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Abstract 

Background: The gene family-free framework for comparative genomics aims at providing methods for gene order 
analysis that do not require prior gene family assignment, but work directly on a sequence similarity graph. We 
study two problems related to the breakpoint median of three genomes, which asks for the construction of a fourth 
genome that minimizes the sum of breakpoint distances to the input genomes.

Methods: We present a model for constructing a median of three genomes in this family-free setting, based on 
maximizing an objective function that generalizes the classical breakpoint distance by integrating sequence similarity 
in the score of a gene adjacency. We study its computational complexity and we describe an integer linear program 
(ILP) for its exact solution. We further discuss a related problem called family-free adjacencies for k genomes for the 
special case of k ≤ 3 and present an ILP for its solution. However, for this problem, the computation of exact solutions 
remains intractable for sufficiently large instances. We then proceed to describe a heuristic method, FFAdj-AM, 
which performs well in practice.

Results: The developed methods compute accurate positional orthologs for genomes comparable in size of bacte-
rial genomes on simulated data and genomic data acquired from the OMA orthology database. In particular, FFAdj-
AM performs equally or better when compared to the well-established gene family prediction tool MultiMSOAR.

Conclusions: We study the computational complexity of a new family-free model and present algorithms for its 
solution. With FFAdj-AM, we propose an appealing alternative to established tools for identifying higher confidence 
positional orthologs.
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Background
The presented work relates to the branch of research 
that studies the structural organization of genomes 
across species. Genome structures are subject to change 
caused by large-scale mutations. Such mutations per-
mute the order or alter the composition of functional, 
inheritable entities, subsequently called genes, in genome 
sequences. The breakpoint median constitutes a fam-
ily of well-studied problems that mainly differ through 
varying karyotypic constraints  [1]. A general, uncon-
strained variant asks to construct a fourth gene order, 
called a median, composed of one or more linear or cir-
cular chromosomes, from three given gene orders, such 
that this median maximizes the sum of conserved gene 

neighborhoods to the input gene orders. Comparing 
gene orders of distinct species presupposes knowledge 
of positional- (sometimes also called main-) ortholo-
gies between their constituting genes. This is where our 
approach differs from previous work: Whereas tradi-
tionally genes are required to form equivalence classes 
across gene orders such that each genome contains one 
and only one member of each class, our model only 
assumes a symmetric and reflexive similarity measure. 
The tasks of forming one-to-one relationships between 
genes (i.e. computing a matching) and finding a median 
are then combined into a single objective. Our approach 
has the decisive advantage of solving what was formerly a 
circularity problem: a median provides valuable insights 
into positional conservation, yet knowledge of posi-
tional orthologies are already a prerequisite of traditional 
breakpoint median problems. Resolving this antilogy, our 
approach continues a research program outlined in  [2] 
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(see also  [3]) under the name of (gene) family-free gene 
order comparison. So far, family-free methods have been 
developed for the pairwise comparison of genomes [4–6] 
and shown to be effective for orthology analysis [7].

The prediction of evolutionary relationships between 
genomic sequences is a long-standing problem in com-
putational biology. According to Fitch  [8], two genomic 
sequences are called homologous if they descended from 
a common ancestral sequence. Furthermore, Fitch iden-
tifies different events that give rise to a branching point 
in the phylogeny of homologous sequences, leading to 
the well-established concepts of orthologous genes (who 
descend from their last common ancestor through a spe-
ciation) and paralogous genes (descending from their 
last common ancestor through a duplication)  [9]. Until 
quite recently, orthology and paralogy relationships were 
mostly inferred from sequence similarity. However it is 
now well accepted that the syntenic context can carry 
valuable evolutionary information, which has lead to the 
notion of positional orthologs  [10], which are orthologs 
whose syntenic context was not changed in a duplication 
event.

Most methods for detecting potential orthologous 
groups require a prior clustering of the genes of the con-
sidered genomes into homologous gene families, defined 
as groups of genes assumed to originate from a single 
ancestral gene. Yet clustering protein sequences into 
families is already in itself a difficult problem. In the pre-
sent work, we describe two methods to infer likely posi-
tional orthologies for a group of three genomes. The first 
method solves a new problem we introduce, the gene 
family-free median of three. It generalizes the traditional 
breakpoint median problem  [1]. Our second method 
makes use of the first exact algorithm that solves the 
problem family-free adjacencies for k genomes (FF-Adja-
cencies) that has been introduced by Braga  et al.  in [2], 
for the special case where k ≤ 3. We then discuss the 
methods’ abilities to solve the biological question at hand 
and study their computational complexity. We show that 
our approach can be used for positional ortholog predic-
tion in simulated and real data sets of bacterial genomes.

Related problems
The FF-Median problem relates to previously studied 
gene order evolution problems. It is a generalization of 
the tractable mixed multichromosomal median problem 
introduced in  [1], that can indeed be defined as an FF-
Median problem with a similarity graph composed of 
disjoint 3-cliques and edges having all the same weight. 
The FF-Median problem also bears similarity with prob-
lem FF-Adjacencies described in  [2] as well as methods 
aimed at detecting groups of orthologous genes based on 
gene order evolution, especially the MultiMSOAR  [11] 

algorithm. However, further methods have been pro-
posed that integrate synteny and sequence conserva-
tion for inferring orthogroups, see  [10]. Our approach 
differs first and foremost in its family-free principle (all 
other methods require a prior gene family assignment). 
Compared to MultiMSOAR, the only other method that 
can handle more than two genomes with an optimiza-
tion criterion that considers gene order evolution, both 
MultiMSOAR (for three genomes) and FF-Median aim 
at computing a maximum weight tripartite matching. 
However we differ fundamentally from MultiMSOAR 
by the full integration of sequence and synteny conserva-
tion into the objective function, while MultiMSOAR pro-
ceeds first by computing pairwise orthology assignments 
to define a multipartite graph.

The gene family‑free median of three
The family‑free principle
In the gene family-free framework, we are given all-
against-all gene similarities through a symmetric and 
reflexive similarity measure σ : � ×� → R≥0 over the 
universe of genes �  [2]. We use sequence similarity but 
other similarity measures can fit the previous defini-
tion. This leads to the formalization of the gene similarity 
graph [2], i.e. a graph where each vertex corresponds to a 
gene of the dataset and where each pair of vertices asso-
ciated with genes of distinct genomes are connected by a 
strictly positively weighted edge according to gene simi-
larity measure σ. Then gene family or homology assign-
ments represent a particular subgroup of gene similarity 
functions that require transitivity. Independent of the 
particular similarity measure σ, relations between genes 
imposed by σ are considered as candidates for homology 
assignments.

Extant genomes, genes and adjacencies
In this work, a genome G is entirely represented by a 
tuple G ≡ (C,A), where C denotes a non-empty set of 
unique genes, and A is a set of adjacencies. Genes are 
represented by their extremities, i.e., a gene g ≡ (g t, gh) , 
g ∈ C, consists of a head gh and a tail g t. Telomeres are 
modeled explicitly, as special genes of C(G) with a single 
extremity, denoted by “◦”. Extremities ga1 , g

b
2 , a, b ∈ {h, t} 

of any two genes g1, g2 form an adjacency {ga1 , g
b
2 } if they 

are immediate neighbors in their genome sequence. In 
the following, we will conveniently use the notation C(G) 
and A(G) to denote the set of genes and the set of adja-
cencies of genome G, respectively. We indicate the pres-
ence of an adjacency {xa1 , x

b
2} in an extant genome X by

(1)IX (x
a
1 , x

b
2) =

{

1 if {xa1 , x
b
2} ∈ A(X)

0 otherwise.
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Given two genomes G and H and gene similarity measure 
σ, two adjacencies, {ga1 , g

b
2 } ∈ A(G) and {ha1, h

b
2} ∈ A(H) 

with a, b ∈ {h, t} are conserved iff σ(g1, h1) > 0 and 
σ(g2, h2) > 0. We subsequently define the adjacency score 
of any four extremities ga, hb, ic, jd, where a, b, c, d ∈ {h, t} 
and g , h, i, j ∈ � as the geometric mean of their corre-
sponding gene similarities [2]:

Median genome, genes and  adjacencies Informally, the 
family-free median problem asks for a fourth genome 
M that maximizes the sum of pairwise adjacency scores 
to three given extant genomes G, H, and I. In doing so, 
the gene content of the requested median M must first 
be defined: each gene m ∈ C(M) must be unambiguously 
associated with a triple of extant genes (g, h, i), g ∈ C(G) , 
h ∈ C(H), and i ∈ C(I). Moreover, we want to associate 
to a median gene m a sequence similarity score (g,  h,  i) 
relative to its extant genes g, h, and i. As the sequence of 
the median gene is obviously not available, we define this 
score as the geometric mean of their pairwise similarities 
(see Fig. 1a):

In the following we make use of mapping πG(m) ≡ g, 
πH (m) ≡ h, and πI (m) ≡ i to relate gene m with its extant 
counterparts. Two candidate median genes or telomeres 
m1 and m2 are conflicting if m1 �= m2 and the intersection 
between associated gene sets {πG(m1),πH (m1),πI (m1)} 
and {πG(m2),πH (m2),πI (m2)} is non-empty (see Fig. 1b 
for example). A set of candidate median genes or tel-
omeres C is called conflict-free if no two of its mem-
bers m1,m2 ∈ C are conflicting. This definition trivially 
extends to the notion of a conflict-free median.

Problem  1 (FF-Median) Given three genomes G, H, 
and I, and gene similarity measure σ, find a conflict-free 
median M, which maximizes the following formula:

(2)s(ga, hb, ic, jd) ≡
√

σ(g , h) · σ(i, j)

(3)

σ(g ,m) = σ(h,m) = σ(i,m) ≡ 3
√

σ(g , h) · σ(g , i) · σ(h, i)

where a, b ∈ {h, t} and s(·) is the adjacency score as 
defined by Eq. (2).

Remark 1 The adjacency score for a median adja-
cency {ma

1,m
b
2} with respect to the corresponding 

potential extant adjacency {πX (m1)
a,πX (m2)

b
}, where 

{ma
1,m

b
2} ∈ A(M) and X ∈ {G,H , I}, can be entirely 

expressed in terms of pairwise similarities between genes 
of extant genomes using Eq. (3):

In the following, a median gene m and its extant coun-
terparts (g, h, i) are treated as equivalent. We denote the 
set of all candidate median genes by

Each pair of median genes (g1, h1, i1), (g2, h2, i2) ∈ Σ  
and extremities a, b ∈ {h, t} give rise to a candi-
date median adjacency {(ga1 , h

a
1, i

a
1), (g

b
2 , h

b
2, i

b
2)} if 

(ga1 , h
a
1, i

a
1) �= (gb2 , h

b
2, i

b
2), and (ga1 , h

a
1, i

a
1) and (gb2 , h

b
2, i

b
2) 

are non-conflicting. We denote the set of all candidate 
median adjacencies and the set of all conserved (i.e. pre-
sent in at least one extant genome) candidate median  
adjacencies by A = {{ma

1 ,m
b
2} | m1,m2 ∈ Σ , a, b ∈ {h, t}}  

and AC = { {ma
1 ,m

b
2} ∈ A | X∈{G,H,I} IX(πX(m1)a, πX(m2)b) ≥ 1} , 

respectively.

Remark 2 A median gene can only belong to a median 
adjacency with non-zero adjacency score if all pairwise 
similarities of its corresponding extant genes g,  h,  i are 
non-zero. Thus, the search for median genes can be limited 
to 3-cliques (triangles) in the tripartite similarity graph.

Remark 3 The right-hand side of the above formula for 
the weight of an adjacency is independent of genome X. 
From Eq. (4), an adjacency in median M has only an impact 
in a solution to problem FF-Median if it participates in a 
gene adjacency in at least one extant genome. So includ-
ing in a median genome median genes that do not belong 
to a candidate median adjacency in AC do not increase the 
objective function.

Accounting for gene family evolution
Duplication and loss are two important phenomena of gene 
family evolution that affect the gene order. Figure  2 visu-
alizes the outcome of a duplication of a gene belonging to 
gene family a as well as a deletion of a gene from gene family 

F (M) =
{ma

1 ,m
b
2}∈A(M) X∈{G,H,I},

{πX(m1)a,πX(m2)b}∈A(X)

s(ma
1 , πX(m1)a,mb

2, πX(m2)b),

(4)

s(ma
1,πX (m1)

a
,m

b
2,πX (m2)

b)

= 6

√

∏

{Y ,Z}⊂{G,H ,I}

σ(πY (m1),πZ(m1)) · σ(πY (m2),πZ(m2))

Σ = {(g, h, i) | g ∈ C(G), h ∈ C(H), i ∈ C(I) : σ(g, h) ·σ(g, i) ·σ(h, i) > 0} . (5)

g

i

h

m

σ(g, h)

σ(g, i) σ(h, i)

? ?

?

a

G

H

I

g1 g2 g3 g4

h1 h2

h3

i1 i2 i3

b

Fig. 1 a Illustration of the score of a candidate median gene. b Gene 
similarity graph of three genomes G, H, and I. Colored components 
indicate candidate median genes m1 = (g1, h1, i2), m2 = (g2, h2, i1), 
m3 = (g3, h3, i2), and m4 = (g4, h3, i3). Median gene pairs m1,m3 and 
m3,m4 are conflicting
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e. Both events occurred along the evolutionary path from 
genome M leading to I. Such effects of gene family evolu-
tion on the gene order must be accounted for in gene order 
analysis. Yet, they can only be detected once the gene fami-
lies are inferred. Consequently, family-free methods must 
provide internal mechanisms for their resolution. Problem 
FF-Median meets this ambitious demand to some extend. 
For instance, the true ancestral gene order “a  b  c” of the 
example visualized in Fig.  2 will be recovered by solving 
problem FF-Median as long as the cumulative score of the 
adjacency between a and b (yellow arcs), which is conserved 
in all three extant genomes, plus the score of the twofold 
conserved adjacency between b and c (red arcs) is larger 
than the cumulative score of the onefold conserved adjacen-
cies b, a (blue arc) and a, c (green arc) of genome I. In other 
cases where immediate neighborhoods of true positional 
homologs are less conserved, problem FF-Median likely fails 
to obtain the correct ancestral gene order. Even worse, it is 
generally affected by gene deletion events, such as the one 
shown in the example on the right side of Fig. 2.

In the following, we discuss a related problem called 
family-free adjacencies, initially introduced by Braga   
et al. [2], that can tolerate the effects of both gene dupli-
cations and losses.

Family‑free adjacencies for three genomes
In the previous section we introduced problem FF-
Median that asks for the construction of a median from 
three extant genome sequences. In doing so, the median 
corresponds to a 3-(partite) matching between extant 

genes that are similar to each other. In this section, we 
review a more flexible model where the constructed 
matching also includes smaller components:

Definition 1 (partial k-matching) Given a gene simi-
larity graph B = (G1, . . . ,Gk ,E), a partial k-matching 
M ⊆ E is a subset of edges such that for each connected 
component C in BM ≡ (G1, . . . ,Gk ,M) no two genes in 
C belong to the same genome.

A partial 3-matching M ⊆ E in gene similarity graph 
B = (G,H , I ,E) of genomes G, H, and I induces subge-
nomes GM ⊆ G, HM ⊆ H, and IM ⊆ I with gene sets 
C(GM), C(HM), and C(IM), respectively, corresponding 
to the set of vertices incident to edges of matching M. 
In doing so, a subgenome X ′

⊂ X may contain adjacen-
cies that are not part of A(X): two gene extremities xa1 , x

b
2 

form an adjacency {xa1 , x
b
2} ∈ A(X ′) �⊆ A(X) iff all genes 

that lie in between x1 and x2 in genome X are not con-
tained in C(X ′).

We then aim to find a partial 3-matching that maxi-
mizes a linear combination of a sum of conserved adja-
cencies and a sum of similarities between the matched 
genes:

Problem  2 (family-free adjacencies for three genomes 
(FF-Adjacencies)  [2]) Given a gene similarity graph 
B = (G,H , I ,E) and some α with 0 ≤ α ≤ 1, find a par-
tial 3-matching M ⊆ E that maximizes the following 
formula:

G

H

I
a b a c d f

e

duplication deletion

Fig. 2 The effect of duplication and deletion of a single gene in problem FF-Median. Colored arcs correspond to potential median adjacencies

(6)

Fα(M) = α ·

∑

{x1, y1}, {x2, y2} ∈ M

{xa1 , x
b
2}, {y

a
1, y

b
2} ∈ AM

s(xa1 , y
a
1, x

b
2, y

b
2) + (1− α) ·

∑

(x,y)∈M

σ(x, y) ,
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where AM = ∪X∈{G,H ,I}A(XM).
Problem FF-Adjacencies accounts for gene duplications 

and losses, as well as perturbations in the assessment of 
gene similarities by (i) considering conserved adjacen-
cies between genes that are not immediate neighbors 
but lie two, three, or more genes apart, (ii) relaxing the 
3-matching to a partial 3-matching, and (iii) maximiz-
ing similarities between matched genes. The set of con-
nected components that satisfy the matching constraint 
form subcomponents of cliques of size three in the gene 
similarity graph of extant genomes G, H, and I. Figure 3 
visualizes the seven possible subcomponents permitted 
by a partial 3-matching. The matching implies orthol-
ogy assignments between genes conserved in at least two 
extant genomes. Because of (iii) and unlike in problem 
FF-Median, connected components are not bound to 
participate in conserved adjacencies. Thus, problem FF-
Adjacencies can also infer orthology assignments that are 
unsupported by synteny.

In the next two sections we describe our theoretical 
results: a study of computational complexity for prob-
lems FF-Median and FF-Adjacencies, two methods to 
compute their exact solutions, and a heuristic that con-
structs feasible, but possibly suboptimal solutions to FF-
Adjacencies based on solutions to problem FF-Median.

Complexity results

Theorem 1 Problem FF-Median is MAX SNP-hard.

We describe the full hardness proof in Additional file 1: 
Section 1. It is based on a reduction from the Maximum 
Independent Set for Graphs of Bounded Degree 3. Also, 
problem FF-Adjacencies has proven NP-hard: Kowada 
et al.  showed that already for the case of pairwise com-
parisons and uniform similarity scores the problem 
becomes intractable [6].

In the past decades, numerous problems in the field 
of computational biology have been shown NP-hard, yet 
the hope of computing fast solutions has not diminished 
for all. In fact, many instances of such problems arising 
in practical applications are less complex and hence can 
be algorithmically solved rather fast. We are therefore 
also concerned about the practical computability of the 
problems at hand. In doing so, we devise methods for 

computing exact solutions for the comparison of bacte-
rial-sized genomes in the next section. We present FF-
Median, an integer linear program (ILP), for the solution 
of the correspondent problem. In order to speed up the 
computation in practice, we additionally present algo-
rithm ICF-SEG that detects local optimal structures that 
commonly appear when comparing genomes of reason-
ably close species.

Further, we present ILP FFAdj-3G for the solution of 
problem FF-Adjacencies. However, the problem’s supe-
rior capability (compared to problem FF-Median) of 
resolving events of gene family evolution comes at the 
expense of a dramatically increased search space. Tak-
ing adjacencies between genes into consideration that 
are further apart leads to an explosion of conflicting 
conserved adjacencies. This number is then potentized 
by the number of possible subcomponents in a partial 
3-matching, making the computation of solutions even 
more challenging. Thus, it is impossible to calculate 
exact solutions to problem FF-Adjacencies with pro-
gram FFAdj-3G for average-sized bacterial genomes 
in reasonable runtime. Addressing problem FF-Adja-
cencies in pairwise comparisons, Doerr proposed in  [3] 
an effective method to identify optimal substructures in 
practical instances, allowing the computation of exact 
solutions for bacterial-sized genomes. As of the time of 
writing, the search for similar structures in the case of 
three genomes has been unsuccessful. Therefore, we pro-
pose an alternative, practically motivated method, called 
FFAdj-AM, which first computes a solution to problem 
FF-Median, then treating the matching implied by the 
obtained median as invariant in the search for a (possibly 
suboptimal) solution to problem FF-Adjacencies. (Note 
that every solution to FF-Median is a feasible solution 
to problem FF-Adjacencies.) More precisely, FFAdj-AM 
calls first program FF-Median on a given gene simi-
larity graph B = (G,H , I ,E) and subsequently treats its 
output as a partial, feasible solution for problem FF-Adja-
cencies. Then it executes program FFAdj-3G to improve 
on this solution by exploring the subgraph of B that is not 
contained in the initially computed family-free median. 
This approach turns out to be feasible in practice. We 
show this in our evaluation by computing exact solutions 
on a biological dataset composed of 15 γ-proteobacterial 
genomes.

Algorithmic results
An exact ILP algorithm to problem FF‑Median
We now present program FF-Median, described in 
Fig.  4, that exploits the specific properties of problem 
FF-Median to design an ILP using O(n5) variables and 
statements. Program FF-Median makes use of two 
types of binary variables a and b as declared in domain 

G

H

I

Fig. 3 The seven valid types of components of a partial 3-matching
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specifications (D.01) and (D.02), that defines the set 
of median genes Σ  and of candidate conserved median 
adjacencies AC (Remark  3). The former variable type 
indicates the presence or absence of candidate genes in 
an optimal median M. The latter, variable type b, specifies 
if an adjacency between two gene extremities or telom-
eres is established in M. Constraint (C.01) ensures that 
M is conflict-free, by demanding that each extant gene 
(or telomere) can be associated with at most one median 
gene (or telomere). Further, constraint (C.02) dictates 
that a median adjacency can only be established between 
genes that both are part of the median. Lastly, constraint 
(C.03) guarantees that each gene extremity and telomere 
of the median participates in at most one adjacency.

Property 1 The size (i.e. number of variables and state-
ments) of any ILP returned by program FF-Median is 
limited by  O(n5) where n = max(|C(G)|, |C(H)|, |C(I)|).

Remark 4 The output of the algorithm FF-Median is 
a set of adjacencies between median genes that define a 
set of linear and/or circular orders, called CARs (Contig-
uous Ancestral Regions), where linear segments are not 
capped by telomeres. So formally the computed median 
might not be a valid genome. However, as adding adja-
cencies that do not belong to AC do not modify the score 
of a given median, a set of median adjacencies can always 
be completed into a valid genome by such adjacencies 
that join the linear segments together and add telomeres. 
These extra adjacencies would not be supported by any 
extant genome and thus can be considered as dubious, 
and in our implementation, we only return the median 
adjacencies computed by the ILP, i.e. a subset of AC.

Remark 5 Following Remark 2, preprocessing the input 
extant genomes requires to handle the extant genes that 
do not belong to at least one 3-clique in the similarity 

Objective: Maximize

{m1,m2}∈AC,

m1 = (g1,h1,i1),
m2 = (g2,h2,i2),

a,b∈{h, t}

b(ga
1 , g

b
2, h

a
1 , h

b
2, i

a
1 , i

b
2)

X∈{G,H,I},
{πX (m1)a,πX (m2)b}∈A(X)

s(ma
1 , πX(m1)

a
,m

b
2, πX(m2)

b)

Constraints:

(C.01) ∀ g ∈ C(G):
(g ,h,i)∈Σ

a(g , h, i) ≤ 1

∀ h ∈ C(H):
(g,h ,i)∈Σ

a(g, h , i) ≤ 1

∀ i ∈ C(I):
(g,h,i )∈Σ

a(g, h, i ) ≤ 1

(C.02) ∀ {(g1, h1, i1), (g2, h2, i2)} ∈ AC and ∀ a, b ∈ {h, t}:
2 · b(ga1 , gb2, ha

1 , h
b
2, i

a
1 , i

b
2) ≤ a(g1, h1, i1) + a(g2, h2, i2)

(C.03) ∀ (g1, h1, i1) ∈ Σ and ∀ a ∈ {h, t}:

(g2,h2,i2)∈Σ , b∈{h, t}

b(ga1 , g
b
2, h

a
1 , h

b
2, i

a
1 , i

b
2) ≤ 1

Domains:

(D.01) ∀ (g, h, i) ∈ Σ : a(g, h, i) ∈ {0, 1}
(D.02) ∀ {(g1, h1, i1), (g2, h2, i2)} ∈ AC and ∀ a, b ∈ {h, t}:

b(ga1 , g
b
2, h

a
1 , h

b
2, i

a
1 , i

b
2) ∈ {0, 1}

Fig. 4 Program FF-Median, an ILP for solving problem FF-Median
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graph. Such genes can not be part of any median. So one 
could decide to leave them in the input, and the ILP can 
handle them and ensures they are never part of the out-
put solution. However, discarding them from the extant 
genomes can help recover adjacencies that have been dis-
rupted by the insertion of a mobile element for example, 
so in our implementation we follow this approach.

As discussed at the end of the previous section, the FF-
Median problem is a generalization of the mixed multi-
chromosomal breakpoint median problem  [1]. Tannier 
et al. presented in [1] an approach for its solution based 
on a Maximum-Weight Matching (MWM) algorithm. 
This motivates the results presented in the next para-
graph that also use a MWM algorithm to identify optimal 
median substructures by focusing on conflict-free sets of 
median genes.

Finding local optimal segments
Tannier et  al.  [1] solve the mixed multichromosomal 
breakpoint median problem by transforming it into an 
MWM problem, that we outline now. A graph is defined 
in which each extremity of a candidate median gene and 
each telomere gives rise to a vertex. Any two vertices are 
connected by an edge, weighted according to the number 
of observed adjacencies between the two gene extremities 
in extant genomes. Edges corresponding to adjacencies 
between a gene extremity and telomeres are weighted 
only by half as much. An MWM in this graph induces a 
set of adjacencies that defines an optimal median.

We first describe how this approach applies to our 
problem. We define a graph Γ(Σ ) constructed from an 
FF-Median instance (G,H , I , σ) that is similar to that of 
Tannier et al. deviating by defining vertices as candidate 
median gene extremities and weighting an edge between 
two vertices ma

1,m
b
2, a, b ∈ {h, t}, by

We make first the following observation, where a con-
flict-free matching is a matching that does not contain 
two conflicting vertices (candidate median genes):

Observation 1 Any conflict-free matching in graph 
Γ(Σ ) of maximum weight defines an optimal median.

We show now that we can define notions of sub-
instances—of a full FF-Median instance—that contains 
no internal conflicts, for which applying the MWM can 
allow to detect if the set of median genes defining the 
sub-instance is part of at least one optimal FF-Median. 
Let S be a set of candidate median genes. An internal 

(7)

w({ma
1
,mb

2
}) =

∑

X∈{G,H ,I}

IX (πX (m1)
a
,πX (m2)

b)

·s(ma
1
,πX (m1)

a,mb
2
,πX (m2)

b).

conflict is a conflict between two genes from S; an exter-
nal conflict is a conflict between a gene from S and a 
candidate median gene not in S. We say that S is contigu-
ous in extant genome X if the set πX (S) forms a unique, 
contiguous, segment in X. We say that S is an internal 
conflict-free segment (IC-free segment) if it contains no 
internal conflict and is contiguous in all three extant 
genomes; this can be seen as the family-free equivalent of 
the notion of common interval in permutations  [12]. An 
IC-free segment is a run if the order of the extant genes is 
conserved in all three extant genomes, up to a full rever-
sal of the segment.

Intuitively, one can find an optimal solution to the sub-
instance defined by an IC-free segment, but it might not 
be part of an optimal median for the whole instance due 
to side effects of the rest of the instance. So we need to 
adapt the graph to which we apply an MWM algorithm 
to account for such side effects. To do so, we define the 
potential of a candidate median gene m as 

We then extend graph Ŵ(S) =: (V ,E) to graph 
Ŵ′(S) := (V ,E′) by adding edges between the extremi-
ties of each candidate median gene of an IC-free seg-
ment S, i.e. E′

= E ∪ {{mh,mt
} |m ∈ S} (note that when 

|S| > 1, w({mh,mt
}) = 0 since S is contiguous in all 

three extant genomes). In the following we refer to these 
edges as conflict edges. Let C(m) be the set of candidate 
median genes that are involved in an (external) conflict 
with a given candidate median gene m of S, then the 
conflict edge {mh,mt

} ∈ E′ is weighted by the maximum 
potential of a non-conflicting subset of C(m),

A conflict-free matching in Ŵ′(S) is a matching without a 
conflict edge.

Lemma 1 Given an internal conflict-free segment S, any 
maximum weight matching in graph Ŵ′(S) that is conflict-
free defines a set of median genes and adjacencies that 
belong to at least one optimal FF-Median of the whole 
instance.

Proof Given an IC-free segment S = {m1, . . . ,mk} of 
an FF-Median instance (G,H , I , σ). Let M be a conflict-
free matching in graph Ŵ′(S). Because M is conflict-
free and S contiguous in all three extant genomes, M 
must contain all candidate median genes of S. Now, let 
M′ be a median such that S �⊆ C(M′). Further, let C(m) 
be the set of candidate median genes that are involved 

∆(m) = max
{ma

1 ,m
b},{ma,mb

2}∈A
w({ma

1 ,m
b}) + w({ma,mb

2}) .

w
′({mh

,m
t
}) =

max({
∑

m′∈C ′

�(m′) | C ′
⊆ C(m) : C

′
is conflict-free}) .
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in a conflict with with a given median gene m of S and 
X = C(M′) ∩ (

⋃

m∈S
C(m) ∪ S). Clearly, X �= ∅ and 

for the contribution F (X) must hold F (X) ≥ F (S) ,  
otherwise M′ is not optimal since it is straightforward 
to construct a median higher score which includes S. 
Clearly, the contribution F(X) to the median is bounded 
by max({ m ∈C ∆(m ) | C ⊆ C(m) : C is conflict-free}) + F (S) . 
But since S gives rise to a conflict-free match-
ing with maximum score, also median M′′ 
with C(M′′) = (C(M′) \ X) ∪ C(S) and 
A(M′′) = (A(M′) \A(X)) ∪A(S)) must be an (optimal) 
median.  �

Lemma  1 leads to a procedure (Fig.  5) that iteratively 
identifies and tests IC-free segments in the FF-Median 
instance. For each identified IC-free segment S an adja-
cency graph Ŵ′(S) is constructed and a maximum weight 
matching is computed (Line 2–3). If the resulting match-
ing is conflict-free (Line 4), adjacencies of IC-free seg-
ment S are reported and S is removed from an FF-Median 
instance by masking its internal adjacencies and remov-
ing all candidate median genes (and consequently their 
associated candidate median adjacencies) corresponding 
to external conflicts (Line 5–6). It then follows immedi-
ately from Lemma 1 that the set median genes returned 
by Fig. 5 belongs to at least one optimal solution to the 
FF-Median problem.

In the experiments, IC-free runs are used instead of 
segments. Step 1 is performed efficiently by first identi-
fying maximal IC-free runs, then breaking it down into 
smaller runs whenever the condition in Step 4 is not 
satisfied.

Solving problem FF‑Adjacencies for three genomes
We now describe program FFAdj-3G, as shown in Fig. 6. 
It returns an exact solution to problem FF-Adjacencies 

for three genomes G, H, and I, given their gene similarity 
graph B = (G,H , I ,E).

The objective of the integer linear program is to maxi-
mize a linear combination of the sum of adjacency scores 
of pairs of matched genes and the sum of similarities of 
matched genes. To evaluate the former sum, program 
FFadj-3G iterates over the sets of candidate adjacences, 
defined as A⋆(X) ≡ ∪X ′⊆XA(X ′) over all subgenomes 
X ′

⊆ X of a given genome X.
FFAdj-3G makes use of three types of binary vari-

ables c,d, and e (see domains (D.01) − (D.03)). Vari-
ables c(x, y) indicate if edge {x, y} in gene similarity graph 
B is part of the anticipated matching M. Likewise, each 
variable d(x), x ∈ C(G) ∪ C(H) ∪ C(I), encodes if ver-
tex x in gene similarity graph B is potentially incident 
to an edge in M. Lastly, variables e(xa1 , y

a
1, x

b
2, y

b
2) indi-

cate if gene extremities xa1 , x
b
2, y

a
1, y

b
2, with a, b ∈ {h, t} of 

the M-induced subgenomes XM and YM can possibly 
form conserved adjacencies, i.e., {xa1 , x

b
2} ∈ A(XM) and 

{ya1, y
b
2} ∈ A(YM).

Constraints (C.01) and (C.02) ensure that the result-
ing matching M forms a valid partial 3-matching. That 
is, no two genes of a connected component in the M
-induced subgraph of gene similarity graph B belong to 
the same genome (see Definition 1). In doing so, (C.01) 
establishes pairwise matching constraints, i.e., it guaran-
tees that in the matching-induced subgraph, each gene 
is connected to at most one gene per genome. Note that 
variables d are assigned 1 for each gene that is incident 
to at least one edge of partial 3-matching M. That is, the 
value of a variable b can be 1 even though its correspond-
ing gene is not incident to an edge of M. But then, pro-
gram FFAdj-3G permits a gene to be incident to several 
edges of M, if each of these edges is incident to genes of 
different genomes. Additional constraints are enforced 
by (C.02) on every pair of edges that share a common 

Input: FF-Median instance (G,H, I, σ)
Output: Set of adjacencies AdjM that is part of a median M of (G,H, I, σ).

1: while there exists an unobserved IC-free conserved segment S in (G,H, I, σ)
do

2: Construct adjacency graph Γ (S) of S
3: Find maximum weight matching M ⊆ E(Γ (S))
4: if A(S) = M then
5: Add A(S) to AdjM
6: Remove S including external conflicts from (G,H, I, σ)
7: end if
8: end while

Fig. 5 Algorithm ICF-SEG
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gene in one genome, but are incident to genes of different 
genomes. Let us consider three genes g ∈ G, h ∈ H, and 
i ∈ I, which are connected by two edges {g , h}, {g , i} ∈ E . 
This scenario is represented in Fig.  7, where the two 
edges {g , h} and {g , i} that share the common gene g are 

colored green. The figure schematizes all 16 combinations 
in which edges in the neighborhood of {g , h} and {g , i} 
(including {g , h} and {g , i}) can participate in a matching 
only constrained by (C.01). Saturated edges are indicated 
by thick continuous lines, unsaturated edges by dashed 

Objective:

Maximize

{X,Y }⊂{G,H,I}

α·
{xa

1 ,xb
2}∈A (X),

{ya
1 ,yb

2}∈A (Y )

s(xa
1 , y

a
1 , x

b
2, y

b
2)·e(x

a
1 , y

a
1 , x

b
2, y

b
2)+(1−α)·

x∈C(X),
y∈C(Y )

σ(x, y)·c(x, y)

Constraints:
(C.01) ∀ {X,Y } ⊂ {G,H, I}, ∀ x ∈ C(X),

y∈C(Y )

c(x, y) ≤ d(x)

(C.02) ∀ g ∈ C(G), ∀ h ∈ C(H), ∀ i ∈ C(I),
if σ(g, h) > 0 and σ(g, i) > 0,

h ∈C(H)
h =h

c(h , i) + c(g, h) + c(g, i) ≤ 2,
i ∈C(I)
i =i

c(h, i ) + c(g, h) + c(g, i) ≤ 2

if σ(g, h) > 0 and σ(h, i) > 0,

g ∈C(G)
g =g

c(g , i) + c(g, h) + c(h, i) ≤ 2,
i ∈C(I)
i =i

c(g, i ) + c(g, h) + c(h, i) ≤ 2

if σ(g, i) > 0 and σ(h, i) > 0,

g ∈C(G)
g =g

c(g , h) + c(g, i) + c(h, i) ≤ 2,
h ∈C(H)
h =h

c(g, h ) + c(g, i) + c(h, i) ≤ 2

(C.03) ∀ {X,Y } ⊂ {G,H, I},
∀ {xa

1 , x
b
2} ∈ A (X), ∀ {ya1 , yb2} ∈ A (Y )

c(xa
1 , y

b
1) + c(xa

2 , y
b
2)− 2 · e(xa

1 , y
a
1 , x

b
2, y

b
2) ≥ 0,

if {xa
1 , x

b
2 (X), then for each x in {x3, . . . , xn} ⊆ A(X)

such that {{xa
1 , x

a3
3 }, {xb3

3 , xa4
4 }, . . . , {xbn

n , xb
2}} ⊆ A(X),

d(x) + e(xa
1 , y

a
1 , x

b
2, y

b
2) ≤ 1,

if {ya1 , yb2 (Y ), then for each y in {y3, . . . , yn} ⊆ A(Y )
such that {{ya1 , ya3

3 }, {yb33 , ya4
4 }, . . . , {ybnn , yb2}} ⊆ A(Y ),

d(y) + e(xa
1 , y

a
1 , x

b
2, y

b
2) ≤ 1

Domains:

(D.01) ∀ x ∈ C(X) and y ∈ C(X), {X,Y } ⊂ {G,H, I}, c(x, y) ∈ {0, 1}
(D.02) ∀ x ∈ C(G) ∪ C(H) ∪ C(I), d(x) ∈ {0, 1},
(D.03) ∀ {xa

1 , x
b
2} ∈ A (X) and ∀ {ya1 , yb2} ∈ A (Y ), {X,Y } ⊂ {G,H, I},

e(xa
1 , y

a
1 , x

b
2, y

b
2) ∈ {0, 1}

Fig. 6 Program FFAdj-3G, an ILP for solving FF-Adjacencies for three genomes
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lines, and gray dotted lines (which can be either saturated 
or unsaturated) are not considered by the two sum con-
straints. For instance, Fig. 7a represents the case in which 
no edge incident to vertices g, h, or i is saturated. When 
applying Constraint (C.02) on these 16 combinations, 
it is ensured that (i) the sum of saturated edges that are 
red or green is less than or equal to two, and (ii) that the 
sum of saturated edges that are blue or green is less than 
or equal to two. Combinations that violate any of the two 
sum constraints, shown in Fig. 7h,  l, p, are exactly those 
that violate the partial 3-matching property. The gray 

dotted line between genes h and i indicates that edge {h, i} 
is not considered by the constraints of (C.02). In case 
edge {h, i} is saturated, it may be in conflict with saturated 
blue and red edges which results in violations of the pair-
wise matching constraints of (C.01).

Lastly, Constraint (C.03) covers the rules of form-
ing conserved adjacencies: (i) it ensures that a variable e , 
which indicates a conserved adjacency for two edges, is 
set to 1 only if the edges are saturated; (ii) using variables 
d, it prohibits that no gene (and thus no incident edge) 
within a conserved adjacency is part of the matching.
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Fig. 7 The implications of Constraint (C.02) on combinations of saturated edges. Parts a–p visualize all 16 possibilities that are valid under Con-
straint (C.01). The parts show how edges incident to genes i and h are effected by the first case of Constraint (C.02) that acts on edges {g, h} and 
{g, i} (green lines). Saturated edges are indicated by thick continuous lines, unsaturated edges by dashed lines. Dotted gray lines are not considered by 
the constraint and can be either saturated or unsaturated. Only combinations shown in Parts h, l, and p violate constraint (C.02)
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Experimental results and discussion
Our algorithms have been implemented in Python and 
require CPLEX1; they are freely available as part of the 
family-free genome comparison tool FFGC downloadable 
at http://bibiserv.cebitec.uni-bielefeld.de/ffgc.

In subsequent analyses, gene similarities are based on 
local alignment hits identified with BLASTP on protein 
sequences using an e-value threshold of 10−5. In gene 
similarity graphs, we discard spurious edges by applying 
a stringency filter proposed by Lechner et al. [13] that uti-
lizes a local threshold parameter f ∈ [0, 1] and BLAST 
bit-scores: a BLAST hit from a gene g to h is only retained 
if it is has a higher or equal score than f times the best 
BLAST hit from h to any gene g ′ that is member of the 
same genome as g. In all our experiments, we set f to 0.5. 
Edge weights of the gene similarity graph are then cal-
culated according to the relative reciprocal BLAST score 
(RRBS) [14]. Finally we applied algorithm ICF-SEG with 
conserved segments defined as runs.

For running programs FF-Median and FFAdj-3G, 
we granted CPLEX 64 CPU cores, 64 GB memory and a 
time limit of 1 h per dataset. In both simulated and real 
data we set the FFAdj-3G’s parameter α to 0.9.

In our experiments, we compare ourselves against the 
orthology prediction tool MultiMSOAR  [11]. This tool 
requires precomputed gene families, which we con-
structed by following the workflow described in [11].

Evaluation on simulated data
We first evaluate our algorithms on simulated data sets 
obtained by ALF  [15]. The ALF simulator covers many 
aspects of genome evolution from point mutations to 
global modifications. The latter includes inversions and 
transpositions as genome rearrangement operations. 
Various options are available to customize the process of 
gene family evolution. In our simulations, we mainly use 
standard parameters suggested by the authors of ALF 
and we focus on three parameters that primarily influ-
ence the outcome of gene family-free genome analysis: (i) 
the rate of sequence evolution, (ii) the rate of genome 
rearrangements, and (iii) the rate of gene duplications 
and losses. We keep all three rates constant, only varying 
the evolutionary distance between the generated extant 
genomes. We confine our simulations to protein coding 
sequences. A comprehensive list of parameter settings 
used in our simulations is shown in Additional file  1: 
Table 2 of Section 2. As root genome in the simulations, 
we used the genomic sequence of an Escherichia  coli 
K-12 strain (Accession No: NC_000913.2) which com-
prises 4320 protein coding genes. We then generated 

1 http://www.ibm.com/software/integration/optimization/cplex-optimizer/.

7× 10 data sets with increasing evolutionary distance 
ranging from 10 to 130 percent accepted mutations 
(PAM). Details about the generated data sets are shown 
in Additional file  1: Table  1 of Section  2. Figure  8a, 
b show the outcome of our analysis with respect to preci-
sion and recall2 of inferring positional orthologs. In all 
simulations, program FF-Median and heuristic 
FFAdj-AM generated no or very few false positives, lead-
ing to perfect or near-perfect precision score, consist-
ently outperforming MultiMSOAR. The comparison 
between orthologs inferred by FF-Median and FFAdj-
AM shows that the additional orthologies identified by 
FFAdj-AM do not deteriorate the precision, but only 
improve its recall. Thus, our heuristic method consist-
ently outperforms MultiMSOAR in precision and recall 
over all evolutionary distances.

Evaluation on real data
We study 15 γ-proteobacterial genomes that span a large 
taxonomic spectrum and are contained in the OMA 
database  [16]. A complete list of species names is given 
in Additional file 1: Table 2 of Section 3. We obtained the 
genomic sequences from the NCBI database and con-
structed for each combination of three genomes a gene 
similarity graph following the same procedure as in the 
simulated dataset. In 9 out of the 455 combinations of 
genomes the time limit prohibited CPLEX from finding 
an optimal solution for program FF-Median. Likewise 
for FFAdj-AM, CPLEX was unable to find and optimal 
solution in 69 combinations within the provided 1h time 
frame. However, in all those cases CPLEX was still able to 
find integer feasible suboptimal solutions, many of which 
were less than a factor of 10% from the optimal. Figure 8e 
displays statistics of the medians constructed from the 
real dataset. The number of candidate median genes 
and adjacencies ranges from 756 to 18,005 and 3164 to 
2,261,716, respectively, giving rise to up to 3223 median 
genes that are distributed on 5 to 90 CARs per median. 
Some CARs are circular, indicating dubious conforma-
tions mostly arising from tandem duplications, but the 
number of such cases were low (mean: 2.76, max: 14).

We observed that the gene families in the OMA data-
base are clustered tightly and therefore missing many 
true orthologies in the considered triples of genomes. As 
a result, many of the orthologous groups inferred by FF-
Median/FFAdj-AM and MultiMSOAR fall into more 
than one gene family inferred by OMA. We therefore 
evaluate our results by classifying the inferred ortholo-
gous groups into three categories: An orthologous group 

2 Precision: #true positives/(#true positives + #false positives), recall: #true 
positives/(#true positives + #false negatives).

http://bibiserv.cebitec.uni-bielefeld.de/ffgc
http://www.ibm.com/software/integration/optimization/cplex-optimizer/
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agrees with OMA if all its genes are in the same OMA 
group. It disagrees with OMA if any two of its genes x and 
y (of genomes X and Y respectively) are in different OMA 
groups but the OMA group of x contains another gene 
from genome Y. It is compatible with OMA if it neither 
agrees nor disagrees with OMA. We measure the number 

of orthologous groups of FFAdj-AM and MultiMSOAR 
in each of the three categories. Figure 8c, d give an over-
view on the outcome this analysis, showing that FFAdj-
AM and MultiMSOAR perform roughly equally well.

The number of orthologous groups that disagree with 
OMA is comparably low for both FFAdj-AM (mean: 

evolutionary distance (PAM)
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44.43, var: 129) and MultiMSOAR (mean: 44.63, var: 
243). In total, FFAdj-AM is able to infer 7865 orthologies 
more that are agree and 94 less that disagree with OMA. 
Conversely, MultiMSOAR finds 69,769 more compatible 
orthologies than FFAdj-AM.

We then performed another analysis to assess the fra-
gility of the positional orthology predictions. To this end, 
we look at orthologous groups across multiple datasets 
that share two extant genomes, but vary in the third. 
Given two genes, x of genome X and y of genome Y, an 
orthologous group that contains x and y is called frag-
ile if x and y no longer occur not in the same ortholo-
gous group if the third extant genome is exchanged for 
another. We computed the total count of fragile orthol-
ogies produced by FFAdj-AM and MultiMSOAR for 
all 105 genome pairs in our dataset, see Fig.  8f. In 88 
pairwise comparisons (83.8%) the orthologous groups 
inferred by FFAdj-AM have fewer fragile orthologies 
than those by MultiMSOAR.

Overall, we can observe that FFAdj-AM performs 
equally well or better as MultiMSOAR—which is con-
sistent with our observation on simulated data—while 
producing less fragile orthologies in general. This sug-
gests FFAdj-AM is an interesting alternative to identify 
higher confidence positional orthologs.

Conclusions and future work
Our main contributions in this work are (i) the intro-
duction and analysis of a new problem, FF-Median, a 
generalization of the unconstrained breakpoint median 
of three, (ii) FFAdj-3G, an exact algorithm for solv-
ing problem FF-Adjacencies for three genomes, and (iii) 
FFAdj-AM, a heuristic method combining both pro-
grams FF-Median and FFAdj-3G. Our heuristic shows 
superior performance in simulations and comparable 
performance on real data compared to MultiMSOAR, a 
competing software tool.

One aim of future work is to investigate alternative 
methods to reduce the computational load of programs 
FF-Median and FFAdj-3G by identifying further 
strictly sub-optimal and optimal substructures, which 
might require a better understanding of the impact of 
internal conflicts within substructures defined by inter-
vals in the extant genomes. Without the need to modify 
drastically either the FF-Median/FF-Adjacencies prob-
lem definition or the ILP, one can think about more 
complex weighting schemes for adjacencies that could 
account for known divergence time between genomes. 
With regard to program FF-Median, it would prob-
ably be interesting to combine this with the use of com-
mon intervals instead of runs to define conflict-free 
sub-instances.
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