioinformatics. Single nucleotide poly-
morphism (SNP), the most widespread form of variation, 
is believed to be the major genetic cause to phenotypic 
variability. A sequence of SNPs along a chromosome is 
referred to as a haplotype, which is more important for 
complete comprehending the complex genetic polymor-
phisms than isolated SNPs. Increasing evidence shows 
that haplotypes play a crucial role in studying the varia-
tions relating to diseases prediction and gene expression 

[1]. Therefore, computational methods to infer haplo-
types are needed, for determining haplotypes is both 
time consuming and expensive by direct using biological 
experiments. In recent decade, the presented compu-
tational haplotyping algorithms generally fall into three 
categories [2]: (1) population haplotyping with genotype 
data [3, 4]; (2) population haplotyping with fragment data 
[5]; (3) individual haplotyping with fragment data [6]. In 
this paper, individual haplotyping problem is studied for 
a triploid individual.

The problem of individual haplotyping is also called as 
haplotype assembly problem or haplotype reconstruc-
tion problem. It has received extensive study in the recent 
decade. Most of the existing research results are regard-
ing diploid individuals [1, 7, 8], and there is still a lack of 
research studies for reconstructing triploid ones. Sev-
eral algorithms for assembling K-individual haplotypes 
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were proposed. Based on the minimum error correction 
(MEC) model and the minimum error correction with 
genotype information (MEC/GI) model, Wang et  al. 
[9] and Qian et  al. [10] respectively proposed a genetic 
algorithm and a particle swarm optimization algorithm 
to reconstruct diploid individual haplotypes, both of 
which can be adapted to reconstructing the K-individual 
ones. The code length of the two algorithms is very long 
in practical applications, for it is equal to the number of 
sequencing SNP fragments. This brings huge solution 
space to these two algorithms and negatively affects the 
performance of them. Based on the minimum fragment 
removal (MFR) model [11], an exact exponential algo-
rithm was introduced by Li et  al. [11]. The time com-
plexity of which is O(22tm2n+ 2(K+1)tmK+1) , where m 
denotes the number of SNP fragments, n denotes the 
number of SNP sites, and t is the max number of holes 
covered by a fragment. The algorithm can not perform 
well with large m, n and t. In 2013, Aguiar et  al. [12] 
introduced the HapCompass model and the minimum 
weighted edge removal (MWER) optimization for hap-
lotyping polyploid genomes. Algorithm HapCompass 
aims to remove a minimal weighted set of edges from 
the compass graph such that a unique phasing may be 
constructed. The HapCompass algorithm performs on 
the spanning-tree cycle basis of the compass graph to 
iteratively delete errors. However, in the same conflict 
cycle basis, there may be more than one edge having the 
same absolute value of weight. It may lead to the wrong 
SNP phasing to select the removed edge randomly. In 
2014, Berger et al. [13] described a maximum-likelihood 
estimation framework HapTree for haplotyping a sin-
gle polyploid. It can obtain better performance than 
the HapCompass algorithm [13]. In 2014, based on the 
MEC model, Wu et al. [14] presented a genetic algorithm 
GTIHR for reconstructing triploid haplotypes. Since the 
code length of algorithm GTIHR equals to the number 
of heterozygous sites in haplotype, the performance of 
the GTIHR algorithm is negatively affected by haplotype 
length and heterozygous rate. In this paper, the triploid 
individual haplotype assembly problem is studied based 
on the MEC/GI model. An enumeration-based algorithm 
enumeration haplotyping triploid with least difference 
(EHTLD) is proposed for solving it. Algorithm EHTLD 
reconstructs the three haplotypes according to the order 
of SNP loci along them. For reconstructing the three 
alleles of a given site, it enumerates three kinds of SNP 
values by using the site’s genotype, and chooses the kind 
of value resulting in the minimum difference between the 
reconstructed haplotypes and the sequenced fragments 
covering that SNP site. The experimental comparisons 
were performed between the EHTLD, the HapCompass 

and the HapTree algorithms. The results proved that the 
performance of algorithm EHTLD was superior to those 
of algorithms HapCompass and HapTree. The rest of this 
paper is arranged as follows. “Definitions and notations” 
section provides definitions and notations used later. 
“Algorithm EHTLD” section introduces the EHTLD algo-
rithm. “Experimental results” section presents the experi-
mental results of the EHTLD, the HapCompass and the 
HapTree algorithms. Some conclusions are drawn in the 
last section.

Definitions and notations
Triploid somatic cells contain three sets of chromo-
somes, i.e., a triploid organism has three copies of each 
chromosome. Since haplotype consists of the sequence of 
all SNPs along a chromosome, a triploid individual owns 
three haplotypes. It is commonly regarded that a SNP 
locus shows merely two possible alleles, hence the major 
allele can be represented as ‘0’ and the minor one can be 
represented as ‘1’ . A haplotype can be encoded as a string 
over a 2-letter alphabet {0, 1} instead of four real bases 
{A,T,C,G}. A genotype is the conflation of three haplo-
types on the homologous chromosomes. When three 
alleles at a SNP site have identical values, this SNP site is 
called a homozygous site, otherwise it is called a heterozy-
gous site. For example, (000)T or (111)T represents the 
genotype value at a homozygous SNP site, while (001)T 
or (011)T represents the genotype value at a heterozy-
gous SNP site. Suppose that m aligned SNP fragments, 
coming from three haplotypes of length n, are gener-
ated by DNA sequencing experiments. Let M denote an 
m× n SNP matrix over the alphabet {0, 1,−} (− denotes 
the value is null). As shown in Fig.  1a, each row repre-
sents a SNP fragment, each column represents a SNP 
site, and each entry M[i,  j] denotes the SNP allele of the 
ith fragment at the jth SNP site. Let G = (g1, g2, . . . , gn) 
denote the genotype matrix corresponding to M, where 
gj = (gj1, gj2, gj3)

T (gjk ∈ {0, 1}, k = 1, 2, 3, j = 1, 2, . . . , n) 

(a) (b)
Fig. 1 An example of SNP fragment matrix and genotype matrix. a 
SNP fragment matrix M , b genotype matrix G 
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denotes the genotype value at the jth SNP site. Figure 1b 
shows an example of the genotype matrix.

Given a column M[−, j] (j = 1, 2, . . . , n) of the matrix 
M, define r(j) as the set of fragments that cover the jth 
column. Given a row M[i,−] (i = 1, 2, . . . ,m) of the 
matrix M, let l(i) indicate the index of the leftmost 
SNP j (j = 1, 2, . . . , n) such that M[i, j] �= − . Given two 
strings X = x1, x2, . . . , xn and Y = y1, y2, . . . , yn , where 
xj , yj ∈ {0, 1,−} (j = 1, 2, . . . , n) , the distance metric 
HD(X, Y,  s,  e) is defined as Formula  (1). Take fragment 
f1(10− 011) and fragment f2(01010−) in Fig.  1a for 
example. HD(f1, f2, 2, 5) = 3.

where

Let the strings X and Y be regarded as two SNP frag-
ments, they are said to compatible if HD(X, Y, 1, n) = 0. 
The larger HD(X, Y,  1, n) is, the greater the probability 
of fragments X and Y coming from different chromo-
some copies or having sequencing errors is. If there 
are no errors in the data, the rows of M can be divided 
into three classes of compatible fragments. Three hap-
lotypes can be reconstructed by assembling the frag-
ments in the three classes. In this situation, the SNP 
matrix M is called feasible or error-free. Given haplotype 
h = (h1, h2, h3) (hk = (hk1, hk2, . . . , hkn), k = 1, 2, 3) and  
genotype G = (g1, g2, . . . , gn)(gj = (gj1, gj2, gj3)

T , j = 1, 2, . . . , n) ,  
if 

∑3
k=1 hkj =

∑3
k=1 gjk(j = 1, 2, . . . , n), h and G are 

regarded as compatible.
Based on the above mentioned concepts for the haplo-

type reconstruction problem, the MEC/GI model can be 
described as follows [9]:

MEC/GI: Given a SNP matrix M and a genotype matrix 
G, correct the minimum number of entries in M (0 into 1 
and vice versa) so that the resulting matrix is feasible, and 
the three reconstructed haplotypes are compatible with 
the genotype G.

Algorithm EHTLD
In this section, the EHTLD algorithm is described. The 
input consists of a SNP matrix M and a genotype matrix 
G. The output is three assembled haplotypes h = (h1 , h2 , h3 ) 
of length n. In the first step of this algorithm, the matrices 
M and G are preprocessed by removing the homozygous 
SNPs, which do not play a role in assembling haplotypes. 
Subsequently, enumerates three kinds of values for the jth 

(1)

HD(X ,Y , s, e) =

e
∑

j=s

d(xj , yj), (1 ≤ s ≤ e ≤ n)

(2)

d(xj , yj) =

{

1 if xj �= −, yj �= −, and xj �= yj
0 otherwise.

(j = 2, 3,…,n) SNP site in terms of its genotype, and chooses 
the one leading to the minimum difference between the 
reconstructed haplotypes and the fragments covering the 
jth site. After this iteration process is completed, three 
haplotypes h′ = (h′1, h

′
2h

′
3 ) having only heterozygous SNP 

sites are built, for only heterozygous SNPs are remained 
in the preprocessed matrices. Finally, h′ is augmented by 
inserting the SNPs discarded in preprocessing step and 
the final haplotypes h is obtained. Some key steps of the 
EHTLD algorithm will be introduced in detail as follows.

Preprocessing
Since homozygous sites do not contribute to haplotype 
reconstruction, they are deleted from matrices M and 
G to improve the efficiency of assembly. Drop column 
j(j = 1, 2, . . . , n) from G where gj1 = gj2 = gj3 , and the 
corresponding column is also dropped from matrix M. 
The deleted column j ( j = 1, 2, . . . , n ) is recorded as gj1 . 
After dropping columns from matrix M, some SNP frag-
ments with only—elements are also deleted, for they are 
also redundant information. The remained SNPs are all 
heterozygous sites. For convenience of description, the 
preprocessed matrices are still denoted by M and G. Sort 
the rows of M by their l(.) values in ascending order. For 
each column j ( j = 1, 2, . . . , n ) of M, calculate set r(j) 
which contains the rows covering the jth column.

Enumerating and computing
The EHTLD algorithm iteratively reconstructs each hete-
rozygous site of haplotypes h′ = (h′1 , h

′
2 , h

′
3 ). Each step 

concerns reconstructing the current empty site, starting 
from the left first site. Suppose that the first j − 1 sites of 
the three haplotypes h′ have already been filled, i.e., ( h′k1 , 
h′k2,…, h′kj−1 ) (k = 1, 2, 3, j = 2, 3,…, n) has been assem-

bled, and the jth site is under consideration. The calculat-
ing method comprises the following two steps.

1. Enumerating three kinds of possible values according 
to gj:

a. if 
∑3

k=1 gjk = 1, the three kinds of values are  
( h′

1j = 0, h′
2j = 0, h′

3j = 1 ), ( h′
1j = 0, h′

2j = 1, h′
3j = 0 )  

and ( h′1j = 1, h′2j = 0, h′3j = 0).
b. if 

∑3
k=1 gjk = 2, the three kinds of values are 

( h′1j = 0, h′2j = 1, h′3j = 1), ( h′1j = 1, h′2j = 0, h′3j = 1) 
and ( h′1j = 1, h′2j = 1, h′3j = 0).

2. Given the jth site value ( h′1j , h
′
2j,h

′
3j ), let D(h′1j , h

′
2j , h

′
3j ) 

measure the difference between the reconstructed 
haplotypes and the fragments covering the jth site, as 
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defined in Formula (3). From the three kinds of val-
ues enumerated in step (1), choose the one with the 
minimum D(.) value. 

In the following, we give an example for enumerating and 
computing by using the matrices in Fig. 1. As shown in 
Fig. 2, assume that the first three sites of the three haplo-
types h′ = (h′1 , h

′
2 , h

′
3 ) have been reconstructed, i.e., h′ = (h′1

(011), h′2(010), h′3(100)), and the fourth site is under 
reconstruction. The genotype of the fourth SNP site is 
(101)T , hence haplotypes h′ = (h′1 , h

′
2 , h

′
3 ) have the fol-

lowing three kinds of possible values on the fourth SNP 
site: ( h′14 = 0, h′24 = 1, h′34 = 1), ( h′14 = 1, h′24 = 0, h′34 = 1) 
and ( h′14 =  1, h′24 =  1, h′34 =  0). The values of D(0,1,1), 
D(1,0,1) and D(1,1,0) are computed respectively accord-
ing to the fragments in Fig. 1a and the three haplotypes 
h′ = (h′1 , h

′
2 , h

′
3 ). D(0,1,1) = 3, D(1,0,1) = 2, D(1,1,0) = 1. 

Because D(1,1,0) is the smallest, ( h′14  =  1, h′24  =  1, 
h′34 = 0) is chosen, and h′ = (h′1(0111), h′2(0101), h′3(1000)) 
are reconstructed.

Augmenting
The homozygous SNPs that are deleted by preprocess-
ing must be reinserted. The reconstructed haplotypes 
h′ = (h′1 , h

′
2 , h

′
3 ) are augmented by the bits of the columns 

removed, and h = (h1 , h2 , h3 ) are built. For a given posi-
tion j, haplotypes h′1 , h

′
2 and h′3 are inserted with gj1 when 

the discarded column j is recorded as gj1 . Based on the 
above mentioned steps, the EHTLD algorithm for assem-
bling triploid haplotypes is depicted in Fig. 3.

(3)

D(h′1j , h
′
2j , h

′
3j) =

∑

i∈r(j)

min{HD(h′k ,M[i,−], l(i), j)|k = 1, 2, 3}

Now the time complexity of the EHTLD algorithm is 
discussed. In preprocessing, dropping redundant infor-
mation and calculating set r(·) take time O(m× n) , 
sorting the rows of M takes time O(m× logm) . During 
enumerating and computing, three haplotypes with only 
heterozygous SNP sites are reconstructed, which takes 
time O(c × n× len) , here c denotes the fragments cover-
age, and len represents the average length of fragments. 
In augmenting, the discarded columns can be reinserted 
by scanning the columns only once, which takes time 
O(n). In summary, the time complexity of the algorithm 
is O(m× n+m× logm+ c × n× len).

Experimental results
In this section, the EHTLD algorithm is compared 
with two state-of-the-art algorithms, i.e., the HapCom-
pass [12] and the HapTree [13] algorithms. Algorithms 
EHTLD and HapCompass were implemented on a Win-
dows 7 and the compiler was Microsoft Visual C# 2012. 
The Python program HapTree (v0.1), downloaded from 
http://group s.csail .mit.edu/cb/haptr ee/, was imple-
mented on a Linux system. All the tests below are con-
ducted on a 64 bit PC with Intel Core i5 2.50GHz CPU 
and 6GB RAM. One hundred data sets were generated 
for each parameter setting. The average over 100 runs at 
each parameter setting was calculated and presented.

The vector error (VE) [13], the reconstruction rate (RR) 
[1, 9, 15] and the minimum error correction (MEC) score 
[12] were used to measure the performance of the algo-
rithms. The vector error, generalized from switch error, 
is a special kind of measurement for evaluating the accu-
racy of polyploid phasing. Given three reconstructed Fig. 2 An example for enumerating and computing

Algorithm EHTLD
Input: a SNP matrix Mm×n, a genotype matrix G
Output: three reconstructed haplotypes h=(h1, h2, h3)
1. preprocess M and G
2. hk1=g1k (k=1,2,3)
3. for j=2,3,. . . ,n do
4. mindif=m×n //initialize mindif as the maximum value
5. if ( 3

k=1 gjk = 1) then
6. if (D(0, 0, 1) < mindif) then
7. h1j=h2j=0, h3j=1, mindif=D(0,0,1)
8. if (D(0, 1, 0) < mindif) then
9. h1j=h3j=0, h2j=1, mindif=D(0,1,0)
10. if (D(1, 0, 0) < mindif) then
11. h2j=h3j=0, h1j=1, mindif=D(1,0,0)
12. else if( 3

k=1 gjk = 2) then
13. if(D(0,1,1)< mindif) then
14. h2j=h3j=1, h1j=0, mindif=D(0,1,1)
15. if(D(1,0,1)< mindif) then
16. h1j=h3j=1, h2j=0, mindif=D(1,0,1)
17. if(D(1,1,0)< mindif) then
18. h1j=h2j=1, h3j=0, mindif=D(1,1,0)
14. Augment h =(h1, h2, h3), and get the final result h=(h1,h2,h3)
15. output h

Fig. 3 Algorithm EHTLD

http://groups.csail.mit.edu/cb/haptree/
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haplotypes, the vector error is equal to the minimum 
number of segments on them for which a switch must 
occur to correspond with the three true haplotypes, i.e., 
the minimum number of segments a reconstructed phase 
and the true phase have in common [13].

The reconstruction rate (RR), which measures the simi-
larity degree between the pair of true haplotypes and 
the pair of reconstructed ones, is a widely adopted index 
to evaluate diploid phasing [1, 9, 15]. For triploid phas-
ing, we generalized it to calculate the similarity degree 
between the three true haplotypes and the three recon-
structed haplotypes. Assuming that h =  (h1 , h2 , h3 ) are 
the original haplotypes, and ĥ = (ĥ1 , ĥ2 , ĥ3 ) are the recon-
structed haplotypes. RR is defined as the proportion of 
nucleotides that are reconstructed correctly, as shown in 
Formula (4).

where rik jk = HD(hik , ĥjk , 1, n).
The minimum error correction (MEC) score measures 

the minimum number of mismatches between the recon-
structed haplotypes ĥ =  (ĥ1 , ĥ2 , ĥ3 ) and the SNP matrix 
M, as shown in Formula (5).

To the best of our knowledge, the real triploid haplotype 
data are not available in the public domain, Aguiar et al. 
[12] and Berger et al. [13] used computer-generated sim-
ulated data. Therefore, simulated data were also used in 
our experiments. Three simulation haplotypes h =  (h1 , 
h2 , h3 ) of length n were created by using the following 
method. h1 was generated at random firstly. h2 was gener-
ated by flipping each bit of h1 randomly so that the ham-
ming distance between h1 and h2 was equal to a given 
parameter d. h3 also had the same length and h3j was 
set to h1j or h2j (j = 1, 2, . . . , n) with uniform probabil-
ity. With regard to fragment data, two kinds of sequenc-
ing simulators, CELSIM [16] and MetaSim [17], were 
adopted to generate simulation fragments, and the test-
ing datasets were called as CELSIM instances and Meta-
Sim instances, respectively.

CELSIM instances
In this section, the evaluation of the EHTLD, the Hap-
Compass and the HapTree algorithms is described 
by using CELSIM instances. CELSIM was invoked to 
simulate shotgun sequencing platform. m1 single SNP 

(4)RR(h, ĥ) = 1−
min{

∑3
k=1 rik jk |ik , jk ∈ {1, 2, 3},

∏3
k=1 ik =

∏3
k=1 jk = 6}

3n
,

(5)

MEC(M, ĥ) =

m
∑

i=1

min{HD(M[i,−], ĥk , 1, n)|k = 1, 2, 3}.

fragments and m2 mate-pair SNP fragments were gener-
ated. A single fragment had a length ranging from fmin to 
fmax , and a mate-pair fragment had a length of n/10. The 
coverage was c/2 for both kinds of fragments, and the 
total coverage was c. Reading errors were planted into the 
fragments with probability ps . In practical applications 
of shotgun sequencing, the values of fmin and fmax are 3 
and 7, respectively, c ranges from 5 to 10, and ps ranges 
between 2 and 5% [2, 18]. In the following tables, algo-
rithms EHTLD, HapCompass and HapTree are abbrevi-
ated to EH, HC and HT, respectively.

In Table  1, 12 sets of parameters were set in deal-
ing with error rate ps , where c = 10, fmin = 3, fmax = 7, 
n = 100 and d = 0.3. It can be seen from this table that 
algorithm EHTLD can achieve much higher reconstruc-
tion rates, smaller vector errors and MEC scores than 

the HapCompass and the HapTree algorithms in every ps 
setting. When ps = 0, algorithm EHTLD achieves recon-
struction rate of 0.97, which is higher than both Hap-
Compass and HapTree algorithms by about 9.0%, and 
vector error of 3, which is less than them by 8 times or 
so. In particular, the MEC score obtained by algorithm 
EHTLD reaches zero, while those of the other two algo-
rithms are 126 and 57. Although the increase of ps plays 
stronger negative effect on algorithm EHTLD than on 
algorithms HapCompass and HapTree, the EHTLD algo-
rithm still obtains better performance than algorithms 
HapCompass and HapTree with high error rate. When 
ps  =  0.2, the RRs of algorithms EHTLD, HapCompass 
and HapTree are 0.92, 0.89 and 0.88, the vector errors of 
them are 14, 31 and 26, and the MEC scores of them are 
335, 407 and 364, respectively. The three algorithms all 
execute very efficiently when ps ranges from 0 to 0.2.

In Table  2, nine sets of parameters were set in deal-
ing with coverage c, where n = 100, fmin = 3, fmax = 7, 
ps = 0.05 and d = 0.3. From Table 2 we observe that algo-
rithm EHTLD still obtains the highest reconstruction 
rate and the smallest vector error and MEC score under 
different coverage settings. When the coverage is 2, the 
RRs of algorithms EHTLD, HapCompass and HapTree 
are 0.94, 0.89 and 0.86, the vector errors of them are 10, 
30 and 29, and the MEC scores of them are 16, 40 and 
19. When the coverage increases, the RR of algorithm 
EHTLD increases gradually, while that of algorithm Hap-
Compass fluctuates between 0.89 and 0.90, and that of 
algorithm HapTree varies between 0.85 and 0.91. Gener-
ally, the increase of coverage plays a positive role in the 
improvement of algorithm performance, for much more 
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original fragment information can be utilized. How-
ever, it is not apparent for algorithms HapCompass and 
HapTree.

Table  3 compares the performance of the three algo-
rithms with different haplotype lengths n, where c = 10, 
fmin = 3, fmax = 7, ps = 0.05 and d = 0.3. As can be seen 

from this table, algorithm EHTLD still obtains superior 
results to the other two algorithms under each param-
eter setting. With the increase of haplotype length, the 
three algorithms experience a gradual degradation in 
the performance. When n is 100, the RR of algorithm 
EHTLD is 0.97, which is higher than both HapCompass 

Table 1 Comparison with different error rates (CELSIM instance)

ps RR VE MEC Running time (s)

EH HC HT EH HC HT EH HC HT EH HC HT

0 0.97 0.89 0.89 3 29 27 0 126 57 0.01 0.02 0.01

0.01 0.97 0.89 0.88 3 31 28 17 147 64 0.01 0.03 0.01

0.02 0.97 0.89 0.88 4 30 27 34 152 79 0.01 0.03 0.01

0.03 0.97 0.89 0.90 4 31 26 51 180 83 0.01 0.03 0.01

0.04 0.97 0.90 0.89 4 29 27 69 179 96 0.01 0.03 0.01

0.05 0.97 0.90 0.89 4 29 26 85 194 117 0.01 0.03 0.01

0.06 0.96 0.89 0.88 5 31 26 102 210 132 0.01 0.03 0.01

0.07 0.96 0.89 0.88 5 30 26 122 225 157 0.01 0.03 0.01

0.08 0.96 0.90 0.88 6 29 24 138 238 173 0.01 0.03 0.01

0.09 0.95 0.89 0.87 6 30 28 154 254 181 0.01 0.03 0.01

0.1 0.95 0.90 0.89 7 29 25 172 263 206 0.01 0.03 0.01

0.2 0.92 0.89 0.88 14 31 26 335 407 364 0.01 0.03 0.01

Table 2 Comparison with different coverages (CELSIM instance)

c RR VE MEC Running time (s)

EH HC HT EH HC HT EH HC HT EH HC HT

2 0.94 0.89 0.86 10 30 29 16 40 19 0.01 0.01 0.01

3 0.95 0.89 0.85 9 31 28 25 60 30 0.01 0.02 0.01

4 0.95 0.89 0.91 7 31 28 34 79 38 0.01 0.02 0.01

5 0.96 0.89 0.87 6 30 26 41 96 46 0.01 0.02 0.01

6 0.96 0.89 0.87 5 30 25 52 120 58 0.01 0.02 0.01

7 0.96 0.90 0.89 5 29 26 58 133 65 0.01 0.02 0.01

8 0.96 0.89 0.89 5 30 25 67 157 75 0.01 0.02 0.01

9 0.96 0.89 0.89 4 30 25 75 175 84 0.01 0.03 0.01

10 0.97 0.90 0.89 4 29 26 85 194 117 0.01 0.03 0.01

Table 3 Comparison with different haplotype lengths (CELSIM instance)

n RR VE MEC Running time (s)

EH HC HT EH HC HT EH HC HT EH HC HT

100 0.97 0.90 0.89 4 29 26 85 194 117 0.01 0.03 0.01

200 0.96 0.89 0.90 12 61 57 136 305 169 0.04 0.16 0.04

300 0.95 0.89 0.88 29 92 90 181 387 230 0.11 0.20 0.09

500 0.93 0.88 0.87 57 156 148 271 573 337 0.56 0.83 0.72

800 0.92 0.88 0.86 100 256 242 398 855 492 2.21 2.59 2.30

1000 0.92 0.88 0.86 136 322 314 479 1029 595 4.36 4.67 4.51
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and HapTree algorithms by about 7.8%, the vector error 
of algorithm EHTLD is 4, which is less than algorithms 
HapCompass and HapTree by about 86 and 85%, the 
MEC score of algorithm EHTLD is 85, which is less 
than algorithms HapCompass and HapTree by about 56 
and 21%, respectively. When n is 1000, the RRs of them 
decrease to 0.92, 0.88 and 0.86, the vector errors of them 
increase to 136, 322 and 314, and the MEC scores of 
them go up to 479, 1029 and 595, respectively. The run-
ning time of the three algorithms increases significantly 
with the increase of n. When n = 100, the running time 
of algorithms EHTLD, HapCompass and HapTree is 0.01, 
0.03 and 0.01 s, respectively, while n = 1000, it increases 
to 4.36, 4.67 and 4.51 s, respectively.

In Table 4, three groups of parameters were set in deal-
ing with single fragment length range [fmin, fmax] , where 
c =  10, ps =  0.05, n =  100 and d =  0.3. As shown in 
Table 4, algorithm EHTLD still performs the best under 
different parameter settings. When [fmin, fmax] = [3, 7] , 
the RRs of algorithms EHTLD, HapCompass and Hap-
Tree are 0.97, 0.90 and 0.89, the vector errors of them 
are 4, 29 and 26, and the MEC scores of them are 85, 194 
and 117, respectively. With the decrease of the length of 
single fragment, the decline of fragments overlap might 
be disadvantageous for haplotype reconstruction. When 
[fmin, fmax] = [1, 2] , the RRs decrease to 0.94, 0.90 and 
0.88, the vector errors increase to 14, 30 and 28, and 

the MEC scores drop to 65, 86 and 76, respectively. The 
decrease of the MEC scores explain the shorter the frag-
ments are, the more probability the fragments agree with 
the reconstructed haplotypes. The change of single frag-
ment length plays little effect on the running time of the 
three algorithms.

Table  5 compares the three algorithms with different 
hamming distances d, where fmin = 3, fmax = 7, c = 10, 
ps =  0.05 and n =  100. It can be seen from this table 
that the performance of algorithm EHTLD remains rel-
atively stable under different d, while that of algorithms 
HapCompass and HapTree suffers strong negative influ-
ence with the increase of hamming distance. For exam-
ple, when d varies from 0.1 to 1.0, the RR of the EHTLD 
algorithm fluctuates between 0.97 and 1.0, while those 
of the HapCompass and the HapTree algorithms achieve 
decrease rate up to 35 and 20%, respectively.

MetaSim instances
MetaSim was used to simulate 454 sequencing plat-
form. m SNP fragments, including m1 = (1− pm)×m 
single ones and m2  =  pm ×m mate-pair ones, were 
generated, where pm denoted the probability of mate-
pair fragments and was set to 0.25 in the experiments. 
A single fragment had an expected length of f _len , 
and a mate-pair fragment had a length of 3× f _len . 
Since each mate-pair fragment consists of two single 

Table 4 Comparison with different single fragment length ranges (CELSIM instance)

fmin, fmax RR VE MEC Running time (s)

EH HC HT EH HC HT EH HC HT EH HC HT

 [3, 7] 0.97 0.90 0.89 4 29 26 85 194 117 0.01 0.03 0.01

 [2, 4] 0.95 0.89 0.88 8 30 28 67 129 90 0.01 0.03 0.01

 [1, 2] 0.94 0.90 0.88 14 30 28 65 86 76 0.02 0.03 0.01

Table 5 Comparison with different hamming distances (CELSIM instance)

d RR VE MEC Running time (s)

EH HC HT EH HC HT EH HC HT EH HC HT

0.1 0.99 0.97 0.96 5 9 8 88 109 92 0.01 0.02 0.01

0.2 0.97 0.93 0.94 6 17 16 86 140 106 0.01 0.03 0.01

0.3 0.97 0.90 0.89 4 28 26 85 194 117 0.01 0.03 0.01

0.4 0.97 0.86 0.85 3 38 35 86 260 145 0.02 0.06 0.02

0.5 0.97 0.82 0.84 1 46 42 88 326 201 0.04 0.08 0.03

0.6 0.97 0.79 0.82 1 57 49 89 393 263 0.05 0.10 0.05

0.7 0.98 0.74 0.81 0 71 63 92 478 346 0.07 0.16 0.06

0.8 0.98 0.71 0.80 0 78 72 90 553 421 0.10 0.20 0.08

0.9 0.99 0.67 0.78 0 89 78 90 633 507 0.12 0.25 0.10

1.0 1.00 0.63 0.77 0 94 85 91 722 589 0.15 0.29 0.12
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fragments of the same haplotype, the coverage c equals to 
[(m1 + 2×m2)× f _len]/3× n.

Table  6 gives the comparisons with coverage ranging 
from 5 to 50, where n = 100, f _len = 5, and d = 0.3. In 
Table  7, six sets of experimental results under different 
haplotype length settings are displayed, where c  =  20, 
f _len = 5, and d = 0.3. In Table 8, three instances were 
generated in dealing with single fragment length f _len , 
where n = 100, c = 20, and d = 0.3. In Table 9, the test 
results under different parameter d are shown, where 
n = 100, c = 20, and f _len = 5. The experimental results 
obtained from MetaSim instances indicate that algo-
rithm EHTLD still obtain much higher reconstruction 
rates, smaller vector errors and MEC scores than the 

HapCompass and the HapTree algorithms under differ-
ent c, n, f _len and d settings.

Conclusion
The minimum error correction with genotype infor-
mation (MEC/GI) model is one of the important com-
putational models for solving single individual SNP 
haplotyping problem. In this paper, an enumeration-
based algorithm EHTLD is presented for haplotyp-
ing a triploid single individual by using this model. 
Algorithm EHTLD reconstructs the three haplotypes 
according to the order of SNP loci along them. For a 
SNP site being reconstructed, the EHTLD algorithm 
enumerates three possible values in terms of the site’s 

Table 6 Comparison with different coverages (MetaSim instance)

c RR VE MEC Running time (s)

EH HC HT EH HC HT EH HC HT EH HC HT

5 0.94 0.89 0.88 10 30 26 80 134 99 0.01 0.02 0.01

10 0.94 0.90 0.88 8 29 26 144 252 189 0.01 0.02 0.01

15 0.95 0.90 0.88 8 30 26 249 405 287 0.01 0.03 0.01

20 0.95 0.90 0.88 7 30 26 299 513 343 0.02 0.04 0.02

25 0.95 0.89 0.89 7 28 25 383 648 446 0.03 0.05 0.03

30 0.95 0.90 0.89 7 30 25 458 775 531 0.03 0.07 0.03

35 0.95 0.89 0.89 7 30 26 532 903 623 0.05 0.09 0.04

40 0.95 0.90 0.89 7 28 26 600 1028 711 0.07 0.12 0.06

45 0.95 0.90 0.90 7 29 24 700 1193 807 0.10 0.16 0.09

50 0.95 0.90 0.90 7 28 25 758 1293 879 0.13 0.19 0.11

Table 7 Comparison with different haplotype lengths (MetaSim instance)

n RR VE MEC Running time (s)

EH HC HT EH HC HT EH HC HT EH HC HT

100 0.95 0.90 0.88 7 30 26 299 513 343 0.02 0.04 0.02

200 0.93 0.89 0.90 17 62 57 550 985 620 0.24 0.31 0.21

300 0.93 0.89 0.89 25 93 79 788 1441 896 0.56 0.63 0.60

500 0.93 0.88 0.89 45 156 142 1284 2392 1440 2.43 2.83 2.64

800 0.92 0.88 0.89 75 254 238 1998 3791 2254 9.65 10.50 9.89

1000 0.92 0.88 0.88 91 319 305 2484 4731 2804 17.43 17.95 17.47

Table 8 Comparison with different single fragment lengths (MetaSim instance)

f_len RR VE MEC Running time (s)

EH HC HT EH HC HT EH HC HT EH HC HT

10 0.96 0.90 0.88 5 30 26 248 404 307 0.01 0.04 0.01

5 0.95 0.90 0.88 7 30 26 299 513 343 0.02 0.04 0.02

3 0.93 0.89 0.89 14 31 28 129 246 201 0.03 0.06 0.03
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genotype, and chooses the one leading to the mini-
mum difference between the reconstructed haplotypes 
and the fragments covering that SNP site. The recon-
structed alleles of a SNP site mainly depend on the 
fragments which cover the site, and are little affected by 
other former reconstructed alleles. Therefore, the for-
mer wrongly reconstructed SNP alleles would not affect 
the latter reconstructed SNP alleles, i.e., reconstructed 
errors on the former SNP alleles would not spread to 
the latter ones. The kind of enumeration strategy can 
also be apply to reconstruct haplotypes of other ploidy, 
which will be studied in the future.

Compared with algorithms HapCompass and Hap-
Tree by using two kinds of simulated sequencing data, 
the EHTLD algorithm can get the highest reconstruc-
tion rates, the smallest vector errors and MEC scores, 
which was tested by a number of experiments. In addi-
tion, algorithm EHTLD still achieves satisfying per-
formance even with high error rate, low fragment 
coverage, or long haplotype length. All of these advan-
tages may contribute to the practical application of the 
EHTLD algorithm when haplotyping a triploid single 
individual.
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