
Christensen et al. Algorithms Mol Biol (2018) 13:6
https://doi.org/10.1186/s13015-018-0124-5

RESEARCH

OCTAL: Optimal Completion of gene
trees in polynomial time
Sarah Christensen* , Erin K. Molloy, Pranjal Vachaspati and Tandy Warnow

Abstract

Background: For a combination of reasons (including data generation protocols, approaches to taxon and gene
sampling, and gene birth and loss), estimated gene trees are often incomplete, meaning that they do not contain all
of the species of interest. As incomplete gene trees can impact downstream analyses, accurate completion of gene
trees is desirable.

Results: We introduce the Optimal Tree Completion problem, a general optimization problem that involves com-
pleting an unrooted binary tree (i.e., adding missing leaves) so as to minimize its distance from a reference tree on
a superset of the leaves. We present OCTAL, an algorithm that finds an optimal solution to this problem when the
distance between trees is defined using the Robinson–Foulds (RF) distance, and we prove that OCTAL runs in O(n2)
time, where n is the total number of species. We report on a simulation study in which gene trees can differ from the
species tree due to incomplete lineage sorting, and estimated gene trees are completed using OCTAL with a refer-
ence tree based on a species tree estimated from the multi-locus dataset. OCTAL produces completed gene trees that
are closer to the true gene trees than an existing heuristic approach in ASTRAL-II, but the accuracy of a completed
gene tree computed by OCTAL depends on how topologically similar the reference tree (typically an estimated spe-
cies tree) is to the true gene tree.

Conclusions: OCTAL is a useful technique for adding missing taxa to incomplete gene trees and provides good
accuracy under a wide range of model conditions. However, results show that OCTAL’s accuracy can be reduced when
incomplete lineage sorting is high, as the reference tree can be far from the true gene tree. Hence, this study suggests
that OCTAL would benefit from using other types of reference trees instead of species trees when there are large
topological distances between true gene trees and species trees.

Keywords: Species trees, Gene trees, Missing data, Multispecies coalescent, Phylogenomics

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Species tree estimation from multi-gene datasets is now
increasingly common. One challenge is that the evolu-
tionary history for a single locus (called a “gene tree”)
may differ from the species phylogeny due to a variety of
different biological processes. Some of these processes,
such as hybridization [1] and horizontal gene transfer [2],
result in non-treelike evolution and so require phyloge-
netic networks for proper analysis [3–6]. However, other
biological processes, such as gene duplication and loss,
incomplete lineage sorting (ILS), and gene flow, produce

heterogeneity across the genome but are still properly
modeled by a single species tree [7, 8]. In the latter case,
species tree estimation methods should be robust to het-
erogeneity across the genome.

Much of the recent focus in the mathematical and sta-
tistical phylogenetics literature has been on developing
methods for species tree estimation in the presence of
incomplete lineage sorting (ILS), which is modelled by
the multi-species coalescent (MSC) model [9]. One pop-
ular approach for estimating species trees under the MSC
model is to estimate trees on individual loci and then
combine these gene trees into a species tree. Some of
these “summary methods”, such as ASTRAL-II [10] and
ASTRID [11], have been shown to scale well to datasets

Open Access

Algorithms for
Molecular Biology

*Correspondence: sac2@illinois.edu
Department of Computer Science, University of Illinois at Urbana-
Champaign, 201 North Goodwin Avenue, Urbana, IL 61801, USA

http://orcid.org/0000-0001-5790-6266
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-018-0124-5&domain=pdf

Page 2 of 18Christensen et al. Algorithms Mol Biol (2018) 13:6

with many taxa (i.e., >1000 species) and provide accurate
species tree estimates. (Summary methods share many
features in common with supertree methods, but are
based on mathematical properties of the MSC model and
so can be proven statistically consistent under the MSC
model; supertree methods, by contrast, assume conflict
between source trees is due to estimation error rather
than ILS, and so are generally not statistically consistent
under the MSC model.)

A common challenge to species tree estimation meth-
ods is that sequence data may not be available for all
genes and species of interest, creating conditions with
missing data (see discussion in [12–14]). For example,
gene trees can be missing species simply because some
species do not contain a copy of a particular gene, and in
some cases, no common gene will be shared by every spe-
cies in the set of taxa [15]. Additionally, not all genomes
may be fully sequenced and assembled, as this can be
operationally difficult and expensive [13, 16].

Although summary methods are statistically consist-
ent under the MSC model [17], the proofs of statistical
consistency assume that all gene trees are complete, and
so may not apply when the gene trees are missing taxa.
Recent extensions to this theory have shown that some
species tree estimation methods are statistically consist-
ent under some models of missing data (e.g., when “every
species is missing from each gene with the same prob-
ability p > 0”) [18]. However, missing data in biological
datasets often violates such models (see discussion in
[14]); for example, missing data may be biased towards
genes with faster rates of evolution [19]. Furthermore,
multi-gene datasets with missing data can be “phyloge-
netically indecisive”, meaning more than one tree topol-
ogy can be optimal [20]. Because of concerns that missing
data may reduce the accuracy of multi-locus species tree
estimation methods, many phylogenomic studies have
restricted their analyses to only include genes with most
of the species (see discussion in [12, 13, 21]).

We approach the challenge of adding missing species
into gene trees by formulating the Optimal Tree Com-
pletion problem, where we seek to add the missing spe-
cies to a gene tree to minimize the distance (defined in
some way) to another tree, called a “reference tree”. Since
the Robinson–Foulds [22] distance is a common metric
for comparing trees (where the Robinson–Foulds dis-
tance is the total number of unique bipartitions in the
two trees), we specifically address the Robinson–Foulds
(RF) Optimal Completion problem, which seeks a com-
pletion of the input gene tree with respect to a given ref-
erence tree that minimizes the RF distance between the
two trees. We then present the Optimal Completion of
Incomplete gene Tree Algorithm (OCTAL), a greedy
polynomial time algorithm that we prove solves the RF

Optimal Completion problem exactly. We also present
results from an experimental study on simulated datasets
comparing OCTAL to a heuristic for gene tree comple-
tion within ASTRAL-II. Finally, we conclude with a dis-
cussion of results and future research.

The Optimal Tree Completion problem
Terminology
Each edge e in an unrooted phylogenetic tree defines
a bipartition πe on the leaves of the tree induced by the
deletion of e (but not its endpoints). Each bipartition is
thus a split A|B of the leaf set into two non-empty dis-
joint parts, A and B, that cover the leaf set. The set of
bipartitions of a tree T is given by C(T) = {πe : e ∈ E(T)},
where E(T) is the set of edges for tree T. We say that two
trees have the same topology if they have the same set of
bipartitions. When two trees T and T ′ have the same leaf
set, then the Robinson–Foulds (RF) distance [22] between
T and T ′, denoted by RF(T ,T ′), is the size of the symmet-
ric difference between C(T) and C(T ′). In other words,
every bipartition in T or T ′ is either shared between the
two trees or is unique to one tree, and the RF distance
is the number of bipartitions that appear in exactly one
tree. When two trees are binary and on the same leaf set,
as is the case in this study, the numbers of bipartitions
that are unique to each tree are equal, and each is half the
RF distance.

Given tree T on leaf set S, T restricted to R ⊆ S,
denoted by T |R, is the minimal subgraph of T that con-
nects all elements of R, suppressing nodes of degree two.
Note that if T contains the bipartition A|B, T |R contains
the restricted bipartition (A ∩ R)|(B ∩ R). If T and T ′ are
two trees with R as the intersection of their leaf sets, their
shared edges are edges whose bipartitions restricted to R
are in the set C(T |R) ∩ C(T ′|R). Correspondingly, their
unique edges are edges whose bipartitions restricted to R
are not in the set C(T |R) ∩ C(T ′|R).

The RF Optimal Tree Completion problem
The problem we address in this paper is the RF Optimal
Tree Completion problem, where the distance between
trees is defined by the RF distance, as follows:

 • Input: An unrooted binary tree T on the full taxon
set S and an unrooted binary tree t on a subset of
taxa R ⊆ S

 • Output: An unrooted binary tree T ′ on the full taxon
set S with two key properties:

1 T ′ is a S-completion of t (i.e., T ′ contains all the
leaves of S and T ′|R = t) and

2 T ′ minimizes the RF distance to T among all
S-completions of t

Page 3 of 18Christensen et al. Algorithms Mol Biol (2018) 13:6

Note that t and T |R are both on taxon set R, but need not
be identical. In fact, the RF distance between these two
trees is a lower bound on the RF distance between T and
T ′.

OCTAL: Optimal Completion of incomplete gene
Trees ALgorithm
The algorithm begins with input tree t and adds leaves
one at a time from the set S \ R until a tree on the full set
of taxa S is obtained. To add the first leaf, we choose an
arbitrary taxon x to add from the set S \ R. We root the
tree T |R∪{x} (i.e., T restricted to the leaf set of t plus the
new leaf being added) at x, and then remove x and the
incident edge; this produces a rooted binary tree we will
refer to as T (x) that has leaf set R.

We perform a depth-first traversal down T (x) until
a shared edge e (i.e., an edge where the clade below it
appears in tree t) is found. Since every edge incident with
a leaf in T (x) is a shared edge, every path from the root
of T (x) to a leaf has a distinct first edge e that is a shared
edge. Hence, the other edges on the path from the root to
e are unique edges.

After we identify the shared edge e in T (x), we identify
the edge e′ in t defining the same bipartition, and we add
a new node v(e′) into t so that we subdivide e′. We then
make x adjacent to v(e′). Note that since t is binary, the
modification t ′ of t that is produced by adding x is also
binary and that t ′|R = t. These steps are then repeated
until all leaves from S \ R are added to t. This process is
shown in Fig. 1 and given in pseudocode below.

Fig. 1 One iteration of the OCTAL algorithm. Trees T and t with edges in the backbone (defined to be the edges on paths between nodes in the
common leaf set) colored green for shared, and blue for unique; all other edges are colored black. After rooting T |R with respect to u, the edges in
T |R that could be identified by the algorithm for “placement” are indicated with an asterisk (*). Note that any path in T |R from the root to a leaf will
encounter a shared edge, since the edges incident with leaves are always shared. In this scenario, the edge e above the least common ancestor of
leaves w and x is selected; this edge defines the same bipartition as edge e′ in t. Hence, AddLeaf will insert leaf u into t by subdividing edge e′, and
making u adjacent to the newly added node

Page 4 of 18Christensen et al. Algorithms Mol Biol (2018) 13:6

Algorithm 1: RF Optimal Tree Completion Algorithm (OCTAL)

1: procedure AddLeaf(Taxon x, binary tree T1 on taxon set K, binary tree T2

on taxon set K ∪ {x}, set E of shared edges between T1 and T2|K)
2: Root T2 at v, the neighbor of x, and delete x to get a rooted version of T2|K
3: Pick arbitrary leaf y in T2|K and find first edge e ∈ E on path from v to y

4: Find e in T1 defining the same bipartition as e
5: Attach x to e in T1 by subdividing e and making x adjacent to the newly

created node; call the resulting tree T1

6: return T1

7: end procedure

1: procedure OCTAL(Binary tree t on taxon set R ⊆ S, binary tree T on taxon
set S)

2: if R=S then
3: return t
4: else
5: E ← Preprocess and initialize set of shared edges between t and T |R
6: R ← R Initialize R by setting it equal to input R
7: t ← t Initialize t by setting it equal to input t
8: for x ∈ S R do
9: R ← R ∪ {x}

10: T ← T |R
11: t ← AddLeaf(x, t , T , E)
12: E ← Update shared edges between t and T

13: end for
14: return t

15: end if
16: end procedure

Proof of correctness
In what follows, let T be an arbitrary binary tree on taxon
set S and t be an arbitrary binary tree on taxon set R ⊆ S.
Let T ′ denote the tree returned by OCTAL given T and t.
We set r = RF(T |R, t). As we have noted, OCTAL returns
a binary tree T ′ that is an S-completion of t. Hence, to
prove that OCTAL solves the RF Optimal Tree Com-
pletion problem exactly, we only need to establish that
RF(T ,T ′) is the smallest possible of all binary trees on
leaf set S that are S-completions of t. While the algorithm
works by adding a single leaf at a time, we use two types
of subtrees, denoted as superleaves (see Fig. 2), to aid in
the proof of correctness.

Definition 1 The backbone of T with respect to t is the
set of edges in T that are on a path between two leaves in
R.

Definition 2 A superleaf of T with respect t is a rooted
group of leaves from S \ R that is attached to an edge in
the backbone of T. In particular, each superleaf is rooted
at the node that is incident to one of the edges in the
backbone

Definition 3 There are exactly two types of superleaves,
Type I and Type II:

1 A superleaf is a Type I superleaf if the edge e in the
backbone to which the superleaf is attached is a
shared edge in T |R and t. It follows then that a super-
leaf X is a Type I superleaf if and only if there exists
a bipartition A|B in C(t) ∩ C(T |R) where A|(B ∪ X)
and (A ∪ X)|B are both in C(T |R∪X).

2 A superleaf is a Type II superleaf if the edge e in the
backbone to which the superleaf is attached is a
unique edge in T |R and t. It follows that a superleaf X

Page 5 of 18Christensen et al. Algorithms Mol Biol (2018) 13:6

is a Type II superleaf if and only if for any bipartition
A|B such that A|(B ∪ X) and (A ∪ X)|B are both in
C(T |R∪X), A|B �∈ C(t).

Now we begin our proof by establishing a lower bound
on the RF distance to T for all binary S-completions of t.

Lemma 4 Let Y be a Type II superleaf for the pair
(T, t), and let x ∈ S \ R. Let t∗ be the result of adding x
into t arbitrarily (i.e., we do not attempt to minimize
the resulting RF distance). If x �∈ Y , then Y is a Type II
superleaf for the pair (T , t∗). Furthermore, if x ∈ Y , then
RF(T |R∪{x}, t

∗) ≥ RF(T |R, t)+ 2.

Proof It is easy to see that if x �∈ Y , then Y remains
a Type II superleaf after x is added to t. Now suppose
x ∈ Y . We will show that we cannot add x into t with-
out increasing the RF distance by at least 2. Since Y is a
Type II superleaf, it is attached to a unique edge in T |R∪Y ,
and this is the same edge that x is attached to in T |R∪{x} .
So suppose that x is added to t by subdividing an arbi-
trary edge e′ in t with bipartition C|D; note that we do
not require that x is added to a shared edge in t. After
adding x to t we obtain tree t∗ whose bipartition set
includes C|(D ∪ {x}) and (C ∪ {x})|D. If C|D corresponds
to a unique edge relative to t and T |R, then both of these
bipartitions correspond to unique edges relative to t∗
and T |R∪{x}. If C|D corresponds to a shared edge, then

at most one of the two new bipartitions can correspond
to a shared edge, as otherwise we can derive that Y is a
Type I superleaf. Hence, the number of unique edges in
t must increase by at least one no matter how we add
x to t, where x belongs to a Type II superleaf. Since t is
binary, the tree that is created by adding x is binary, so
that RF(T |R∪{x}, t

∗) ≥ RF(T |R, t)+ 2. �

Lemma 5 Let T ∗ be an unrooted binary tree that is
a S-completion of t. Then RF(T ∗,T) ≥ r + 2m, where
r = RF(T |R, t) and m is the number of Type II superleaves
for the pair (T, t).

Proof We note that adding a leaf can never reduce the
total RF distance. The proof follows from Lemma 4 by
induction. �

Now that we have established a lower bound on the
best achievable RF distance (i.e., the optimality criterion
for the RF Optimal Tree Completion problem), we show
OCTAL outputs a tree T ′ that is guaranteed to achieve
this lower bound. We begin by noting that when we add
x to t by subdividing some edge e′, creating a new tree
t ′ , all the edges other than e′ in t continue to “exist” in t ′
although they define new bipartitions. In addition, e′ is
split into two edges, which can be considered new. Thus,
we can consider whether edges that are shared between t
and T remain shared after x is added to t.

Fig. 2 Type I and Type II superleaves. Trees T and t with edges in the backbone (defined to be the edges on paths between nodes in the common
leaf set) colored green for shared, and blue for unique; the other edges are inside superleaves and are colored black. The deletion of the backbone
edges in T creates two components that are called “superleaves”. One of the two superleaves is a Type I superleaf because it is attached to a shared
(green) edge, and the other is a Type II superleaf because it is attached to a unique (blue) edge. The RF distance between t and T |R is equal to 2,
the number of blue edges. The Type I superleaf containing leaves r and s can be added to edge ex in t, the shared edge incident to leaf x, without
increasing the RF distance; adding it to any other edge in t will increase the RF distance by exactly 2. However, adding the Type II superleaf contain-
ing leaves u, v, and q to any single edge in t creates exactly one new unique edge in each tree, and therefore increases the RF distance by exactly 2.
More generally, for any pair of trees (one a gene tree and the other a reference tree), (1) any Type I superleaf can be added to the gene tree without
increasing the RF distance, (2) any addition of a Type II superleaf to the gene tree will always increase the RF distance by at least 2, and (3) there is
always at least one edge into which a Type II superleaf can be added that increases the RF distance by exactly 2

Page 6 of 18Christensen et al. Algorithms Mol Biol (2018) 13:6

Lemma 6 Let t ′ be the tree created by AddLeaf given
input tree t on leaf set R and tree T on leaf set R ∪ {x}. If x
is added to tree t by subdividing edge e′ (thus creating tree
t ′), then all edges in t other than e′ that are shared between
t and T remain shared between t ′ and T.

Proof Let T (x) be the rooted tree obtained by rooting
T at x and then deleting x. Let e be the edge in T (x) cor-
responding to e′, and let πe = A|B; without loss of gen-
erality assume A is a clade in T (x). Note that C(T) con-
tains bipartition A|(B ∪ {x}) (however, C(T) may not
contain (A ∪ {x})|B, unless e is incident with the root of
T (x)). Furthermore, for subclade A′ ⊆ A, A′|(R \ A′) ∈
C(T |R) and A′|(R \ A′ ∪ {x}) ∈ C(T). Now suppose e∗ in
t is a shared edge between t and T |R that defines biparti-
tion C|D �= A|B. Since A|B and C|D are both bipartitions
of t, without loss of generality either C ⊂ A or A ⊂ C. If
C ⊂ A, then C is a clade in T (x), and so e∗ defines bipar-
tition C|(D ∪ {x}) within t ′. But since C ⊂ A, the previ-
ous analysis shows that C|(D ∪ {x}) is also a bipartition
of T, and so e∗ is shared between T and t ′. Alternatively,
suppose A ⊂ C. Then within t ′, e∗ defines bipartition
(C ∪ {x})|D, which also appears as a bipartition in T.
Hence, e∗ is also shared between T and t ′. Therefore,
any edge e∗ other than e′ that is shared between t and T
remains shared between t ′ and T, for all leaves x added by
AddLeaf. �

Lemma 7 OCTAL(T, t) preserves the topology of super-
leaves in T (i.e. for any superleaf with some subset of
leaves Q ⊆ S, OCTAL(T, t)|Q equals T |Q).

Proof We will show this by induction on the number of
leaves added. The lemma is trivially true for the base case
when just one leaf is added to t. Let the inductive hypoth-
esis be that the lemma holds for adding up to n leaves to
t for some arbitrary n ∈ N

+. Now consider adding n+ 1
leaves, and choose an arbitrary subset of n leaves to add
to t, creating an intermediate tree t ′ on leaf set K using
the algorithm OCTAL. Let x be the next additional leaf to
be added by OCTAL.

If x is the first element of a new superleaf to be added,
it is trivially true that the topology of its superleaf is pre-
served, but we need to show that x will not break the
monophyly of an existing superleaf in t ′. By the inductive
hypothesis, the topology of each superleaf already placed
in t ′ has been preserved. Thus, each superleaf placed in t ′
has some shared edge in t ′ and T |K incident to that super-
leaf. If x were placed onto an edge contained in some
existing superleaf, that edge would change its status from
being shared to being unique, which contradicts Lemma
6.

The last case is where x is part of a superleaf for the pair
(T, t) that already has been added in part to t. AddLeaf
roots T |K∪{x} at x and removes the edge incident to x,
creating rooted tree T (x). The edge incident to the root in
T (x) must be a shared edge by the inductive hypothesis.
Thus, OCTAL will add x to this shared edge and preserve
the topology of the superleaf. �

Lemma 8 OCTAL(T, t) returns binary tree T ′ such that
RF(T ,T ′) = r + 2m, where m is the number of Type II
superleaves for the pair (T, t) and r = RF(T |R, t).

Proof We will show this by induction on the number of
leaves added.

Base Case Assume |S \ R| = 1. Let x be the leaf in S\R .
AddLeaf adds x to a shared edge of t corresponding to
some bipartition A|B, which also exists in T (x).

1. First we consider what happens to the RF distance on
the edge x is attached to.
If x is a Type I superleaf, the edge incident to the
root in T (x) will be a shared edge by the definition
of Type I superleaf, so AddLeaf adds x to the corre-
sponding edge e′ in t. The two new bipartitions that
are created when subdividing e′ will both exist in T
by the definition of Type I superleaf so the RF dis-
tance does not change.
If x is a Type II superleaf, either (A ∪ {x})|B or
A|(B ∪ {x}) must not exist in C(T). Since AddLeaf
adds x to a shared edge, exactly one of those new
bipartitions must exist in C(T).

2. Now we consider what happens to the RF distance on
the edges x is not attached to. Lemma 6 shows that
AddLeaf (and therefore OCTAL) preserves existing
shared edges between t and T |R, possibly excluding
the edge where x is added.

Thus, the RF distance will only increase by 2 if x is a Type
II superleaf, as claimed.

Inductive step Let the inductive hypothesis be that the
lemma holds for up to n leaves for some arbitrary n ∈ N

+ .
Assume |S \ R| = n+ 1. Now choose an arbitrary subset
of leaves Q ⊆ S \ R, where |Q| = n, to add to t, creating an
intermediate tree t ′ using the algorithm OCTAL. By the
inductive hypothesis, assume t ′ is a binary tree with the
RF distance between T |Q∪R and t ′ equal to r + 2m, where
m is the number of Type II superleaves in Q. AddLeaf
adds the remaining leaf x ∈ S \ R to a shared edge of t ′
and T |Q∪R.

Page 7 of 18Christensen et al. Algorithms Mol Biol (2018) 13:6

1. Lemma 6 shows that AddLeaf (and therefore
OCTAL) preserves existing shared edges between
t ′ and T |Q∪R, possibly excluding the edge where x is
added.

2. Now we consider what happens to the RF distance on
the edge x is attached to. There are three cases: (i) x
is not the first element of a superleaf (ii) x is the first
element of a Type I superleaf or (iii) x is the first ele-
ment of a Type II superleaf.

Case (i): If x is not the first element of a superleaf to
be added to t, it directly follows from Lemma 7 that
OCTAL will not change the RF distance when add-
ing x.
Case (ii): If x is the first element of a Type I superleaf
to be added, then x is attached to a shared edge in
the backbone corresponding to some bipartition A|B
existing in both C(t) and C(T |R). Let e′ be the edge
in t s.t. πe′ = A|B. Note there must exist an edge e
in T |Q∪R producing A|B when restricted to just R.
Hence, the bipartition πe has the form M|N where
(M ∩ R) = A and (N ∩ R) = B. We need to show
that M|N ∈ C(t ′).

• By Lemma 6, any leaves from Q not attached to
e′ by OCTAL will preserve this shared edge in t ′.

• Now consider when leaves from Q are added
to e′ by OCTAL. We decompose M and N into
the subsets of leaves existing in either R or Q: let
M = A ∪W and N = B ∪ Z. OCTAL will not
cross a leaf from W with a leaf from Z along e′
because this would require crossing the shared
edge dividing these two groups: any leaf w ∈ W
has the property that (A ∪ {w})|B is a shared
edge and any leaf z ∈ Z has the property that
A|(B ∪ {z}) is a shared edge. Hence, any leaves
added from Q that subdivide e′ will always pre-
serve an edge between leaves contained in W
and Z on e′.

• Thus, M|N ∈ C(t ′). Moreover, (M ∪ {x})|N and
M|(N ∪ {x}) are bipartitions in C(T). AddLeaf
roots T at x and removes the edge incident to x,
creating rooted tree T (x). We have shown that
the edge incident to the root in T (x) must be a
shared edge, so adding x does not change the RF
distance.

Case (iii): If x is the first element of a Type II superleaf
to be added, we have shown in Lemma 4 that the RF
distance must increase by at least two. Since AddLeaf
always attaches x to some shared edge e′, the RF dis-
tance increases by exactly 2 when subdividing e′.

Thus, OCTAL will only increase the RF distance by 2
if x is a new Type II superleaf. �

Combining the above results, we establish our main
theorem:

Theorem 9 Given unrooted binary trees t and T with
the leaf set of t a subset of the leaf set of T, OCTAL(T, t)
returns an unrooted binary tree T ′ that is a completion
of t and that has the smallest possible RF distance to T.
Hence, OCTAL finds an optimal solution to the RF Opti-
mal Tree Completion problem. Furthermore, OCTAL
runs in O(n2) time, where T has n leaves.

Proof To prove that OCTAL solves the RF Optimal
Tree Completion problem optimally, we need to estab-
lish that OCTAL returns an S-completion of the tree t,
and that the RF distance between the output tree T ′ and
the reference tree T is the minimum among all S-comple-
tions. Since OCTAL always returns a binary tree and only
adds leaves into t, by design it produces a completion of
t and so satisfies the first property. By Lemma 8, the tree
T ′ output by OCTAL has an RF score that matches the
lower bound established in Lemma 5. Hence, OCTAL
returns a tree with the best possible score among all
S-completions.

We now show that OCTAL can be implemented to run
in O(n2) time, as follows. The algorithm has two stages: a
preprocessing stage that can be completed in O(n2) time
and a second stage that adds all the leaves from S \ R into
t that also takes O(n2) time.

In the preprocessing stage, we annotate the edges of T
and t as either shared or unique, and we compute a set
A of pairs of shared edges (one edge from each tree that
define the same bipartition on R). We pick r ∈ R, and we
root both t and T at r. We begin by computing, for each
of these rooted trees, the LCA (least common ancestor)
matrix for all pairs of nodes (leaves and internal vertices)
and the number nu of leaves below each node u; both can
be computed easily in O(n2) time using dynamic pro-
gramming. (For example, to calculate the LCA matrix,
first calculate the set of leaves below each node using
dynamic programing, and then calculate the LCA matrix
in the second step using the set of leaves below each
node.) The annotation of edges in t and T as shared or
unique, and the calculation of the set A, can then be com-
puted in O(n2) time as follows. Given an edge e ∈ E(T) ,
we note the bipartition defined by e as X|Y, where X is
the set of leaves below e in the rooted version of T. We
then let u denote the LCA of X in t, which we compute
in O(n) time (using O(n) LCA queries of pairs of vertices,
including internal nodes, each of which uses O(1) time

Page 8 of 18Christensen et al. Algorithms Mol Biol (2018) 13:6

since we already have the LCA matrix). Once we identify
u, we note the edge e′ above u in t. It is easy to see that
e is a shared edge if and only if e and e′ induce the same
bipartition on R, and furthermore this holds if and only if
nu = |X |. Hence, we can determine if e is a shared edge,
and also its paired edge e′ in t, in O(n) time. Each edge in
T is processed in O(n) time, and hence the preprocessing
stage can be completed in O(n2) time.

After the preprocessing, the second stage inserts the
leaves from S \ R into t using AddLeaf, and each time we
add a leaf into t we have to update the set of edges of t
(since it grows through the addition of the new leaf) and
the set A. Recall that when we add s ∈ S \ R into t, we
begin by rooting T at s, and then follow a path towards
the leaves until we find a first shared edge; this first
shared edge may be the edge incident with s in T or may
be some other edge, and we let e denote the first shared
edge we find. We then use the set A to identify the edge
e′ ∈ E(t) that is paired with e. We subdivide e′ and make
s adjacent to the newly created node. We then update A,
the set of bipartitions for each tree, and the annotations
of the edges of t and T as shared or unique. By Lemma
6, AddLeaf preserves all existing shared edges other than
the edge the new leaf x is placed on, and these specific
edges in E can each be updated in O(1) time. Further-
more, OCTAL places x on a shared edge, bifurcating it
to create two new edges. Thus, just two edges need to
be checked for being shared, which again can be done
in O(n) as claimed. Thus, adding s to t and updating all
the data structures can be completed in O(n) time. Since
there are at most n leaves to add, the second stage can be
completed in O(n2) time. Hence, OCTAL runs in O(n2)
time, since both stages take O(n2) time. �

Experimental evaluation
Overview
We compared OCTAL to the heuristic used in ASTRAL-
II [10] for completing incomplete gene trees (see [23] for
description), noting however that the ASTRAL-II tech-
nique is used to expand the search space explored by
ASTRAL-II and does not explicitly attempt to minimize
the distance to a reference tree. We used simulated data-
sets generated for [10] that have heterogeneity between
gene trees and species trees due to ILS. To evaluate the
accuracy of completed trees, we use three criteria: the
normalized RF distance, normalized quartet distance,
and the matching distance (see below for details).

We performed three sets of experiments:

 • The first set of experiments evaluated the relative and
absolute performance of ASTRAL-II and OCTAL for
three levels of ILS (moderate, high, and very high)
under these three evaluation criteria. The impact of

the amount of missing data and gene tree estimation
error was also examined.

 • The second set of experiments evaluated the impact
of the number of genes on the performance of
ASTRAL-II and OCTAL. We restricted these experi-
ments to two levels of ILS (moderate and high) and
one evaluation criterion (normalized RF distance).

 • The third set of experiments evaluated the impact of
changing the reference tree on OCTAL. We again
restricted these experiments to two levels of ILS
(moderate and high) and one evaluation criterion
(normalized RF distance).

Simulated datasets
The datasets used in this simulation study were originally
generated for the ASTRAL-II study [10] and then modi-
fied for the purpose of this study. The full details of the
protocol are described in [10], and briefly summarized
here.

ASTRAL‑II datasets
SimPhy [24] was used to simulate a collection of model
species trees and, for each species tree, a collection of
gene trees (with branch lengths deviating from a molec-
ular clock) under the multi-species coalescent (MSC)
model with varying levels of ILS. We refer to these simu-
lated trees as the true gene trees and true species trees.
Under this protocol, the true gene trees contain all the
species, and the only cause for discordance between
the true gene trees and the true species tree is ILS. For
each individual true gene tree, INDELible [25] was used
to simulate DNA sequences under the GTR+Ŵ model of
evolution without insertions or deletions. The numeric
model parameters varied across the gene trees and were
determined by drawing from a distribution based on bio-
logical datasets. There are 50 replicate datasets per model
condition.

Our modifications
We restricted the datasets examined in this study, by
using only 26 species (one outgroup and 25 out of 200
ingroup taxa) and 200 out of 1000 genes. We examined
20 out of 50 replicate datasets for three model conditions:
moderate ILS, high ILS, and very high ILS. We charac-
terize the levels of ILS by the average normalized RF dis-
tance, referred to as “AD”, between the true gene trees
and the true species tree, calculated using Dendropy
v4.2.0 [26]. Across all replicate datasets, the average AD
was 10% for the moderate ILS condition, 36% for the high
ILS condition, and 75% for the very high ILS condition.

We modified all datasets to ensure that some genes
were incomplete, as follows. In each replicate (containing

Page 9 of 18Christensen et al. Algorithms Mol Biol (2018) 13:6

200 genes), 150 genes were randomly selected to be miss-
ing data. In order to determine the number of taxa to be
deleted from each gene, we noted the number of taxa in
each non-trivial clade in the species tree; this produced
a multi-set of numbers that vary between 2 and 20. Then
for those genes that were selected to have taxa deleted,
we selected a number n from the multi-set uniformly at
random and selected n taxa to be deleted from the gene
at random. This produced a set of 150 incomplete gene
trees that on average were missing approximately 60%
of the species. The estimated gene trees were computed
using RAxML v8.2.8 [27] under the GTR+Ŵ model from
the resulting alignments (i.e., all the sequences for the
complete gene trees, and a subset of the sequences for
the incomplete gene trees). This produced a set of 200
estimated gene trees (150 of which were incomplete) for
every model condition and replicate dataset.

Gene tree completion
We used two techniques to complete the incomplete gene
trees: the heuristic in ASTRAL-II and OCTAL. For the
first set of experiments, ASTRID v1.4 was used to create
reference trees for OCTAL. Both OCTAL and ASTRAL-
II were run 9000 times (150 incomplete gene trees in
each of 20 replicates for three ILS levels).

As the amount of available data could potentially
impact the quality of the reference tree used in OCTAL
as well as the distance matrix computed by ASTRAL-
II, we reduced the number of genes in the second set of
experiments. In particular, we restricted the original 200-
gene datasets to 25, 50, and 100 genes of which 5, 10, and
25 of these genes were complete, respectively; we also
only explored the moderate and high ILS conditions, as
these are closer to biological datasets. ASTRID v1.4 was
again used to create reference trees for OCTAL, and both
OCTAL and ASTRAL-II were run an additional 5400
times.

Finally, in the third set of experiments, we directly eval-
uated the choice of reference tree on OCTAL by using
the true species tree, the ASTRID v1.4 [11] tree, a greedy
consensus tree, or a random tree drawn from a uniform
distribution. Note that the ASTRID tree was computed
on the full set of estimated gene trees (both incomplete
and complete), while the greedy consensus tree was com-
puted on the subset of estimated gene trees that were
complete. For this final set of experiments, OCTAL was
run an additional 18,000 times.

Evaluation criteria
We report error rates only for gene trees that were com-
pleted by ASTRAL-II or OCTAL, and we examined three
different error metrics: normalized RF distance, nor-
malized quartet distance, and matching distance. The

normalized distances produce values that range from 0
to 1; all three distances return 0 only for those pairs of
trees that are topologically identical, and so, low scores
are better than large scores. The normalized RF distance
between the completed estimated gene trees and the true
gene trees was computed using Dendropy v4.2.0. This
produces a value between 0 and 1, where 0 indicates that
the completed estimated gene tree exactly matches the
true gene tree and 1 indicates that the two trees have no
common bipartitions. The quartet distance between two
trees on the same leaf set considers the quartet topolo-
gies induced by restricting each tree to all sets of four
leaves (i.e. n choose four combinations, where n is the
number of leaves). The quartet distance is then defined as
the number of quartets that induce different topologies in
the two trees. The matching distance between two trees
on the same leaf set is the weight of a minimum weight
perfect matching of their bipartitions, where each edge
in the matching is weighted by the number of leaves that
must be moved in order to transform one bipartition into
its paired bipartition in the other tree [28].

We used one-sided paired Wilcoxon Signed-Rank
tests [29] to determine whether using OCTAL (with the
ASTRID tree) was significantly better than ASTRAL-II
on each replicate dataset. As 20 replicate datasets were
tested per model condition, a Bonferroni multiple com-
parison correction [30] was applied (i.e., p values indicat-
ing significance must be less than 0.0025).

Commands
 • Maximum likelihood gene trees were estimated using

RAxML v8.2.8 (where input is the multiple sequence
alignment for a given gene):
raxmlHPC-SSE -m GTRGAMMA -p [seed]
-n [name] -s [input]

 • The random trees were created as follows. A star tree
was created from the complete taxon set (i.e., the
taxa in the complete trees). This star tree was then
randomly resolved into a binary tree so that “the pol-
ytomy will be resolved by sequentially... generating all
tree topologies equiprobably” [31]. Specifically, the
random tree was generated using Dendropy v4.2.0:
from dendropy.simulate import treesim
from dendropy.utility import GLOBAL_
RNG
star_tree = treesim.star_tree(original_
taxon_namespace)
star_tree.resolve_polytomies(limit=
2, update_bipartitions=False, rng=
GLOBAL_RNG)

 • The greedy consensus trees were computed using
Bali-Phy v2.3.8 [32], where the input is the set of 50

Page 10 of 18Christensen et al. Algorithms Mol Biol (2018) 13:6

complete RAxML trees (i.e., trees on the full taxon
set):

 • trees-consensus –greedy-consensus
[input] [output]

 • The command for ASTRID v1.4 (input is the full set
of 200 RAxML trees):
ASTRID-linux -i [input] -o [output]

 • The command for ASTRAL v4.10.2 (input is the full
set of 200 RAxML trees):
java -jar astral.4.10.12.jar -i [input]
-o [output]

 • The normalized RF distances were computed using
Dendropy v4.2.0:
ne1 = len(tr1.internal_edges(exclude_
seed_edge=True))
ne2 = len(tr2.internal_edges(exclude_
seed_edge=True))
[fp, fn] = false_positives_and_
negatives(tr1, tr2)
rf = float(fp + fn) / (ne1 + ne2)

 • The quartet distances were computed using
QDist[33]:
module load openblas/0.2.8-gcc
module load gcc/6.2.0
 ./qdist tr1 tr2

 • The matching distances were computed using code
provided by the authors from [28], and now available
at [34]:

 ./matching_distance tr1 tr2 numbero-
fleaves

Results
Experiment 1: Performance of OCTAL and ASTRAL‑II
under three levels of ILS
Results under moderate ILS levels
This experiment compared OCTAL (using ASTRID as
the reference tree) to ASTRAL-II when given 200 genes
(150 incomplete and 50 complete) under the moder-
ate ILS level (AD = 10%). The median RF error rate
for ASTRAL-II was 17%, and the median RF error rate
for OCTAL was 13% (Fig. 3). Using the RF error rate,
OCTAL had better accuracy than ASTRAL-II on 1366
genes, ASTRAL-II had better accuracy on 363 genes,
and the methods were tied on the remaining 1271 genes
(Table 1). The degree of improvement in RF rate varied,
but was as great as 20% on some datasets. The improve-
ment obtained by using OCTAL over ASTRAL-II was
statistically significant in 18 out of 20 of the replicates
with this evaluation metric (Fig. 4).

Both the matching distance and quartet distance pro-
duced similar trends to the RF distance under the moder-
ate ILS level. The median matching distance was 18 for
ASTRAL-II and 15 for OCTAL (Fig. 3) and the improve-
ment obtained by using OCTAL over ASTRAL-II was
statistically significant in 19 out of 20 of the replicates
(see Additional file 1: Figure S1). The median normalized

0.13

0.17

0.39

0.39

0.780.78

0.0

0.2

0.4

0.6

0.8

1.0

Moderate High Very High

Level of ILS

R
F

D
is

ta
nc

e

RF Distance

15.0

18.0

38.041.0

75.0
77.0

0

20

40

60

80

100

120

140

Moderate High Very High

Level of ILS

M
at

ch
in

g
D

is
ta

nc
e

Matching Distance

0.06
0.07

0.230.24

0.500.51

0.0

0.2

0.4

0.6

0.8

1.0

Moderate High Very High

Level of ILS

Q
ua

rte
t D

is
ta

nc
e

Quartet Distance

ASTRAL−II OCTAL

Fig. 3 The performance of OCTAL and ASTRAL-II across three levels of ILS evaluated under three tree distance metrics. Each subfigure shows the
performance of OCTAL in red (using ASTRID as the reference tree) and ASTRAL-II in blue under one of three distance metrics. Under each distance
metric, a lower value indicates the estimated completed tree is closer to the true gene tree. The median distance is reported above each boxplot,
and so the outliers are not shown. OCTAL shows the largest improvement over ASTRAL-II under the moderate ILS condition in each case

Page 11 of 18Christensen et al. Algorithms Mol Biol (2018) 13:6

quartet distance was 7% for ASTRAL-II and 6% for
OCTAL (Fig. 3) and the improvement obtained by using
OCTAL over ASTRAL-II was statistically significant
in 18 out of 20 of the replicates (see Additional file 1:
Figure S2).

The degrees of missing data and gene tree error did
not impact whether OCTAL improved over ASTRAL-II
under any of the evaluation metrics. We show our results
for missing data with the RF error rate in Fig. 5. Addi-
tional results for missing data with the matching dis-
tance and quartet distance show the same trend and can
be found in Additional file 1: Figures S3 and S4. Under
very high levels of gene tree estimation error, there
was a greater degree of improvement of OCTAL over
ASTRAL-II with the RF error rate (Fig. 6). Additional
results for gene tree error with the matching distance and
quartet distance show a similar, though less pronounced,
trend, and can be found in Additional file 1: Figures S5
and S6.

Results under high ILS
This experiment compared OCTAL (using ASTRID as
the reference tree) to ASTRAL-II when given 200 genes
(150 incomplete and 50 complete) under the high ILS
level (AD = 36%). OCTAL and ASTRAL-II achieved
similar levels of accuracy under the high ILS condition,
with both methods having a median RF error rate of 39%
(Fig. 3). OCTAL was more accurate than ASTRAL-II on

1004 genes, ASTRAL-II was more accurate on 524 genes,
and the methods were tied on the remaining 1472 genes
(Table 1). OCTAL provided a statistically significant
advantage over ASTRAL-II in 7 of the 20 replicates, and
the differences between the two methods were not statis-
tically significant on the remaining 13 replicates (Fig. 4).

Again, the matching distance and quartet distance
produced similar trends to the RF distance. The median
matching distance was 41 for ASTRAL-II and 38 for
OCTAL (Fig. 3), and the improvement obtained by using
OCTAL over ASTRAL-II with respect to the matching
distance was statistically significant in 10 out of 20 of the
replicates (see Additional file 1: Figure S1). The median
normalized quartet distance was 24% for ASTRAL-II and
23% for OCTAL (Fig. 3), and the improvement in quartet
distance obtained by using OCTAL over ASTRAL-II was
statistically significant in 5 out of 20 of the replicates (see
Additional file 1: Figure S2).

Whether OCTAL or ASTRAL-II performed best
appeared unrelated to the degree of missing data or gene
tree estimation error under all evaluation criteria that we
considered. The impact of missing data and the impact of
gene tree estimation error on the RF error rate are shown
in Figs. 5 and 6, respectively. The results for the matching
distance and the quartet distance can be found in Addi-
tional file 1: Figures S3–S6.

Results under very high ILS
This experiment compared OCTAL (using ASTRID as
the reference tree) to ASTRAL-II when given 200 genes
(150 incomplete and 50 complete) under the very high
ILS level (AD = 75%). Using the RF error rate, OCTAL
and ASTRAL-II achieved similar levels of accuracy, with
both methods having a substantially increased median
RF error rate of 78% (Fig. 3). OCTAL was more accurate
than ASTRAL-II on 906 genes, ASTRAL-II was more
accurate on 520 genes, and the methods were tied on the
remaining 1574 genes. OCTAL provided a statistically
significant advantage over ASTRAL-II with the RF error
rate in only 6 of the 20 replicates (Fig. 4).

In this case, the median matching distance was 77 for
ASTRAL-II and 75 for OCTAL (Fig. 3), and the improve-
ment obtained by using OCTAL over ASTRAL-II was
statistically significant in 8 out of 20 of the replicates
using the matching distance (see Additional file 1: Fig-
ure S1). The median normalized quartet distance was
51% for ASTRAL-II and 50% for OCTAL (Fig. 3) and
the improvement in quartet distance obtained by using
OCTAL over ASTRAL-II was statistically significant
in 2 out of 20 of the replicates (see Additional file 1:
Figure S2).

As we observed for the other ILS conditions, whether
OCTAL or ASTRAL-II performed best appears unrelated

Table 1 The number of gene trees for which OCTAL pro-
vided an improvement over ASTRAL-II, for which ASTRAL-
II provided an improvement of OCTAL, and for which there
was no difference between the two methods is provided
below for three levels of ILS and three evaluation distance
criteria

The RF, matching, and quartet distances are used for evaluating the distance
between the completed, estimated trees and the true gene trees. Numbers in
italic indicate the largest number of genes. OCTAL improves more genes than
ASTRAL-II except in the higher ILS conditions with the RF distance criteria, in
which case OCTAL and ASTRAL-II are more often equal in their performance

Error metric OCTAL better ASTRAL‑II better No difference

Moderate ILS (AD = 10%)

 RF 1366 363 1271

 Matching 1666 522 812

 Quartet 1540 594 866

High ILS (AD = 35%)

 RF 1004 524 1472

 Matching 1501 920 579

 Quartet 1473 1092 435

Very high ILS (AD = 75%)

 RF 906 520 1574

 Matching 1643 1143 214

 Quartet 1552 1371 77

Page 12 of 18Christensen et al. Algorithms Mol Biol (2018) 13:6

to the degree of missing data or gene tree estimation
error with respect to all evaluation criteria we consid-
ered. For the impact on RF error rate, Fig. 5 shows results
for missing data and Fig. 6 shows results for gene tree
error. The remaining results for the matching distance
and the quartet distance can be found in Additional file 1:
Figures S3–S6.

Experiment 2: Impact of the number of genes
on performance of ASTRAL‑II and OCTAL
As the number of genes determines the amount of data
to be used in constructing a reference tree (required by

OCTAL) and a distance matrix (required by ASTRAL-II),
we varied the number of genes to see if this would impact
the performance of OCTAL (using ASTRID as the refer-
ence tree) or ASTRAL-II under the moderate and high
ILS conditions. Specifically, we examined subsets of the
original 200-gene datasets with 25, 50, and 100 genes, of
which 5, 10, and 25 were complete, respectively. As seen
in Fig. 7, under moderate ILS (AD = 10%), ASTRAL-II
had a median RF error rate of 22% (for 25 and 50 genes)
and 17% (for 100 and 200 genes), whereas OCTAL had a
median RF error rate of 17% (for 25, 50, and 100 genes)
and 13% (for 200 genes). Hence, OCTAL was generally

* * * * * * * * * * * * * * * * * *

0

25

50

75

100

125

150

N
um

be
r o

f G
en

es
Moderate ILS (10% AD)

* * * * * * *

0

25

50

75

100

125

150

N
um

be
r o

f G
en

es

High ILS (36% AD)

* * * * * *

0

25

50

75

100

125

150

Replicate Datasets

N
um

be
r o

f G
en

es

Very High ILS (75% AD)

TIE ASTRAL−II OCTAL

Fig. 4 The performance of OCTAL and ASTRAL-II across replicate datasets with the RF distance evaluation criteria. Each subfigure shows the relative
performance of OCTAL (using ASTRID as the reference tree) and ASTRAL-II where RF distance was used to compare the estimated completed gene
trees to the true gene trees. The number of gene trees for which OCTAL is better than ASTRAL-II is shown in red, the number of gene trees for which
ASTRAL-II is better is shown in blue, and the number of genes for which OCTAL and ASTRAL-II are tied is shown in yellow. OCTAL has a statistically
significant improvement over ASTRAL-II (as measured by a one-sided Wilcoxon signed-rank test; see main text for details) on replicate datasets with
an asterisk (*)

Page 13 of 18Christensen et al. Algorithms Mol Biol (2018) 13:6

more accurate (as measured by the RF error rate) than
ASTRAL-II under the moderate ILS condition. The
relative improvement of OCTAL over ASTRAL-II per
gene tree was 7± 4% (mean ± standard deviation) (i.e.,
1–2 bipartitions) for all numbers of genes; however,

the number of cases for which OCTAL improved over
ASTRAL-II varied with the number of genes (see
Table 2).

Results under high ILS (AD = 36%) show somewhat
different trends. ASTRAL-II had a median RF error rate

N=159 N=200 N=547 N=2094

OCTAL better

ASTRAL−II better
−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

Percent Missing Data

D
el

ta
 e

rr
or

 (R
F)

 b
et

w
ee

n
m

et
ho

ds

Moderate ILS

N=164 N=390 N=590 N=1856−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

Percent Missing Data

High ILS

N=157 N=316 N=599 N=1928−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

Percent Missing Data

Very High ILS

(0%, 20%] (20%, 40%] (40%, 60%] (60%, 80%]

Fig. 5 The impact of degree of missing data on relative performance of OCTAL and ASTRAL-II under the RF distance evaluation criteria. The y-axis
shows the difference in the RF error rate between trees completed using OCTAL (using ASTRID as the reference tree) and ASTRAL-II. Positive values
indicate that OCTAL is better than ASTRAL-II, and negative values indicate that ASTRAL-II is better. For many genes, there is no difference in accuracy
between OCTAL and ASTRAL-II. However, when there is a difference between the two methods, OCTAL frequently outperforms ASTRAL-II. This find-
ing holds regardless of the degree of missing data. For each level of ILS, boxplots include genes with a specified percent of missing data (e.g., red
indicates genes are missing 0–20% of the species). The number N of genes in each plot is provided on the x-axis

N=1696 N=727 N=384 N=112 N=81

OCTAL better

ASTRAL−II better
−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

Percent Gene Tree Error

D
el

ta
 e

rr
or

 (R
F)

 b
et

w
ee

n
m

et
ho

ds

Moderate ILS

N=1119 N=792 N=630 N=261 N=198−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

Percent Gene Tree Error

High ILS

N=893 N=662 N=680 N=368 N=397−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

Percent Gene Tree Error

Very High ILS

[0%, 20%] (20%, 40%] (40%, 60%] (60%, 80%] (80%, 100%]

Fig. 6 The impact of gene tree estimation error on relative performance of OCTAL and ASTRAL-II under the RF distance evaluation criteria. The
y-axis shows the difference in the RF error rate between trees completed using OCTAL (using ASTRID as the reference tree) and ASTRAL-II. Positive
values indicate that OCTAL is better than ASTRAL-II, and negative values indicate that ASTRAL-II is better. For each level of ILS, boxplots include
genes with the specified percent of gene tree estimation error (e.g., red indicates genes have 0–20% RF error). The number N of genes in each plot
is provided on the x-axis

Page 14 of 18Christensen et al. Algorithms Mol Biol (2018) 13:6

of 48% for 25 genes, 44% for 50 genes, and 39% for 100
and 200 genes. OCTAL had lower median error rates at
25 (44 and 39%, respectively) but matched the median
error rates of ASTRAL-II at 100 and 200 genes. How-
ever, OCTAL and ASTRAL-II have clearly different

distributions for 200 genes (Figs. 3 and 7), so that even
though the medians are the same OCTAL seems to pro-
vide a slight advantage over ASTRAL-II. Thus, on the
high ILS datasets, OCTAL provided an improvement
over ASTRAL-II, and the relative improvement per gene
tree was similar to performance under the moderate
ILS level (7–8% on average); however, there were fewer
genes for which OCTAL improved over ASTRAL-II (see
Table 2).

Experiment 3: Impact of the reference tree on the accuracy
of OCTAL
Our final experiment examined the impact of reference
tree on OCTAL on the 200-gene datasets with moderate
and high levels of ILS, using the RF error rate as the eval-
uation criterion. We considered four reference trees: (1)
the true species tree, (2) the ASTRID species tree com-
puted on the all gene trees (50 complete and 150 incom-
plete), (3) the greedy consensus tree computed on the 50
complete gene trees, and (4) a random tree on the same
set of species. The greedy consensus tree, also known
as the extended majority consensus tree, is obtained
by ordering the bipartitions from the input set of trees
according to their frequency, and then adding them one-
by one-to a growing set of bipartitions if they are com-
patible with the set.

Table 2 The number of gene trees for which OCTAL pro-
vided an improvement over ASTRAL-II, for which ASTRAL-
II provided an improvement of OCTAL, and for which there
was no difference between the two methods is provided
below for two levels of ILS and four numbers of genes

The RF error rate is used for evaluating the distance between the completed,
estimated trees and the true gene trees. Numbers in italic indicate the largest
number of genes. OCTAL improves more genes than ASTRAL-II except when the
level of ILS is high and the number of genes is 200, in which case OCTAL and
ASTRAL-II are more often equal in their performance

Number of genes OCTAL better ASTRAL‑II better No difference

Moderate ILS (AD = 10%)

 25 genes 177 62 161

 50 genes 420 116 262

 100 genes 685 188 627

 200 genes 1366 363 1271

High ILS (AD = 35%)

 25 genes 228 79 93

 50 genes 398 119 283

 100 genes 624 265 611

 200 genes 1004 524 1472

0.0

0.2

0.4

0.6

0.8

1.0

25 50 100 200

Number of Genes

R
F

D
is

ta
nc

e

Moderate ILS (10% AD)

0.0

0.2

0.4

0.6

0.8

1.0

25 50 100 200

Number of Genes

High ILS (36% AD)

ASTRAL−II OCTAL

Fig. 7 The performance of OCTAL and ASTRAL-II for varying numbers of genes under the RF distance evaluation criteria. The x-axis shows the num-
ber of genes varying from 25 to 200. The y-axis shows the RF error rate between the true gene trees and the gene trees completed using OCTAL
with the ASTRID reference tree (red) or ASTRAL-II (blue). The number of data points per boxplot varies with the number of genes. For example, the
25-genes model condition has 400 data points per boxplot (20 incomplete genes across 20 replicates), whereas the 200-gene model condition has
3000 data points per boxplot (150 incomplete genes across 20 replicates)

Page 15 of 18Christensen et al. Algorithms Mol Biol (2018) 13:6

The ASTRID and greedy consensus trees had low spe-
cies tree RF error (at most 9% RF) under the moderate
ILS condition and somewhat higher species tree error (at
most 22% RF) when the level of ILS was high. We found
that there was little difference (less than 1% in median
gene tree RF error) between using ASTRID, a greedy
consensus of the complete gene trees, and even the true
species tree, as the reference tree (Fig. 8). However, using
a random tree as the reference tree produced extremely
high RF error rates for the completed trees, which is as
expected as the random species tree had extremely high
error: between 96 and 100% RF for each replicate.

Discussion
These results show that OCTAL was generally at least
as accurate as ASTRAL-II at completing gene trees, and
can be more accurate; this trend does not appear to be
sensitive to the distance measure used to evaluate the
accuracy of the completed gene trees. Within the scope
of our study, the degree and frequency of improvement
depended on the level of ILS, but not so much on the
number of genes or on the reference tree, as long as the
reference tree was estimated from the gene trees. Fur-
thermore, using several techniques to produce the ref-
erence tree from the gene trees, including even a greedy
consensus tree, produced reference trees that were as
good as the true species tree in terms of the impact on

the accuracy of the completed gene tree. However, a
random tree produced very poor results. We also noted
that OCTAL provided a clear advantage over ASTRAL-
II under low to moderate ILS, but the improvement was
smaller and less frequent under the high to very high ILS
conditions. We offer the following as a hypothesis for the
reason for these trends. Under low to moderate ILS, the
true species tree is close to the true gene tree, and the
estimated species trees (computed using ASTRID or the
greedy consensus) are reasonably close to the true spe-
cies tree; by the triangle inequality, the estimated spe-
cies tree is close to the true gene trees. Therefore, when
ILS is at most moderate, completing the estimated gene
trees using the estimated species tree as a reference can
be beneficial. However, under higher ILS, the true species
tree is farther from the true gene trees, which makes the
true species tree (or an estimate of that tree) less valu-
able as a reference tree. Despite this, we also saw that
using estimated species trees as reference trees produced
comparably accurate completions as using the true spe-
cies tree as a reference, and that this held for both mod-
erate and high ILS levels. Hence, OCTAL was robust to
moderate levels of error in the estimated species tree.
However, OCTAL is not completely agnostic to the
choice of reference tree, since the random reference tree
(which has close to 100% RF error) resulted in very poor
performance.

0.0

0.2

0.4

0.6

0.8

1.0

Reference Tree

R
F

D
is

ta
nc

e

Moderate ILS (10% AD)

0.0

0.2

0.4

0.6

0.8

1.0

Reference Tree

High ILS (36% AD)

True Species ASTRID Greedy Consensus Random

Fig. 8 Impact of reference tree on OCTAL with the RF distance evaluation metric. The x-axis shows the reference tree used by OCTAL. The y-axis
shows the RF error rate between the true gene trees and the gene trees computing using OCTAL (varying the reference tree). Only the 200-gene
model condition is shown, so each boxplot has 3000 data points (150 incomplete genes across 20 replicates)

Page 16 of 18Christensen et al. Algorithms Mol Biol (2018) 13:6

Conclusions
OCTAL is a greedy polynomial time algorithm that
adds species into an estimated gene tree so as to prov-
ably minimize the RF distance to a given reference tree.
In our study, OCTAL frequently produced more accurate
completed gene trees than ASTRAL-II under ILS condi-
tions ranging from moderate to very high; however, the
improvement under high ILS conditions was much lower
and less frequent than under moderate ILS conditions.

There are many directions for future work. First, we
compared OCTAL to ASTRAL-II, but ASTRAL-III [35]
has recently been developed, and the comparison should
be made to this new version of ASTRAL. OCTAL could
also be compared to gene tree completion methods that
are designed to handle gene tree heterogeneity resulting
from gene duplication and loss [36], and these compari-
sons could be made on datasets that have evolved under
multiple causes of gene tree discord (e.g., gene duplica-
tion and loss, horizontal gene transfer, and incomplete
lineage sorting).

The current approach only adds missing species to the
estimated gene tree, and so implicitly assumes that the
gene tree is accurate; since estimated gene trees have
some error, another approach would allow the low sup-
port branches in gene trees to be collapsed and then
seek a complete gene tree that refines the collapsed
gene tree that is close to the reference tree. This is simi-
lar to approaches used in [37–39], each of which aims to
improve gene trees that use reference species trees, but
are primarily (or exclusively) based on gene duplication
and loss (GDL) distances. The optimal completion prob-
lem or the accuracy of the completed gene trees could
also be based on other distances between trees besides
the RF distance, including weighted versions [40] of the
RF distance (where the weights reflect branch lengths
or bootstrap support values), quartet tree distances,
geodesic distances [41], or the matching distance. It is
likely that some of these problems will be NP-hard, but
approximation algorithms or heuristics may be useful in
practice.

We did not evaluate the impact of using OCTAL on
downstream analyses. Since missing data (i.e., incomplete
gene trees) are known to impact species tree estimation
methods using summary methods [21], this would be a
natural next analysis. As an example, if the input includes
some incomplete gene trees, a species tree could be esti-
mated from the full set of gene trees and then OCTAL
could use that estimated species tree as a reference tree
to complete the gene trees. Then, the species tree could
be re-estimated (using a good summary method) on the
new set of gene trees, all of which are complete. This two-
step process (completing gene trees using an estimated
species tree, then re-estimating the species tree) could

then iterate. It would be interesting to determine whether
this improves the species tree, and if so under what con-
ditions. It would also be helpful to evaluate the impact
of completing incomplete gene trees when the genes are
missing due to true biological loss rather than data col-
lection issues, and hence also to see if OCTAL provides
any helpful insight into gene evolution (such as better
estimating the duplication/loss/transfer parameters).

Finally, there can be multiple optima to the RF Opti-
mal Tree Completion problem for any given pair of trees,
and exploring that set of optimal trees could be impor-
tant. An interesting theoretical question is whether the
set of optimal solutions admits a compact representa-
tion, even when it is large. From a practical perspective,
the set of optimal completions could be used to provide
support values for the locations of the missing taxa, and
these support values could then be used in downstream
analyses.

Abbreviations
AD: average distance between the true species tree and the true gene trees,
using the normalized RF metric; GDL: gene duplication and loss; ILS: incom-
plete lineage sorting; MSC: multi-species coalescent; RF: Robinson–Foulds.

Authors’ contributions
TW conceived the project; PV designed and implemented the algorithm; EKM
improved the implementation of the algorithm; SC, EKM, and TW provided
the mathematical proofs; SC, EKM, and TW designed the performance study;
PV performed the initial evaluation on simulated datasets; SC and EKM com-
pleted the evaluation on the full collection of simulated datasets; TW, EKM,
and SC analyzed the data; SC and EKM produced the figures; SC, EKM, and TW
wrote the paper. All authors read and approved the final manuscript.

Acknowledgements
The authors thank the anonymous reviewers for their insightful comments
and suggestions, which led to improvements in the manuscript. The authors
also thank Michael Nute for helpful discussions regarding statistical testing.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
All datasets generated for the current study are available through the Illinois
Data Bank at https://doi.org/10.13012/B2IDB-1616387_V1. The OCTAL code
can be downloaded from https://github.com/pranjalv123/OCTAL-2.

Availability and requirements
Project name: OCTAL; Project home page: https://github.com/pranjalv123/
OCTAL-2; Programming language: Python version 2; Other requirements:
Dendropy version 4.3.0; License: GNU GPLv3; Any restrictions to use by non-
academics: None.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Additional file

Additional file 1. Additional materials containing Figures S1–S6.

https://doi.org/10.13012/B2IDB-1616387_V1
https://github.com/pranjalv123/OCTAL-2
https://github.com/pranjalv123/OCTAL-2
https://github.com/pranjalv123/OCTAL-2
https://doi.org/10.1186/s13015-018-0124-5

Page 17 of 18Christensen et al. Algorithms Mol Biol (2018) 13:6

Funding
SC and TW were supported by National Science Foundation (Grant CCF-
1535977). SC was also supported by the Chirag Foundation Graduate Fel-
lowship in Computer Science. EKM and PV were supported by the National
Science Foundation Research Fellowship Program (Grant DGE-1144245). EKM
was also supported by the Ira and Debra Cohen Graduate Fellowship in Com-
puter Science. This research was part of the Blue Waters sustained-petascale
computing project, which is supported by the National Science Foundation
(Grants OCI-0725070 and ACI-1238993) and the state of Illinois. Blue Waters is
a joint effort of the University of Illinois at Urbana-Champaign and its National
Center for Supercomputing Applications. This work made use of the Illinois
Campus Cluster, a computing resource that is operated by the Illinois Campus
Cluster Program in conjunction with the National Center for Supercomputing
Applications and which is supported by funds from the University of Illinois
at Urbana-Champaign. Publication costs for this paper are paid for by CCF-
1535977 (to TW).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 25 October 2017 Accepted: 6 March 2018

References
 1. Rieseberg LH. Hybrid origins of plant species. Ann Rev Ecol Syst.

1997;28:359–89.
 2. Gogarten JP, Doolittle WF, Lawrence JG. Prokaryotic evolution in light of

gene transfer. Mol Biol Evol. 2002;19(12):2226–38.
 3. Huson D, Rupp R, Scornavacca C. Phylogenetic networks: concepts,

algorithms, and applications. New York: Cambridge University Press; 2010.
 4. Morrison DA. Introduction to phylogenetic networks. Uppsala: RJR Pro-

ductions; 2011.
 5. Gusfield D. ReCombinatorics: the algorithmics of ancestral recombination

graphs and explicit phylogenetic networks. Cambridge: MIT Press; 2014.
 6. Bapteste E, van Iersel L, Janke A, Kelchner S, Kelk S, McInerney JO, Mor-

rison DA, Nakhleh L, Steel M, Stougie L, Whitfield J. Networks: expanding
evolutionary thinking. Trends Genet. 2013;29(8):439–41. https://doi.
org/10.1016/j.tig.2013.05.007.

 7. Maddison W. Gene trees in species trees. Syst Biol. 1997;46(3):523–36.
https://doi.org/10.1093/sysbio/46.3.523.

 8. Posada D. Phylogenomics for systematic biology. Syst Biol. 2016;65:353–6.
 9. Roch S, Steel MA. Likelihood-based tree reconstruction on a concatena-

tion of aligned sequence data sets can be statistically inconsistent. Theor
Popul Biol. 2015;100:56–62.

 10. Mirarab S, Warnow T. ASTRAL-II: coalescent-based species tree estimation
with many hundreds of taxa and thousands of genes. Bioinformatics.
2015;31(12):44. https://doi.org/10.1093/bioinformatics/btv234.

 11. Vachaspati P, Warnow T. ASTRID: accurate species trees from
internode distances. BMC Genom. 2015;16(10):3. https://doi.
org/10.1186/1471-2164-16-S10-S3.

 12. Hosner PA, Faircloth BC, Glenn TC, Braun EL, Kimball RT. Avoiding missing
data biases in phylogenomic inference: an empirical study in the land-
fowl (Aves: Galliformes). Mol Biol Evol. 2016;33(4):1110–25. https://doi.
org/10.1093/molbev/msv347.

 13. Streicher JW, Schulte JA II, Wiens JJ. How should genes and taxa be sam-
pled for phylogenomic analyses with missing data? an empirical study in
Iguanian lizards. Syst Biol. 2016;65(1):128. https://doi.org/10.1093/sysbio/
syv058.

 14. Xi Z, Liu L, Davis CC. The impact of missing data on species tree estima-
tion. Mol Biol Evol. 2016;33(3):838–60. https://doi.org/10.1093/molbev/
msv266.

 15. Kennedy M, Page RD. Seabird supertrees: combining partial estimates
of procellariiform phylogeny. Auk. 2002;119(1):88–108. https://doi.
org/10.2307/4090015.

 16. Burleigh JG, Hilu KW, Soltis DE. Inferring phylogenies with incomplete
data sets: a 5-gene, 567-taxon analysis of angiosperms. BMC Evol Biol.
2009;9(1):61. https://doi.org/10.1186/1471-2148-9-61.

 17. Allman ES, Degnan JH, Rhodes JA. Split probabilities and spe-
cies tree inference under the multispecies coalescent model. 2017.
arXiv:1704.04268.

 18. Nute M, Chou J. In: Meidanis J, Nakhleh L, editors. Statistical con-
sistency of coalescent-based species tree methods under mod-
els of missing data. Cham: Springer; 2017. p. 277–97. https://doi.
org/10.1007/978-3-319-67979-2_15.

 19. Huang H, Knowles LL. Unforeseen consequences of excluding missing data
from next-generation sequences: simulation study of RAD sequences. Syst
Biol. 2016;65(3):357–65. https://doi.org/10.1093/sysbio/syu046.

 20. Sanderson MJ, McMahon MM. Phylogenomics with incomplete taxon
coverage: the limits to inference. MC Evol Biol. 2010;10:155. https://doi.
org/10.1186/1471-2148-10-155.

 21. Molloy E, Warnow T. To include or not to include: the impact of gene
filtering on species tree estimation methods. Syst Biol. 2018;67:285–303.
https://doi.org/10.1093/sysbio/syx077.

 22. Robinson DF, Foulds LR. Comparison of phylogenetic trees. Math Biosci.
1981;53(1–2):131–47. https://doi.org/10.1016/0025-5564(81)90043-2.

 23. Mir arabbaygi (Mirarab) S. Novel scalable approaches for multiple
sequence alignment and phylogenomic reconstruction. PhD thesis, The
University of Texas at Austin. 2015. http://hdl.handle.net/2152/31377

 24. Mallo D, Martins LDO, Posada D. SimPhy: phylogenomic simulation of
gene, locus, and species trees. Syst Biol. 2016;65(2):334–44. https://doi.
org/10.1093/sysbio/syv082.

 25. Fletcher W, Yang Z. INDELible: a flexible simulator of biological sequence
evolution. Mol Biol Evol. 2009;26(8):1879–88. https://doi.org/10.1093/
molbev/msp098.

 26. Sukumaran J, Holder MT. DendroPy: a Python library for phylogenetic
computing. Bioinformatics. 2010;26(12):1569–71. https://doi.org/10.1093/
bioinformatics/btq228.

 27. Stamatakis A. RAxML Version 8: a tool for phylogenetic analysis and post-
analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–3. https://
doi.org/10.1093/bioinformatics/btu033.

 28. Lin Y, Rajan V, Moret B. A metric for phylogenetic trees based on match-
ing. IEEE/ACM Trans Comput Biol Bioinform. 2012;9(4):1014–22.

 29. Wilcoxon F. Individual comparisons by ranking methods. Biom Bull.
1945;1(6):80–3.

 30. Dunn OJ. Multiple comparisons among means. J Am Stat Assoc.
1961;56(293):52–64.

 31. DendroPy Library Reference: trees. http://dendropy.readthedocs.io/en/
latest/library/treemodel.html. Accessed 20 Oct 2017.

 32. Suchard MA, Redelings BD. BAli-Phy: simultaneous Bayesian inference of
alignment and phylogeny. Bioinformatics. 2006;22:2047–8.

 33. Mailund T, Pedersen CNS. QDistquartet distance between evolution-
ary trees. Bioinformatics. 2004;20(10):1636–7. https://doi.org/10.1093/
bioinformatics/bth097.

 34. Lin Y, Rajan V, Moret B. Software for the matching distance of Lin, Rajan,
and Moret. http://users.cecs.anu.edu.au/~u1024708/index_files/match-
ing_distance.zip. 2018.

 35. Zhang C, Sayyari E, Mirarab S. In: Meidanis J, Nakhleh L, editors.
ASTRAL-III: increased scalability and impacts of contracting low
support branches. Cham: Springer; 2017. p. 53–75. https://doi.
org/10.1007/978-3-319-67979-2_4.

 36. Bayzid MS, Warnow T. Gene tree parsimony for incomplete gene trees. In:
Schwartz R, Reinert K, editors. 17th International workshop on algorithms
in bioinformatics (WABI 2017). Leibniz international proceedings in
informatics (LIPIcs), vol. 88, p. 2–1213. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany. 2017. https://doi.org/10.4230/LIPIcs.
WABI.2017.2

 37. Durand D, Halldórsson BV, Vernot B. A hybrid micro-macroevolutionary
approach to gene tree reconstruction. J Comput Biol. 2006;13(2):320–35.

 38. Lai H, Stolzer M, Durand D. Fast heuristics for resolving weakly supported
branches using duplication, transfers, and losses. In: RECOMB interna-
tional workshop on comparative genomics. Springer. 2017. p. 298–320.

 39. Noutahi E, Semeria M, Lafond M, Seguin J, Boussau B, Guéguen L, El-
Mabrouk N, Tannier E. Efficient gene tree correction guided by genome

https://doi.org/10.1016/j.tig.2013.05.007
https://doi.org/10.1016/j.tig.2013.05.007
https://doi.org/10.1093/sysbio/46.3.523
https://doi.org/10.1093/bioinformatics/btv234
https://doi.org/10.1186/1471-2164-16-S10-S3
https://doi.org/10.1186/1471-2164-16-S10-S3
https://doi.org/10.1093/molbev/msv347
https://doi.org/10.1093/molbev/msv347
https://doi.org/10.1093/sysbio/syv058
https://doi.org/10.1093/sysbio/syv058
https://doi.org/10.1093/molbev/msv266
https://doi.org/10.1093/molbev/msv266
https://doi.org/10.2307/4090015
https://doi.org/10.2307/4090015
https://doi.org/10.1186/1471-2148-9-61
http://arxiv.org/abs/1704.04268
https://doi.org/10.1007/978-3-319-67979-2_15
https://doi.org/10.1007/978-3-319-67979-2_15
https://doi.org/10.1093/sysbio/syu046
https://doi.org/10.1186/1471-2148-10-155
https://doi.org/10.1186/1471-2148-10-155
https://doi.org/10.1093/sysbio/syx077
https://doi.org/10.1016/0025-5564(81)90043-2
http://hdl.handle.net/2152/31377
https://doi.org/10.1093/sysbio/syv082
https://doi.org/10.1093/sysbio/syv082
https://doi.org/10.1093/molbev/msp098
https://doi.org/10.1093/molbev/msp098
https://doi.org/10.1093/bioinformatics/btq228
https://doi.org/10.1093/bioinformatics/btq228
https://doi.org/10.1093/bioinformatics/btu033
https://doi.org/10.1093/bioinformatics/btu033
http://dendropy.readthedocs.io/en/latest/library/treemodel.html
http://dendropy.readthedocs.io/en/latest/library/treemodel.html
https://doi.org/10.1093/bioinformatics/bth097
https://doi.org/10.1093/bioinformatics/bth097
http://users.cecs.anu.edu.au/%7eu1024708/index_files/matching_distance.zip
http://users.cecs.anu.edu.au/%7eu1024708/index_files/matching_distance.zip
https://doi.org/10.1007/978-3-319-67979-2_4
https://doi.org/10.1007/978-3-319-67979-2_4
https://doi.org/10.4230/LIPIcs.WABI.2017.2
https://doi.org/10.4230/LIPIcs.WABI.2017.2

Page 18 of 18Christensen et al. Algorithms Mol Biol (2018) 13:6

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

evolution. PLoS ONE. 2016;11(8):0159559. https://doi.org/10.1371/journal.
pone.0159559.

 40. Kuhner MK, Felsenstein J. A simulation comparison of phylogeny
algorithms under equal and unequal evolutionary rates. Mol Biol Evol.
1994;11(3):459–68. https://doi.org/10.1093/oxfordjournals.molbev.
a040126.

 41. Billera LJ, Holmes SP, Vogtmann K. Geometry of the space of phyloge-
netic trees. Adv Appl Math. 2001;27(4):733–67. https://doi.org/10.1006/
aama.2001.0759.

https://doi.org/10.1371/journal.pone.0159559
https://doi.org/10.1371/journal.pone.0159559
https://doi.org/10.1093/oxfordjournals.molbev.a040126
https://doi.org/10.1093/oxfordjournals.molbev.a040126
https://doi.org/10.1006/aama.2001.0759
https://doi.org/10.1006/aama.2001.0759

	OCTAL: Optimal Completion of gene trees in polynomial time
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	The Optimal Tree Completion problem
	Terminology
	The RF Optimal Tree Completion problem

	OCTAL: Optimal Completion of incomplete gene Trees ALgorithm
	Proof of correctness

	Experimental evaluation
	Overview
	Simulated datasets
	ASTRAL-II datasets
	Our modifications

	Gene tree completion
	Evaluation criteria
	Commands

	Results
	Experiment 1: Performance of OCTAL and ASTRAL-II under three levels of ILS
	Results under moderate ILS levels
	Results under high ILS
	Results under very high ILS

	Experiment 2: Impact of the number of genes on performance of ASTRAL-II and OCTAL
	Experiment 3: Impact of the reference tree on the accuracy of OCTAL

	Discussion
	Conclusions
	Authors’ contributions
	References

