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Abstract 

Background: Cancer is an evolutionary process characterized by the accumulation of somatic mutations in a 
population of cells that form a tumor. One frequent type of mutations is copy number aberrations, which alter the 
number of copies of genomic regions. The number of copies of each position along a chromosome constitutes the 
chromosome’s copy‑number profile. Understanding how such profiles evolve in cancer can assist in both diagnosis 
and prognosis.

Results: We model the evolution of a tumor by segmental deletions and amplifications, and gauge distance from 
profile a to b by the minimum number of events needed to transform a into b. Given two profiles, our first problem 
aims to find a parental profile that minimizes the sum of distances to its children. Given k profiles, the second, more 
general problem, seeks a phylogenetic tree, whose k leaves are labeled by the k given profiles and whose internal 
vertices are labeled by ancestral profiles such that the sum of edge distances is minimum.

Conclusions: For the former problem we give a pseudo‑polynomial dynamic programming algorithm that is linear 
in the profile length, and an integer linear program formulation. For the latter problem we show it is NP‑hard and give 
an integer linear program formulation that scales to practical problem instance sizes. We assess the efficiency and 
quality of our algorithms on simulated instances.
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Background
The clonal theory of cancer posits that cancer results 
from an evolutionary process where somatic muta-
tions that arise during the lifetime of an individual accu-
mulate in a population of cells that form a tumor  [1]. 
Consequently, a tumor consists of clones, which are 
subpopulations of cells sharing a unique combination of 
somatic mutations. The evolutionary history of the clones 
can be described by a phylogenetic tree whose leaves cor-
respond to extant clones and whose edges are labeled 
by mutations. Computational inference of phylogenetic 
trees is a fundamental problem in species evolution  [2], 

and has recently been studied extensively for tumor evo-
lution in the case where mutations are single-nucleotide 
variants [3–7]. Here, we study the problem of construct-
ing a phylogenetic tree of a tumor in the case where 
mutations are copy number aberrations.

Copy number aberrations include segmental deletions 
and amplifications that affect large genomic regions, and 
are common in many cancer types [8]. As a result of these 
events, the number of copies of genomic regions (posi-
tions) along a chromosome can deviate from the diploid, 
two-copy state of each position in a normal chromosome. 
Understanding these events and the underlying evolution-
ary tree that relates them is important in predicting disease 
progression and the outcome of medical interventions [9].

Several methods have been introduced to infer trees 
from copy number aberrations in cancer. In  [10, 11] 
the authors use fluorescent in  situ hybridisation data to 
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analyze gain and loss of whole chromosomes and single 
genes. However, due to technical limitations, this tech-
nology does not scale to a large number of positions. 
In addition, common deletions and amplifications that 
affect only a subset of the positions of a chromosome are 
not supported by the model. In another work, Schwartz 
et  al.  [12] introduced MEDICC, an algorithm that ana-
lyzes amplifications and deletions of contiguous seg-
ments. The input to MEDICC is a set of copy-number 
profiles, vectors of integers defining the copy-number 
state of each position. These profiles are measured for 
multiple samples from a tumor using DNA microarrays 
or DNA sequencing. The edit distance from profile a 
to b was defined as the minimum number of amplifica-
tions and deletions of segments required to transform a 
into b. Note that this distance is not symmetric. Using 
this distance measure, the authors applied heuristics to 
reconstruct phylogenetic trees. However, the complex-
ity of their methods was not analyzed. Recently, Shamir 
et  al.  [13] analyzed some combinatorial aspects of this 
amplification/deletion distance model and proved that 
the distance from one profile to another can be com-
puted in linear time.

In this work, we consider two problems in the evo-
lutionary analysis of copy-number profiles: the copy-
number triplet (CN3) and copy-number tree (CNT) 
problems. Given two profiles, the CN3 problem aims 
to find a parental profile that minimizes the sum of dis-
tances to its children. The CNT problem asks to con-
struct a phylogenetic tree whose k leaves are labeled by 
the k given profiles, and to assign profiles to the inter-
nal vertices so that the sum of distances over all edges 
is minimum; such a tree describes the evolutionary his-
tory under a maximum parsimony assumption (Fig.  1). 

For the CN3 problem we give a pseudo-polynomial time 
algorithm that is linear in n, the number of positions in 
the profiles, along with an integer linear program (ILP) 
formulation whose number of variables and constraints 
is linear in n. We show that the CNT problem is NP-hard 
and present an ILP formulation that scales to practical 
problem instance sizes. Finally, we use simulations to test 
our algorithms.

A preliminary version of this study was published as an 
extended abstract in WABI [14].

Preliminaries
Profiles and events
We represent a reference chromosome as a sequence of 
intervals that we call positions, numbered from 1 to n in 
left to right order. We consider mutations that amplify 
or delete contiguous positions. The copy-number pro-
file, or profile for short, of a clone specifies the number 
of copies of each of the n positions. Formally, a profile 
yi = [yi,s] is a vector of length n. An entry yi,s ∈ N indi-
cates the number of copies of position s in clone i. For 
simplicity, we consider a single chromosome only. The 
results can be easily extended to the case of multiple 
chromosomes.

An operation, or event, acting on profile yi increases 
or decreases copy-numbers in a contiguous segment of 
yi. Formally, an event is a triple (s,  t, b) where s ≤ t and 
b ∈ Z . If b is positive then profile-valued positions s, . . . , t 
are incremented by b, whereas for negative b the positions 
s, . . . , t are decremented by at most |b|. That is, applying 
event (s, t, b) to yi results in a new profile y′i such that

y′i,l =

{

max{yi,l + b, 0}, if s ≤ l ≤ t and yi,l �= 0,

yi,l , otherwise.

Fig. 1 Copy‑number tree problem. As input we are given the copy‑number profiles of four leaves, each profile is an integer vector that is inferred 
from data; e.g. the coverage of mapped reads (blue segments). The tree topology and profiles at internal vertices are found to minimize the total 
number of amplifications (green bars) and deletions (red bars). The displayed scenario has 14 total events.
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An event with b > 0 is called an amplification and an 
event with b < 0 is called a deletion. As indicated by 
the condition above, once a position ℓ has been lost, i.e. 
yi,ℓ = 0, it can never be regained (or deleted). Therefore, 
for a pair of profiles there might not exist a sequence of 
events that transforms one into the other.

The copy‑number tree problem
We describe the evolutionary process that led to the 
tumor clones by a copy-number tree T, which is a rooted 
full binary tree. As such, each vertex of T has either zero 
or two children. We denote the vertex set of T by V(T), 
the root vertex by r(T), the leaf set by L(T) and the edge 
set by E(T). The vertices of T correspond to clones. Thus, 
each vertex vi ∈ V (T ) is labeled by a profile yi. The root 
vertex r(T) corresponds to the normal clone, which we 
assume to be diploid, i.e. yr,s = 2 for all positions s. Note 
that we do not require each vertex to be labeled by a 
unique profile.

Each edge (vi, vj) ∈ E(T ) relates a parent clone 
vi to its child vj, and is labeled by a sequence 
σ(i, j) = (s1, t1, b1), . . . , (sq , tq , bq) of events that yielded yi  
from yj. These events are applied in order from 1 to q. 
Since different events in σ(i, j) may affect the same posi-
tion, the order as specified by σ(i, j) matters. The cost 
of an event (s, t, b) is the number of changes and is thus 
equal to |b|. Therefore, the cost δσ (i, j) of an edge (vi, vj) is 
the total cost of the events in σ(i, j), i.e.

Note that the cost is not symmetric. The cost �(T ) of the 
tree T is the sum of the costs of all edges.

Our observations correspond to the profiles c1, . . . , ck 
of k extant clones. Under the assumption of parsimony, 
the goal is to find a copy-number tree T ∗ of minimum 
cost whose leaves correspond to the extant clones. Fur-
thermore, we assume that the maximum copy-number in 
the phylogeny is bounded by e ∈ N. We thus have the fol-
lowing problem.

Problem  1 [Copy-number tree (CNT)] Given profiles 
c1, . . . , ck on n positions and an integer e ∈ N, find a copy-
number tree T ∗, vertex labeling yi and edge labeling σ(i, j) 
such that (1) T ∗ has k leaves labeled 1, . . . , k and yi = ci 
for all i ∈ {1, . . . , k}, (2) yi,s ≤ e for all vi ∈ V (T ∗) and 
s ∈ {1, . . . , n}, (3) yr,s = 2 for the root r and s ∈ {1, . . . , n}, 
and (4) �(T ∗) is minimum.

Note that by definition the profile of the root ver-
tex r(T) of any copy-number tree T is the vector whose 
entries are all 2’s. As such, this must hold as well for the 
minimum-cost tree T ∗, which always exists. Additionally, 

δσ (i, j) =
∑

(s,t,b)∈σ(i,j)

|b|.

the requirement of T being a binary tree is without loss 
of generality as high-degree vertices can be split. Further-
more, the assumption that T is a full binary tree (i.e. each 
vertex has out-degree either 0 or 2) is also without loss 
of generality as degree-2 internal non-root vertices can 
be merged. To account for the case where r(T) has out-
degree 1, given an instance (c1, . . . , ck , e) we solve a sec-
ond instance (c1, . . . , ck , ck+1, e) with an additional profile 
ck+1 consisting of 2’s. The result is the minimum-cost 
tree among the two instances.

The copy‑number triplet problem
The special case where k = 2 is the copy-number triplet 
(CN3) problem. When we consider only two input pro-
files, it is not necessary to explicitly refer to trees. Thus, 
we formulate CN3 as follows:

Problem 2 [Copy-number triplet (CN3)] Given profiles 
u and v on n positions, find a profile m on n positions 
and sequences of events, σ(m,u) an σ(m, v), such that (1) 
σ(m,u) yields u from m and σ(m, v) yields v from m, and 
(2) δσ (m,u)+ δσ (m, v) is minimum.

Instances to both CNT and CN3 always have a solu-
tion as the diploid profile is an ancestor to any other 
profile. Next, we present definitions that will allow us 
to describe results specific to CN3 in a compact man-
ner. We denote the minimum value δσ (m,u)+ δσ (m, v) 
associated with a solution (m, σ(m,u), σ(m, v)) by 
�(u, v). We say that a triple (m, σ(m,u), σ(m, v)) is 
optimal if it realizes �(u, v). Note that �(u, v) is sym-
metric and finite. Moreover, if δσ (u, v) (resp. δσ (v,u)) is 
finite then m = u (resp. m = v) gives a trivial solution 
to CN3. Let B = max{maxni=1{ui}, maxni=1{vi}} denote 
the maximum copy-number in the input. Finally, given 
α ∈ {σ(m,u), σ(m, v)} and w ∈ {−,+}, we denote the 
cost of deletions/amplifications affecting position i by

Previous results
We now present three results incorporated in 
the design of our dynamic programming and 
ILP algorithms for CN3 and CNT. The first one 
relies on the observation that if ui = vi = 0, then 
�(u, v) = �((u1, . . . ,ui−1,ui+1, . . . ,un), (v1, . . . , vi−1, 
vi+1, . . . , vn)), i.e. it is safe to fix mi = 0. Therefore, we 
have the following straightforward yet useful result.

Lemma 1 Without loss of generality, it can be assumed 
that for all 1 ≤ i ≤ n, at least one value among ui and vi is 
positive.

co(α,w, i) =
∑

(s, t, b) ∈ α : s ≤ i ≤ t, sign(b) = w

|b|.
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This lemma also implies that we can assume that the 
profile m of any optimal triple (m, σ(m,u), σ(m, v)) con-
sists only of positive values (since for a position i such 
that mi = 0, it holds that vi = ui = 0).

We say that a sequence of events where all of the dele-
tions precede all of the amplifications is sorted. Formally, 
let σ(p,q) be a sequence of events that yields q from 
p . Then, if there exist a sequence α− of deletion events 
and a sequence α+ of amplification events such that 
σ(p,q) = α−α+, we say that σ(p,q) is sorted. The follow-
ing lemma states that we can focus on sorted sequences of 
events:

Lemma 2 [13] Given a sequence of events σ(p,q) that 
yields q from p, there exists a sorted sequence of cost at 
most δσ (p,q) that yields q from p.

Shamir et  al.  [13] also showed that the minimum cost 
of a sequence yielding q from p is computable by the 
recursive formula given below. Here, we let G[i,  d,  a] 
be the minimum cost of a sequence of events σ that 
from the prefix pi = (p1, . . . , pi) of p yields the prefix 
qi = (q1, . . . , qi) of q and that satisfies co(σ ,−, i) = d and 
co(σ ,+, i) = a. In case such a sequence does not exist, 
we let G[i, d, a] = ∞.

Lemma 3 [13] Let p and q be two profiles, and let 
0 ≤ d, a ≤ B. Then,

1. If qi > 0 and either d ≥ pi or qi �= pi − d + a: 
G[i, d, a] = ∞.

2. Else if qi = 0 and d < pi: G[i, d, a] = ∞.
3. Else if i = 1: G[i, d, a] = d + a.
4. Else: G[i, d, a] = F .

where F = min0≤d′,a′≤B{G[i − 1, d′, a′] +max{d − d
′, 0}  

+max{a− a
′, 0}} . The minimum cost of a sequence yield-

ing q from p is min0≤d,a≤B G[n, d, a].

Complexity
In this section we show that CNT is NP-hard by reduc-
tion from the maximum parsimony phylogeny (MPP) 
problem  [15]. In MPP, we seek to find a binary phylogeny 
T, which is a full binary tree whose vertices are labeled by 
binary vectors of size n. The cost of a binary phylogeny T is 
defined as the sum of the Hamming distances between the 
two binary vectors associated with each edge. The input for 
MPP are leaves of an unknown binary phylogeny in the form 
of k binary vectors b1, . . . ,bk of size n, and the task is to find 
a minimum-cost binary phylogeny T with k leaves such that 
each leaf vi ∈ L(T ) is labeled by bi and the root is labeled by 
a vector of all 0’s. We consider the decision version where 
we are asked whether there exists a binary phylogeny T with 
cost at most h. This problem is NP-complete [15].

We start by defining the transformation (Fig.  2). Let 
b1, . . . ,bk be an instance of MPP. The correspond-
ing CNT-instance has parameter e = 2 and profiles 
c1, . . . , ck+1 of length n+ (n− 1)nk. Each input profile ci, 
where i ∈ {1, . . . , k}, is defined as

where

and �, called a wall, is a vector of size nk such that for 
each j ∈ {1, . . . , nk}

Finally, ck+1 = (2, 2, . . . , 2).

(1)ci = φ(bi) =
(

φ(bi,1) � φ(bi,2) � · · · �φ(bi,k)
)

(2)φ(bi,s) =

{

1, if bi,s = 1,
2, otherwise

(3)�j =

{

2, if j is odd,
1, otherwise.

( 0 0 0 0 )

( 1 0 0 1 )

( 1 00 1 ) ( 0 0 0 1 )( 1 00 0 )

2

10

( 0 1 1 0 )

( 1 0 0 0 )

0

1

1

mpp instance and solution T with cost ∆(T ) = 5

b1 b2 b3 b4

( 2Ω 2Ω2 Ω2 )

( 1 Ω 2Ω2Ω1 )

( 1Ω 2Ω2Ω2 )

2

10

( 1Ω 2Ω2Ω2 )

0

1

1

cnp instance and solution T ′ with cost ∆(T ′) = ∆(T ) +W = 5 +W

c1 = φ(b1) c2 = φ(b2) c3 = φ(b3) c4 = φ(b4)

( 2 2 2 2 2 2 2 )

W

( 2 2 2 2 2 2 2 )

0

c5 = φ(b5)

⇒

Ω = 2 1 · · · 1 2
)

|Ω| = nk = 20

( 2Ω 1Ω1Ω2 )( 1Ω 2Ω2Ω1 ) ( 2Ω 2Ω2Ω1 )

W = 30

Fig. 2 Transformation of an MPP instance to a CNT instance. Left shows an MPP instance and solution T, whereas right shows the corresponding 
CNT instance and solution T ′. Edges are labeled by the cost of the associated events and their affected positions are colored in blue.
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Informally, ci is defined as a vector consisting of true 
positions (which correspond to the original values) that 
are separated by walls (which are vectors � of alternating 
2, 1 values of length nk). The purpose of wall positions � 
is to prevent an event from spanning more than one true 
position. Profile ck+1 plays a role in initializing the wall 
elements � immediately from the all 2’s root. This trans-
formation can be computed in polynomial time, and it is 
used in the following proof of hardness.

Theorem 4 The CNT problem is NP-hard.

Proof We claim that MPP instance, composed of 
b1, . . . ,bk such that |bi| = n, admits a binary phylogeny T 
with cost at most h if and only if the corresponding CNT 
instance, composed of c1, . . . , ck+1 and e = 2 such that 
|ci| = n, admits a copy-number tree T ′ with cost at most 
h+W  where W = (n− 1)nk/2. Note that (n− 1)nk is 
even, and thus W ∈ N. Intuitively, W represents the cost 
of ‘initializing’ the wall elements �.

(⇒) Let T be a binary phylogeny with cost �(T ) ≤ h . 
We denote by bi the binary vector of vertex vi ∈ V (T ). 
For each true position s ∈ [n], the corresponding posi-
tion in the transformation is denoted by α(s). We show 
that given T we can construct a copy-number tree T ′ 
such that �(T ′) = �(T )+W . Tree T ′ is composed of 
a root vertex r(T ′) whose two children correspond to 
tree T (rooted at r(T)) and an additional leaf w labeled 
by ck+1. The remaining vertices v ∈ V (T ′) \ {w} are 
labeled by ci = φ(bi) [see (1)]. The edge (r(T ′),w) of 
T ′ connects two vertices with the same profile and 
thus has cost 0. The other edge (r(T ′), r(T )) has cost 
W, which corresponds to the number of wall positions 
that need to be initialized to 1 (these are common to 
all leaves c1, . . . , ck). Consider an edge (vi, vj) of T with 
Hamming distance ζ. First, observe that the Hamming 
distance equals the number of flips required to trans-
form bi into bj. We describe how to obtain a sequence 
of events σ(i, j) on the corresponding edge (vi, vj) in T ′ 
such that δ(i, j) = ζ. Consider position s ∈ [n]. A flip 
from 0 to 1 at position s corresponds to a deletion event 
(α(s),α(s),−1). Conversely, a flip from 1 to 0 in position 
s corresponds to an amplification event (α(s),α(s),+1) . 
Recall that δ(i, j) =

∑

(s,t,b)∈σ(vi ,vj)
|b|. It thus follows 

that �(T ′) = �(T )+W . Since �(T ) ≤ h, we thus have 
�(T ′) ≤ h+W .
(⇐) Let T ′ be a copy-number tree with cost 

�(T ′) ≤ h+W . We denote by ci the profile of vertex 
vi ∈ V (T ′). We show that T ′ can be transformed into a 
binary phylogeny T such that �(T ) ≤ h. We distinguish 
two cases h ≥ nk + 1 and h ≤ nk.

1. If h ≥ nk + 1, we can construct a naive binary phy-
logeny T whose internal vertices are labeled with the 
same binary vector as the root (all 0’s). The cost of T 
is at most kn since the total number of flips is at most 
kn, and thus �(T ) ≤ nk + 1 ≤ h.

2. Consider the case where h ≤ nk. We assume with-
out loss of generality that n ≥ 4. Now, h < W  since 
nk < W  for n ≥ 4. Hence, �(T ′) < 2W . Recall that 
the root vertex r(T ′) has 2’s at every position includ-
ing the walls. We claim that r(T ′) has two children, 
one of which is a leaf labeled by ck+1. Assume for a 
contradiction that this is not the case and that the two 
children split L(T ′) into two sets L1 and L2 such that 
|L1| > 1 and |L2| > 1. Thus, there exist two distinct 
leaves v1 ∈ L1 and v2 ∈ L2 such that for the respective 
profiles it holds that y1 �= ck+1 and y2 �= ck+1. Now 
the cost of initializing the wall elements of y1 and y2 
is at least 2W, which yields a contradiction. It thus 
follows that the tree T ′ must be composed of a root 
vertex r(T ′) whose first child corresponds to a tree 
T ′′ (rooted at r(T ′′)) and whose second child is a leaf 
w labeled by ck+1. We focus our attention on T ′′.

 We claim that there is no event in T ′′ that covers 
more than one true position. Assume for a contra-
diction that such an event (s,  t,  b) exists. By con-
struction, positions s and t span at least one wall �. 
W.l.o.g. assume that both s and t are true positions. 
In our restricted setting where e = 2 and where the 
leaves of T ′′ do not contain 0’s, the event (s, t, b) can 
only be applied if all positions from s to t have the 
same value. As such, this event must be preceded by 
at least nk  /  2 other events to make those positions 
with the same value and must be followed by at least 
nk / 2 other events to restore the wall �. Thus, there 
must be at least nk other events (which is the length 
of a wall �). These events may be on the same edge 
or any ancestral edge. Therefore, �(T ′′) ≥ nk + 1, 
which is a contradiction. Hence, events in T ′′ where 
�(T ′′) ≤ nk span at most one true position.

 Finally, we show how to construct a binary phylogeny 
T from T ′′ such that �(T ) ≤ h ≤ nk. T has the same 
topology of T ′′. Moreover, each vertex vi ∈ V (T ) is 
labeled by a binary vector bi such that ci = φ(bi). 
Consider an edge (vi, vj) of T ′′ labeled by events σ(i, j) 
and with cost δ(i, j) = ζ. Each event (s, t, b) ∈ σ(i, j) 
spans at most one true position (but may contain 
parts of a wall �). Let X ⊆ [n] be the set of true 
positions spanned by events in σ(i, j). Observe that 
|X | ≤ ζ since either b = 1 or b = −1. Therefore, the 
Hamming distance between bi and bj is at most |X|. 
Hence, �(T ) ≤ �(T ′′) ≤ h �
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Algorithms
Copy‑number triplet problem: DP
In this section we develop a DP algorithm, called DP-
Alg1, that solves the CN3 problem in time O(nB10) and 
space O(nB5). We will assume w.l.o.g. that sequences of 
events consist only of events of the form (s,  t,  b) where 
b ∈ {−1, 1}. Events with |b| > 1 can be replaced by |b| 
events of that form, having the same total cost. Next, 
we show that DP-Alg1 can be improved to obtain a DP 
algorithm, called DP-Alg2, that solves the CN3 prob-
lem in time O(nB7) and space O(nB4). We also present in 
Additional file 1: Appendix B an ILP formulation for CN3 
consisting of O(n) variables.
DP-Alg1 is based on Lemma  3 and the following 

Lemma 5, proved in Additional file 1: Appendix A.

Lemma 5 Let u and v be two profiles. Then, there exists 
an optimal triple (m, σ(m,u), σ(m, v)) such that the fol-
lowing conditions hold.

  • Both σ(m,u) and σ(m, v) are sorted sequences of 
events.

  • For all 1 ≤ i ≤ n, mi ≤ B. Thus, for all 1 ≤ i ≤ n, 
mi ≤ min{B, e}.

  • For all 1 ≤ i ≤ n, c ∈ {u, v} and w ∈ {−,+}, 
co(σ (c),w, i) ≤ B.

1. If ui > 0, and du ≥ mi or ui �= mi − du + au: 
L[i,m, du, au, dv , av] = ∞.

2. Else if vi > 0, and dv ≥ mi or vi �= mi − dv + av: 
L[i,m, du, au, dv , av] = ∞.

3. Else if ui = 0 and du < mi: L[i,m, du, au, dv , av] = ∞.
4. Else if vi = 0 and dv < mi: L[i,m, du, au, dv , av] = ∞.
5. Else if i = 1: L[i,m, du, au, dv , av] = du + au + dv + av.

Now, consider entries L[i,m, du, au, dv , av] that are not 
filled by the base cases. We compute them using the fol-
lowing formula: L[i,m, du, au, dv , av] as

? ? ? 2 ? ?L[4,2,1,2,0,3]: m

3 2 1 3 5 4 4 1 1 5 0 3u v

1 deletion
2 amplifications

no deletion
3 amplifications

Fig. 3 Illustration of an item in the DP table for solving CN3. Given 
that the 4th position of m is 2, one of the combinations considered is 
1 deletion and 2 amplifications on the path to u, and 3 amplifications 
on the path to v. The best cost of that combination is computed by 
DP-Alg1 based on the L entries for position 3.

Let ui = (u1, . . . ,ui) and vi = (v1, . . . , vi) be the pre-
fixes consisting of the first i positions of u and v, respec-
tively. We will store costs corresponding to partial 
solutions in a table L (see Fig. 3). This table has an entry 
L[i,m, du, au, dv , av] for all 1 ≤ i ≤ n, 0 ≤ m ≤ B and 
0 ≤ du, au, dv , av ≤ B. At such an entry, we will store the 
the minimum total cost, δσ (m,ui)+ δσ (m, vi) of a triple 
(m, σ(m,ui), σ(m, vi)) in the set S(i,m, du, au, dv , av) , 
which is defined as follows. This set contains all triples 
(m, σ(m,ui), σ(m, vi)) such the numbers of deletions/
amplifications affecting i are given by du, au, dv , av, where 
the notation d/a and v/u indicate whether we consider 
amplifications or deletions as well as σ(m,ui) or σ(m, vi), 
mi = m and for all j ∈ {1, . . . , n}, mj ≤ B.

By Lemma 5, �(u, v) is the minimum cost stored in an entry where 
i = n. Thus, it remains to show how to correctly compute the entries 
of L efficiently. We use the following base cases, whose correctness fol-
lows from Lemma 3:

min

0 ≤ m
′ ≤ min{B, e}

0 ≤ du′, au′, dv′, av′ ≤ B

{

L[i − 1,m
′
, d

u′
, a

u′
, d

v′
, a

v′] +max{du − d
u′
, 0} +max{au − a

u′
, 0} +max{dv − d

v′
, 0} +max{av − a

v′
, 0}

}

The correctness of this formula follows from Lemma  3 
and since in light of Lemma  5, it exhaustively searches 
for the best choice for the previous value of m. DP-Alg1 
computes entries of L iteratively and returns

By computing the entries of L in an ascending order 
according to their first argument i, we have that the com-
putation of each entry relies only on entries that are com-
puted before it. The table L consists of O(nB5) entries, 
and each of them can be computed in time O(nB5). Thus, 
we obtain the following lemma.

Lemma 6 DP-Alg1 solves CN3 in time O(nB10) and 
space O(nB5).

min
0 ≤ m′ ≤ min{B, e}

0 ≤ du′, au′, dv′, av′ ≤ B

{

L[n,m′, du′, au′, dv′, av′]
}
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Next, we show that DP-Alg1 can be modified to obtain 
a DP algorithm, called DP-Alg2, for which we prove the 
following result.

Theorem  7 DP-Alg2 solves CN3 in time O(nB7) and 
space O(nB4).

Recall that Lemma 1 states that we can assume that for 
all 1 ≤ i ≤ n, either ui > 0 or vi > 0 (or both). Now, by 
the formulas given in the previous subsection, for all 
1 ≤ i ≤ n, if ui > 0 then we only need to explicitly store 
the entries L[i,m, du, au, dv , av] where au = ui −m+ du ; 
if one accesses an entry L[i,m, du, au, dv , av] where 
au �= ui −m+ du, we simply return ∞. The symmetric 
argument holds for all 1 ≤ i ≤ n such that vi > 0. Now, 
for all 1 ≤ i ≤ n, the number of entries is bounded by 
O(B4) rather than O(B5), and therefore the space com-
plexity is bounded by O(nB4).

Consider an entry L[i,m, du, au, dv , av] computed 
by the recursive formula of the previous subsection. 
In case ui−1 > 0, we need only consider the value 
au ′ = ui−1 −m′ + du ′, since if au ′ �= ui−1 −mi−1 + du ′ 
then L[i − 1,m′, du ′, au ′, dv ′, av ′] = ∞. Symmetri-
cally, in case vi−1 > 0, we need only consider the value 
av ′ = vi−1 −m′ + dv ′. That is, we have that each entry 
can be computed in time O(B4) rather than O(B5), and 
therefore the time complexity is bounded by O(nB8). We 
thus obtain an algorithm that solves CN3 in time O(nB8) 
and space O(nB4).

Note that the only entries that this algorithm computes 
in time O(B4) rather than O(B3) are those where either 
ui−1 = 0 or vi−1 = 0. However, the following lemmas state 
that these entries can in fact be computed in time O(B2).

Lemma 8 Each entry of the form L[i,m, du, au, dv , av] 
where i ≥ 2 and ui−1 = 0 can be computed in time O(B2).

Proof Consider an entry L[i,m, du, au, dv , av] where 
i ≥ 2 and ui−1 = 0. It is sufficient to show that the cal-
culation of this entry can be modified to depend only on 
O(B2) entries of the form L[i − 1,m′, du ′, au ′, dv ′, av ′] . 
First, note that since ui−1 = 0, by Lemma 1 we have that 
vi−1 > 0, and therefore we can fix av ′ = vi−1 −m′ + dv ′ . 
We now claim that we can also fix du ′ = max{du,m′} 
and au ′ = au, which will imply that the lemma is  
correct. To show this, we need to show that there is  
a triple (m, σ(m,ui), σ(m, vi)) ∈ S(i,m, du, au, dv , av) 
that minimizes δσ (m,ui)+ δσ (m, vi) and satis-
fies max{du,m′} = co(σ (m,ui),−, i − 1) and 
au = co(σ (m,ui),+, i − 1). Since ui−1 = 0, it is clear 
that m′ ≤ co(σ (m,ui),−, i − 1). Moreover, since 
ui−1 = 0 , each event in σ(m,u) whose segment 
includes i can be elongated to include i − 1 as well 

while maintaining optimality (as we do not introduce 
new events) and that σ(m,ui) yields ui from m. There-
fore, we can assume that du ≤ co(σ (m,ui),−, i − 1) and 
au ≤ co(σ (m,ui),+, i − 1). Furthermore, since ui−1 = 0,  
each event in σ(m,ui) whose segment includes i − 1 but 
not i can be modified to exclude i − 1 as well, as long 
as it still holds that m′ ≤ co(σ (m,ui),−, i − 1), while 
maintaining optimality and that σ(m,ui) yields ui from 
m . Therefore, max{du,m′} = co(σ (m,ui),−, i − 1) and 
au = co(σ (m,ui),+, i − 1).  �

Lemma 9 Each entry of the form L[i,m, du, au, dv , av] 
where i ≥ 2 and vi−1 = 0 can be computed in time O(B2).

Proof The proof is symmetric to the one of Lemma 8.  �

Thus, we obtain the desired algorithm DP-Alg2 that 
computes the entries of L iteratively using the latter 
observations to store only the required entries and effi-
ciently compute them.

Copy‑number tree problem: ILP
In this section we describe an ILP for CNT consist-
ing of O(k2n+ kn log e) variables and O(k2n+ kn log e) 
constraints. Let (c1, . . . , ck , e) be an instance of CNT. 
Recall that we seek to find a full binary tree with k 
leaves. We define a directed graph G that contains any 
full binary tree with k leaves as a spanning tree. As such, 
|V (G)| = 2k − 1. The vertex set V(G) consists of a sub-
set L(G) of leaves such that |L(G)| = k. We denote by 
r(T ) ∈ V (G) \ L(G) the vertex that corresponds to the 
root vertex. Throughout the following, we consider an 
order v1, . . . , vk , . . . , v2k−1 of the vertices in V(G) such 
that v1 = r(T ) and {vk , . . . , v2k−1} = L(G). The edge set 
E(G) has edges {(vi, vj) | 1 ≤ i < k , 1 ≤ i < j ≤ 2k − 1} . 
We denote by N−(j) the set of vertices incident to an out-
going edge to j. Conversely, N+(i) denotes the set of ver-
tices incident to an incoming edge from i. We make the 
following two observations.

Observation 1 G is a directed acyclic graph.

Observation 2 Any copy-number tree T is a spanning 
tree of G.

We now proceed to define the set of feasible solutions 
(X,  Y) to a CNT instance (c1, . . . , ck , e) by introducing 
constraints and variables modeling the tree topology, and 
vertex labeling and edge costs. More specifically, vari-
ables X = [xi,j] encode a spanning tree T of G and varia-
bles Y = [yi,s] encode the profiles of each vertex such that 
X and Y combined induce edge costs. In the following we 
provide more details.
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Tree topology
The goal is to enforce that we select a spanning tree T 
of G that is a full binary tree. To do so, we introduce a 
binary variable xi,j ∈ {0, 1} for each edge (vi, vj) ∈ E(G) 
indicating whether the corresponding edge (vi, vj) is in T. 
Note that by construction i < j. We require that each ver-
tex v ∈ V (G) \ {v1} has exactly one incoming edge in T.

We require that each vertex v ∈ V (G) \ L(G) has two 
outgoing edges in T.

Vertex labeling and edge costs
We introduce variables yi,s ∈ {0, . . . , e} that encode the 
copy-number state of position s of vertex vi. Since the 
profiles of each leaf as well as the root vertex are given, 
we have the following constraints.

for each i ∈ {k , . . . , 2k − 1} and each s ∈ {1, . . . , n}.
Next, we encode a set σ(vi, vj) of events that trans-

form the profile yi of vi into profile yj of vj. Recall that an 
event is a triple (s,  t,  b) and corresponds to an amplifi-
cation if b > 0 and a deletion otherwise. We model the 
cost of the amplifications and the cost of the deletions 
covering any position s with two separate variables. 
Variables ai,j,s ∈ {0, . . . , e} correspond to the cost of the 
amplifications in σ(vi, vj) covering position  s. Variables 
di,j,s ∈ {0, . . . , e} correspond to the cost of the deletions in 
σ(vi, vj) covering position s.

Now, we consider the effect of amplifications and dele-
tions on a position s. By Lemma  2, we have that there 
exists an optimal solution such that for each edge (vi, vj) 
there are two sets of events σ−(vi, vj) and σ+(vi, vj) that 
yield yj,s from yi,s by first applying σ−(vi, vj) followed by 
σ+(vi, vj). If a subset of the events in σ−(vi, vj) results 
in position s reaching value 0, the remaining amplifica-
tions and deletions will not change the value of that posi-
tion. We distinguish the following four different cases 
(Table 1).

a. yi,s = 0 and yj,s = 0: since both positions have value 
0, the number of amplifications ai,j,s and deletions 
di,j,s are between 0 and e.

b. yi,s �= 0 and yj,s �= 0: since yj,s > 0, the number of 
deletions di,j,s must be strictly smaller than yi,s. More-
over, it must hold that yj,s + di,j,s = yi,s + ai,j,s.

(4)

∑

i∈N−(j)

xi,j = 1 1 < j ≤ 2k − 1

(5)

∑

j∈N+(i)

xi,j = 2 1 ≤ i < k

(6)y1,s = 2

(7)yi,s = ci−k+1,s

c. yi,s �= 0 and yj,s = 0: recall that by Lemma 2 deletions 
precede amplifications. As such, the number of dele-
tions di,j,s must be at least yi,s.

d. yi,s = 0 and yj,s �= 0: once a position s has been lost it 
cannot be regained. As such, this case is infeasible.

To capture the conditions of the four cases, we intro-
duce binary variables ȳi,s ∈ {0, 1} and constraints such 
that ȳi,s = 1 iff yi,s �= 0.

for each i ∈ {1, . . . , 2k − 1}, each s ∈ {1, . . . , n}, and each 
q ∈ {0, . . . , ⌊log2(e)⌋ + 1}. Since ai,j,s, di,j,s ∈ {0, . . . , e}, 
the upper bound constraints involving e are covered. In 
particular, case (a) is captured in its entirety. We capture 
case (b) with the following constraints.

for each position s ∈ {1, . . . , n} and each edge 
(vi, vj) ∈ E(G). In the case of ȳi,s = 1 and ȳj,s = 1 , 
constraints (12) and (13) model the equation 
yj,s + di,j,s = yi,s + ai,j,s, whereas constraints (14) ensure 
that di,j,s < yi,s. Next, we model case (c) using the follow-
ing constraints.

(8)yi,s =

⌊log2(e)⌋+1
∑

q=0

2q · zi,s,q

(9)ȳi,s ≤

⌊log2(e)⌋+1
∑

q=0

zi,s,q

(10)ȳi,s ≥ zi,s,q

(11)zi,s,q ∈ {0, 1}

(12)yj,s ≤ yi,s − di,j,s + ai,j,s + 2e(2− ȳi,s − ȳj,s)

(13)yj,s + 2e(2− ȳi,s − ȳj,s) ≥ yi,s − di,j,s + ai,j,s

(14)di,j,s ≤ yi,s − 1+ (e + 1)(2− ȳi,s − ȳj,s)

(15)yi,s ≤ di,j,s + e(1− ȳi,s + ȳj,s)

Table 1 Case analysis on the values of variables yi,s and yj,s

ai,j,s di,j,s Additional

(a) yi,s = 0 ∧ yj,s = 0 ≤ e ≤ e

(b) yi,s �= 0 ∧ yj,s �= 0 ≤ e < yi,s yj,s + di,j,s = yi,s + ai,j,s

(c) yi,s �= 0 ∧ yj,s = 0 ≤ e ≥ yi,s

≤ e

(d) yi,s = 0 ∧ yj,s �= 0 Infeasible Infeasible Infeasible
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for each position s ∈ [1, n] and each edge (vi, vj) ∈ E(G) . 
Finally, the following constraints, which encode that 
if xi,j = 1 then ȳi,s = 0 implies ȳj,s = 0, prevent case (d) 
from happening.

for each position s ∈ {1, . . . , n} and each edge 
(vi, vj) ∈ E(G).

The cost of a tree T is the sum of the costs of the events 
associated to each edge (vi, vj) ∈ E(T ). We model the cost 
of an edge (vi, vj) as the sum of the number of amplifica-
tions and deletions that start at each position s. Variables 
āi,j,s ∈ {0, . . . , e} and d̄i,j,s ∈ {0, . . . , e} represent the number 
of new amplifications and deletions, respectively, that start 
at position s. We model this using the following constraints.

for each position s ∈ {1, . . . , n} and each edge 
(vi, vj) ∈ E(G) .

The objective is to minimize the cost of the events of 
the selected tree T, which corresponds to

We model the product using the following constraint.

for each position s ∈ {1, . . . , n}, each edge (vi, vj) ∈ E(G) 
and wi,j,s ≥ 0.

In Additional file  1: Appendix  C, we report the com-
plete ILP formulation.

Experimental evaluation
Copy‑number triplet (CN3) problem
We compared the running times of our DP and ILP algo-
rithms for the CN3 problem as a function of n and B. 
Our results on simulations show that while the running 
time of the DP algorithm highly depends on the copy-
number range B, the ILP time is almost independent of B. 
With the exception of the case of B = 2, the ILP is faster 
(Additional file 1: Figure S1). Additional file 1: Figure S1 
presents the average running times of the DP and ILP 
algorithms on simulated instances.

Copy‑number tree (CNT) problem
To assess the performance of the ILP for CNT, we simu-
lated instances by randomly generating a full binary tree 

(16)(1− xi,j)+ ȳi,s ≥ ȳj,s

(17)āi,j,s ≥ ai,j,s − ai,j,s−1

(18)d̄i,j,s ≥ di,j,s − di,j,s−1

(19)ai,j,0 = 0

(20)di,j,0 = 0

(21)
min

∑

(vi ,vj)∈E(G)

∑

1≤s≤n

xi,j · (āi,j,s + d̄i,j,s)

(22)wi,j,s ≥ āi,j,s + d̄i,j,s − (1− xi,j) · 2e

T with k leaves. We randomly labeled edges by events 
according to a specified maximum number m of events 
per edge with amplifications/deletions ratio ρ. Specifi-
cally, we label an edge by d events where d is drawn uni-
formly from the set {1, . . . ,m}. For each event (s, t, b) we 
uniformly at random draw an interval s ≤ t and decide 
with probability ρ whether b = 1 (amplification) or 
b = −1 (deletion). The resulting instance of CNT is com-
posed of the profiles c1, . . . , ck of the k leaves of T and e is 
set to the maximum value of the input profiles.

We considered varying numbers of leaves k ∈ {4, 6, 8} 
and of segments n ∈ {5, 10, 15, 20, 30, 40}. In addition, we 
varied the number of events m ∈ {1, 2, 3} and varied the 
ratio ρ ∈ {0.2, 0.4}. We generated three instances for each 
combination of k, n, m and ρ, resulting in a total of 324 
instances.

We implemented the ILP in C++ using CPLEX v12.6 
(http://www.cplex.com). The implementation is avail-
able at https://github.com/raphael-group/CNT-ILP. We 
ran the simulated instances on a compute cluster with 
2.6 GHz processors (16 cores) and 32 GB of RAM each. 
We solved 302 instances (93.2%) to optimality within the 
specified time limit of 5 h. Computations exceeding this 
limit were aborted and the best identified solution was 
considered. The instances that were not solved to opti-
mality are a subset of the larger instances with k = 8 and 
n ∈ {20, 30, 40}. For these cases, we show in Additional 
file 1: Figure S2 the gap between the best identified solu-
tions and their computed upper bounds.

For 323 out of 324 instances (99.7%) the tree inferred 
by the ILP has a cost that was at most the simulated tree 
cost. The only exception is an instance with k = 8 leaves 
and n = 40 positions that was not solved to optimality, 
and where the inferred cost was 15 vs. a simulated cost 
of 14. These results empirically validate the correctness of 
our ILP implementation.

We observe that the running time increases with the 
number of leaves and to a lesser extent with the number 
of positions (Fig.  4a). In addition, we assessed the dis-
tance between topologies of the inferred and simulated 
trees using the Robinson–Foulds (RF) metric  [16]. To 
allow for a comparison across varying number of leaves, 
we normalized by the total number of splits to the range 
[0,1] such that a value of 0 corresponds to the same 
topology of both trees. For 264 instances (81.4%) the nor-
malized RF was at most 0.35. For k = 4 leaves the median 
RF value was 0, which indicates that for at least 50% of 
these instances the simulated tree topology was recov-
ered. Figure 4b shows the distribution of normalized RF 
values with varying numbers of leaves and positions. 
Given a fixed number of leaves, the normalized RF value 
decreases with increasing number of positions. This indi-
cates that the maximum parsimony assumption becomes 

http://www.cplex.com
https://github.com/raphael-group/CNT-ILP
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more appropriate with larger number of positions, which 
is not surprising since amplifications and deletions are 
less likely to overlap. In addition, we observed that run-
ning time and RF values are not affected by varying 
values of m and ρ (Additional file  1: Figures S3, S4). In 
summary, we have shown that our ILP scales to practical 
problem instance sizes with k = 6 and up to n = 40 posi-
tions, which is a reasonable size for applications to real 
data [12, 17].

Conclusions
In this paper we studied two problems in the evolu-
tion of copy-number profiles. For the CN3 problem, 
we gave a pseudo-polynomial DP algorithm and an ILP 
formulation, and compared their efficiency on simu-
lated data. Determining the computational complex-
ity of CN3 remains an open problem. We showed that 
the general CNT problem is NP-hard and gave an ILP 
solution. Finally, we assessed the performance of our 
tree reconstruction on simulated data. While all for-
mulations describe copy-number profiles on a single 
chromosome, our results readily generalize to multiple 
chromosomes. In addition, while our formulations pres-
ently lack the phasing step performed in  [12], both the 
DP algorithm and the ILP formulations can be extended 
to support phasing.

We note that experiments on real cancer sample data 
are required to establish the relevance of our formula-
tions. To this end, several extensions to our models might 
be required. These include handling fractional copy-
number values that are a result of most experiments and 
handling missing data for some positions. Moreover, 
since tumor samples are often impure, each sample may 
actually represent a mixture of several clones. In such 

situations, different objectives might try to decompose 
the clone mixture in order to reconstruct the evolution-
ary tree as has been investigated for single-nucleotide 
variants [3–7].
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