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Abstract 

Background: For a combination of reasons (including data generation protocols, approaches to taxon and gene 
sampling, and gene birth and loss), estimated gene trees are often incomplete, meaning that they do not contain all 
of the species of interest. As incomplete gene trees can impact downstream analyses, accurate completion of gene 
trees is desirable.

Results: We introduce the Optimal Tree Completion problem, a general optimization problem that involves com-
pleting an unrooted binary tree (i.e., adding missing leaves) so as to minimize its distance from a reference tree on 
a superset of the leaves. We present OCTAL, an algorithm that finds an optimal solution to this problem when the 
distance between trees is defined using the Robinson–Foulds (RF) distance, and we prove that OCTAL runs in O(n2) 
time, where n is the total number of species. We report on a simulation study in which gene trees can differ from the 
species tree due to incomplete lineage sorting, and estimated gene trees are completed using OCTAL with a refer-
ence tree based on a species tree estimated from the multi-locus dataset. OCTAL produces completed gene trees that 
are closer to the true gene trees than an existing heuristic approach in ASTRAL-II, but the accuracy of a completed 
gene tree computed by OCTAL depends on how topologically similar the reference tree (typically an estimated spe-
cies tree) is to the true gene tree.

Conclusions: OCTAL is a useful technique for adding missing taxa to incomplete gene trees and provides good 
accuracy under a wide range of model conditions. However, results show that OCTAL’s accuracy can be reduced when 
incomplete lineage sorting is high, as the reference tree can be far from the true gene tree. Hence, this study suggests 
that OCTAL would benefit from using other types of reference trees instead of species trees when there are large 
topological distances between true gene trees and species trees.
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Background
Species tree estimation from multi-gene datasets is now 
increasingly common. One challenge is that the evolu-
tionary history for a single locus (called a “gene tree”) 
may differ from the species phylogeny due to a variety of 
different biological processes. Some of these processes, 
such as hybridization [1] and horizontal gene transfer [2], 
result in non-treelike evolution and so require phyloge-
netic networks for proper analysis [3–6]. However, other 
biological processes, such as gene duplication and loss, 
incomplete lineage sorting (ILS), and gene flow, produce 

heterogeneity across the genome but are still properly 
modeled by a single species tree [7, 8]. In the latter case, 
species tree estimation methods should be robust to het-
erogeneity across the genome.

Much of the recent focus in the mathematical and sta-
tistical phylogenetics literature has been on developing 
methods for species tree estimation in the presence of 
incomplete lineage sorting (ILS), which is modelled by 
the multi-species coalescent (MSC) model [9]. One pop-
ular approach for estimating species trees under the MSC 
model is to estimate trees on individual loci and then 
combine these gene trees into a species tree. Some of 
these “summary methods”, such as ASTRAL-II [10] and 
ASTRID [11], have been shown to scale well to datasets 
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with many taxa (i.e., >1000 species) and provide accurate 
species tree estimates. (Summary methods share many 
features in common with supertree methods, but are 
based on mathematical properties of the MSC model and 
so can be proven statistically consistent under the MSC 
model; supertree methods, by contrast, assume conflict 
between source trees is due to estimation error rather 
than ILS, and so are generally not statistically consistent 
under the MSC model.)

A common challenge to species tree estimation meth-
ods is that sequence data may not be available for all 
genes and species of interest, creating conditions with 
missing data (see discussion in [12–14]). For example, 
gene trees can be missing species simply because some 
species do not contain a copy of a particular gene, and in 
some cases, no common gene will be shared by every spe-
cies in the set of taxa [15]. Additionally, not all genomes 
may be fully sequenced and assembled, as this can be 
operationally difficult and expensive [13, 16].

Although summary methods are statistically consist-
ent under the MSC model [17], the proofs of statistical 
consistency assume that all gene trees are complete, and 
so may not apply when the gene trees are missing taxa. 
Recent extensions to this theory have shown that some 
species tree estimation methods are statistically consist-
ent under some models of missing data (e.g., when “every 
species is missing from each gene with the same prob-
ability p > 0”) [18]. However, missing data in biological 
datasets often violates such models (see discussion in 
[14]); for example, missing data may be biased towards 
genes with faster rates of evolution [19]. Furthermore, 
multi-gene datasets with missing data can be “phyloge-
netically indecisive”, meaning more than one tree topol-
ogy can be optimal [20]. Because of concerns that missing 
data may reduce the accuracy of multi-locus species tree 
estimation methods, many phylogenomic studies have 
restricted their analyses to only include genes with most 
of the species (see discussion in [12, 13, 21]).

We approach the challenge of adding missing species 
into gene trees by formulating the Optimal Tree Com-
pletion problem, where we seek to add the missing spe-
cies to a gene tree to minimize the distance (defined in 
some way) to another tree, called a “reference tree”. Since 
the Robinson–Foulds [22] distance is a common metric 
for comparing trees (where the Robinson–Foulds dis-
tance is the total number of unique bipartitions in the 
two trees), we specifically address the Robinson–Foulds 
(RF) Optimal Completion problem, which seeks a com-
pletion of the input gene tree with respect to a given ref-
erence tree that minimizes the RF distance between the 
two trees. We then present the Optimal Completion of 
Incomplete gene Tree Algorithm (OCTAL), a greedy 
polynomial time algorithm that we prove solves the RF 

Optimal Completion problem exactly. We also present 
results from an experimental study on simulated datasets 
comparing OCTAL to a heuristic for gene tree comple-
tion within ASTRAL-II. Finally, we conclude with a dis-
cussion of results and future research.

The Optimal Tree Completion problem
Terminology
Each edge e in an unrooted phylogenetic tree defines 
a bipartition πe on the leaves of the tree induced by the 
deletion of e (but not its endpoints). Each bipartition is 
thus a split A|B of the leaf set into two non-empty dis-
joint parts, A and B, that cover the leaf set. The set of 
bipartitions of a tree T is given by C(T) = {πe : e ∈ E(T )}, 
where E(T) is the set of edges for tree T. We say that two 
trees have the same topology if they have the same set of 
bipartitions. When two trees T and T ′ have the same leaf 
set, then the Robinson–Foulds (RF) distance [22] between 
T and T ′, denoted by RF(T ,T ′), is the size of the symmet-
ric difference between C(T) and C(T ′). In other words, 
every bipartition in T or T ′ is either shared between the 
two trees or is unique to one tree, and the RF distance 
is the number of bipartitions that appear in exactly one 
tree. When two trees are binary and on the same leaf set, 
as is the case in this study, the numbers of bipartitions 
that are unique to each tree are equal, and each is half the 
RF distance.

Given tree T on leaf set S, T restricted to R ⊆ S, 
denoted by T |R, is the minimal subgraph of T that con-
nects all elements of R, suppressing nodes of degree two. 
Note that if T contains the bipartition A|B, T |R contains 
the restricted bipartition (A ∩ R)|(B ∩ R). If T and T ′ are 
two trees with R as the intersection of their leaf sets, their 
shared edges are edges whose bipartitions restricted to R 
are in the set C(T |R) ∩ C(T ′|R). Correspondingly, their 
unique edges are edges whose bipartitions restricted to R 
are not in the set C(T |R) ∩ C(T ′|R).

The RF Optimal Tree Completion problem
The problem we address in this paper is the RF Optimal 
Tree Completion problem, where the distance between 
trees is defined by the RF distance, as follows:

  • Input: An unrooted binary tree T on the full taxon 
set S and an unrooted binary tree t on a subset of 
taxa R ⊆ S

  • Output: An unrooted binary tree T ′ on the full taxon 
set S with two key properties:

1 T ′ is a S-completion of t (i.e., T ′ contains all the 
leaves of S and T ′|R = t) and

2 T ′ minimizes the RF distance to T among all 
S-completions of t
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Note that t and T |R are both on taxon set R, but need not 
be identical. In fact, the RF distance between these two 
trees is a lower bound on the RF distance between T and 
T ′.

OCTAL: Optimal Completion of incomplete gene 
Trees ALgorithm
The algorithm begins with input tree t and adds leaves 
one at a time from the set S \ R until a tree on the full set 
of taxa S is obtained. To add the first leaf, we choose an 
arbitrary taxon x to add from the set S \ R. We root the 
tree T |R∪{x} (i.e., T restricted to the leaf set of t plus the 
new leaf being added) at x, and then remove x and the 
incident edge; this produces a rooted binary tree we will 
refer to as T (x) that has leaf set R.

We perform a depth-first traversal down T (x) until 
a shared edge e (i.e., an edge where the clade below it 
appears in tree t) is found. Since every edge incident with 
a leaf in T (x) is a shared edge, every path from the root 
of T (x) to a leaf has a distinct first edge e that is a shared 
edge. Hence, the other edges on the path from the root to 
e are unique edges.

After we identify the shared edge e in T (x), we identify 
the edge e′ in t defining the same bipartition, and we add 
a new node v(e′) into t so that we subdivide e′. We then 
make x adjacent to v(e′). Note that since t is binary, the 
modification t ′ of t that is produced by adding x is also 
binary and that t ′|R = t. These steps are then repeated 
until all leaves from S \ R are added to t. This process is 
shown in Fig. 1 and given in pseudocode below.

Fig. 1 One iteration of the OCTAL algorithm. Trees T and t with edges in the backbone (defined to be the edges on paths between nodes in the 
common leaf set) colored green for shared, and blue for unique; all other edges are colored black. After rooting T |R with respect to u, the edges in 
T |R that could be identified by the algorithm for “placement” are indicated with an asterisk (*). Note that any path in T |R from the root to a leaf will 
encounter a shared edge, since the edges incident with leaves are always shared. In this scenario, the edge e above the least common ancestor of 
leaves w and x is selected; this edge defines the same bipartition as edge e′ in t. Hence, AddLeaf will insert leaf u into t by subdividing edge e′, and 
making u adjacent to the newly added node
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Algorithm 1: RF Optimal Tree Completion Algorithm (OCTAL)

1: procedure AddLeaf(Taxon x, binary tree T1 on taxon set K, binary tree T2

on taxon set K ∪ {x}, set E of shared edges between T1 and T2|K)
2: Root T2 at v, the neighbor of x, and delete x to get a rooted version of T2|K
3: Pick arbitrary leaf y in T2|K and find first edge e ∈ E on path from v to y

4: Find e in T1 defining the same bipartition as e
5: Attach x to e in T1 by subdividing e and making x adjacent to the newly

created node; call the resulting tree T1

6: return T1

7: end procedure

1: procedure OCTAL(Binary tree t on taxon set R ⊆ S, binary tree T on taxon
set S)

2: if R=S then
3: return t
4: else
5: E ← Preprocess and initialize set of shared edges between t and T |R
6: R ← R Initialize R by setting it equal to input R
7: t ← t Initialize t by setting it equal to input t
8: for x ∈ S R do
9: R ← R ∪ {x}

10: T ← T |R
11: t ← AddLeaf(x, t , T , E)
12: E ← Update shared edges between t and T

13: end for
14: return t

15: end if
16: end procedure

Proof of correctness
In what follows, let T be an arbitrary binary tree on taxon 
set S and t be an arbitrary binary tree on taxon set R ⊆ S. 
Let T ′ denote the tree returned by OCTAL given T and t. 
We set r = RF(T |R, t). As we have noted, OCTAL returns 
a binary tree T ′ that is an S-completion of t. Hence, to 
prove that OCTAL solves the RF Optimal Tree Com-
pletion problem exactly, we only need to establish that 
RF(T ,T ′) is the smallest possible of all binary trees on 
leaf set S that are S-completions of t. While the algorithm 
works by adding a single leaf at a time, we use two types 
of subtrees, denoted as superleaves (see Fig. 2), to aid in 
the proof of correctness.

Definition 1 The backbone of T with respect to t is the 
set of edges in T that are on a path between two leaves in 
R.

Definition 2 A superleaf of T with respect t is a rooted 
group of leaves from S \ R that is attached to an edge in 
the backbone of T. In particular, each superleaf is rooted 
at the node that is incident to one of the edges in the 
backbone

Definition 3 There are exactly two types of superleaves, 
Type I and Type II:

1 A superleaf is a Type I superleaf if the edge e in the 
backbone to which the superleaf is attached is a 
shared edge in T |R and t. It follows then that a super-
leaf X is a Type I superleaf if and only if there exists 
a bipartition A|B in C(t) ∩ C(T |R) where A|(B ∪ X) 
and (A ∪ X)|B are both in C(T |R∪X ).

2 A superleaf is a Type II superleaf if the edge e in the 
backbone to which the superleaf is attached is a 
unique edge in T |R and t. It follows that a superleaf X 
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is a Type II superleaf if and only if for any bipartition 
A|B such that A|(B ∪ X) and (A ∪ X)|B are both in 
C(T |R∪X ), A|B �∈ C(t).

Now we begin our proof by establishing a lower bound 
on the RF distance to T for all binary S-completions of t.

Lemma 4 Let Y be a Type II superleaf for the pair 
(T,  t), and let x ∈ S \ R. Let t∗ be the result of adding x 
into t arbitrarily (i.e., we do not attempt to minimize 
the resulting RF distance). If x �∈ Y , then Y is a Type II 
superleaf for the pair (T , t∗). Furthermore, if x ∈ Y , then 
RF(T |R∪{x}, t

∗) ≥ RF(T |R, t)+ 2.

Proof It is easy to see that if x �∈ Y , then Y remains 
a Type II superleaf after x is added to t. Now suppose 
x ∈ Y . We will show that we cannot add x into t with-
out increasing the RF distance by at least 2. Since Y is a 
Type II superleaf, it is attached to a unique edge in T |R∪Y  , 
and this is the same edge that x is attached to in T |R∪{x} . 
So suppose that x is added to t by subdividing an arbi-
trary edge e′ in t with bipartition C|D; note that we do 
not require that x is added to a shared edge in t. After 
adding x to t we obtain tree t∗ whose bipartition set 
includes C|(D ∪ {x}) and (C ∪ {x})|D. If C|D corresponds 
to a unique edge relative to t and T |R, then both of these 
bipartitions correspond to unique edges relative to t∗ 
and T |R∪{x}. If C|D corresponds to a shared edge, then 

at most one of the two new bipartitions can correspond 
to a shared edge, as otherwise we can derive that Y is a 
Type I superleaf. Hence, the number of unique edges in 
t must increase by at least one no matter how we add 
x to t, where x belongs to a Type II superleaf. Since t is 
binary, the tree that is created by adding x is binary, so 
that RF(T |R∪{x}, t

∗) ≥ RF(T |R, t)+ 2.  �

Lemma 5 Let T ∗ be an unrooted binary tree that is 
a S-completion of t. Then RF(T ∗,T ) ≥ r + 2m, where 
r = RF(T |R, t) and m is the number of Type II superleaves 
for the pair (T, t).

Proof We note that adding a leaf can never reduce the 
total RF distance. The proof follows from Lemma 4 by 
induction.  �

Now that we have established a lower bound on the 
best achievable RF distance (i.e., the optimality criterion 
for the RF Optimal Tree Completion problem), we show 
OCTAL outputs a tree T ′ that is guaranteed to achieve 
this lower bound. We begin by noting that when we add 
x to t by subdividing some edge e′, creating a new tree 
t ′ , all the edges other than e′ in t continue to “exist” in t ′ 
although they define new bipartitions. In addition, e′ is 
split into two edges, which can be considered new. Thus, 
we can consider whether edges that are shared between t 
and T remain shared after x is added to t.

Fig. 2 Type I and Type II superleaves. Trees T and t with edges in the backbone (defined to be the edges on paths between nodes in the common 
leaf set) colored green for shared, and blue for unique; the other edges are inside superleaves and are colored black. The deletion of the backbone 
edges in T creates two components that are called “superleaves”. One of the two superleaves is a Type I superleaf because it is attached to a shared 
(green) edge, and the other is a Type II superleaf because it is attached to a unique (blue) edge. The RF distance between t and T |R is equal to 2, 
the number of blue edges. The Type I superleaf containing leaves r and s can be added to edge ex in t, the shared edge incident to leaf x, without 
increasing the RF distance; adding it to any other edge in t will increase the RF distance by exactly 2. However, adding the Type II superleaf contain-
ing leaves u, v,  and q to any single edge in t creates exactly one new unique edge in each tree, and therefore increases the RF distance by exactly 2. 
More generally, for any pair of trees (one a gene tree and the other a reference tree), (1) any Type I superleaf can be added to the gene tree without 
increasing the RF distance, (2) any addition of a Type II superleaf to the gene tree will always increase the RF distance by at least 2, and (3) there is 
always at least one edge into which a Type II superleaf can be added that increases the RF distance by exactly 2
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Lemma 6 Let t ′ be the tree created by AddLeaf given 
input tree t on leaf set R and tree T on leaf set R ∪ {x}. If x 
is added to tree t by subdividing edge e′ (thus creating tree 
t ′), then all edges in t other than e′ that are shared between 
t and T remain shared between t ′ and T.

Proof Let T (x) be the rooted tree obtained by rooting 
T at x and then deleting x. Let e be the edge in T (x) cor-
responding to e′, and let πe = A|B; without loss of gen-
erality assume A is a clade in T (x). Note that C(T) con-
tains bipartition A|(B ∪ {x}) (however, C(T) may not 
contain (A ∪ {x})|B, unless e is incident with the root of 
T (x)). Furthermore, for subclade A′ ⊆ A, A′|(R \ A′) ∈ 
C(T |R) and A′|(R \ A′ ∪ {x}) ∈ C(T). Now suppose e∗ in 
t is a shared edge between t and T |R that defines biparti-
tion C|D �= A|B. Since A|B and C|D are both bipartitions 
of t, without loss of generality either C ⊂ A or A ⊂ C. If 
C ⊂ A, then C is a clade in T (x), and so e∗ defines bipar-
tition C|(D ∪ {x}) within t ′. But since C ⊂ A, the previ-
ous analysis shows that C|(D ∪ {x}) is also a bipartition 
of T, and so e∗ is shared between T and t ′. Alternatively, 
suppose A ⊂ C. Then within t ′, e∗ defines bipartition 
(C ∪ {x})|D, which also appears as a bipartition in T. 
Hence, e∗ is also shared between T and t ′. Therefore, 
any edge e∗ other than e′ that is shared between t and T 
remains shared between t ′ and T, for all leaves x added by 
AddLeaf.  �

Lemma 7 OCTAL(T, t) preserves the topology of super-
leaves in T (i.e. for any superleaf with some subset of 
leaves Q ⊆ S, OCTAL(T, t)|Q equals T |Q).

Proof We will show this by induction on the number of 
leaves added. The lemma is trivially true for the base case 
when just one leaf is added to t. Let the inductive hypoth-
esis be that the lemma holds for adding up to n leaves to 
t for some arbitrary n ∈ N

+. Now consider adding n+ 1 
leaves, and choose an arbitrary subset of n leaves to add 
to t, creating an intermediate tree t ′ on leaf set K using 
the algorithm OCTAL. Let x be the next additional leaf to 
be added by OCTAL.

If x is the first element of a new superleaf to be added, 
it is trivially true that the topology of its superleaf is pre-
served, but we need to show that x will not break the 
monophyly of an existing superleaf in t ′. By the inductive 
hypothesis, the topology of each superleaf already placed 
in t ′ has been preserved. Thus, each superleaf placed in t ′ 
has some shared edge in t ′ and T |K  incident to that super-
leaf. If x were placed onto an edge contained in some 
existing superleaf, that edge would change its status from 
being shared to being unique, which contradicts Lemma 
6.

The last case is where x is part of a superleaf for the pair 
(T,  t) that already has been added in part to t. AddLeaf 
roots T |K∪{x} at x and removes the edge incident to x, 
creating rooted tree T (x). The edge incident to the root in 
T (x) must be a shared edge by the inductive hypothesis. 
Thus, OCTAL will add x to this shared edge and preserve 
the topology of the superleaf.  �

Lemma 8 OCTAL(T, t) returns binary tree T ′ such that 
RF(T ,T ′) = r + 2m, where m is the number of Type II 
superleaves for the pair (T, t) and r = RF(T |R, t).

Proof We will show this by induction on the number of 
leaves added.

Base Case Assume |S \ R| = 1. Let x be the leaf in S\R . 
AddLeaf adds x to a shared edge of t corresponding to 
some bipartition A|B, which also exists in T (x).

1. First we consider what happens to the RF distance on 
the edge x is attached to.
If x is a Type I superleaf, the edge incident to the 
root in T (x) will be a shared edge by the definition 
of Type I superleaf, so AddLeaf adds x to the corre-
sponding edge e′ in t. The two new bipartitions that 
are created when subdividing e′ will both exist in T 
by the definition of Type I superleaf so the RF dis-
tance does not change.
If x is a Type II superleaf, either (A ∪ {x})|B or 
A|(B ∪ {x}) must not exist in C(T). Since AddLeaf 
adds x to a shared edge, exactly one of those new 
bipartitions must exist in C(T).

2. Now we consider what happens to the RF distance on 
the edges x is not attached to. Lemma 6 shows that 
AddLeaf (and therefore OCTAL) preserves existing 
shared edges between t and T |R, possibly excluding 
the edge where x is added.

Thus, the RF distance will only increase by 2 if x is a Type 
II superleaf, as claimed.

Inductive step Let the inductive hypothesis be that the 
lemma holds for up to n leaves for some arbitrary n ∈ N

+ . 
Assume |S \ R| = n+ 1. Now choose an arbitrary subset 
of leaves Q ⊆ S \ R, where |Q| = n, to add to t, creating an 
intermediate tree t ′ using the algorithm OCTAL. By the 
inductive hypothesis, assume t ′ is a binary tree with the 
RF distance between T |Q∪R and t ′ equal to r + 2m, where 
m is the number of Type II superleaves in Q. AddLeaf 
adds the remaining leaf x ∈ S \ R to a shared edge of t ′ 
and T |Q∪R.
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1. Lemma 6 shows that AddLeaf (and therefore 
OCTAL) preserves existing shared edges between 
t ′ and T |Q∪R, possibly excluding the edge where x is 
added.

2. Now we consider what happens to the RF distance on 
the edge x is attached to. There are three cases: (i) x 
is not the first element of a superleaf (ii) x is the first 
element of a Type I superleaf or (iii) x is the first ele-
ment of a Type II superleaf.

Case (i): If x is not the first element of a superleaf to 
be added to t, it directly follows from Lemma 7 that 
OCTAL will not change the RF distance when add-
ing x.
Case (ii): If x is the first element of a Type I superleaf 
to be added, then x is attached to a shared edge in 
the backbone corresponding to some bipartition A|B 
existing in both C(t) and C(T |R). Let e′ be the edge 
in t s.t. πe′ = A|B. Note there must exist an edge e 
in T |Q∪R producing A|B when restricted to just R. 
Hence, the bipartition πe has the form M|N where 
(M ∩ R) = A and (N ∩ R) = B. We need to show 
that M|N ∈ C(t ′). 

• By Lemma 6, any leaves from Q not attached to 
e′ by OCTAL will preserve this shared edge in t ′.

•  Now consider when leaves from Q are added 
to e′ by OCTAL. We decompose M and N into 
the subsets of leaves existing in either R or Q: let 
M = A ∪W  and N = B ∪ Z. OCTAL will not 
cross a leaf from W with a leaf from Z along e′ 
because this would require crossing the shared 
edge dividing these two groups: any leaf w ∈ W  
has the property that (A ∪ {w})|B is a shared 
edge and any leaf z ∈ Z has the property that 
A|(B ∪ {z}) is a shared edge. Hence, any leaves 
added from Q that subdivide e′ will always pre-
serve an edge between leaves contained in W 
and Z on e′.

•   Thus, M|N ∈ C(t ′). Moreover, (M ∪ {x})|N  and 
M|(N ∪ {x}) are bipartitions in C(T). AddLeaf 
roots T at x and removes the edge incident to x, 
creating rooted tree T (x). We have shown that 
the edge incident to the root in T (x) must be a 
shared edge, so adding x does not change the RF 
distance.

Case (iii): If x is the first element of a Type II superleaf 
to be added, we have shown in Lemma 4 that the RF 
distance must increase by at least two. Since AddLeaf 
always attaches x to some shared edge e′, the RF dis-
tance increases by exactly 2 when subdividing e′.

Thus, OCTAL will only increase the RF distance by 2 
if x is a new Type II superleaf.  �

Combining the above results, we establish our main 
theorem:

Theorem  9 Given unrooted binary trees t and T with 
the leaf set of t a subset of the leaf set of T, OCTAL(T, t) 
returns an unrooted binary tree T ′ that is a completion 
of t and that has the smallest possible RF distance to T. 
Hence, OCTAL finds an optimal solution to the RF Opti-
mal Tree Completion problem. Furthermore, OCTAL 
runs in O(n2) time, where T has n leaves.

Proof To prove that OCTAL solves the RF Optimal 
Tree Completion problem optimally, we need to estab-
lish that OCTAL returns an S-completion of the tree t, 
and that the RF distance between the output tree T ′ and 
the reference tree T is the minimum among all S-comple-
tions. Since OCTAL always returns a binary tree and only 
adds leaves into t, by design it produces a completion of 
t and so satisfies the first property. By Lemma 8, the tree 
T ′ output by OCTAL has an RF score that matches the 
lower bound established in Lemma 5. Hence, OCTAL 
returns a tree with the best possible score among all 
S-completions.

We now show that OCTAL can be implemented to run 
in O(n2) time, as follows. The algorithm has two stages: a 
preprocessing stage that can be completed in O(n2) time 
and a second stage that adds all the leaves from S \ R into 
t that also takes O(n2) time.

In the preprocessing stage, we annotate the edges of T 
and t as either shared or unique, and we compute a set 
A of pairs of shared edges (one edge from each tree that 
define the same bipartition on R). We pick r ∈ R, and we 
root both t and T at r. We begin by computing, for each 
of these rooted trees, the LCA (least common ancestor) 
matrix for all pairs of nodes (leaves and internal vertices) 
and the number nu of leaves below each node u; both can 
be computed easily in O(n2) time using dynamic pro-
gramming. (For example, to calculate the LCA matrix, 
first calculate the set of leaves below each node using 
dynamic programing, and then calculate the LCA matrix 
in the second step using the set of leaves below each 
node.) The annotation of edges in t and T as shared or 
unique, and the calculation of the set A, can then be com-
puted in O(n2) time as follows. Given an edge e ∈ E(T ) , 
we note the bipartition defined by e as X|Y, where X is 
the set of leaves below e in the rooted version of T. We 
then let u denote the LCA of X in t, which we compute 
in O(n) time (using O(n) LCA queries of pairs of vertices, 
including internal nodes, each of which uses O(1) time 
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since we already have the LCA matrix). Once we identify 
u, we note the edge e′ above u in t. It is easy to see that 
e is a shared edge if and only if e and e′ induce the same 
bipartition on R, and furthermore this holds if and only if 
nu = |X |. Hence, we can determine if e is a shared edge, 
and also its paired edge e′ in t, in O(n) time. Each edge in 
T is processed in O(n) time, and hence the preprocessing 
stage can be completed in O(n2) time.

After the preprocessing, the second stage inserts the 
leaves from S \ R into t using AddLeaf, and each time we 
add a leaf into t we have to update the set of edges of t 
(since it grows through the addition of the new leaf ) and 
the set A. Recall that when we add s ∈ S \ R into t, we 
begin by rooting T at s, and then follow a path towards 
the leaves until we find a first shared edge; this first 
shared edge may be the edge incident with s in T or may 
be some other edge, and we let e denote the first shared 
edge we find. We then use the set A to identify the edge 
e′ ∈ E(t) that is paired with e. We subdivide e′ and make 
s adjacent to the newly created node. We then update A, 
the set of bipartitions for each tree, and the annotations 
of the edges of t and T as shared or unique. By Lemma 
6, AddLeaf preserves all existing shared edges other than 
the edge the new leaf x is placed on, and these specific 
edges in E can each be updated in O(1) time. Further-
more, OCTAL places x on a shared edge, bifurcating it 
to create two new edges. Thus, just two edges need to 
be checked for being shared, which again can be done 
in O(n) as claimed. Thus, adding s to t and updating all 
the data structures can be completed in O(n) time. Since 
there are at most n leaves to add, the second stage can be 
completed in O(n2) time. Hence, OCTAL runs in O(n2) 
time, since both stages take O(n2) time.  �

Experimental evaluation
Overview
We compared OCTAL to the heuristic used in ASTRAL-
II [10] for completing incomplete gene trees (see [23] for 
description), noting however that the ASTRAL-II tech-
nique is used to expand the search space explored by 
ASTRAL-II and does not explicitly attempt to minimize 
the distance to a reference tree. We used simulated data-
sets generated for [10] that have heterogeneity between 
gene trees and species trees due to ILS. To evaluate the 
accuracy of completed trees, we use three criteria: the 
normalized RF distance, normalized quartet distance, 
and the matching distance (see below for details).

We performed three sets of experiments:

  • The first set of experiments evaluated the relative and 
absolute performance of ASTRAL-II and OCTAL for 
three levels of ILS (moderate, high, and very high) 
under these three evaluation criteria. The impact of 

the amount of missing data and gene tree estimation 
error was also examined.

  • The second set of experiments evaluated the impact 
of the number of genes on the performance of 
ASTRAL-II and OCTAL. We restricted these experi-
ments to two levels of ILS (moderate and high) and 
one evaluation criterion (normalized RF distance).

  • The third set of experiments evaluated the impact of 
changing the reference tree on OCTAL. We again 
restricted these experiments to two levels of ILS 
(moderate and high) and one evaluation criterion 
(normalized RF distance).

Simulated datasets
The datasets used in this simulation study were originally 
generated for the ASTRAL-II study [10] and then modi-
fied for the purpose of this study. The full details of the 
protocol are described in [10], and briefly summarized 
here.

ASTRAL‑II datasets
SimPhy [24] was used to simulate a collection of model 
species trees and, for each species tree, a collection of 
gene trees (with branch lengths deviating from a molec-
ular clock) under the multi-species coalescent (MSC) 
model with varying levels of ILS. We refer to these simu-
lated trees as the true gene trees and true species trees. 
Under this protocol, the true gene trees contain all the 
species, and the only cause for discordance between 
the true gene trees and the true species tree is ILS. For 
each individual true gene tree, INDELible [25] was used 
to simulate DNA sequences under the GTR+Ŵ model of 
evolution without insertions or deletions. The numeric 
model parameters varied across the gene trees and were 
determined by drawing from a distribution based on bio-
logical datasets. There are 50 replicate datasets per model 
condition.

Our modifications
We restricted the datasets examined in this study, by 
using only 26 species (one outgroup and 25 out of 200 
ingroup taxa) and 200 out of 1000 genes. We examined 
20 out of 50 replicate datasets for three model conditions: 
moderate ILS, high ILS, and very high ILS. We charac-
terize the levels of ILS by the average normalized RF dis-
tance, referred to as “AD”, between the true gene trees 
and the true species tree, calculated using Dendropy 
v4.2.0 [26]. Across all replicate datasets, the average AD 
was 10% for the moderate ILS condition, 36% for the high 
ILS condition, and 75% for the very high ILS condition.

We modified all datasets to ensure that some genes 
were incomplete, as follows. In each replicate (containing 
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200 genes), 150 genes were randomly selected to be miss-
ing data. In order to determine the number of taxa to be 
deleted from each gene, we noted the number of taxa in 
each non-trivial clade in the species tree; this produced 
a multi-set of numbers that vary between 2 and 20. Then 
for those genes that were selected to have taxa deleted, 
we selected a number n from the multi-set uniformly at 
random and selected n taxa to be deleted from the gene 
at random. This produced a set of 150 incomplete gene 
trees that on average were missing approximately 60% 
of the species. The estimated gene trees were computed 
using RAxML v8.2.8 [27] under the GTR+Ŵ model from 
the resulting alignments (i.e., all the sequences for the 
complete gene trees, and a subset of the sequences for 
the incomplete gene trees). This produced a set of 200 
estimated gene trees (150 of which were incomplete) for 
every model condition and replicate dataset.

Gene tree completion
We used two techniques to complete the incomplete gene 
trees: the heuristic in ASTRAL-II and OCTAL. For the 
first set of experiments, ASTRID v1.4 was used to create 
reference trees for OCTAL. Both OCTAL and ASTRAL-
II were run 9000 times (150 incomplete gene trees in 
each of 20 replicates for three ILS levels).

As the amount of available data could potentially 
impact the quality of the reference tree used in OCTAL 
as well as the distance matrix computed by ASTRAL-
II, we reduced the number of genes in the second set of 
experiments. In particular, we restricted the original 200-
gene datasets to 25, 50, and 100 genes of which 5, 10, and 
25 of these genes were complete, respectively; we also 
only explored the moderate and high ILS conditions, as 
these are closer to biological datasets. ASTRID v1.4 was 
again used to create reference trees for OCTAL, and both 
OCTAL and ASTRAL-II were run an additional 5400 
times.

Finally, in the third set of experiments, we directly eval-
uated the choice of reference tree on OCTAL by using 
the true species tree, the ASTRID v1.4 [11] tree, a greedy 
consensus tree, or a random tree drawn from a uniform 
distribution. Note that the ASTRID tree was computed 
on the full set of estimated gene trees (both incomplete 
and complete), while the greedy consensus tree was com-
puted on the subset of estimated gene trees that were 
complete. For this final set of experiments, OCTAL was 
run an additional 18,000 times.

Evaluation criteria
We report error rates only for gene trees that were com-
pleted by ASTRAL-II or OCTAL, and we examined three 
different error metrics: normalized RF distance, nor-
malized quartet distance, and matching distance. The 

normalized distances produce values that range from 0 
to 1; all three distances return 0 only for those pairs of 
trees that are topologically identical, and so, low scores 
are better than large scores. The normalized RF distance 
between the completed estimated gene trees and the true 
gene trees was computed using Dendropy v4.2.0. This 
produces a value between 0 and 1, where 0 indicates that 
the completed estimated gene tree exactly matches the 
true gene tree and 1 indicates that the two trees have no 
common bipartitions. The quartet distance between two 
trees on the same leaf set considers the quartet topolo-
gies induced by restricting each tree to all sets of four 
leaves (i.e. n choose four combinations, where n is the 
number of leaves). The quartet distance is then defined as 
the number of quartets that induce different topologies in 
the two trees. The matching distance between two trees 
on the same leaf set is the weight of a minimum weight 
perfect matching of their bipartitions, where each edge 
in the matching is weighted by the number of leaves that 
must be moved in order to transform one bipartition into 
its paired bipartition in the other tree [28].

We used one-sided paired Wilcoxon Signed-Rank 
tests [29] to determine whether using OCTAL (with the 
ASTRID tree) was significantly better than ASTRAL-II 
on each replicate dataset. As 20 replicate datasets were 
tested per model condition, a Bonferroni multiple com-
parison correction [30] was applied (i.e., p values indicat-
ing significance must be less than 0.0025).

Commands
  • Maximum likelihood gene trees were estimated using 

RAxML v8.2.8 (where input is the multiple sequence 
alignment for a given gene):
raxmlHPC-SSE -m GTRGAMMA -p [seed] 
-n [name] -s [input]

  • The random trees were created as follows. A star tree 
was created from the complete taxon set (i.e., the 
taxa in the complete trees). This star tree was then 
randomly resolved into a binary tree so that “the pol-
ytomy will be resolved by sequentially... generating all 
tree topologies equiprobably” [31]. Specifically, the 
random tree was generated using Dendropy v4.2.0:
from dendropy.simulate import treesim
from dendropy.utility import GLOBAL_
RNG
star_tree = treesim.star_tree(original_
taxon_namespace)
star_tree.resolve_polytomies(limit= 
2, update_bipartitions=False, rng= 
GLOBAL_RNG)

  • The greedy consensus trees were computed using 
Bali-Phy v2.3.8 [32], where the input is the set of 50 
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complete RAxML trees (i.e., trees on the full taxon 
set):

  • trees-consensus –greedy-consensus 
[input] [output]

  • The command for ASTRID v1.4 (input is the full set 
of 200 RAxML trees):
ASTRID-linux -i [input] -o [output]

  • The command for ASTRAL v4.10.2 (input is the full 
set of 200 RAxML trees):
java -jar astral.4.10.12.jar -i [input] 
-o [output]

  • The normalized RF distances were computed using 
Dendropy v4.2.0:
ne1 = len(tr1.internal_edges(exclude_
seed_edge=True))
ne2 = len(tr2.internal_edges(exclude_
seed_edge=True))
[fp, fn] = false_positives_and_
negatives(tr1, tr2)
rf = float(fp + fn) / (ne1 + ne2)

  • The quartet distances were computed using 
QDist[33]:
module load openblas/0.2.8-gcc
module load gcc/6.2.0
 ./qdist tr1 tr2

  • The matching distances were computed using code 
provided by the authors from [28], and now available 
at [34]:

 ./matching_distance tr1 tr2 numbero-
fleaves 

Results
Experiment 1: Performance of OCTAL and ASTRAL‑II 
under three levels of ILS
Results under moderate ILS levels
This experiment compared OCTAL (using ASTRID as 
the reference tree) to ASTRAL-II when given 200 genes 
(150 incomplete and 50 complete) under the moder-
ate ILS level (AD  =  10%). The median RF error rate 
for ASTRAL-II was 17%, and the median RF error rate 
for OCTAL was 13% (Fig.  3). Using the RF error rate, 
OCTAL had better accuracy than ASTRAL-II on 1366 
genes, ASTRAL-II had better accuracy on 363 genes, 
and the methods were tied on the remaining 1271 genes 
(Table 1). The degree of improvement in RF rate varied, 
but was as great as 20% on some datasets. The improve-
ment obtained by using OCTAL over ASTRAL-II was 
statistically significant in 18 out of 20 of the replicates 
with this evaluation metric (Fig. 4).

Both the matching distance and quartet distance pro-
duced similar trends to the RF distance under the moder-
ate ILS level. The median matching distance was 18 for 
ASTRAL-II and 15 for OCTAL (Fig. 3) and the improve-
ment obtained by using OCTAL over ASTRAL-II was 
statistically significant in 19 out of 20 of the replicates 
(see Additional file 1: Figure S1). The median normalized 
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quartet distance was 7% for ASTRAL-II and 6% for 
OCTAL (Fig. 3) and the improvement obtained by using 
OCTAL over ASTRAL-II was statistically significant 
in 18 out of 20 of the replicates (see Additional file  1: 
Figure S2).

The degrees of missing data and gene tree error did 
not impact whether OCTAL improved over ASTRAL-II 
under any of the evaluation metrics. We show our results 
for missing data with the RF error rate in Fig.  5. Addi-
tional results for missing data with the matching dis-
tance and quartet distance show the same trend and can 
be found in Additional file  1: Figures S3 and S4. Under 
very high levels of gene tree estimation error, there 
was a greater degree of improvement of OCTAL over 
ASTRAL-II with the RF error rate (Fig.  6). Additional 
results for gene tree error with the matching distance and 
quartet distance show a similar, though less pronounced, 
trend, and can be found in Additional file  1: Figures S5 
and S6.

Results under high ILS
This experiment compared OCTAL (using ASTRID as 
the reference tree) to ASTRAL-II when given 200 genes 
(150 incomplete and 50 complete) under the high ILS 
level (AD  =  36%). OCTAL and ASTRAL-II achieved 
similar levels of accuracy under the high ILS condition, 
with both methods having a median RF error rate of 39% 
(Fig. 3). OCTAL was more accurate than ASTRAL-II on 

1004 genes, ASTRAL-II was more accurate on 524 genes, 
and the methods were tied on the remaining 1472 genes 
(Table  1). OCTAL provided a statistically significant 
advantage over ASTRAL-II in 7 of the 20 replicates, and 
the differences between the two methods were not statis-
tically significant on the remaining 13 replicates (Fig. 4).

Again, the matching distance and quartet distance 
produced similar trends to the RF distance. The median 
matching distance was 41 for ASTRAL-II and 38 for 
OCTAL (Fig. 3), and the improvement obtained by using 
OCTAL over ASTRAL-II with respect to the matching 
distance was statistically significant in 10 out of 20 of the 
replicates (see Additional file  1: Figure  S1). The median 
normalized quartet distance was 24% for ASTRAL-II and 
23% for OCTAL (Fig. 3), and the improvement in quartet 
distance obtained by using OCTAL over ASTRAL-II was 
statistically significant in 5 out of 20 of the replicates (see 
Additional file 1: Figure S2).

Whether OCTAL or ASTRAL-II performed best 
appeared unrelated to the degree of missing data or gene 
tree estimation error under all evaluation criteria that we 
considered. The impact of missing data and the impact of 
gene tree estimation error on the RF error rate are shown 
in Figs. 5 and 6, respectively. The results for the matching 
distance and the quartet distance can be found in Addi-
tional file 1: Figures S3–S6.

Results under very high ILS
This experiment compared OCTAL (using ASTRID as 
the reference tree) to ASTRAL-II when given 200 genes 
(150 incomplete and 50 complete) under the very high 
ILS level (AD = 75%). Using the RF error rate, OCTAL 
and ASTRAL-II achieved similar levels of accuracy, with 
both methods having a substantially increased median 
RF error rate of 78% (Fig. 3). OCTAL was more accurate 
than ASTRAL-II on 906 genes, ASTRAL-II was more 
accurate on 520 genes, and the methods were tied on the 
remaining 1574 genes. OCTAL provided a statistically 
significant advantage over ASTRAL-II with the RF error 
rate in only 6 of the 20 replicates (Fig. 4).

In this case, the median matching distance was 77 for 
ASTRAL-II and 75 for OCTAL (Fig. 3), and the improve-
ment obtained by using OCTAL over ASTRAL-II was 
statistically significant in 8 out of 20 of the replicates 
using the matching distance (see Additional file  1: Fig-
ure  S1). The median normalized quartet distance was 
51% for ASTRAL-II and 50% for OCTAL (Fig.  3) and 
the improvement in quartet distance obtained by using 
OCTAL over ASTRAL-II was statistically significant 
in 2 out of 20 of the replicates (see Additional file  1: 
Figure S2).

As we observed for the other ILS conditions, whether 
OCTAL or ASTRAL-II performed best appears unrelated 

Table 1 The number of gene trees for which OCTAL pro-
vided an improvement over ASTRAL-II, for which ASTRAL-
II provided an improvement of OCTAL, and for which there 
was no difference between the two methods is provided 
below for three levels of ILS and three evaluation distance 
criteria

The RF, matching, and quartet distances are used for evaluating the distance 
between the completed, estimated trees and the true gene trees. Numbers in 
italic indicate the largest number of genes. OCTAL improves more genes than 
ASTRAL-II except in the higher ILS conditions with the RF distance criteria, in 
which case OCTAL and ASTRAL-II are more often equal in their performance

Error metric OCTAL better ASTRAL‑II better No difference

Moderate ILS (AD = 10%)

 RF 1366 363 1271

 Matching 1666 522 812

 Quartet 1540 594 866

High ILS (AD = 35%)

 RF 1004 524 1472

 Matching 1501 920 579

 Quartet 1473 1092 435

Very high ILS (AD = 75%)

 RF 906 520 1574

 Matching 1643 1143 214

 Quartet 1552 1371 77
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to the degree of missing data or gene tree estimation 
error with respect to all evaluation criteria we consid-
ered. For the impact on RF error rate, Fig. 5 shows results 
for missing data and Fig.  6 shows results for gene tree 
error. The remaining results for the matching distance 
and the quartet distance can be found in Additional file 1: 
Figures S3–S6.

Experiment 2: Impact of the number of genes 
on performance of ASTRAL‑II and OCTAL
As the number of genes determines the amount of data 
to be used in constructing a reference tree (required by 

OCTAL) and a distance matrix (required by ASTRAL-II), 
we varied the number of genes to see if this would impact 
the performance of OCTAL (using ASTRID as the refer-
ence tree) or ASTRAL-II under the moderate and high 
ILS conditions. Specifically, we examined subsets of the 
original 200-gene datasets with 25, 50, and 100 genes, of 
which 5, 10, and 25 were complete, respectively. As seen 
in Fig.  7, under moderate ILS (AD =  10%), ASTRAL-II 
had a median RF error rate of 22% (for 25 and 50 genes) 
and 17% (for 100 and 200 genes), whereas OCTAL had a 
median RF error rate of 17% (for 25, 50, and 100 genes) 
and 13% (for 200 genes). Hence, OCTAL was generally 
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more accurate (as measured by the RF error rate) than 
ASTRAL-II under the moderate ILS condition. The 
relative improvement of OCTAL over ASTRAL-II per 
gene tree was 7± 4% (mean ± standard deviation) (i.e., 
1–2 bipartitions) for all numbers of genes; however, 

the number of cases for which OCTAL improved over 
ASTRAL-II varied with the number of genes (see 
Table 2).

Results under high ILS (AD  =  36%) show somewhat 
different trends. ASTRAL-II had a median RF error rate 
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of 48% for 25 genes, 44% for 50 genes, and 39% for 100 
and 200 genes. OCTAL had lower median error rates at 
25 (44 and 39%, respectively) but matched the median 
error rates of ASTRAL-II at 100 and 200 genes. How-
ever, OCTAL and ASTRAL-II have clearly different 

distributions for 200 genes (Figs.  3 and 7), so that even 
though the medians are the same OCTAL seems to pro-
vide a slight advantage over ASTRAL-II. Thus, on the 
high ILS datasets, OCTAL provided an improvement 
over ASTRAL-II, and the relative improvement per gene 
tree was similar to performance under the moderate 
ILS level (7–8% on average); however, there were fewer 
genes for which OCTAL improved over ASTRAL-II (see 
Table 2).

Experiment 3: Impact of the reference tree on the accuracy 
of OCTAL
Our final experiment examined the impact of reference 
tree on OCTAL on the 200-gene datasets with moderate 
and high levels of ILS, using the RF error rate as the eval-
uation criterion. We considered four reference trees: (1) 
the true species tree, (2) the ASTRID species tree com-
puted on the all gene trees (50 complete and 150 incom-
plete), (3) the greedy consensus tree computed on the 50 
complete gene trees, and (4) a random tree on the same 
set of species. The greedy consensus tree, also known 
as the extended majority consensus tree, is obtained 
by ordering the bipartitions from the input set of trees 
according to their frequency, and then adding them one-
by one-to a growing set of bipartitions if they are com-
patible with the set.

Table 2 The number of gene trees for which OCTAL pro-
vided an improvement over ASTRAL-II, for which ASTRAL-
II provided an improvement of OCTAL, and for which there 
was no difference between the two methods is provided 
below for two levels of ILS and four numbers of genes

The RF error rate is used for evaluating the distance between the completed, 
estimated trees and the true gene trees. Numbers in italic indicate the largest 
number of genes. OCTAL improves more genes than ASTRAL-II except when the 
level of ILS is high and the number of genes is 200, in which case OCTAL and 
ASTRAL-II are more often equal in their performance

Number of genes OCTAL better ASTRAL‑II better No difference

Moderate ILS (AD = 10%)

 25 genes 177 62 161

 50 genes 420 116 262

 100 genes 685 188 627

 200 genes 1366 363 1271

High ILS (AD = 35%)

 25 genes 228 79 93

 50 genes 398 119 283

 100 genes 624 265 611

 200 genes 1004 524 1472
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Fig. 7 The performance of OCTAL and ASTRAL-II for varying numbers of genes under the RF distance evaluation criteria. The x-axis shows the num-
ber of genes varying from 25 to 200. The y-axis shows the RF error rate between the true gene trees and the gene trees completed using OCTAL 
with the ASTRID reference tree (red) or ASTRAL-II (blue). The number of data points per boxplot varies with the number of genes. For example, the 
25-genes model condition has 400 data points per boxplot (20 incomplete genes across 20 replicates), whereas the 200-gene model condition has 
3000 data points per boxplot (150 incomplete genes across 20 replicates)
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The ASTRID and greedy consensus trees had low spe-
cies tree RF error (at most 9% RF) under the moderate 
ILS condition and somewhat higher species tree error (at 
most 22% RF) when the level of ILS was high. We found 
that there was little difference (less than 1% in median 
gene tree RF error) between using ASTRID, a greedy 
consensus of the complete gene trees, and even the true 
species tree, as the reference tree (Fig. 8). However, using 
a random tree as the reference tree produced extremely 
high RF error rates for the completed trees, which is as 
expected as the random species tree had extremely high 
error: between 96 and 100% RF for each replicate.

Discussion
These results show that OCTAL was generally at least 
as accurate as ASTRAL-II at completing gene trees, and 
can be more accurate; this trend does not appear to be 
sensitive to the distance measure used to evaluate the 
accuracy of the completed gene trees. Within the scope 
of our study, the degree and frequency of improvement 
depended on the level of ILS, but not so much on the 
number of genes or on the reference tree, as long as the 
reference tree was estimated from the gene trees. Fur-
thermore, using several techniques to produce the ref-
erence tree from the gene trees, including even a greedy 
consensus tree, produced reference trees that were as 
good as the true species tree in terms of the impact on 

the accuracy of the completed gene tree. However, a 
random tree produced very poor results. We also noted 
that OCTAL provided a clear advantage over ASTRAL-
II under low to moderate ILS, but the improvement was 
smaller and less frequent under the high to very high ILS 
conditions. We offer the following as a hypothesis for the 
reason for these trends. Under low to moderate ILS, the 
true species tree is close to the true gene tree, and the 
estimated species trees (computed using ASTRID or the 
greedy consensus) are reasonably close to the true spe-
cies tree; by the triangle inequality, the estimated spe-
cies tree is close to the true gene trees. Therefore, when 
ILS is at most moderate, completing the estimated gene 
trees using the estimated species tree as a reference can 
be beneficial. However, under higher ILS, the true species 
tree is farther from the true gene trees, which makes the 
true species tree (or an estimate of that tree) less valu-
able as a reference tree. Despite this, we also saw that 
using estimated species trees as reference trees produced 
comparably accurate completions as using the true spe-
cies tree as a reference, and that this held for both mod-
erate and high ILS levels. Hence, OCTAL was robust to 
moderate levels of error in the estimated species tree. 
However, OCTAL is not completely agnostic to the 
choice of reference tree, since the random reference tree 
(which has close to 100% RF error) resulted in very poor 
performance.
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shows the RF error rate between the true gene trees and the gene trees computing using OCTAL (varying the reference tree). Only the 200-gene 
model condition is shown, so each boxplot has 3000 data points (150 incomplete genes across 20 replicates)
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Conclusions
OCTAL is a greedy polynomial time algorithm that 
adds species into an estimated gene tree so as to prov-
ably minimize the RF distance to a given reference tree. 
In our study, OCTAL frequently produced more accurate 
completed gene trees than ASTRAL-II under ILS condi-
tions ranging from moderate to very high; however, the 
improvement under high ILS conditions was much lower 
and less frequent than under moderate ILS conditions.

There are many directions for future work. First, we 
compared OCTAL to ASTRAL-II, but ASTRAL-III [35] 
has recently been developed, and the comparison should 
be made to this new version of ASTRAL. OCTAL could 
also be compared to gene tree completion methods that 
are designed to handle gene tree heterogeneity resulting 
from gene duplication and loss [36], and these compari-
sons could be made on datasets that have evolved under 
multiple causes of gene tree discord (e.g., gene duplica-
tion and loss, horizontal gene transfer, and incomplete 
lineage sorting).

The current approach only adds missing species to the 
estimated gene tree, and so implicitly assumes that the 
gene tree is accurate; since estimated gene trees have 
some error, another approach would allow the low sup-
port branches in gene trees to be collapsed and then 
seek a complete gene tree that refines the collapsed 
gene tree that is close to the reference tree. This is simi-
lar to approaches used in [37–39], each of which aims to 
improve gene trees that use reference species trees, but 
are primarily (or exclusively) based on gene duplication 
and loss (GDL) distances. The optimal completion prob-
lem or the accuracy of the completed gene trees could 
also be based on other distances between trees besides 
the RF distance, including weighted versions [40] of the 
RF distance (where the weights reflect branch lengths 
or bootstrap support values), quartet tree distances, 
geodesic distances [41], or the matching distance. It is 
likely that some of these problems will be NP-hard, but 
approximation algorithms or heuristics may be useful in 
practice.

We did not evaluate the impact of using OCTAL on 
downstream analyses. Since missing data (i.e., incomplete 
gene trees) are known to impact species tree estimation 
methods using summary methods [21], this would be a 
natural next analysis. As an example, if the input includes 
some incomplete gene trees, a species tree could be esti-
mated from the full set of gene trees and then OCTAL 
could use that estimated species tree as a reference tree 
to complete the gene trees. Then, the species tree could 
be re-estimated (using a good summary method) on the 
new set of gene trees, all of which are complete. This two-
step process (completing gene trees using an estimated 
species tree, then re-estimating the species tree) could 

then iterate. It would be interesting to determine whether 
this improves the species tree, and if so under what con-
ditions. It would also be helpful to evaluate the impact 
of completing incomplete gene trees when the genes are 
missing due to true biological loss rather than data col-
lection issues, and hence also to see if OCTAL provides 
any helpful insight into gene evolution (such as better 
estimating the duplication/loss/transfer parameters).

Finally, there can be multiple optima to the RF Opti-
mal Tree Completion problem for any given pair of trees, 
and exploring that set of optimal trees could be impor-
tant. An interesting theoretical question is whether the 
set of optimal solutions admits a compact representa-
tion, even when it is large. From a practical perspective, 
the set of optimal completions could be used to provide 
support values for the locations of the missing taxa, and 
these support values could then be used in downstream 
analyses.
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