
Brejová et al. Algorithms Mol Biol (2017) 12:17
DOI 10.1186/s13015-017-0108-x

RESEARCH

Isometric gene tree reconciliation
revisited
Broňa Brejová*, Askar Gafurov, Dana Pardubská, Michal Sabo and Tomáš Vinař

Abstract

Background: Isometric gene tree reconciliation is a gene tree/species tree reconciliation problem where both the
gene tree and the species tree include branch lengths, and these branch lengths must be respected by the recon-
ciliation. The problem was introduced by Ma et al. in 2008 in the context of reconstructing evolutionary histories of
genomes in the infinite sites model.

Results: In this paper, we show that the original algorithm by Ma et al. is incorrect, and we propose a modified
algorithm that addresses the problems that we discovered. We have also improved the running time from O(N2) to
O(N logN), where N is the total number of nodes in the two input trees. Finally, we examine two new variants of the
problem: reconciliation of two unrooted trees and scaling of branch lengths of the gene tree during reconciliation of
two rooted trees.

Conclusions: We provide several new algorithms for isometric reconciliation of trees. Some questions in this area
remain open; most importantly extensions of the problem allowing for imprecise estimates of branch lengths.

Keywords: Gene family evolution, Gene tree reconciliation, Level ancestor

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
In this paper, we revisit the problem of isometric gene
tree reconciliation introduced by Ma et al. [1, 2]. We
point out several mistakes in the original publications
and provide a corrected and simplified version of the
algorithm. We also improve its running time by employ-
ing appropriate data structures and solve two new vari-
ants of the problem.

We will consider evolution of a single gene family. The
evolutionary history starts with a single ancestral gene
which evolves by a series of duplications, speciations,
and losses, resulting in several present-day species, each
carrying some number of copies of the studied gene. A
particular evolutionary history of a gene family defines
gene tree G and species tree S (see Fig. 1). The leaves of
the species tree S are the present-day species, and the
internal nodes correspond to the speciation events in the
history. The leaves of the gene tree G are the present-day

copies of the gene and the internal nodes correspond to
the duplications and the speciations.

Species trees and gene trees can be reconstructed from
sequence data by well-established methods [3]. However,
one pair of a gene tree and a species tree may correspond
to many different histories, because it is not clear, which
nodes of the gene tree correspond to speciations in the
species tree. The goal of gene tree/species tree reconcili-
ation is to map nodes of the gene tree to the species tree,
and thus to reconstruct the evolutionary history of the
gene family.

Classical approaches to reconciliation consider only
topologies of the gene tree and the species tree. As the
reconciliation is not unique, the goal is to find the most
parsimonious reconciliation minimizing the number of
events. This problem is studied since 1979 [4], and multi-
ple algorithms were developed [5–8].

In this paper, we consider a different variant of the
problem called isometric gene tree reconciliation. In this
problem, branch lengths in both the gene tree and the
species tree are known exactly, and the reconciliation
should obey them. This problem was introduced by Ma

Open Access

Algorithms for
Molecular Biology

*Correspondence: brejova@fmph.uniba.sk
Faculty of Mathematics, Physics, and Informatics, Comenius University,
Mlynská dolina, 842 48 Bratislava, Slovakia

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-017-0108-x&domain=pdf

Page 2 of 16Brejová et al. Algorithms Mol Biol (2017) 12:17

et al. [1], who used this form of gene tree reconciliation
as one of the steps in their polynomial-time algorithm to
reconstruct evolutionary history of several genomes in a
rich model which includes duplications, two and three
breakpoint rearrangements, deletions, and insertions
under the assumptions of the infinite sites model. This
result is rather remarkable, as reconstruction of rear-
rangement histories is typically NP-hard even in simple
models [9].

If both the gene tree and the species tree are rooted,
their isometric reconciliation can be found by a straight-
forward algorithm. Mapping of leaves is given on input,
because we know the species of origin for each gene. To
map an internal node v of the gene tree, we choose one
leaf u in its subtree and map v to the unique place in the
species tree determined by the distance between u and v.
For example, node y in Fig. 2 maps to a point in the mid-
dle of edge (r, x), because this is the unique point on the
path from the root to leaf c, which is situated in distance
3 from c. This algorithm is described in more detail as
Algorithm 1.

However, Ma et al. [1, 2] consider a more difficult prob-
lem, in which the species tree is rooted, but the gene tree
is unrooted. This is needed, because in practice most
of the phylogenetic reconstruction methods produce
unrooted trees. While the species tree can be rooted by
including an outgroup, finding an appropriate outgroup
for a multi-gene family, which may harbor ancient dupli-
cations, is more problematic. Ma et al. give a polynomial-
time algorithm for the isometric reconciliation problem,
and after some unspecified modifications, apply it to real
data with inexact branch lengths. In this paper, we point
out several mistakes in their version of the algorithm and
provide a corrected version.

We also study two extensions of the problem which
were not considered before. First, we extend our algo-
rithm to the case when the species tree is unrooted as
well. We also provide an algorithm for the case when
both trees are rooted, but the branch lengths of the gene
tree are scaled by some unknown factor which needs to
be discovered by the algorithm. This is a first step towards
a more realistic scenario where the branch length are not
known exactly. This particular variant of the problem is
motivated by the observation that individual genes often
differ in their substitution rates; rate variation is a com-
mon component in models of evolution [3].

Reconciliation with some branch length information
was also previously studied in several more complex
models, such as probabilistic approaches considering
branch lengths in S [10–12] and models allowing hori-
zontal gene transfer [13, 14].

The rest of the paper is organized as follows. We start
by formally defining the problem and describing the sim-
ple algorithm for the case when both trees are rooted.
Then we briefly describe the algorithm from the work of
Ma et al. and point out its problems. Next, we provide
a corrected algorithm for reconciling an unrooted gene
tree with a rooted species tree. We also describe algo-
rithms for two extensions of the original problem. At the

a1 a2 a3 b1 b2 c1 c2 a1 a2 b1 c1 c2a3 b2 a b c

history diagram gene tree G species tree S

Fig. 1 An example of the evolutionary history of a gene family and its corresponding gene tree G and species tree S. In the history diagram, species
are shown as gray bands, genes within species as black lines, gene losses as empty circles. Gene identifiers start with species label; thus a1, a2 and a3
are three copies of the studied gene in species a. Duplications are highlighted by gray dotted horizontal lines, speciations by dashed lines

3

1

3 3

a1

c1 c2

q

y
3

2

2 2
a

b c

r

x

gene tree G species tree S

Fig. 2 Mapping of node y in the isometric reconciliation of rooted
gene tree G and species tree S. A more detailed view of this reconcili-
ation can be found in Fig. 3

Page 3 of 16Brejová et al. Algorithms Mol Biol (2017) 12:17

end of the article, we provide further details concerning
our evolutionary models; these details are not necessary
for the algorithms, but help to interpret their results.

Preliminaries
In this section, we introduce the notation used in this
paper and formally define the problem of isometric
reconciliation. Note that Ma et al. define the problem
only briefly, and as we will discuss in the next section,
their definition is not sufficiently stringent. We will also
describe a simple algorithm for isometric reconciliation
of two rooted trees.

Basic tree notation
We will consider rooted and unrooted phylogenetic trees
with non-negative branch lengths. Although in this sec-
tion we briefly consider branches of length zero, all our
algorithms assume that the input trees have strictly posi-
tive branch lengths. On the other hand, the algorithms
do not require that the trees are binary; they can have
nodes of higher degree. We might obtain such nodes by
contracting branches of length zero in a binary phyloge-
netic tree. Some of the trees considered in this work also
have nodes with only one child; these nodes correspond
to subdivisions of edges in a binary tree.

We will now briefly introduce useful tree-related nota-
tion. Given two nodes u and v belonging to the same phy-
logenetic tree, d(u, v) denotes their distance, i.e. the sum
of branch lengths on the unique simple path between u
and v. An edge (u, v) of a rooted or unrooted tree can be
considered as an interval of length d(u, v). The point in
this interval in distance d from node u will be denoted
as pt (u, v, d); this is defined for 0 ≤ d ≤ d(u, v). If a tree
is rooted, we will also use notation pt (u, d) as a shortcut
for pt (u, v, d), where v is the parent of u. We will also use
pt (u, d) when u is the root; it will represent the point
on an implicit edge of infinite length leading to the root
from above.

We can subdivide edge (u, v) at pt (u, v, d) by replacing
it with two edges of lengths d and d(u, v)−d connected to
a new node x. The inverse operation (i.e. replacing a path
of two edges leading through node x of degree two by one
edge of the same length) will be called bypassing node x.
A rooted version of an unrooted tree T is created either by
choosing one internal node of T as the root or by subdi-
viding one of the edges of T and selecting the new node
as the root.

An ancestor of node v in a rooted tree is any node on
the path from v to the root, including v. We use the term
proper ancestor for ancestors excluding v. By anc (u, d)
we denote the point in the tree which is at a distance
exactly d from u on the path towards the root. It can be
one of the ancestors of u, or if no ancestor is in distance

exactly d, it is pt (u′, d′) such that u′ is an ancestor of u,
d′ = d − d(u,u′) > 0 and for any ancestor u′′ of u′ we
have d − d(u,u′′) < 0. Note that we will use this notation
only in trees with strictly positive branch lengths, as oth-
erwise there could be multiple ancestors with distance d.
By lca (u, v), we denote the lowest common ancestor of
nodes u and v.

Isometric mapping and history
Using the introduced notation, we will now define
the central object of our study, the isometric mapping
between trees.

Definition 1 An isometric mapping from a rooted
phylogenetic tree T1 to a rooted phylogenetic tree T2 is a
mapping � of nodes of T1 to nodes of T2 such that if node
u ∈ T1 is the parent of v, then �(u) is a proper ancestor of
�(v) and d(�(u),�(v)) = d(u, v); for trees with strictly
positive branch lengths this condition is equivalent to
�(u) = anc (�(v), d(u, v)).

Note that by induction, the relationship
�(u) = anc (�(v), d(u, v)) holds for any nodes u and v
in G such that u is an ancestor of v. Given an isometric
mapping � and node v in T2, by �−1(v) we denote the
(possibly empty) set of nodes of T1 that map to v.

Recall that we are interested in studying the evolu-
tionary history of a single gene family consisting of spe-
ciations, duplications, and losses. An isometric mapping
from the gene tree to the species tree helps us to inter-
pret the nodes of the two trees as these events. A formal
definition of a history in our model follows; an example
of a history is triple (G, S,�) in Fig. 3.

Definition 2 A history is a triple (G, S,�), where the
gene tree G and the species tree S are rooted phyloge-
netic trees and � is an isometric mapping from G to S.

Inferable histories
Our basic definition of a history is quite general. For
example, it allows trees with zero branch lengths. The
gene tree may also contain leaves that map to internal
nodes of the species tree; such leaves correspond to gene
losses. However, input trees for the isometric reconcili-
ation problem are in practice constructed from extant
genes, and thus they do not contain any deleted genes.
Therefore, our algorithms work with a more restricted
set of inferable histories. To define them, we first need
the following terminology. Consider an arbitrary history
(G, S,�). We will call a leaf v of G extant if �(v) is also a
leaf in S (node v then corresponds to an observed gene
in a sampled taxon). Node v of G is called observable, if

Page 4 of 16Brejová et al. Algorithms Mol Biol (2017) 12:17

it is an extant leaf or if at least two of its children have
at least one extant leaf among their descendants. Non-
observable nodes in G thus include leaves correspond-
ing to gene losses, internal nodes with only gene loss
leaves in their subtrees, but also internal nodes that have
extant leaves among descendants, but all such leaves are
descendants of a single child. Such a node corresponds
to a duplication or a speciation which is not observable
because only one copy remains. Note that the input gene
trees will contain only observable nodes.

Definition 3 A history (G, S,�) is called inferable if
all branch lengths are strictly positive, all nodes of G are
observable and each node v ∈ S with exactly one child
has �−1(v) non-empty.

The definition ensures that in an inferable history, all
nodes with one child in S correspond to duplications.
Note that such a node can be the root of the species tree
if some duplication happened before the first speciation.

Problem specification
Finally, we define the input to our algorithm and the cor-
respondence between this input and the desired output.
An example illustrating the following definitions can be
seen in Fig. 3.

Definition 4 An input partial history is a triple
(GI , SI ,µ) such that GI and SI are rooted or unrooted
phylogenetic trees with positive edge weights, µ is a map-
ping from leaves of GI to leaves of SI, and each internal
node v in both GI and SI satisfies the following:

 • If the tree is rooted, v has at least two children.
 • If the tree is unrooted, v has at least three neighbors.

Definition 5 An inferable history (G, S,�) is called
an isometric reconciliation of the input partial history
(GI , SI ,µ) if the following holds.

 • Tree G is equal to GI if rooted, or it is a rooted ver-
sion of GI.

 • Tree S is obtained from SI by rooting it (if unrooted),
potentially subdividing some edges by new nodes,
and potentially adding a path leading to the original
root of SI from above.

 • Mapping of every leaf v of GI satisfies �(v) = µ(v).

Reconciliation algorithm for rooted trees
If both the gene tree and the species tree are rooted on
the input, the reconciliation can be constructed by the
following simple algorithm.

Algorithm 1 Input: partial input history (GI , SI ,µ), GI
and SI rooted.

Output: isometric gene tree reconciliation (G, S,�) of
(GI , SI ,µ).

We start by mapping nodes of G = GI to nodes or
points on edges of SI. In particular, for every internal
node v of G, we choose some leaf u which is a descend-
ant of v. The definition of isometric reconciliation then
implies that v should map to anc (µ(u), d(u, v)).

Once all nodes are mapped in this way, we create tree
S by subdividing edges of SI and adding a new path from

a1

c1 c2

3

1

3 3

a1

c1 c2

q

y
3

2

2 2
a

b c

r

=µ(a1)

=µ(c1)
=µ(c2)

x
3

1

1

2 2
a

=Φ(a1)
b c

=Φ(c1)
=Φ(c2)

r = Φ(q)

x

Φ(y)

history diagramGI = G SI , µ S,Φ

Isometric reconciliation (GI , SI , µ) (G,S,Φ)

Fig. 3 An example of isometric reconciliation. The underlying history, depicted in the diagram on the right, consists of two speciations, one dupli-
cation and two losses. The two input trees GI and SI are shown on the left. Note that GI does not contain the lost genes. Reconciliation results in a
new species tree S, in which a new node for duplication was added. Isometric mapping � is shown as labels in tree S. Input leaf mapping µ agrees
with leaf labels and is shown for completeness as labels in tree SI

Page 5 of 16Brejová et al. Algorithms Mol Biol (2017) 12:17

above to the original root so that each node of G maps to a
node of S and not to a point inside an edge. A more detailed
description of this process can be found in Algorithm 2.

If the input partial history has an isometric reconcilia-
tion, this algorithm is sufficient to find it, because map-
ping of each node is uniquely determined with respect
to the chosen leaf u. However, it is possible that the
input has no reconciliation, because different choices of
leaf u can give different mappings of node v. Therefore
in the final phase of the algorithm, we verify if for each
edge (u, v) of G (where u is the parent of v) we have that
�(u) = anc (�(v), d(u, v)), i.e. that the constructed map-
ping is a proper isometric mapping. If this condition is
violated for any edge, we reject the input as irreconcilable.

Using the techniques which we describe for Algo-
rithm 2, this algorithm can be implemented in
O(N logN) time, where N is the total number of nodes in
the two input trees.

Triangulation
The previous simple algorithm maps each internal node v
based on the distance to a single already mapped descend-
ant. We cannot use this approach for reconciling unrooted
gene trees, because we do not know which leaves in the
gene tree are descendants of v. Instead, the basic ingredi-
ent in our algorithm will be a triangulation, which maps an
internal node based on its distance to two different already
mapped nodes. This idea is implicitly used also in the algo-
rithm by Ma et al.; here we state and prove it explicitly.

Definition 6 Consider a rooted or unrooted tree GI
and a rooted tree SI with strictly positive branch lengths.
Let x, u and v be three (not necessarily distinct) nodes in
GI such that x lies on the unique simple path connect-
ing u and v. Let u′ and v′ be nodes in SI. By triangulation
�(x,u, v,u′, v′) we understand the node or point in SI con-
structed as follows:

 • Let xu = anc (u′, d(u, x)) and xv = anc (v′, d(v, x)).
 • If one of xu and xv is a descendant of the other, use the

descendant as the triangulation (this includes the case
where xu = xv).

 • Otherwise, the triangulation is undefined.

In our algorithms, we will choose nodes u and v for
which �(u) and �(v) have already been found, and we
will use �(x,u, v,�(u),�(v)) to determine �(x) for
another node x. The following lemma proves the correct-
ness of such a mapping by triangulation.

Lemma 1 Consider a history (G, S,�) with strictly posi-
tive branch lengths. Let x be a node on the path connecting
nodes u and v in G. Then �(x) = �(x,u, v,�(u),�(v)).

Proof Let us consider node a = lca (u, v). This node
is located on the path connecting u and v in G. There
are two possibilities: either a is located on the por-
tion of this path between u and x (including the end-
points), or on the portion between x and v. These
two possibilities are in fact symmetric after switch-
ing u and v. Therefore, we will assume that node a
is on the path from u to x. Vertex u is then a descend-
ant of a, and thus �(a) = anc (�(u), d(u, a)). Since
d(u, a) ≤ d(u, x) , xu is an ancestor of �(a). On the other
hand, x is a descendant of a and v is a descendant of x.
Therefore, �(x) = anc (�(v), d(v, x)) and so node xv
will be equal to �(x). Since xu is an ancestor of �(a) and
xv is a descendant of �(a), xv is a descendant of xu and
indeed, xv = �(x) as required. □

Problems in the original algorithm
The two papers by Ma et al. [1, 2] include the same algo-
rithm for isometric gene tree reconciliation in the case
when the input gene tree GI is unrooted and the species
tree SI is rooted. In this section, we describe some of its
details and point out mistakes in the original paper. We
start with the original definition of isometric reconcilia-
tion as given by Ma et al. (with only slight changes due
to different notation and terminology used in this paper).
Note that Ma et al. use the same symbol for the input
trees GI and SI and their output versions G and S; we have
kept their notation for the purpose of the next definition.

Definition 7 (Original definition) Any mapping � from
a gene tree G to a species tree S that roots the gene tree is
an isometric reconciliation if

1. Every leaf of G maps to the leaf of the designated spe-
cies in S.

2. Each internal node of G maps to a speciation node in
S or a point on a branch in S.

3. The new root q of G maps to a point �(q) on a
branch in S such that any other node x in G maps to
�(x) below �(q) and d(�(x),�(q)) = d(x, q).

Figure 4 shows that this definition is not sufficiently
stringent to characterize meaningful reconciliations. The
mapping � shown in the figure satisfies all of the above
conditions, but does not correspond to any valid history.
In particular, node x in G is a parent of leaf a1, but node
�(x) is not an ancestor of �(a1).

This problem is very easily corrected by demanding
that mapping � preserves distances and ancestor rela-
tionships between every pair of nodes in G, or equiva-
lently, between every pair of adjacent nodes in G, as we
have done in our Definition 1.

Page 6 of 16Brejová et al. Algorithms Mol Biol (2017) 12:17

Overall scheme of the original algorithm
The algorithm of Ma et al. proceeds by first mapping
leaves of GI to corresponding leaves of SI and then repeat-
edly choosing one unmapped node x from GI which has
at least two of its three neighbours already mapped. Each
such node x is mapped to its corresponding point �(x),
and if one of the edges incident to x contains the correct
position of the root, the gene tree is rooted. This process
continues, until only one node remains.

The overall scheme of the algorithm reveals another
minor issue: the algorithm does not work for gene trees
with two leaves. The leaves can be mapped trivially, but
we also need to find the position of the root on the edge
connecting them in GI, and since in the algorithm, root-
ing is done simultaneously with mapping internal nodes,
it is not obvious how to find the root in this case.

Mapping one node
The algorithm for mapping an internal node and, if
appropriate, rooting the gene tree, consists of a rather
extensive case analysis, with about ten different cases.
After simulating the algorithm on several examples, we
have discovered that it does not always work correctly.
Figure 5 shows a simple input, which can be reconciled.
The algorithm maps the only internal node x correctly,
but sometimes fails during rooting, rejecting the input
as irreconcilable. When mapping the last internal vertex,
the algorithm arbitrarily chooses, which two neighbours
of this vertex are considered first, and depending on this
choice, the algorithm may fail or succeed on this input.

Speciation and duplication happening at the same time
Ma et al. assume that the input trees are binary and that
two events (two duplications or a duplication and a spe-
ciation) never happen at the same time. However, even
binary input trees may lead to situations, where two
events happen at the same time. A simple example is
when the root of G coincides with one of the internal ver-
tices of GI, and thus it has three children. This situation
is handled by the original algorithm and rejected in case
7(b)iii. An example of such an input is shown in Fig. 6.

Figure 7 shows a similar input, with only a single branch
length changed. Here also a duplication happens at the same
time as a speciation, but the rooted gene tree G remains
binary thanks to later losses. The original algorithm accepts
this input, which seems inconsistent with handling the input
from Fig. 6. Note that both of these inputs can be reconciled
so that they satisfy our definition of isometric reconciliation
(as well as the weaker original definition).

Our algorithms work under a relaxed evolutionary
model, in which we allow an arbitrary combination of
events to happen at the same time. Thus our modified
algorithm shown in the next section will reconcile both
of these inputs.

If instead we wish to stipulate that no two events may
happen at the same time, we need to modify the algo-
rithm so that it rejects both of these inputs and also
modify the definition of isometric reconciliation so that
it allows only histories satisfying this requirement. At the
end of this article, we discuss simple histories in which
each node of the species tree corresponds to a single
event. The strict definition of isometric reconciliation
could require that the output history is an inferable ver-
sion of some simple history with strictly positive branch
lengths (see Definition 10). Note that this condition can
be verified for a given inferable history in a postprocess-
ing step of a reconciliation algorithm using the character-
ization given in Claim 4 and Definition 8.

1

2
1

1

a b

Φ(q)
r

Φ(x)1
1

5

a1

b1

b2

x

2
3

1 1

a1 b1 b2

q

x2 2

a b

r

SGGI SI

Fig. 4 A counter-example for the original definition of isometric
reconciliation. Trees GI and SI are the input trees, G is the rooted ver-
sion of GI and S is SI with duplication nodes added. This reconciliation
satisfies Definition 7, but it does not correspond to any evolutionary
history

a1

b1 b2

1

1 2

b1

b2

a1x 1
2

a

b

r

history diagramGI SI

Fig. 5 An example which can be reconciled, but which the original
algorithm may recognize as irreconcilable. When mapping node x,
all three neighbors are already mapped, and thus the algorithm by
Ma et al. can choose any two of them as nodes u and v. If it chooses
b1 and b2, it works correctly, but if it chooses a1 and b1, it will reject the
tree in step 7(b)iii of the original algorithm [1, page 17 of the Supple-
ment]

a1 b1 c1

2

2
2

a1

b1

c1
x 1

2
1 1

a b c

r

y

history diagramGI SI

Fig. 6 An input rejected by the original algorithm where the recon-
ciliation maps a duplication and a speciation to the same point in the
history

Page 7 of 16Brejová et al. Algorithms Mol Biol (2017) 12:17

Summary of issues
To summarize, the original definition of isometric rec-
onciliation allows nonsense mappings that do not
correspond to any evolutionary history and does not ade-
quately handle cases with simultaneous duplication and
speciation. In addition, the original algorithm does not
handle gene trees with two leaves and sometimes fails to
root valid inputs. In the next section, we present a new
algorithm that corrects these problems and, at the same
time, simplifies the proof of correctness by reducing the
case analysis to a minimum.

The modified algorithm
In this section, we describe a new version of the algo-
rithm for finding isometric gene tree reconciliation
(G, S,�) satisfying Definition 5, provided that in the
input partial history (GI , SI ,µ), gene tree GI is unrooted
and species tree SI is rooted. Although the overall idea
is similar to the original algorithm, we have made it
more modular, with several passes through the tree,
each relatively simple. This allows us to avoid com-
plicated case analysis in both the algorithm and the
proof.

To keep the algorithm efficient, we will defer explicit
construction of S with added duplication nodes. In the
first stages of the algorithm we create mapping �, but
when a node of GI maps to pt (u, d), we will keep the
mapping simply as a pair (u, d).

Algorithm 2 Input: partial input history (GI , SI ,µ), GI
unrooted, SI rooted.

Output: isometric gene tree reconciliation (G, S,�) of
(GI , SI ,µ).

Stage 1: Initialization.
 Set G = GI and for each leaf v of G, set �(v) = µ(v).
Stage 2: Map internal vertices of G.
 Repeatedly consider an unmapped internal node x
of G with at least two mapped neighbors u and v. Set

�(x) = �(x,u, v,�(u),�(v)). If this triangulation is
not defined, reject the input.
Stage 3: Add new nodes to G.
 Consider each edge (u, v) of G. We want to decide if
this edge should be subdivided by a new node, which
will be a potential root. Let � = lca (�(u),�(v)) and let
ǫ = (d(u, v)− d(�(u), �)− d(�(v), �))/2 . If ǫ > 0 or
� /∈ {�(u),�(v)}, create a new node q = pt (u, v, d

(�(u), �)+ ǫ) (see Fig. 8). Set �(q) = anc (�, ǫ).
Stage 4: Create S.
 For each node u of SI create a list of implicit nodes of
the form pt (u, d) which were created in Stages 2 and
3 as �(x) for some node x of G. This can be done by a
single traversal through all nodes of G. For each node
u of SI, sort these implicit nodes by distance d and
remove duplicates. Then replace the edge from u to its
parent by a new path leading through all nodes of the
form (u, d) in the sorted order.
Stage 5: Root G.
 After Stage 3, the root should be among nodes of
G. For each node v of S create set �−1(v) by travers-
ing all nodes of G and inserting each into the corre-
sponding set. Select a node u in S such that �−1(u) is
non-empty and each proper ancestor v of u has �−1(v)
empty (there is always such a node u for non-empty
G). Select one of the nodes in �−1(u) as the root.
Stage 6: Check that mapping � is isometric.
 Consider each edge (u, v) of G where u is the par-
ent of v and check that it satisfies condition
�(u) = anc (�(v), d(u, v)) from Definition 1.

Proof of correctness
First let us assume that input partial history (GI , SI ,µ)
has some isometric reconciliation (G∗, S∗,�∗). We will
prove that the algorithm will indeed output (G∗, S∗,�∗)
on this input, regardless of arbitrary choices in the
algorithm, such as the order of processing of vertices
in Stage 2. This implies that the isometric reconcilia-
tion is unique, because if there were two distinct recon-
ciliations, the algorithm cannot produce both of them
simultaneously.

a1 b1 c1

2

2
4

a1

b1

c1
x 1

2
1 1

a b c

r

y

history diagramGI SI

Fig. 7 An input accepted by the original algorithm, where reconcilia-
tion maps duplication and speciation to the same point in the history

u q v
Φ(u) Φ(v)

λ

Φ(q)

d(Φ(u), λ) + d(Φ(v), λ) +
d(Φ(u), λ) d(Φ(v), λ)

d(u, v)

Fig. 8 Illustration of stage 3: creating a potential root q inside edge
(u, v)

Page 8 of 16Brejová et al. Algorithms Mol Biol (2017) 12:17

Correctness of the mapping constructed in Stage 2
can be obtained by induction from the properties of tri-
angulation. If for both mapped neighbors of x we have
�(u) = �∗(u) and �(v) = �∗(v), then by Lemma 1 we
have that �(x) = �∗(x). Since the mapping of leaves is
given on the input, the algorithm will correctly recover
�∗ for each internal node of GI. Note that the existence of
an unmapped node with at least two mapped neighbors
in each iteration of the algorithm is guaranteed by basic
properties of trees.

The root of G∗ is either one of the nodes of GI or a new
node subdividing some edge; this is the only allowed
addition of a node to G. We will now prove that the only
node potentially added in Stage 3 is the root of G∗.

Lemma 2 If Stage 3 of the algorithm considers an edge
(u, v) of GI with its endpoints correctly mapped to S, it will
subdivide this edge by a new node if and only if G∗ has a
root inside this edge. The new node will be created at the
correct position and mapped correctly.

Proof Let q∗ be the root of G∗, and let us consider three
cases regarding the position of q∗ with respect to u and v.

Case 1 q∗ is inside edge (u, v), excluding the end-
points. Let d = d(u, v) and let δ = d(q∗,u). We have
0 < δ < d. Since q∗ is the parent of both u and v in G∗ ,
�∗(q∗) = anc (�∗(u), δ) = anc (�∗(v), d − δ). We
will consider two subcases concerning the position of
� = lca (�∗(u),�∗(v)).

 • If � = �∗(q∗), a new node will be cre-
ated, because � /∈ {�(u),�(v)}. We have
ǫ = (d − δ − (d − δ))/2 = 0, so the node will be cre-
ated at distance δ from u, as desired.

 • If �∗(q∗) is not �, � must be a descendant of �∗(q∗),
with d(�,�∗(q∗)) = ǫ′ > 0 . Note that in this case,
it is possible that � ∈ {�∗(u),�∗(v)} . However,
δ = d(�∗(u), �)+ ǫ′ and d − δ = d(�∗(v), �)+ ǫ′ and
thus ǫ = (d − (δ − ǫ′)− (d − δ − ǫ′))/2 = ǫ′ > 0.
Thus a node will be created, and its distance from u
will be correctly set to d(�∗(u), �)+ ǫ = δ.

Case 2 After removal of edge (u, v) from G∗, q∗ is in
the connected component containing u, including
the case q∗ = u. Then �∗(u) = anc (�∗(v), d(u, v))
and thus � = �∗(u). In addition, d(�∗(u), �) = 0,
d(�∗(v), �) = d(u, v) and thus ǫ = 0. No node will be
created, which is correct, as in this case the root is not
inside this edge.
Case 3q∗ is in the connected component containing v.
This case is symmetrical to case 2. □

After Stage 3, we will thus have all nodes of GI cor-
rectly mapped to S, and if the root of G is not one of the
nodes of GI, it was also correctly added and mapped.
Stage 4 simply changes the representation of S from
implicit to explicit. The definition of isometric mapping
implies that if q∗ is the root of G∗, then all other nodes of
G∗ map to proper descendants of �∗(q∗) and thus q∗ is
the only node that can be selected in Stage 5 as the root.
Thus the algorithm will correctly recover the correct
answer (G∗, S∗,�∗).

To finish the proof of correctness, we need to prove
that the algorithm will correctly reject any input for
which no reconciliation exists. Thanks to explicit checks
in Stage 6, the output will be always a correct isometric
reconciliation, with one possible exception: Stage 3 may
possibly subdivide edges of G by nodes which are not
the root. However if a triple (G, S,�) exists which satis-
fies all conditions of isometric reconciliation except for
some spurious edge subdivisions in G, a proper isometric
reconciliation would exists as well. This is a contradic-
tion, because in this part of the proof, we assume that the
input cannot be reconciled.

Running time analysis
Let m be the number of nodes of GI and n the number of
nodes of SI. Ma et al. claim that their algorithm works in
O(mn) time. We will prove that a more efficient imple-
mentation of isometric reconciliation is possible. Within
the algorithm, we use several nontrivial operations on S:

 • Finding lca of two nodes. We can use efficient data
structures for solving lca queries in O(1) time after
O(n) preprocessing of the tree [15, 16].

 • Determining if node u is an ancestor of v. This is
equivalent to asking if u = lca (u, v).

 • Computing the distance between node v and its
ancestor u. This can be done in O(1) time by keep-
ing the distance from the root of SI in each node and
subtracting these distances for u and v.

 • Finding anc (u, d). This operation is known as level
ancestor. For unweighted trees, it can be solved in
O(1) time after O(n) preprocessing [17] and for trees
with integer weights in O(log log u) time, where u
is the maximum edge weight [18]. Below, we out-
line a simplified version of this data structure which
achieves O(log n) time per query, but works for arbi-
trary edge weights, as edge weights in phylogenetics
are typically not expressed as integers.

Using these building blocks, the rest of the algorithm
is relatively straightforward. For Stage 2, we maintain a
counter of mapped neighbors for each internal node of
GI and a stack of unprocessed nodes with at least two

Page 9 of 16Brejová et al. Algorithms Mol Biol (2017) 12:17

neighbors already mapped. In each step, we remove one
node from the stack, map it, and increase the counters of
its neighbors. If any counter reaches 2, the correspond-
ing node is added to the stack. The overall overhead for
selecting nodes for mapping in Stage 2 is thus O(m), and
mapping each node works in O(log n). Stage 3 involves a
simple loop through all edges, and each edge is processed
in O(log n) time. Stage 4 works in O(n+m logm) time
and Stages 5 and 6 work in O(n+m) time. The overall
running time of the algorithm is thus O(N logN), where
N = n+m.

Linear-time precomputation for various tree operations
can be initially done for the original tree SI and after Stage
4 recomputed for S. However, in Stages 2 and 3, some
queries will use as arguments implicit nodes pt (u, d)
instead of regular nodes of SI. All tree queries can be eas-
ily extended to work also for such generalized arguments.
For example, anc (pt (u, d1), d2) = anc (u, d1 + d2).
When computing lca (pt (u, d1), pt (v, d2)), we can com-
pute � = lca (u, v) and then distinguish several cases
based on whether � ∈ {u, v}.

A simple level ancestor for arbitrary weights
For completeness, we briefly describe a data structure
for finding anc (u, d) in O(log n) time for arbitrary edge
weights, provided that we can do addition, subtraction,
and sign operation in constant time. We use a simplified
version of the data structure by Amir et al. [18]; the sim-
plification is possible thanks to the fact that the running
time is worse than the running time achievable for inte-
ger edge weights.

Let node weight w(u) be the sum of edge weights on
the path from the root to node u. To compute anc (u, d) ,
we are looking for the highest ancestor v of u such that
w(u)− w(v) ≤ d. If we had only a single path instead of
a tree, we would be looking for a predecessor of value
x = w(u)− d in the sequence of node weights. Since this
sequence is increasing, we can use binary search to find
the desired index v.

In a general tree, we will use the heavy path decompo-
sition [15]. An edge connecting node v to its parent p in
a tree is called heavy if the size of the subtree rooted at
v (the number of nodes) is at least half of the size of the
subtree rooted at p. Otherwise the edge is called light.
For each node, at most one of its children is connected
to it by a heavy edge. Therefore, heavy edges form a set
of vertex-disjoint paths. Vertices which are not incident
to any heavy edge will be considered as heavy paths
of length 0 so that each node is included in exactly one
heavy path.

We create an array of node weights for each heavy
path. Each vertex v also keeps the reference to the highest
node on its heavy path. When searching for anc (u, d), we

search along the path from u to the root to find the heavy
path that contains the answer. Thanks to the properties of
the heavy path decomposition, there are at most O(log n)
light edges on any leaf-to-root path, and thus we can use
linear search to iterate through heavy paths encountered
on the way to the root. In constant time, we can jump to
the head of the path and comparing x to the value stored
in the head and in the head’s parent, we can determine
if this path contains the answer. Within the correct path,
we then find the answer by binary search. The overall
time is thus O(log n).

The data structure for integer weights by Amir
et al. [18] uses binary search over heavy paths, which
requires repeated use of the unweighted level ancestor
data structure. Instead of binary search within a path,
they use efficient data structures for the predecessor
problem with integer keys.

Extensions of the problem
In this section, we consider two extensions of the isomet-
ric reconciliation problem. First, we consider the situa-
tion when both input trees are unrooted. Note that if the
input species tree is rooted, there is at most one reconcil-
iation, even if GI was unrooted. This is no longer the case
when both SI and GI are unrooted. Next we will return to
the simple scenario when both input trees are rooted, but
allow the branch lengths of GI to be scaled by an arbitrary
positive scaling factor.

Unrooted input trees
If both input trees are unrooted, some inputs may have
multiple reconciliations. For example, the input in Fig. 9
has a unique reconciliation, while in a similar input
in Fig. 10, the species tree can be rooted at any point
pt (a, b, ρ) for ρ ∈ [1, 4) inside its only edge (a, b).

We will now describe a different version of the algo-
rithm for unrooted GI and rooted SI, which will form the
basis of our algorithm for unrooted SI.

Algorithm 3 Input: partial input history (GI , SI ,µ), GI
unrooted, SI rooted.

Output: isometric gene tree reconciliation (G, S,�) of
(GI , SI ,µ).

In the first part of this algorithm, we consider each
edge (u, v) of GI separately, and run modified Stages 2, 3,
and a part of Stage 6 in the following three steps.

Step A: For each x ∈ {u, v}, map x as follows. If x is a
leaf, set �(x) = µ(x). Otherwise let ℓ1 and ℓ2 be two
leaves of G such that x is on the simple path connecting
them. Set �(x) = �(x, ℓ1, ℓ2,µ(ℓ1),µ(ℓ2)). If the trian-
gulation is not defined, reject the input.

Page 10 of 16Brejová et al. Algorithms Mol Biol (2017) 12:17

Step B: If needed, subdivide edge (u, v) by a new
potential root q, as in Stage 3 of Algorithm 2.
Step C: If the edge was not subdivided, check that
d(�(u),�(v)) = d(u, v). If the edge was subdivided by
q, do an analogous distance check for both new edges
(u, q), (q, v). If the check fails, reject the input.

Step A is a modified version of Stage 2. Originally we
mapped nodes by triangulating from already mapped
neighbors of a node; now we use only known mapping
for leaves of G. This change allows individual edges to be
processed independently from each other. Correctness of
the mapping is guaranteed by Lemma 1. However, inter-
nal nodes belong to multiple edges, and thus they will be
mapped multiple times in Step A. To keep the mapping
consistent, we will deterministically choose the same pair

of leaves ℓ1 and ℓ2 each time when mapping node x. Once
this process is completed for all edges, we will run the
original Stages 4, 5 and 6 to finish creating SI, GI and to
check the correctness of the mapping.

We will now describe the algorithm for reconciling two
unrooted trees.

Algorithm 4 Input: partial input history (GI , SI ,µ), GI
and SI unrooted.

Output: the set of all isometric gene tree reconcilia-
tions (G, S,�) of (GI , SI ,µ).

This algorithm is more complex, and we will describe
it on the following pages. It is based on simulating Algo-
rithm 3 on multiple inputs with different root positions
in SI. The problem with applying the above algorithm for
unrooted species tree is that the results of many inter-
mediate operations (namely computing anc and lca ,
determining descendant-ancestor relationships, com-
puting ǫ when adding a root, and computing distances)
are dependent on the position of the root of the species
tree. However, when we move the root only by a small
distance, the results of these operations often remain the
same or also change only by a small amount. The idea
of our algorithm is to split all possible positions of the
root into intervals that will produce essentially the same
results.

3

5

3

a1

a2

b1
x

6
a b

1

4 3 3

q

x

a1a2 b1

1

3 3

Φ(q)
r = Φ(x)

a b

GI SI G S

Fig. 9 An example of unrooted input trees GI and SI which have only
one possible isometric reconciliation (G, S,�)

3

3

5

a1

a2

b1
x

4
a b

ρ− 1
6− ρ

33

q

x

a1a2

b1

ρ− 1
3− ρ

ρ
4− ρ

Φ(q)

Φ(x)
r

a

b

ρ− 1 6− ρ

33

q

x

a1a2

b1

2

ρ− 3

3

4− ρ

Φ(q)

r

a

b

Φ(x)

GI SI

ρ (1, 3): G S ρ (3, 4): G S

Fig. 10 An example of unrooted input trees GI and SI such that the species tree can be rooted at any point pt (a, b, ρ) for ρ ∈ [1, 4). The lower part
of the figure shows separately solutions for ρ ∈ (1, 3) and ρ ∈ (3, 4). These two cases differ in the position of �(x). For ρ = 1, node q coincides with
x (and thus �(q) coincides with �(x)) and for ρ = 3, node r coincides with �(x). Case ρ = 4 is not possible because our definitions do not allow
rooting a phylogenetic tree in its leaf. Note that the species tree cannot be rooted at position pt (a, b, ρ) for ρ ∈ (0, 1)

Page 11 of 16Brejová et al. Algorithms Mol Biol (2017) 12:17

Unequivocal intervals and the outline of the algorithm.
Consider edge (xa, xb) of SI and interval (a, b) such that

0 ≤ a ≤ b ≤ d(xa, xb). Consider rooted versions of SI with
root r = pt (xa, xb, ρ) for ρ ∈ (a, b), i.e., the root r is inside
interval (a, b) at a distance ρ from xa. We will say that the
interval (a, b) is unequivocal if for any two ρ1 and ρ2 from
(a, b), Algorithm 3 will produce essentially the same rec-
onciliation, possibly differing only in branch lengths, and
also all intermediate steps in the algorithm will give results
which differ only in distances and do not alter the deci-
sions of the algorithm in an important way. We will leave
this requirement vague at the moment; we will give further
details when discussing particular steps of the algorithm.

As we will show, we can simulate Algorithm 3 for all
points in an unequivocal interval simultaneously. How-
ever, since the exact position of the root is unknown,
we are not able to uniquely determine exact locations
of some points which are the result of operations such
as anc (x, d), particularly for points located above the
root. We will express their positions parametrically as
pt (r, d + cρ), where parameter ρ is the unknown dis-
tance of the root from xa, and d and c are known con-
stants. We will call points of this form parametric, while
the uniquely placed points will be fixed.

Our algorithm also needs to discover unequivocal
intervals. This will proceed as follows. We start with a
whole edge (xa, xb) as a candidate unequivocal interval,
i.e. a = 0 and b = d(xa, xb). We will simulate Algorithm 3,
attempting to either produce a single parametric recon-
ciliation for this interval, or to reject the whole interval as
a possible root location. However, in the process we may
discover that some decision in the algorithm cannot be
done uniformly for the whole interval, and thus the inter-
val will be split into two subintervals. These subintervals
become new candidate unequivocal intervals and the
algorithm will continue processing each of them sepa-
rately. Thus we start with one interval per edge and suc-
cessively divide intervals into smaller and smaller parts,
until we obtain intervals which are unequivocal. The
algorithm will produce an answer for each such unequiv-
ocal interval.

Note that the simulation only deals with points inside
open intervals (a, b). In addition, we separately run Algo-
rithm 2 or 3 for SI rooted in every internal node and for
SI rooted at each unequivocal interval boundary pro-
duced by the algorithm.

Simulating the algorithm for a single candidate une-
quivocal interval.

Consider now root positions inside a single inter-
val (a, b) on edge (xa, xb). We will now describe how to
produce a parametric reconciliation by simulating Algo-
rithm 3. If the interval (a, b) is not unequivocal, the simu-
lation will detect it and split the interval into subintervals

at value of ρ for which some intermediate result of the
algorithm materially changes.

Consider now running Steps A, B and C of Algorithm 3
on some edge (u, v) of G. In Step A, we start by comput-
ing xu and xv needed in triangulation (see Definition 6).
Both of these nodes are found as anc (ℓ, d) for some leaf
ℓ and distance d. Since SI is rooted inside edge (xa, xb),
leaf ℓ must be a descendant of xa or xb. First let us assume
that it is a descendant of xa.

We need to consider three cases. First, if
d ≤ d(ℓ, xa)+ a, the position of anc (ℓ, d) is fixed:
it is somewhere in the subtree rooted at xa or inside
edge (xa, r) of S in a known distance from xa. Sec-
ond, if d ≥ d(ℓ, xa)+ b, point anc (ℓ, d) will be par-
ametric at pt (r, d − d(ℓ, xa)− ρ). And finally, if
d − d(ℓ, xa) ∈ (a, b) , point anc (ℓ, d) may be either
inside edge (xa, r) of S or above the root r, depending on
the exact position of the root, which means that inter-
val (a, b) is not unequivocal. We will subdivide interval
(a, b) at value d − d(ℓ, xa), where the relative position of
anc (ℓ, d) and r changes. In each of the two new intervals,
we will have anc (ℓ, d) either fixed or parametric as above,
and thus this particular step of the algorithm will run
without producing any new subintervals.

If ℓ is a descendant of xb, the situation is similar. For
simplicity, let ρ′, a′ and b′ be distances from xb analo-
gous to ρ, a, b, i.e. ρ′ = d(xa, xb)− ρ , a′ = d(xa, xb)− a,
and b′ = d(xa, xb)− b. Then if d ≤ d(ℓ, xb)+ b′, point
anc (ℓ, d) is fixed; if d ≥ d(ℓ, xb)+ a′, we get a
parametric form anc (ℓ, d) = pt (r, d − d(ℓ, xb)− ρ′) =
pt (r, d − d(ℓ, xb)− d(xa, xb)+ ρ) , and if
d − d(ℓ, xb) ∈ (b′, a′), we split interval (a, b) at value
d(xa, xb)− d + d(ℓ, xb).

After computing both xu and xv in this way, the origi-
nal interval (a, b) was split into up to three smaller inter-
vals, each of which is processed separately. Points xu
and xv might be in a given interval either fixed or para-
metric of the form pt (r, d + cρ), where c ∈ {−1, 1}. To
conclude triangulation, we need to determine if one of
xu and xv is a descendant of the other. This can be done
easily if at least one of them is fixed or if both of them
are parametric with the same value of c. However, if
xu = pt (r, d1 + c1ρ), xv = pt (r, d2 + c2ρ) and c1 �= c2,
we need to solve the linear equation d1 + c1ρ = d2 + c2ρ .
If the solution ρ of this equation is inside (a, b), we split
the interval at this value of ρ. Each of the new subinter-
vals (or the whole interval if there was no split) then has
the same descendant-ancestor relationship between xu
and xv across its whole length. Overall, the algorithm
either rejects the current interval as a possible location of
the root or selects one of xu and xv as �(x).

The mapping of one node thus can produce up to 5
new interval endpoints, and since we map both u and v,

Page 12 of 16Brejová et al. Algorithms Mol Biol (2017) 12:17

we get at most 10 endpoints and 11 subintervals in total.
In Step B (Stage 3 of Algorithm 2), we start by comput-
ing � = lca (�(u),�(v)). Again, if at least one of �(u)
and �(v) is fixed or if they are both parametric with the
same c, � can be easily computed. Conversely if they are
both parametric with different values of c, we solve the
linear equation, split the interval as needed, and deter-
mine which is the ancestor of the other in each resulting
interval.

Next we need to compute ǫ = (d(u, v)− d(�(u),

�)− d(�(v), �))/2. For this, we need to compute
d(�(u), �) and d(�(v), �) . Each of these two distances
is measured between two points which may be either
fixed or parametric, and thus the distance is in the form
d + cρ, where c ∈ {0, 1,−1, 2,−2}, and thus ǫ is also of
such a form with c ∈ {0, 0.5,−0.5, 1,−1, 1.5,−1.5, 2,−2}.
To determine, if ǫ is positive, we solve the equation
d + cρ = 0 and split the current interval if the solution
is inside it. Note that the position of the new root x in G
might also be parametric of the form pt (u, v, d + cρ) and
�(x) = anc (�, ǫ) might be parametric with c from some
finite set of values.

Finally, in Step C we compare distances between adja-
cent nodes p and q in G and �(p) and �(q) in S; this
is done for one or two pairs of nodes depending on
whether edge (u, v) was subdivided. The distances in
both trees might be parametric and to establish equal-
ity, we may again need to solve a linear equation and split
the interval. In addition, to measure distance between
two parametric points in S of the form pt (r, d1 + c1ρ)
and pt (r, d2 + c2ρ) , we need to distinguish, which of
them is the ancestor of the other, and thus we may
need to split the current interval at the point where
d1 + c1ρ = d2 + c2ρ.

Overall, in processing one edge (u, v) of GI, we have
split the original candidate unequivocal interval cover-
ing the whole edge (xa, xb) into O(1) subintervals and for
each we have executed Steps A, B and C. Some of these
subintervals might have been rejected by the algorithm.
This is done independently for every edge (xa, xb) of SI
and every edge (u, v) of GI, and thus overall we may have
up to O(nm) interval endpoints. We will create a new set
of candidate unequivocal intervals by pooling all inter-
val endpoints together and creating a candidate inter-
val between every two adjacent endpoints. Within such
a new candidate unequivocal interval, the completed
stages of the algorithm would run without producing fur-
ther endpoints.

For each of these intervals we now consider the remain-
ing stages of the algorithm. Let us first assume that we do
not need an explicit representation of S and let us skip
Stage 4. In Stage 5, we create lists �−1(x) for both explicit
and implicit nodes of S; note that implicit nodes might be

fixed or parametric. Let us consider the set R of nodes for
which �−1(x) is non-empty. Among nodes of R which are
parametric with the same value of c, we can eliminate all
except the one with the highest value of d, which is the
only potential candidate for the root. Also any parametric
node eliminates all fixed nodes, which are necessarily its
descendants. If we are left with several candidate para-
metric nodes with different values of c, we can perform
all pairwise comparisons by solving linear equations and
subdividing the current interval further until each new
interval has a uniquely determined highest value. Since
c can have at most O(1) different values, we will subdi-
vide each interval O(1) times, thus keeping the number of
intervals O(nm).

In Stage 6, we need to compare distances and ancestor
relationships between adjacent nodes u and v of G and
their counterparts �(u) and �(v) of S. However, since we
have already done a partial correctness check in Step C,
no further interval subdivision is necessary in this step.

If desired, it is also possible to explicitly construct S.
For that we need to order all the parametric nodes by the
size of their value d + cρ so that they can be placed on
the new path leading to the root. Again, implicit nodes
with the same c can be ordered easily by their value of
d. To compare other pairs, we solve all pairwise equa-
tions of the form d1 + c1ρ = d2 + c2ρ and subdivide the
current interval at the points where this equation has a
solution. In each resulting interval, the relative order of
all implicit nodes is uniquely determined. For each start-
ing interval, we solve O(m2) equations, obtaining O(m2)
intervals. Thus the overall number of intervals is O(nm3) .
The running time is O(nm3(n+m) log(n+m)) due to
data structures needed for level ancestor.

To summarize, the algorithm described above produces
a solution which is a set of intervals on the edges of SI.
For each interval we obtain a parametric reconciliation in
which the position of the nodes above the root is given in
the form pt (r, d + cρ) where ρ is the distance of the root
position from some node xa of SI. Our algorithm runs in
O(nm3(n+m) log(n+m)) time. The main factor is the
number of intervals which we estimated as O(nm3), but
perhaps a better upper bound on the number of intervals
can be found.

Scaling branch lengths
So far we have assumed that the branch lengths of the
two input trees are known exactly. In this section, we
consider a slight relaxation of this assumption, in which
we assume that all branch lengths in the gene tree should
be multiplied by some unknown constant factor α > 0 .
For tree G, let αG denote the tree obtained from G by
multiplying all branch lengths by α. The question is for
which values of α is gene tree αGI reconcilable with SI?

Page 13 of 16Brejová et al. Algorithms Mol Biol (2017) 12:17

This variant of the problem is an idealized model of the
situation where different genes evolve by different rates.
We will address this problem for the simplest scenario
where both input trees GI and SI are rooted. We will also
assume that for each leaf v of SI, µ−1(v) is non-empty.
This condition can be easily ensured by input preprocess-
ing, where we delete all subtrees of SI to which no leaf of
GI maps.

We say that a rooted tree is ultrametric, if all its leaves
are at the same distance from the root [3]. Clearly, if the
input trees can be reconciled and one of them is ultra-
metric, the other must be ultrametric as well; otherwise
distances from the root to some leaves could not match
in the mapping. It turns out that ultrametric and non-
ultrametric trees behave quite differently. The follow-
ing two claims state the results, and their proofs include
algorithms for finding appropriate values of α.

Claim 1 If neither GI nor SI are ultrametric, there is at
most one value of α > 0 such that αGI can be reconciled
with SI.

Proof Let q be the root of GI and let a and b be
two leaves of GI such that δG = d(q, a)− d(q, b) is
greater than zero. Such leaves must exist in a tree
which is not ultrametric. Let r be the root of SI, and let
δS = d(r,µ(a))− d(r,µ(b)). Clearly, we need to scale GI
so that αδG = δS, which is possible for at most one value
of α > 0.

Once we have α fixed, we can run Algorithm 1 for
rooted GI and SI to check if αGI and SI are reconcilable.
 □

Claim 2 If both GI and SI are ultrametric, then αGI and
SI can be reconciled for all α ≥ α∗ for some value α∗.

Proof Let v be a node of GI. Let hG(v) denote its height,
i.e., the distance of v from the leaves in its subtree. Next,
let Xv be the set of all leaves which are descendants of v
and let µ(Xv) be the set of leaves of SI where they map via
input mapping µ. Let xv be the lowest common ancestor
of all leaves in µ(Xv). By hS(xv), we will denote the height
of node xv in SI.

Clearly, � must map v to xv or its ancestor, because �(v)
must be an ancestor of each leaf in Xv. Therefore αhG(v)
must be at least hS(xv). We will set α∗ to be the maximum
of values hS(xv)/hG(v) for all internal nodes v of GI.

Consider now some α ≥ α∗ and assume that we use
Algorithm 1 for reconciling αGI to SI. To map an internal
node v of GI, the algorithm uses an arbitrarily chosen leaf
u from the subtree rooted at v. Since αhG(v) ≥ hS(xv),
v will map to an ancestor of xv. Since GI and SI are

ultrametric, all choices of u will map v to the same height,
and since this height is at or above the height of the com-
mon ancestor xv, all choices of u will map v to the same
node or point of SI. This means that the algorithm will
construct a valid isometric reconciliation. □

Simple histories
All algorithms presented in this paper output infer-
able histories. An inferable history captures only events
that can be inferred from the input partial history. As
a result, there is at most one inferable history for each
input partial history with rooted species tree. However,
it is not always easy to interpret individual nodes of the
two trees in an inferable history as evolutionary events
(speciations, duplications, losses). Indeed, some nodes
may correspond to more than one event and conversely,
some events may be missing in the trees. In this section,
we define simple histories, in which each node of the
species tree corresponds to a single event. These histo-
ries thus correspond to an intuitive model of gene family
evolution.

Moreover, we describe a correspondence between sim-
ple and inferable histories which sheds more light on
information missing in the inferable histories returned
by our algorithm. Although every inferable history cor-
responds to some simple history, this simple history
may have some branches of zero length. Sometimes we
might be interested to know if an inferable history pro-
duced by one of our algorithms corresponds to an evolu-
tionary scenario in which only one event happens at any
given time on a given branch. This is equivalent to asking
if the inferable history corresponds to some simple his-
tory with non-zero branch lengths. In Claim 4, we give a
characterization of such inferable histories, which can be
easily tested algorithmically.

We will start by characterizing nodes of a species
tree that correspond to a single evolutionary event.
To do so, we need to define an extended inverse map-
ping �−1(ext)(v), which contains �−1(v) as well as
pt (a, d(�(a), v)) for each a such that a maps to a proper
descendant of v, and the parent of a maps to a proper
ancestor of v (i.e., if we subdivide edge from a to its par-
ent at this point, the new node would also map to v). For
example in Fig. 3, �−1(ext)(x) = { pt (c1, 2), pt (c2, 2)}.

Definition 8 Consider an arbitrary history (G, S,�)
and a node v in S.

 • We call v a sample if v is a leaf (i.e. it corresponds to a
sampled taxon).

 • We call v a generalized speciation if it has exactly two
children v1 and v2 and each u ∈ �−1(v) has exactly
two children u1 and u2 such that �(u1) is a descend-

Page 14 of 16Brejová et al. Algorithms Mol Biol (2017) 12:17

ant of v1 and �(u2) is a descendant of v2 (i.e. v corre-
sponds to a single speciation, but some genes present
in the ancestral species might bypass v and continue
to one of the daughter species; this is prevented by
the next definition).

 • We call v a speciation if it is a generalized speciation
and moreover �−1(v) = �−1(ext)(v).

 • We call v a duplication if it has one child, �−1(v) is
non-empty and each u ∈ �−1(v) has exactly two
children.

 • We call v a loss if it has one child, �−1(v) is non-
empty and each u ∈ �−1(v) is a leaf in G.

Note that a speciation and a sample do not need to
have �−1 non-empty, as some species may have lost all
copies from the considered family. Also note that a sin-
gle duplication or deletion event can affect several genes
simultaneously, which is consistent with events acting on
longer chromosomal segments.

For example in tree S in Fig. 3, nodes a, b and c are
samples, r is a speciation, r and x are generalized specia-
tions and �(y) is a duplication. Node z in tree S′ in Fig. 11
is a loss.

Definition 9 A simple history is a history (G, S,�) in
which each node v ∈ S is either a speciation, a duplica-
tion, a loss, or a sample.

Definition 10 Consider a simple history (G, S,�) in
which all edges leading to leaves in both trees have posi-
tive branch lengths. The inferable version of this history is
a history obtained as follows.

 • Delete each node in G with no extant leaf among its
descendants.

 • Bypass each node in G with a single child.
 • Bypass each node v in S if it has a single child and
�−1(v) is empty.

 • Contract all edges of length zero in both G and S.
 • If the root q of G has a single child, delete q (the child

becomes a new root).
 • If the root r of S has a single child, and �−1(r) is

empty, delete r (the child becomes a new root).

For example, history (G, S,�) in Fig. 3 is an inferable
version of simple history (G′, S′,�′) in Fig. 11. The simple
history has leaves for deleted genes in the gene tree, and
the species tree contains an internal node with one child
to which these deleted genes map. Note that the simple
history very naturally corresponds to the history diagram
shown in these figures.

The following two claims establish relationship
between inferable and simple histories.

Claim 3 Every inferable history is the inferable version
of infinitely many simple histories.

Proof It is sufficient to prove that every inferable history
(G, S,�) corresponds to at least one simple history; addi-
tional simple histories can be created by adding unob-
servable events, such as a duplication followed by a dele-
tion of one of the resulting copies.

Let v be a node of S. If v does not correspond to a sin-
gle event allowed in simple histories, we will convert it
to a series of such events. We will distinguish several
cases, depending on the number of children of v. If v has
no children, it is a sample, which is one of allowed node
types.

Now let us consider the case when v has exactly one
child. Note that for a node with one child, �−1(v) must
be non-empty. In addition, each node in �−1(v) has at
least two children because all leaves of G are extant, i.e.,
they map to leaves of S, and G has no nodes with one
child. Let k ≥ 2 be a value such that each node in �−1(v)
has at most k children. We replace node v in S by a path

a1

c1 c2

3

1

1 1

0.5 0.5

2 2
a1

c1 c2

z1 z2

x1 x2

q

y
3

1

1

0.5

1.5 2
a

=Φ (a1)
b c

=Φ (c1)
=Φ (c2)

r = Φ (q)

x = Φ (x1) = Φ (x2)

Φ (y)

z = Φ (z1) = Φ (z2)

history diagramG S ,Φ

Fig. 11 An example of a simple history (G′ , S′ ,�′). The history (G, S,�) in Fig. 3 is an inferable version of (G′ , S′ ,�′)

Page 15 of 16Brejová et al. Algorithms Mol Biol (2017) 12:17

of nodes v1, v2, . . . , vk−1, each having one child. Succes-
sive nodes in this path are connected by edges of length
zero. The parent of v is connected to v1 and the child
of v is connected to vk−1. Each node u ∈ �−1(v) with ℓ
children (ℓ ≥ 2) is similarly replaced by a path of nodes
u1, . . . ,uℓ−1 with zero branch lengths. The original chil-
dren of u are distributed among the new nodes so that
each new node ui has exactly two children. Node ui maps
to vi. By this transformation, we have converted v to a
series of k − 1 duplications.

Finally, if node v from S has g ≥ 2 children, we replace
it with g − 1 speciation nodes v1, . . . , vg−1 connected by a
path with edges of length zero. The original children of v
are again distributed among these new nodes so that each
vi has exactly two children. We also replace each node
u ∈ �−1(v) by a path u1, . . . ,ug−1 and map ui to vi. Each
child u′ of u maps to a descendant of some child v′ of v.
Node v′ was placed as a child of some node vi, and simi-
larly, u′ will become a child of the corresponding node ui .
Ideally, we would have one node u′ for every child v′ of v.
If some v′ has no corresponding node u′, we will create a
new leaf u′ corresponding to a loss. It will be connected to
appropriate ui by an edge of length smaller than edge from
vi to v′. Edge from vi to v′ will be subdivided at the corre-
sponding point so that we can map u′. On the other hand,
if some v′ has multiple corresponding nodes u′1, . . .u

′
ℓ,

we will create a path of ℓ− 1 duplication nodes immedi-
ately following vi, similarly as in the case when v has one
child. Corresponding nodes will be also created in G and
u′1, . . .u

′
ℓ will become their children. Finally, to ensure that

v1, . . . , vg−1 are proper speciation nodes, we will also con-
sider points in �−1(ext)(v) and subdivide each edge with
such a point by a similar path u1, . . . ,ug−1. Since only one
branch leading from this path will be non-empty, we will
add new leaves for losses similarly as before.
Claim 4 An inferable history (G, S,�) is the inferable
version of some simple history with strictly positive branch
lengths if and only if every node of S is a sample, a dupli-
cation, or a generalized speciation.

Proof If every node of S is a sample, a duplication or a
generalized speciation, the construction given in the pre-
vious claim will provide a history with strictly positive
branch lengths.

Now let us assume that (G, S,�) is the inferable version
of some simple history (G′, S′,�′) with positive branch
lengths. In the process of obtaining (G, S,�), no edges
are contracted, because there are no branches of zero
length in G′ and S′. The only operations performed on
G′ and S′ are deletions of nodes and edges and bypass-
ing nodes with one child. As a result, each node of G or S

corresponds to a single node of G′ or S′. Also each node
of G or S has at most two children.

Consider node v of S. If it has no children, it is a sample.
If it has one child, �−1(v) is non-empty and all nodes on
�−1(v) have exactly two children; therefore v is a dupli-
cation. If v has two children in S, it must also have two
children in S′, and thus it is a speciation in S′. Each node
u ∈ �′−1(v) thus has two children, each corresponding to
a different branch leading from v. During changes trans-
forming (G′, S′,�′) to (G, S,�) some nodes u ∈ �′−1(v)
may be deleted or bypassed, but the remaining ones will
satisfy the criteria required by generalized speciation.
Thus we have proved that every node of S is a sample, a
duplication or a generalized speciation.

Conclusions
In this paper, we have corrected an algorithm for iso-
metric gene tree reconciliation, first presented by Ma
et al. [1, 2] in the context of reconstruction of evolution-
ary histories in the infinite sites model. We have also
improved the running time of the algorithm from O(N 2)
to O(N logN), where N is the total size of the two input
trees.

We have also studied two extensions of the problem.
First, we have considered the case when both the gene
tree and the species tree are unrooted. We have designed
an algorithm with running time O(N 5 logN), which is
much slower than the algorithm for reconciling rooted
species trees. Perhaps this could be improved by proving
a better upper bound on the number of intervals which
we need to consider as possible locations of the root.
Another related problem is to consider rooted gene tree
and unrooted species tree.

In practical applications, we cannot rely on the
assumption that the branch lengths are exactly correct.
Algorithms that would allow for errors in branch lengths,
e.g. assuming that branch lengths are correct up to some
degree of tolerance, would be of a large practical value.
As the first step in this direction, we have designed an
algorithm which allows all branch lengths of the gene
tree to be scaled by a constant factor α. Such scaling fac-
tors are used in practice to model different substitution
rates in different gene families. However, we have consid-
ered only the case when both input trees are rooted; the
variants of the problem with one or both trees unrooted
remain open.

Authors’ contributions
BB and TV have conceived the study. Formal definition of the model is by BB
and DP, discussion of the original algorithm is by BB and MS, Algorithm 2 is
by BB, AG, and MS, and Algorithm 4 is by BB, DP, and TV. All authors read and
approved the final manuscript.

Page 16 of 16Brejová et al. Algorithms Mol Biol (2017) 12:17

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

Acknowledgements
An early version of this paper was published in WABI 2016 conference
proceedings. Authors would like to thank the reviewers for their helpful
comments.

Competing interests
The authors declare that they have no competing interests.

Funding
This research was funded by a Grant from the Slovak Research and Develop-
ment Agency APVV-14-0253 and by VEGA Grants 1/0684/16, 1/0719/14, and
2/0165/16.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 7 January 2017 Accepted: 2 June 2017

References
 1. Ma J, Ratan A, Raney BJ, Suh BB, Miller W, Haussler D. The infinite sites

model of genome evolution. Proc Natl Acad Sci. 2008;105(38):14254–61.
 2. Ma J, Ratan A, Raney BJ, Suh BB, Zhang L, Miller W, Haussler D. DUPCAR:

reconstructing contiguous ancestral regions with duplications. J Comput
Biol. 2008;15(8):1007–27.

 3. Felsenstein J. Inferring phylogenies. Sunderland: Sinauer Associates; 2004.
 4. Goodman M, Czelusniak J, Moore GW, Romero-Herrera A, Matsuda G.

Fitting the gene lineage into its species lineage, a parsimony strategy
illustrated by cladograms constructed from globin sequences. Syst Biol.
1979;28(2):132–63.

 5. Guigo R, Muchnik I, Smith TF. Reconstruction of ancient molecular phy-
logeny. Mol Phylogenet Evol. 1996;6(2):189–213.

 6. Zhang L. On a Mirkin–Muchnik–Smith conjecture for comparing molecu-
lar phylogenies. J Comput Biol. 1997;4(2):177–87.

 7. Eulenstein O. A linear time algorithm for tree mapping. GMD-Forschung-
szentrum Informationstechnik (1997).

 8. Zmasek CM, Eddy SR. A simple algorithm to infer gene duplication and
speciation events on a gene tree. Bioinformatics. 2001;17(9):821–8.

 9. Fertin G, Labarre A, Rusu I, Tannier E, Vialette S. Combinatorics of genome
rearrangements. Cambridge: MIT Press; 2009.

 10. Sennblad B, Lagergren J. Probabilistic orthology analysis. Syst Biol.
2009;58(4):411–24.

 11. Górecki P, Burleigh GJ, Eulenstein O. Maximum likelihood models and
algorithms for gene tree evolution with duplications and losses. BMC
Bioinform. 2011;12(1):1.

 12. Doyon J-P, Hamel S, Chauve C. An efficient method for exploring the
space of gene tree/species tree reconciliations in a probabilistic frame-
work. IEEE/ACM Trans Comput Biol Bioinfor. 2012;9(1):26–39.

 13. Doyon JP, Scornavacca C, Gorbunov KY, Szöllősi GJ, Ranwez V, Berry V.
An efficient algorithm for gene/species trees parsimonious reconcilia-
tion with losses, duplications and transfers. In: Comparative genomics
(RECOMB-CG 2012) vol. 6398, pp. 93–108. Berlin: Springer; 2010.

 14. Bansal MS, Alm EJ, Kellis M. Efficient algorithms for the reconciliation
problem with gene duplication, horizontal transfer and loss. Bioinformat-
ics. 2012;28(12):283–91.

 15. Harel D, Tarjan RE. Fast algorithms for finding nearest common ancestors.
SIAM J Comput. 1984;13(2):338–55.

 16. Bender MA, Farach-Colton M. The LCA problem revisited. In: LATIN 2000:
theoretical informatics, vol. 1776, pp. 88–94. Berlin: Springer; 2000.

 17. Berkman O, Vishkin U. Finding level-ancestors in trees. J Comput Syst Sci.
1994;48(2):214–30.

 18. Amir A, Landau GM, Lewenstein M, Sokol D. Dynamic text and static pat-
tern matching. ACM Trans Algorithm. 2007;3(2):19.

	Isometric gene tree reconciliation revisited
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Preliminaries
	Basic tree notation
	Isometric mapping and history
	Inferable histories
	Problem specification
	Reconciliation algorithm for rooted trees
	Triangulation

	Problems in the original algorithm
	Overall scheme of the original algorithm
	Mapping one node
	Speciation and duplication happening at the same time
	Summary of issues

	The modified algorithm
	Proof of correctness
	Running time analysis
	A simple level ancestor for arbitrary weights

	Extensions of the problem
	Unrooted input trees
	Scaling branch lengths

	Simple histories
	Conclusions
	Authors’ contributions
	References

