
El‑Kebir et al. Algorithms Mol Biol (2017) 12:13
DOI 10.1186/s13015‑017‑0103‑2

RESEARCH

Complexity and algorithms
for copy‑number evolution problems
Mohammed El‑Kebir1,2, Benjamin J. Raphael1,2*, Ron Shamir3*, Roded Sharan3, Simone Zaccaria1,2,4,
Meirav Zehavi3 and Ron Zeira3

Abstract

Background: Cancer is an evolutionary process characterized by the accumulation of somatic mutations in a
population of cells that form a tumor. One frequent type of mutations is copy number aberrations, which alter the
number of copies of genomic regions. The number of copies of each position along a chromosome constitutes the
chromosome’s copy‑number profile. Understanding how such profiles evolve in cancer can assist in both diagnosis
and prognosis.

Results: We model the evolution of a tumor by segmental deletions and amplifications, and gauge distance from
profile a to b by the minimum number of events needed to transform a into b. Given two profiles, our first problem
aims to find a parental profile that minimizes the sum of distances to its children. Given k profiles, the second, more
general problem, seeks a phylogenetic tree, whose k leaves are labeled by the k given profiles and whose internal
vertices are labeled by ancestral profiles such that the sum of edge distances is minimum.

Conclusions: For the former problem we give a pseudo‑polynomial dynamic programming algorithm that is linear
in the profile length, and an integer linear program formulation. For the latter problem we show it is NP‑hard and give
an integer linear program formulation that scales to practical problem instance sizes. We assess the efficiency and
quality of our algorithms on simulated instances.

Availability: https://github.com/raphael‑group/CNT‑ILP

Keywords: Cancer, Maximum parsimony, Phylogeny, Somatic mutation, Copy‑number variant

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
The clonal theory of cancer posits that cancer results
from an evolutionary process where somatic muta-
tions that arise during the lifetime of an individual accu-
mulate in a population of cells that form a tumor [1].
Consequently, a tumor consists of clones, which are
subpopulations of cells sharing a unique combination of
somatic mutations. The evolutionary history of the clones
can be described by a phylogenetic tree whose leaves cor-
respond to extant clones and whose edges are labeled
by mutations. Computational inference of phylogenetic
trees is a fundamental problem in species evolution [2],

and has recently been studied extensively for tumor evo-
lution in the case where mutations are single-nucleotide
variants [3–7]. Here, we study the problem of construct-
ing a phylogenetic tree of a tumor in the case where
mutations are copy number aberrations.

Copy number aberrations include segmental deletions
and amplifications that affect large genomic regions, and
are common in many cancer types [8]. As a result of these
events, the number of copies of genomic regions (posi-
tions) along a chromosome can deviate from the diploid,
two-copy state of each position in a normal chromosome.
Understanding these events and the underlying evolution-
ary tree that relates them is important in predicting disease
progression and the outcome of medical interventions [9].

Several methods have been introduced to infer trees
from copy number aberrations in cancer. In [10, 11]
the authors use fluorescent in situ hybridisation data to

Open Access

Algorithms for
Molecular Biology

*Correspondence: braphael@princeton.edu; rshamir@post.tau.ac.il
1 Department of Computer Science, Princeton University, Princeton,
NJ 08540, USA
3 School of Computer Science, Tel Aviv University, Tel Aviv, Israel
Full list of author information is available at the end of the article

https://github.com/raphael-group/CNT-ILP
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-017-0103-2&domain=pdf

Page 2 of 11El‑Kebir et al. Algorithms Mol Biol (2017) 12:13

analyze gain and loss of whole chromosomes and single
genes. However, due to technical limitations, this tech-
nology does not scale to a large number of positions.
In addition, common deletions and amplifications that
affect only a subset of the positions of a chromosome are
not supported by the model. In another work, Schwartz
et al. [12] introduced MEDICC, an algorithm that ana-
lyzes amplifications and deletions of contiguous seg-
ments. The input to MEDICC is a set of copy-number
profiles, vectors of integers defining the copy-number
state of each position. These profiles are measured for
multiple samples from a tumor using DNA microarrays
or DNA sequencing. The edit distance from profile a
to b was defined as the minimum number of amplifica-
tions and deletions of segments required to transform a
into b. Note that this distance is not symmetric. Using
this distance measure, the authors applied heuristics to
reconstruct phylogenetic trees. However, the complex-
ity of their methods was not analyzed. Recently, Shamir
et al. [13] analyzed some combinatorial aspects of this
amplification/deletion distance model and proved that
the distance from one profile to another can be com-
puted in linear time.

In this work, we consider two problems in the evo-
lutionary analysis of copy-number profiles: the copy-
number triplet (CN3) and copy-number tree (CNT)
problems. Given two profiles, the CN3 problem aims
to find a parental profile that minimizes the sum of dis-
tances to its children. The CNT problem asks to con-
struct a phylogenetic tree whose k leaves are labeled by
the k given profiles, and to assign profiles to the inter-
nal vertices so that the sum of distances over all edges
is minimum; such a tree describes the evolutionary his-
tory under a maximum parsimony assumption (Fig. 1).

For the CN3 problem we give a pseudo-polynomial time
algorithm that is linear in n, the number of positions in
the profiles, along with an integer linear program (ILP)
formulation whose number of variables and constraints
is linear in n. We show that the CNT problem is NP-hard
and present an ILP formulation that scales to practical
problem instance sizes. Finally, we use simulations to test
our algorithms.

A preliminary version of this study was published as an
extended abstract in WABI [14].

Preliminaries
Profiles and events
We represent a reference chromosome as a sequence of
intervals that we call positions, numbered from 1 to n in
left to right order. We consider mutations that amplify
or delete contiguous positions. The copy-number pro-
file, or profile for short, of a clone specifies the number
of copies of each of the n positions. Formally, a profile
yi = [yi,s] is a vector of length n. An entry yi,s ∈ N indi-
cates the number of copies of position s in clone i. For
simplicity, we consider a single chromosome only. The
results can be easily extended to the case of multiple
chromosomes.

An operation, or event, acting on profile yi increases
or decreases copy-numbers in a contiguous segment of
yi. Formally, an event is a triple (s, t, b) where s ≤ t and
b ∈ Z . If b is positive then profile-valued positions s, . . . , t
are incremented by b, whereas for negative b the positions
s, . . . , t are decremented by at most |b|. That is, applying
event (s, t, b) to yi results in a new profile y′i such that

y′i,l =

{

max{yi,l + b, 0}, if s ≤ l ≤ t and yi,l �= 0,

yi,l , otherwise.

Fig. 1 Copy‑number tree problem. As input we are given the copy‑number profiles of four leaves, each profile is an integer vector that is inferred
from data; e.g. the coverage of mapped reads (blue segments). The tree topology and profiles at internal vertices are found to minimize the total
number of amplifications (green bars) and deletions (red bars). The displayed scenario has 14 total events.

Page 3 of 11El‑Kebir et al. Algorithms Mol Biol (2017) 12:13

An event with b > 0 is called an amplification and an
event with b < 0 is called a deletion. As indicated by
the condition above, once a position ℓ has been lost, i.e.
yi,ℓ = 0, it can never be regained (or deleted). Therefore,
for a pair of profiles there might not exist a sequence of
events that transforms one into the other.

The copy‑number tree problem
We describe the evolutionary process that led to the
tumor clones by a copy-number tree T, which is a rooted
full binary tree. As such, each vertex of T has either zero
or two children. We denote the vertex set of T by V(T),
the root vertex by r(T), the leaf set by L(T) and the edge
set by E(T). The vertices of T correspond to clones. Thus,
each vertex vi ∈ V (T) is labeled by a profile yi. The root
vertex r(T) corresponds to the normal clone, which we
assume to be diploid, i.e. yr,s = 2 for all positions s. Note
that we do not require each vertex to be labeled by a
unique profile.

Each edge (vi, vj) ∈ E(T) relates a parent clone
vi to its child vj, and is labeled by a sequence
σ(i, j) = (s1, t1, b1), . . . , (sq , tq , bq) of events that yielded yi
from yj. These events are applied in order from 1 to q.
Since different events in σ(i, j) may affect the same posi-
tion, the order as specified by σ(i, j) matters. The cost
of an event (s, t, b) is the number of changes and is thus
equal to |b|. Therefore, the cost δσ (i, j) of an edge (vi, vj) is
the total cost of the events in σ(i, j), i.e.

Note that the cost is not symmetric. The cost �(T) of the
tree T is the sum of the costs of all edges.

Our observations correspond to the profiles c1, . . . , ck
of k extant clones. Under the assumption of parsimony,
the goal is to find a copy-number tree T ∗ of minimum
cost whose leaves correspond to the extant clones. Fur-
thermore, we assume that the maximum copy-number in
the phylogeny is bounded by e ∈ N. We thus have the fol-
lowing problem.

Problem 1 [Copy-number tree (CNT)] Given profiles
c1, . . . , ck on n positions and an integer e ∈ N, find a copy-
number tree T ∗, vertex labeling yi and edge labeling σ(i, j)
such that (1) T ∗ has k leaves labeled 1, . . . , k and yi = ci
for all i ∈ {1, . . . , k}, (2) yi,s ≤ e for all vi ∈ V (T ∗) and
s ∈ {1, . . . , n}, (3) yr,s = 2 for the root r and s ∈ {1, . . . , n},
and (4) �(T ∗) is minimum.

Note that by definition the profile of the root ver-
tex r(T) of any copy-number tree T is the vector whose
entries are all 2’s. As such, this must hold as well for the
minimum-cost tree T ∗, which always exists. Additionally,

δσ (i, j) =
∑

(s,t,b)∈σ(i,j)

|b|.

the requirement of T being a binary tree is without loss
of generality as high-degree vertices can be split. Further-
more, the assumption that T is a full binary tree (i.e. each
vertex has out-degree either 0 or 2) is also without loss
of generality as degree-2 internal non-root vertices can
be merged. To account for the case where r(T) has out-
degree 1, given an instance (c1, . . . , ck , e) we solve a sec-
ond instance (c1, . . . , ck , ck+1, e) with an additional profile
ck+1 consisting of 2’s. The result is the minimum-cost
tree among the two instances.

The copy‑number triplet problem
The special case where k = 2 is the copy-number triplet
(CN3) problem. When we consider only two input pro-
files, it is not necessary to explicitly refer to trees. Thus,
we formulate CN3 as follows:

Problem 2 [Copy-number triplet (CN3)] Given profiles
u and v on n positions, find a profile m on n positions
and sequences of events, σ(m,u) an σ(m, v), such that (1)
σ(m,u) yields u from m and σ(m, v) yields v from m, and
(2) δσ (m,u)+ δσ (m, v) is minimum.

Instances to both CNT and CN3 always have a solu-
tion as the diploid profile is an ancestor to any other
profile. Next, we present definitions that will allow us
to describe results specific to CN3 in a compact man-
ner. We denote the minimum value δσ (m,u)+ δσ (m, v)
associated with a solution (m, σ(m,u), σ(m, v)) by
�(u, v). We say that a triple (m, σ(m,u), σ(m, v)) is
optimal if it realizes �(u, v). Note that �(u, v) is sym-
metric and finite. Moreover, if δσ (u, v) (resp. δσ (v,u)) is
finite then m = u (resp. m = v) gives a trivial solution
to CN3. Let B = max{maxni=1{ui}, maxni=1{vi}} denote
the maximum copy-number in the input. Finally, given
α ∈ {σ(m,u), σ(m, v)} and w ∈ {−,+}, we denote the
cost of deletions/amplifications affecting position i by

Previous results
We now present three results incorporated in
the design of our dynamic programming and
ILP algorithms for CN3 and CNT. The first one
relies on the observation that if ui = vi = 0, then
�(u, v) = �((u1, . . . ,ui−1,ui+1, . . . ,un), (v1, . . . , vi−1,
vi+1, . . . , vn)), i.e. it is safe to fix mi = 0. Therefore, we
have the following straightforward yet useful result.

Lemma 1 Without loss of generality, it can be assumed
that for all 1 ≤ i ≤ n, at least one value among ui and vi is
positive.

co(α,w, i) =
∑

(s, t, b) ∈ α : s ≤ i ≤ t, sign(b) = w

|b|.

Page 4 of 11El‑Kebir et al. Algorithms Mol Biol (2017) 12:13

This lemma also implies that we can assume that the
profile m of any optimal triple (m, σ(m,u), σ(m, v)) con-
sists only of positive values (since for a position i such
that mi = 0, it holds that vi = ui = 0).

We say that a sequence of events where all of the dele-
tions precede all of the amplifications is sorted. Formally,
let σ(p,q) be a sequence of events that yields q from
p . Then, if there exist a sequence α− of deletion events
and a sequence α+ of amplification events such that
σ(p,q) = α−α+, we say that σ(p,q) is sorted. The follow-
ing lemma states that we can focus on sorted sequences of
events:

Lemma 2 [13] Given a sequence of events σ(p,q) that
yields q from p, there exists a sorted sequence of cost at
most δσ (p,q) that yields q from p.

Shamir et al. [13] also showed that the minimum cost
of a sequence yielding q from p is computable by the
recursive formula given below. Here, we let G[i, d, a]
be the minimum cost of a sequence of events σ that
from the prefix pi = (p1, . . . , pi) of p yields the prefix
qi = (q1, . . . , qi) of q and that satisfies co(σ ,−, i) = d and
co(σ ,+, i) = a. In case such a sequence does not exist,
we let G[i, d, a] = ∞.

Lemma 3 [13] Let p and q be two profiles, and let
0 ≤ d, a ≤ B. Then,

1. If qi > 0 and either d ≥ pi or qi �= pi − d + a:
G[i, d, a] = ∞.

2. Else if qi = 0 and d < pi: G[i, d, a] = ∞.
3. Else if i = 1: G[i, d, a] = d + a.
4. Else: G[i, d, a] = F .

where F = min0≤d′,a′≤B{G[i − 1, d′, a′] +max{d − d
′, 0}

+max{a− a
′, 0}} . The minimum cost of a sequence yield-

ing q from p is min0≤d,a≤B G[n, d, a].

Complexity
In this section we show that CNT is NP-hard by reduc-
tion from the maximum parsimony phylogeny (MPP)
problem [15]. In MPP, we seek to find a binary phylogeny
T, which is a full binary tree whose vertices are labeled by
binary vectors of size n. The cost of a binary phylogeny T is
defined as the sum of the Hamming distances between the
two binary vectors associated with each edge. The input for
MPP are leaves of an unknown binary phylogeny in the form
of k binary vectors b1, . . . ,bk of size n, and the task is to find
a minimum-cost binary phylogeny T with k leaves such that
each leaf vi ∈ L(T) is labeled by bi and the root is labeled by
a vector of all 0’s. We consider the decision version where
we are asked whether there exists a binary phylogeny T with
cost at most h. This problem is NP-complete [15].

We start by defining the transformation (Fig. 2). Let
b1, . . . ,bk be an instance of MPP. The correspond-
ing CNT-instance has parameter e = 2 and profiles
c1, . . . , ck+1 of length n+ (n− 1)nk. Each input profile ci,
where i ∈ {1, . . . , k}, is defined as

where

and �, called a wall, is a vector of size nk such that for
each j ∈ {1, . . . , nk}

Finally, ck+1 = (2, 2, . . . , 2).

(1)ci = φ(bi) =
(

φ(bi,1) � φ(bi,2) � · · · �φ(bi,k)
)

(2)φ(bi,s) =

{

1, if bi,s = 1,
2, otherwise

(3)�j =

{

2, if j is odd,
1, otherwise.

(0 0 0 0)

(1 0 0 1)

(1 00 1) (0 0 0 1)(1 00 0)

2

10

(0 1 1 0)

(1 0 0 0)

0

1

1

mpp instance and solution T with cost ∆(T) = 5

b1 b2 b3 b4

(2Ω 2Ω2 Ω2)

(1 Ω 2Ω2Ω1)

(1Ω 2Ω2Ω2)

2

10

(1Ω 2Ω2Ω2)

0

1

1

cnp instance and solution T ′ with cost ∆(T ′) = ∆(T) +W = 5 +W

c1 = φ(b1) c2 = φ(b2) c3 = φ(b3) c4 = φ(b4)

(2 2 2 2 2 2 2)

W

(2 2 2 2 2 2 2)

0

c5 = φ(b5)

⇒

Ω = 2 1 · · · 1 2
)

|Ω| = nk = 20

(2Ω 1Ω1Ω2)(1Ω 2Ω2Ω1) (2Ω 2Ω2Ω1)

W = 30

Fig. 2 Transformation of an MPP instance to a CNT instance. Left shows an MPP instance and solution T, whereas right shows the corresponding
CNT instance and solution T ′. Edges are labeled by the cost of the associated events and their affected positions are colored in blue.

Page 5 of 11El‑Kebir et al. Algorithms Mol Biol (2017) 12:13

Informally, ci is defined as a vector consisting of true
positions (which correspond to the original values) that
are separated by walls (which are vectors � of alternating
2, 1 values of length nk). The purpose of wall positions �
is to prevent an event from spanning more than one true
position. Profile ck+1 plays a role in initializing the wall
elements � immediately from the all 2’s root. This trans-
formation can be computed in polynomial time, and it is
used in the following proof of hardness.

Theorem 4 The CNT problem is NP-hard.

Proof We claim that MPP instance, composed of
b1, . . . ,bk such that |bi| = n, admits a binary phylogeny T
with cost at most h if and only if the corresponding CNT
instance, composed of c1, . . . , ck+1 and e = 2 such that
|ci| = n, admits a copy-number tree T ′ with cost at most
h+W where W = (n− 1)nk/2. Note that (n− 1)nk is
even, and thus W ∈ N. Intuitively, W represents the cost
of ‘initializing’ the wall elements �.

(⇒) Let T be a binary phylogeny with cost �(T) ≤ h .
We denote by bi the binary vector of vertex vi ∈ V (T).
For each true position s ∈ [n], the corresponding posi-
tion in the transformation is denoted by α(s). We show
that given T we can construct a copy-number tree T ′
such that �(T ′) = �(T)+W . Tree T ′ is composed of
a root vertex r(T ′) whose two children correspond to
tree T (rooted at r(T)) and an additional leaf w labeled
by ck+1. The remaining vertices v ∈ V (T ′) \ {w} are
labeled by ci = φ(bi) [see (1)]. The edge (r(T ′),w) of
T ′ connects two vertices with the same profile and
thus has cost 0. The other edge (r(T ′), r(T)) has cost
W, which corresponds to the number of wall positions
that need to be initialized to 1 (these are common to
all leaves c1, . . . , ck). Consider an edge (vi, vj) of T with
Hamming distance ζ. First, observe that the Hamming
distance equals the number of flips required to trans-
form bi into bj. We describe how to obtain a sequence
of events σ(i, j) on the corresponding edge (vi, vj) in T ′
such that δ(i, j) = ζ. Consider position s ∈ [n]. A flip
from 0 to 1 at position s corresponds to a deletion event
(α(s),α(s),−1). Conversely, a flip from 1 to 0 in position
s corresponds to an amplification event (α(s),α(s),+1) .
Recall that δ(i, j) =

∑

(s,t,b)∈σ(vi ,vj)
|b|. It thus follows

that �(T ′) = �(T)+W . Since �(T) ≤ h, we thus have
�(T ′) ≤ h+W .
(⇐) Let T ′ be a copy-number tree with cost

�(T ′) ≤ h+W . We denote by ci the profile of vertex
vi ∈ V (T ′). We show that T ′ can be transformed into a
binary phylogeny T such that �(T) ≤ h. We distinguish
two cases h ≥ nk + 1 and h ≤ nk.

1. If h ≥ nk + 1, we can construct a naive binary phy-
logeny T whose internal vertices are labeled with the
same binary vector as the root (all 0’s). The cost of T
is at most kn since the total number of flips is at most
kn, and thus �(T) ≤ nk + 1 ≤ h.

2. Consider the case where h ≤ nk. We assume with-
out loss of generality that n ≥ 4. Now, h < W since
nk < W for n ≥ 4. Hence, �(T ′) < 2W . Recall that
the root vertex r(T ′) has 2’s at every position includ-
ing the walls. We claim that r(T ′) has two children,
one of which is a leaf labeled by ck+1. Assume for a
contradiction that this is not the case and that the two
children split L(T ′) into two sets L1 and L2 such that
|L1| > 1 and |L2| > 1. Thus, there exist two distinct
leaves v1 ∈ L1 and v2 ∈ L2 such that for the respective
profiles it holds that y1 �= ck+1 and y2 �= ck+1. Now
the cost of initializing the wall elements of y1 and y2
is at least 2W, which yields a contradiction. It thus
follows that the tree T ′ must be composed of a root
vertex r(T ′) whose first child corresponds to a tree
T ′′ (rooted at r(T ′′)) and whose second child is a leaf
w labeled by ck+1. We focus our attention on T ′′.

 We claim that there is no event in T ′′ that covers
more than one true position. Assume for a contra-
diction that such an event (s, t, b) exists. By con-
struction, positions s and t span at least one wall �.
W.l.o.g. assume that both s and t are true positions.
In our restricted setting where e = 2 and where the
leaves of T ′′ do not contain 0’s, the event (s, t, b) can
only be applied if all positions from s to t have the
same value. As such, this event must be preceded by
at least nk / 2 other events to make those positions
with the same value and must be followed by at least
nk / 2 other events to restore the wall �. Thus, there
must be at least nk other events (which is the length
of a wall �). These events may be on the same edge
or any ancestral edge. Therefore, �(T ′′) ≥ nk + 1,
which is a contradiction. Hence, events in T ′′ where
�(T ′′) ≤ nk span at most one true position.

 Finally, we show how to construct a binary phylogeny
T from T ′′ such that �(T) ≤ h ≤ nk. T has the same
topology of T ′′. Moreover, each vertex vi ∈ V (T) is
labeled by a binary vector bi such that ci = φ(bi).
Consider an edge (vi, vj) of T ′′ labeled by events σ(i, j)
and with cost δ(i, j) = ζ. Each event (s, t, b) ∈ σ(i, j)
spans at most one true position (but may contain
parts of a wall �). Let X ⊆ [n] be the set of true
positions spanned by events in σ(i, j). Observe that
|X | ≤ ζ since either b = 1 or b = −1. Therefore, the
Hamming distance between bi and bj is at most |X|.
Hence, �(T) ≤ �(T ′′) ≤ h �

Page 6 of 11El‑Kebir et al. Algorithms Mol Biol (2017) 12:13

Algorithms
Copy‑number triplet problem: DP
In this section we develop a DP algorithm, called DP-
Alg1, that solves the CN3 problem in time O(nB10) and
space O(nB5). We will assume w.l.o.g. that sequences of
events consist only of events of the form (s, t, b) where
b ∈ {−1, 1}. Events with |b| > 1 can be replaced by |b|
events of that form, having the same total cost. Next,
we show that DP-Alg1 can be improved to obtain a DP
algorithm, called DP-Alg2, that solves the CN3 prob-
lem in time O(nB7) and space O(nB4). We also present in
Additional file 1: Appendix B an ILP formulation for CN3
consisting of O(n) variables.
DP-Alg1 is based on Lemma 3 and the following

Lemma 5, proved in Additional file 1: Appendix A.

Lemma 5 Let u and v be two profiles. Then, there exists
an optimal triple (m, σ(m,u), σ(m, v)) such that the fol-
lowing conditions hold.

 • Both σ(m,u) and σ(m, v) are sorted sequences of
events.

 • For all 1 ≤ i ≤ n, mi ≤ B. Thus, for all 1 ≤ i ≤ n,
mi ≤ min{B, e}.

 • For all 1 ≤ i ≤ n, c ∈ {u, v} and w ∈ {−,+},
co(σ (c),w, i) ≤ B.

1. If ui > 0, and du ≥ mi or ui �= mi − du + au:
L[i,m, du, au, dv , av] = ∞.

2. Else if vi > 0, and dv ≥ mi or vi �= mi − dv + av:
L[i,m, du, au, dv , av] = ∞.

3. Else if ui = 0 and du < mi: L[i,m, du, au, dv , av] = ∞.
4. Else if vi = 0 and dv < mi: L[i,m, du, au, dv , av] = ∞.
5. Else if i = 1: L[i,m, du, au, dv , av] = du + au + dv + av.

Now, consider entries L[i,m, du, au, dv , av] that are not
filled by the base cases. We compute them using the fol-
lowing formula: L[i,m, du, au, dv , av] as

? ? ? 2 ? ?L[4,2,1,2,0,3]: m

3 2 1 3 5 4 4 1 1 5 0 3u v

1 deletion
2 amplifications

no deletion
3 amplifications

Fig. 3 Illustration of an item in the DP table for solving CN3. Given
that the 4th position of m is 2, one of the combinations considered is
1 deletion and 2 amplifications on the path to u, and 3 amplifications
on the path to v. The best cost of that combination is computed by
DP-Alg1 based on the L entries for position 3.

Let ui = (u1, . . . ,ui) and vi = (v1, . . . , vi) be the pre-
fixes consisting of the first i positions of u and v, respec-
tively. We will store costs corresponding to partial
solutions in a table L (see Fig. 3). This table has an entry
L[i,m, du, au, dv , av] for all 1 ≤ i ≤ n, 0 ≤ m ≤ B and
0 ≤ du, au, dv , av ≤ B. At such an entry, we will store the
the minimum total cost, δσ (m,ui)+ δσ (m, vi) of a triple
(m, σ(m,ui), σ(m, vi)) in the set S(i,m, du, au, dv , av) ,
which is defined as follows. This set contains all triples
(m, σ(m,ui), σ(m, vi)) such the numbers of deletions/
amplifications affecting i are given by du, au, dv , av, where
the notation d/a and v/u indicate whether we consider
amplifications or deletions as well as σ(m,ui) or σ(m, vi),
mi = m and for all j ∈ {1, . . . , n}, mj ≤ B.

By Lemma 5, �(u, v) is the minimum cost stored in an entry where
i = n. Thus, it remains to show how to correctly compute the entries
of L efficiently. We use the following base cases, whose correctness fol-
lows from Lemma 3:

min

0 ≤ m
′ ≤ min{B, e}

0 ≤ du′, au′, dv′, av′ ≤ B

{

L[i − 1,m
′
, d

u′
, a

u′
, d

v′
, a

v′] +max{du − d
u′
, 0} +max{au − a

u′
, 0} +max{dv − d

v′
, 0} +max{av − a

v′
, 0}

}

The correctness of this formula follows from Lemma 3
and since in light of Lemma 5, it exhaustively searches
for the best choice for the previous value of m. DP-Alg1
computes entries of L iteratively and returns

By computing the entries of L in an ascending order
according to their first argument i, we have that the com-
putation of each entry relies only on entries that are com-
puted before it. The table L consists of O(nB5) entries,
and each of them can be computed in time O(nB5). Thus,
we obtain the following lemma.

Lemma 6 DP-Alg1 solves CN3 in time O(nB10) and
space O(nB5).

min
0 ≤ m′ ≤ min{B, e}

0 ≤ du′, au′, dv′, av′ ≤ B

{

L[n,m′, du′, au′, dv′, av′]
}

Page 7 of 11El‑Kebir et al. Algorithms Mol Biol (2017) 12:13

Next, we show that DP-Alg1 can be modified to obtain
a DP algorithm, called DP-Alg2, for which we prove the
following result.

Theorem 7 DP-Alg2 solves CN3 in time O(nB7) and
space O(nB4).

Recall that Lemma 1 states that we can assume that for
all 1 ≤ i ≤ n, either ui > 0 or vi > 0 (or both). Now, by
the formulas given in the previous subsection, for all
1 ≤ i ≤ n, if ui > 0 then we only need to explicitly store
the entries L[i,m, du, au, dv , av] where au = ui −m+ du ;
if one accesses an entry L[i,m, du, au, dv , av] where
au �= ui −m+ du, we simply return ∞. The symmetric
argument holds for all 1 ≤ i ≤ n such that vi > 0. Now,
for all 1 ≤ i ≤ n, the number of entries is bounded by
O(B4) rather than O(B5), and therefore the space com-
plexity is bounded by O(nB4).

Consider an entry L[i,m, du, au, dv , av] computed
by the recursive formula of the previous subsection.
In case ui−1 > 0, we need only consider the value
au ′ = ui−1 −m′ + du ′, since if au ′ �= ui−1 −mi−1 + du ′
then L[i − 1,m′, du ′, au ′, dv ′, av ′] = ∞. Symmetri-
cally, in case vi−1 > 0, we need only consider the value
av ′ = vi−1 −m′ + dv ′. That is, we have that each entry
can be computed in time O(B4) rather than O(B5), and
therefore the time complexity is bounded by O(nB8). We
thus obtain an algorithm that solves CN3 in time O(nB8)
and space O(nB4).

Note that the only entries that this algorithm computes
in time O(B4) rather than O(B3) are those where either
ui−1 = 0 or vi−1 = 0. However, the following lemmas state
that these entries can in fact be computed in time O(B2).

Lemma 8 Each entry of the form L[i,m, du, au, dv , av]
where i ≥ 2 and ui−1 = 0 can be computed in time O(B2).

Proof Consider an entry L[i,m, du, au, dv , av] where
i ≥ 2 and ui−1 = 0. It is sufficient to show that the cal-
culation of this entry can be modified to depend only on
O(B2) entries of the form L[i − 1,m′, du ′, au ′, dv ′, av ′] .
First, note that since ui−1 = 0, by Lemma 1 we have that
vi−1 > 0, and therefore we can fix av ′ = vi−1 −m′ + dv ′ .
We now claim that we can also fix du ′ = max{du,m′}
and au ′ = au, which will imply that the lemma is
correct. To show this, we need to show that there is
a triple (m, σ(m,ui), σ(m, vi)) ∈ S(i,m, du, au, dv , av)
that minimizes δσ (m,ui)+ δσ (m, vi) and satis-
fies max{du,m′} = co(σ (m,ui),−, i − 1) and
au = co(σ (m,ui),+, i − 1). Since ui−1 = 0, it is clear
that m′ ≤ co(σ (m,ui),−, i − 1). Moreover, since
ui−1 = 0 , each event in σ(m,u) whose segment
includes i can be elongated to include i − 1 as well

while maintaining optimality (as we do not introduce
new events) and that σ(m,ui) yields ui from m. There-
fore, we can assume that du ≤ co(σ (m,ui),−, i − 1) and
au ≤ co(σ (m,ui),+, i − 1). Furthermore, since ui−1 = 0,
each event in σ(m,ui) whose segment includes i − 1 but
not i can be modified to exclude i − 1 as well, as long
as it still holds that m′ ≤ co(σ (m,ui),−, i − 1), while
maintaining optimality and that σ(m,ui) yields ui from
m . Therefore, max{du,m′} = co(σ (m,ui),−, i − 1) and
au = co(σ (m,ui),+, i − 1). �

Lemma 9 Each entry of the form L[i,m, du, au, dv , av]
where i ≥ 2 and vi−1 = 0 can be computed in time O(B2).

Proof The proof is symmetric to the one of Lemma 8. �

Thus, we obtain the desired algorithm DP-Alg2 that
computes the entries of L iteratively using the latter
observations to store only the required entries and effi-
ciently compute them.

Copy‑number tree problem: ILP
In this section we describe an ILP for CNT consist-
ing of O(k2n+ kn log e) variables and O(k2n+ kn log e)
constraints. Let (c1, . . . , ck , e) be an instance of CNT.
Recall that we seek to find a full binary tree with k
leaves. We define a directed graph G that contains any
full binary tree with k leaves as a spanning tree. As such,
|V (G)| = 2k − 1. The vertex set V(G) consists of a sub-
set L(G) of leaves such that |L(G)| = k. We denote by
r(T) ∈ V (G) \ L(G) the vertex that corresponds to the
root vertex. Throughout the following, we consider an
order v1, . . . , vk , . . . , v2k−1 of the vertices in V(G) such
that v1 = r(T) and {vk , . . . , v2k−1} = L(G). The edge set
E(G) has edges {(vi, vj) | 1 ≤ i < k , 1 ≤ i < j ≤ 2k − 1} .
We denote by N−(j) the set of vertices incident to an out-
going edge to j. Conversely, N+(i) denotes the set of ver-
tices incident to an incoming edge from i. We make the
following two observations.

Observation 1 G is a directed acyclic graph.

Observation 2 Any copy-number tree T is a spanning
tree of G.

We now proceed to define the set of feasible solutions
(X, Y) to a CNT instance (c1, . . . , ck , e) by introducing
constraints and variables modeling the tree topology, and
vertex labeling and edge costs. More specifically, vari-
ables X = [xi,j] encode a spanning tree T of G and varia-
bles Y = [yi,s] encode the profiles of each vertex such that
X and Y combined induce edge costs. In the following we
provide more details.

Page 8 of 11El‑Kebir et al. Algorithms Mol Biol (2017) 12:13

Tree topology
The goal is to enforce that we select a spanning tree T
of G that is a full binary tree. To do so, we introduce a
binary variable xi,j ∈ {0, 1} for each edge (vi, vj) ∈ E(G)
indicating whether the corresponding edge (vi, vj) is in T.
Note that by construction i < j. We require that each ver-
tex v ∈ V (G) \ {v1} has exactly one incoming edge in T.

We require that each vertex v ∈ V (G) \ L(G) has two
outgoing edges in T.

Vertex labeling and edge costs
We introduce variables yi,s ∈ {0, . . . , e} that encode the
copy-number state of position s of vertex vi. Since the
profiles of each leaf as well as the root vertex are given,
we have the following constraints.

for each i ∈ {k , . . . , 2k − 1} and each s ∈ {1, . . . , n}.
Next, we encode a set σ(vi, vj) of events that trans-

form the profile yi of vi into profile yj of vj. Recall that an
event is a triple (s, t, b) and corresponds to an amplifi-
cation if b > 0 and a deletion otherwise. We model the
cost of the amplifications and the cost of the deletions
covering any position s with two separate variables.
Variables ai,j,s ∈ {0, . . . , e} correspond to the cost of the
amplifications in σ(vi, vj) covering position s. Variables
di,j,s ∈ {0, . . . , e} correspond to the cost of the deletions in
σ(vi, vj) covering position s.

Now, we consider the effect of amplifications and dele-
tions on a position s. By Lemma 2, we have that there
exists an optimal solution such that for each edge (vi, vj)
there are two sets of events σ−(vi, vj) and σ+(vi, vj) that
yield yj,s from yi,s by first applying σ−(vi, vj) followed by
σ+(vi, vj). If a subset of the events in σ−(vi, vj) results
in position s reaching value 0, the remaining amplifica-
tions and deletions will not change the value of that posi-
tion. We distinguish the following four different cases
(Table 1).

a. yi,s = 0 and yj,s = 0: since both positions have value
0, the number of amplifications ai,j,s and deletions
di,j,s are between 0 and e.

b. yi,s �= 0 and yj,s �= 0: since yj,s > 0, the number of
deletions di,j,s must be strictly smaller than yi,s. More-
over, it must hold that yj,s + di,j,s = yi,s + ai,j,s.

(4)

∑

i∈N−(j)

xi,j = 1 1 < j ≤ 2k − 1

(5)

∑

j∈N+(i)

xi,j = 2 1 ≤ i < k

(6)y1,s = 2

(7)yi,s = ci−k+1,s

c. yi,s �= 0 and yj,s = 0: recall that by Lemma 2 deletions
precede amplifications. As such, the number of dele-
tions di,j,s must be at least yi,s.

d. yi,s = 0 and yj,s �= 0: once a position s has been lost it
cannot be regained. As such, this case is infeasible.

To capture the conditions of the four cases, we intro-
duce binary variables ȳi,s ∈ {0, 1} and constraints such
that ȳi,s = 1 iff yi,s �= 0.

for each i ∈ {1, . . . , 2k − 1}, each s ∈ {1, . . . , n}, and each
q ∈ {0, . . . , ⌊log2(e)⌋ + 1}. Since ai,j,s, di,j,s ∈ {0, . . . , e},
the upper bound constraints involving e are covered. In
particular, case (a) is captured in its entirety. We capture
case (b) with the following constraints.

for each position s ∈ {1, . . . , n} and each edge
(vi, vj) ∈ E(G). In the case of ȳi,s = 1 and ȳj,s = 1 ,
constraints (12) and (13) model the equation
yj,s + di,j,s = yi,s + ai,j,s, whereas constraints (14) ensure
that di,j,s < yi,s. Next, we model case (c) using the follow-
ing constraints.

(8)yi,s =

⌊log2(e)⌋+1
∑

q=0

2q · zi,s,q

(9)ȳi,s ≤

⌊log2(e)⌋+1
∑

q=0

zi,s,q

(10)ȳi,s ≥ zi,s,q

(11)zi,s,q ∈ {0, 1}

(12)yj,s ≤ yi,s − di,j,s + ai,j,s + 2e(2− ȳi,s − ȳj,s)

(13)yj,s + 2e(2− ȳi,s − ȳj,s) ≥ yi,s − di,j,s + ai,j,s

(14)di,j,s ≤ yi,s − 1+ (e + 1)(2− ȳi,s − ȳj,s)

(15)yi,s ≤ di,j,s + e(1− ȳi,s + ȳj,s)

Table 1 Case analysis on the values of variables yi,s and yj,s

ai,j,s di,j,s Additional

(a) yi,s = 0 ∧ yj,s = 0 ≤ e ≤ e

(b) yi,s �= 0 ∧ yj,s �= 0 ≤ e < yi,s yj,s + di,j,s = yi,s + ai,j,s

(c) yi,s �= 0 ∧ yj,s = 0 ≤ e ≥ yi,s

≤ e

(d) yi,s = 0 ∧ yj,s �= 0 Infeasible Infeasible Infeasible

Page 9 of 11El‑Kebir et al. Algorithms Mol Biol (2017) 12:13

for each position s ∈ [1, n] and each edge (vi, vj) ∈ E(G) .
Finally, the following constraints, which encode that
if xi,j = 1 then ȳi,s = 0 implies ȳj,s = 0, prevent case (d)
from happening.

for each position s ∈ {1, . . . , n} and each edge
(vi, vj) ∈ E(G).

The cost of a tree T is the sum of the costs of the events
associated to each edge (vi, vj) ∈ E(T). We model the cost
of an edge (vi, vj) as the sum of the number of amplifica-
tions and deletions that start at each position s. Variables
āi,j,s ∈ {0, . . . , e} and d̄i,j,s ∈ {0, . . . , e} represent the number
of new amplifications and deletions, respectively, that start
at position s. We model this using the following constraints.

for each position s ∈ {1, . . . , n} and each edge
(vi, vj) ∈ E(G) .

The objective is to minimize the cost of the events of
the selected tree T, which corresponds to

We model the product using the following constraint.

for each position s ∈ {1, . . . , n}, each edge (vi, vj) ∈ E(G)
and wi,j,s ≥ 0.

In Additional file 1: Appendix C, we report the com-
plete ILP formulation.

Experimental evaluation
Copy‑number triplet (CN3) problem
We compared the running times of our DP and ILP algo-
rithms for the CN3 problem as a function of n and B.
Our results on simulations show that while the running
time of the DP algorithm highly depends on the copy-
number range B, the ILP time is almost independent of B.
With the exception of the case of B = 2, the ILP is faster
(Additional file 1: Figure S1). Additional file 1: Figure S1
presents the average running times of the DP and ILP
algorithms on simulated instances.

Copy‑number tree (CNT) problem
To assess the performance of the ILP for CNT, we simu-
lated instances by randomly generating a full binary tree

(16)(1− xi,j)+ ȳi,s ≥ ȳj,s

(17)āi,j,s ≥ ai,j,s − ai,j,s−1

(18)d̄i,j,s ≥ di,j,s − di,j,s−1

(19)ai,j,0 = 0

(20)di,j,0 = 0

(21)
min

∑

(vi ,vj)∈E(G)

∑

1≤s≤n

xi,j · (āi,j,s + d̄i,j,s)

(22)wi,j,s ≥ āi,j,s + d̄i,j,s − (1− xi,j) · 2e

T with k leaves. We randomly labeled edges by events
according to a specified maximum number m of events
per edge with amplifications/deletions ratio ρ. Specifi-
cally, we label an edge by d events where d is drawn uni-
formly from the set {1, . . . ,m}. For each event (s, t, b) we
uniformly at random draw an interval s ≤ t and decide
with probability ρ whether b = 1 (amplification) or
b = −1 (deletion). The resulting instance of CNT is com-
posed of the profiles c1, . . . , ck of the k leaves of T and e is
set to the maximum value of the input profiles.

We considered varying numbers of leaves k ∈ {4, 6, 8}
and of segments n ∈ {5, 10, 15, 20, 30, 40}. In addition, we
varied the number of events m ∈ {1, 2, 3} and varied the
ratio ρ ∈ {0.2, 0.4}. We generated three instances for each
combination of k, n, m and ρ, resulting in a total of 324
instances.

We implemented the ILP in C++ using CPLEX v12.6
(http://www.cplex.com). The implementation is avail-
able at https://github.com/raphael-group/CNT-ILP. We
ran the simulated instances on a compute cluster with
2.6 GHz processors (16 cores) and 32 GB of RAM each.
We solved 302 instances (93.2%) to optimality within the
specified time limit of 5 h. Computations exceeding this
limit were aborted and the best identified solution was
considered. The instances that were not solved to opti-
mality are a subset of the larger instances with k = 8 and
n ∈ {20, 30, 40}. For these cases, we show in Additional
file 1: Figure S2 the gap between the best identified solu-
tions and their computed upper bounds.

For 323 out of 324 instances (99.7%) the tree inferred
by the ILP has a cost that was at most the simulated tree
cost. The only exception is an instance with k = 8 leaves
and n = 40 positions that was not solved to optimality,
and where the inferred cost was 15 vs. a simulated cost
of 14. These results empirically validate the correctness of
our ILP implementation.

We observe that the running time increases with the
number of leaves and to a lesser extent with the number
of positions (Fig. 4a). In addition, we assessed the dis-
tance between topologies of the inferred and simulated
trees using the Robinson–Foulds (RF) metric [16]. To
allow for a comparison across varying number of leaves,
we normalized by the total number of splits to the range
[0,1] such that a value of 0 corresponds to the same
topology of both trees. For 264 instances (81.4%) the nor-
malized RF was at most 0.35. For k = 4 leaves the median
RF value was 0, which indicates that for at least 50% of
these instances the simulated tree topology was recov-
ered. Figure 4b shows the distribution of normalized RF
values with varying numbers of leaves and positions.
Given a fixed number of leaves, the normalized RF value
decreases with increasing number of positions. This indi-
cates that the maximum parsimony assumption becomes

http://www.cplex.com
https://github.com/raphael-group/CNT-ILP

Page 10 of 11El‑Kebir et al. Algorithms Mol Biol (2017) 12:13

more appropriate with larger number of positions, which
is not surprising since amplifications and deletions are
less likely to overlap. In addition, we observed that run-
ning time and RF values are not affected by varying
values of m and ρ (Additional file 1: Figures S3, S4). In
summary, we have shown that our ILP scales to practical
problem instance sizes with k = 6 and up to n = 40 posi-
tions, which is a reasonable size for applications to real
data [12, 17].

Conclusions
In this paper we studied two problems in the evolu-
tion of copy-number profiles. For the CN3 problem,
we gave a pseudo-polynomial DP algorithm and an ILP
formulation, and compared their efficiency on simu-
lated data. Determining the computational complex-
ity of CN3 remains an open problem. We showed that
the general CNT problem is NP-hard and gave an ILP
solution. Finally, we assessed the performance of our
tree reconstruction on simulated data. While all for-
mulations describe copy-number profiles on a single
chromosome, our results readily generalize to multiple
chromosomes. In addition, while our formulations pres-
ently lack the phasing step performed in [12], both the
DP algorithm and the ILP formulations can be extended
to support phasing.

We note that experiments on real cancer sample data
are required to establish the relevance of our formula-
tions. To this end, several extensions to our models might
be required. These include handling fractional copy-
number values that are a result of most experiments and
handling missing data for some positions. Moreover,
since tumor samples are often impure, each sample may
actually represent a mixture of several clones. In such

situations, different objectives might try to decompose
the clone mixture in order to reconstruct the evolution-
ary tree as has been investigated for single-nucleotide
variants [3–7].

Authors’ contributions
RS, RS, MZ, and RZ introduced the CN3 problem, designed the DP algorithm
and the ILP formulation for this problem, and evaluated both on simulated
instances. MEK, BJR, and SZ introduced the CNT problem, analyzed its compu‑
tational complexity, designed an ILP formulation for this problem, imple‑
mented and evaluated the ILP on simulated instances. All authors contributed
to writing the manuscript. All authors read and approved the final manuscript.

Author details
1 Department of Computer Science, Princeton University, Princeton, NJ 08540,
USA. 2 Department of Computer Science, Center for Computational Molecular
Biology, Brown University, Providence, RI 02912, USA. 3 School of Computer
Science, Tel Aviv University, Tel Aviv, Israel. 4 Dipartimento di Informatica
Sistemistica e Comunicazione (DISCo), Univ. degli Studi di Milano‑Bicocca,
Milan, Italy.

Acknowledgements
Part of this work was done while M.E‑K., B.J.R., R. Shamir, R. Sharan and M.Z.
were visiting the Simons Institute for the Theory of Computing.

Competing interests
B.J.R. is a co‑founder and consultant at Medley Genomics.

Funding
B.J.R. is supported by a National Science Foundation CAREER Award CCF‑
1053753, NIH RO1HG005690 a Career Award at the Scientific Interface from
the Burroughs Wellcome Fund, and an Alfred P Sloan Research Fellowship. R.
Shamir is supported by the Israeli Science Foundation (Grant 317/13) and the
Dotan Hemato‑Oncology Research Center at Tel Aviv University. R.Z. is sup‑
ported by fellowships from the Edmond J. Safra Center for Bioinformatics at

Additional file

Additional file 1. The appendix contains the proofs omitted from the
main text, the ILP formulation for the Copy‑Number Triplet Problem, the
complete ILP formulation for the Copy‑Number Tree Problem, and addi‑
tional details about the results.

a b

Fig. 4 Performance of the ILP algorithm for CNT. Violin plots of running time in seconds (a) and normalized Robinson–Foulds metric for measuring
the tree distance (b) for varying number k of leaves and number n of positions. Median values are indicated by a white dot in each plot. Results with
n ∈ {5, 10} positions are shown in Additional file 1: Figures S3 and S4.

http://dx.doi.org/10.1186/s13015-017-0103-2

Page 11 of 11El‑Kebir et al. Algorithms Mol Biol (2017) 12:13

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

Tel Aviv University and from the Israeli Center of Research Excellence (I‑CORE)
Gene Regulation in Complex Human Disease (Center No 41/11). M.Z. is sup‑
ported by a fellowship from the I‑CORE in Algorithms and the Simons Institute
for the Theory of Computing in Berkeley and by the Postdoctoral Fellowship
for Women of Israel’s Council for Higher Education.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

Received: 23 December 2016 Accepted: 11 April 2017

References
 1. Nowell PC. The clonal evolution of tumor cell populations. Science.

1976;194:23–8.
 2. Felsenstein, J. Inferring phylogenies. London: Macmillan Education; 2004.
 3. Popic V, et al. Fast and scalable inference of multi‑sample cancer lineages.

Genome Biol. 2015;16:91.
 4. El‑Kebir M, et al. Reconstruction of clonal trees and tumor composition

from multi‑sample sequencing data. Bioinformatics. 2015;31(12):62–70.
 5. Yuan K, et al. BitPhylogeny: a probabilistic framework for reconstructing

intra‑tumor phylogenies. Genome Biol. 2015;16:36.
 6. Jiao W, et al. Inferring clonal evolution of tumors from single nucleotide

somatic mutations. BMC Bioinform. 2014;15:35.

 7. Malikic S, et al. Clonality inference in multiple tumor samples using
phylogeny. Bioinformatics. 2015.

 8. Ciriello G, et al. Emerging landscape of oncogenic signatures across
human cancers. Nat Genet. 2013;45:1127–33.

 9. Fisher R, et al. Cancer heterogeneity: implications for targeted therapeu‑
tics. Brit J Cancer. 2013;108(3):479–85.

 10. Chowdhury S, et al. Algorithms to model single gene, single chromo‑
some, and whole genome copy number changes jointly in tumor
phylogenetics. PLoS Comput Biol. 2014;10(7):e1003740.

 11. Zhou J, et al. Maximum parsimony analysis of gene copy number
changes. In: WABI. vol. 9289; 2015. p. 108.

 12. Schwarz R, et al. Phylogenetic quantification of intra‑tumour heterogene‑
ity. PLoS Comput Biol. 2014;10(4):e1003535.

 13. Shamir R, et al. A linear‑time algorithm for the copy number transforma‑
tion problem. In: CPM; 2016.

 14. El‑Kebir M, Raphael BJ, Shamir R, Sharan R, Zaccaria S, Zehavi M, Zeira
R. Copy‑number evolution problems: complexity and algorithms. In:
International Workshop on algorithms in bioinformatics. Berlin: Springer
International Publishing; 2016. p. 137–49.

 15. Foulds LR, Graham RL. The Steiner problem in phylogeny is NP‑complete.
Adv Appl Math. 1982;3:43–9.

 16. Robinson DF, Foulds LR. Comparison of phylogenetic trees. Math Biosci.
1981;53:131–47.

 17. Sottoriva A, et al. A big bang model of human colorectal tumor growth.
Nat Genet. 2015;47(3):209–16.

	Complexity and algorithms for copy-number evolution problems
	Abstract
	Background:
	Results:
	Conclusions:
	Availability:

	Background
	Preliminaries
	Profiles and events
	The copy-number tree problem
	The copy-number triplet problem
	Previous results

	Complexity
	Algorithms
	Copy-number triplet problem: DP
	Copy-number tree problem: ILP
	Tree topology
	Vertex labeling and edge costs

	Experimental evaluation
	Copy-number triplet (CN3) problem
	Copy-number tree (CNT) problem

	Conclusions
	Authors’ contributions
	References

