
Deng and Fernández‑Baca Algorithms Mol Biol (2017) 12:7
DOI 10.1186/s13015‑017‑0099‑7

RESEARCH

An efficient algorithm for testing the
compatibility of phylogenies with nested taxa
Yun Deng† and David Fernández‑Baca*†

Abstract

Background: Semi‑labeled trees generalize ordinary phylogenetic trees, allowing internal nodes to be labeled by
higher‑order taxa. Taxonomies are examples of semi‑labeled trees. Suppose we are given collection P of semi‑labeled
trees over various subsets of a set of taxa. The ancestral compatibility problem asks whether there is a semi‑labeled
tree that respects the clusterings and the ancestor/descendant relationships implied by the trees in P. The running
time and space usage of the best previous algorithm for testing ancestral compatibility depend on the degrees of the
nodes in the trees in P.

Results: We give a algorithm for the ancestral compatibility problem that runs in O(MP log2MP) time and uses
O(MP) space, where MP is the total number of nodes and edges in the trees in P.

Conclusions: Taxonomies enable researchers to expand greatly the taxonomic coverage of their phylogenetic analy‑
ses. The running time of our method does not depend on the degrees of the nodes in the trees in P. This characteris‑
tic is important when taxonomies—which can have nodes of high degree—are used.

Keywords: Algorithms, Phylogenetics, Supertrees, Taxonomies

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
In the tree compatibility problem, we are given a collec-
tion P = {T1, T2, . . . , Tk} of rooted phylogenetic trees
with partially overlapping taxon sets. P is called a pro-
file and the trees in P are the input trees. The question
is whether there exists a tree T whose taxon set is the
union of the taxon sets of the input trees, such that T
exhibits the clusterings implied by the input trees. That
is, if two taxa are together in a subtree of some input tree,
then they must also be together in some subtree of T .
The tree compatibility problem has been studied for over
three decades [1–4].

In the original version of the tree compatibility prob-
lem, only the leaves of the input trees are labeled. Here we
study a generalization, called ancestral compatibility, in
which taxa may be nested. That is, the internal nodes may
also be labeled; these labels represent higher-order taxa,
which are, in effect, sets of taxa. Thus, for example, an

input tree may contain the taxon Glycine max (soybean)
nested within a subtree whose root is labeled Fabaceae
(the legumes), itself nested within an Angiosperm sub-
tree. Note that leaves themselves may be labeled by
higher-order taxa. The question now is whether there is
a tree T whose taxon set is the union of the taxon sets
of the input trees, such that T exhibits not only the clus-
terings among the taxa, but also the ancestor/descendant
relationships among taxa in the input trees. Our main
result is a O(MP log2MP) algorithm for the compatibility
problem for trees with nested taxa, where MP is the total
number of nodes and edges in the trees in P.

Background
The tree compatibility problem is a basic special case of
the supertree problem. A supertree method is a way to
synthesize a collection of phylogenetic trees with partially
overlapping taxon sets into a single supertree that rep-
resents the information in the input trees. The supertree
approach, proposed in the early 90s [5, 6], has been used
successfully to build large-scale phylogenies [7].

The original supertree methods were limited to input
trees where only the leaves are labeled. Page [8] was

Open Access

Algorithms for
Molecular Biology

*Correspondence: fernande@iastate.edu
†Yun Deng and David Fernández‑Baca contributed equally

Department of Computer Science, Iowa State University, Atanasoff Hall,
Ames, IA, USA

http://orcid.org/0000-0002-8563-3637
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-017-0099-7&domain=pdf

Page 2 of 12Deng and Fernández‑Baca Algorithms Mol Biol (2017) 12:7

among the first to note the need to handle phylogenies
where internal nodes are labeled, and taxa are nested.
A major motivation is the desire to incorporate taxono-
mies as input trees in large-scale supertree analyses, as
way to circumvent one of the obstacles to building com-
prehensive phylogenies: the limited taxonomic overlap
among different phylogenetic studies [9]. Taxonomies
group organisms according to a system of taxonomic
rank (e.g., family, genus, and species); two examples are
the NCBI taxonomy [10] and the Angiosperm taxonomy
[11]. Taxonomies spanning a broad range of taxa provide
structure and completeness that might be hard to obtain
otherwise. A recent example of the utility of taxonomies
is the Open Tree of Life, a draft phylogeny for over 2.3
million species [12].

Taxonomies are not, strictly speaking, phylogenies. In
particular, their internal nodes and some of their leaves are
labeled with higher-order taxa. Nevertheless, taxonomies
have many of the same mathematical characteristics as
phylogenies. Indeed, both phylogenies and taxonomies are
semi-labeled trees [13, 14]. We will use this term through-
out the rest of the paper to refer to trees with nested taxa.

The fastest previous algorithm for testing ances-
tral compatibility, based on earlier work by Daniel and
Semple [15], is due to Berry and Semple [16]. Their
algorithm runs in O

(

log2 n · τP

)

 time using O(τP)
space. Here, n is the number of distinct taxa in P and
τP =

∑k
i=1

∑

v∈I(Ti)
d(v)2, where I(Ti) is the set of inter-

nal nodes of Ti, for each i ∈ {1, . . . , k}, and d(v) is the
degree of node v. While the algorithm is polynomial,
its dependence on node degrees is problematic: semi-
labeled trees can be highly unresolved (i.e., contain nodes
of high degree), especially if they are taxonomies.

Our contributions
As stated earlier, our main result is an algorithm to test
ancestral compatibility that runs in O(MP log2MP) time,
using O(MP) space. These bounds are independent of the
degrees of the nodes of the input trees, a valuable char-
acteristic for large datasets that include taxonomies. To
achieve our result, we extend ideas from our recent algo-
rithm for testing the compatibility of ordinary phyloge-
netic trees [2]. As in that algorithm, a central notion in the
current paper is the display graph of profile P, denoted
HP. This is the graph obtained from the disjoint union
of the trees in P by identifying nodes that have the same
label (see the section titled "Testing ancestral compatibil-
ity"). The term “display graph” was introduced by Bryant
and Lagergren [17], but similar ideas have been used else-
where. In particular, the display graph is closely related
to Berry and Semple’s restricted descendancy graph [16],
a mixed graph whose directed edges correspond to the
(undirected) edges of HP and whose undirected edges

have no correspondence in HP. The second kind of edges
are the major component of the τP term in the time and
space complexity of Berry and Semple’s algorithm. The
absence of such edges makes HP significantly smaller than
the restricted descendancy graph. Display graphs also
bear some relation to tree alignment graphs [18].

Here, we exploit the display graph more extensively
than in our previous work. Although the display graph of
a collection of semi-labeled trees is more complex than
that of a collection of ordinary phylogenies, we are able to
extend several of the key ideas—notably, that of a semi-
universal label—to the general setting of semi-labeled
trees. As in [2], the implementation relies on a dynamic
graph data structure, but it requires a more careful amor-
tized analysis based on a weighing scheme.

Contents
This paper has five sections, in addition to this introduc-
tion. The section titled "Preliminaries" presents basic
definitions regarding graphs, semi-labeled trees, and
ancestral compatibility. The section titled "The display
graph" introduces the display graph and discusses its
properties. The section titled "Testing ancestral com-
patibility" presents BuildNT, our algorithm for testing
ancestral compatibility. We first present the algorithm
recursively, and then show how to transform it into an
iterative algorithm, BuildNTN, that is easier to imple-
ment. We also give an example of the execution of
BuildNTN. The "Implementation" section gives the imple-
mentation details for BuildNTN. The "Discussion" section
gives some concluding remarks.

Preliminaries
For each positive integer r, [r] denotes the set {1, . . . , r}.

Graph notation
Let G be a graph. V(G) and E(G) denote the node and
edge sets of G. The degree of a node v ∈ V (G) is the
number of edges incident on v. A tree is an acyclic con-
nected graph. In this paper, all trees are assumed to be
rooted. For a tree T, r(T) denotes the root of T. Suppose
u, v ∈ V (T). Then, u is an ancestor of v in T, denoted
u ≤T v, if u lies on the path from v to r(T) in T. If u ≤T v,
then v is a descendant of u. Node u is a proper descendant
of v if u is a descendant of v and v �= u. If {u, v} ∈ E(T)
and u ≤T v, then u is the parent of v and v is a child of u.
If neither u ≤T v nor v ≤T u hold, then we write u ‖T v
and say that u and v are not comparable in T.

Semi‑labeled trees
A semi-labeled tree is a pair T = (T ,φ) where T is a
tree and φ is a mapping from a set L(T) to V(T) such
that, for every node v ∈ V (T) of degree at most two,

Page 3 of 12Deng and Fernández‑Baca Algorithms Mol Biol (2017) 12:7

v ∈ φ(L(T)) . L(T) is the label set of T and φ is the labe-
ling function of T .

For every node v ∈ V (T), φ−1(v) denotes the (possibly
empty) subset of L(T) whose elements map into v; these
elements as the labels of v (thus, each label is a taxon). If
φ−1(v) �= ∅, then v is labeled; otherwise, v is unlabeled.
Note that, by definition, every leaf in a semi-labeled tree
is labeled. Further, any node, including the root, that has
a single child must be labeled. Nodes with two or more
children may be labeled or unlabeled. A semi-labeled tree
T = (T ,φ) is singularly labeled if every node in T has
at most one label; T is fully labeled if every node in T is
labeled.

Semi-labeled trees, also known as X-trees, generalize
ordinary phylogenetic trees, also known as phylogenetic
X-trees [14]. An ordinary phylogenetic tree is a semi-
labeled tree T = (T ,φ) where r(T) has degree at least
two and φ is a bijection from L(T) into leaf set of T (thus,
internal nodes are not labeled).

Let T = (T ,φ) be a semi-labeled tree and let ℓ and ℓ′
be two labels in L(T). If φ(ℓ) ≤T φ(ℓ′), then we write
ℓ ≤T ℓ′, and say that ℓ′ is a descendant of ℓ in T and that
ℓ is an ancestor of ℓ′. We write ℓ <T ℓ′ if φ(ℓ′) is a proper
descendant of φ(ℓ). If φ(ℓ) �T φ(ℓ′), then we write ℓ �T ℓ′
and say that ℓ and ℓ′ are not comparable in T . If T is fully
labeled and φ(ℓ) is the parent of φ(ℓ′) in T, then ℓ is the
parent of ℓ′ in T and ℓ′ is a child of ℓ in T ; two labels with
the same parent are siblings.

Two semi-labelled trees T = (T ,φ) and T ′ = (T ′,φ′) are
isomorphic if there exists a bijection ψ : V (T) → V (T ′)
such that φ′ = ψ ◦ φ and, for any two nodes u, v ∈ V (T),
(u, v) ∈ E(T) if and only (ψ(u),ψ(v)) ∈ E(T ′).

Let T = (T ,φ) be a semi-labeled tree. For each
u ∈ V (T), X(u) denotes the set of all labels in the subtree
of T rooted at u; that is, X(u) =

⋃

v:u≤T v
φ−1(v). X(u) is

called a cluster of T. Cl(T) denotes the set of all clusters
of T . It is well known [14, Theorem 3.5.2] that a semi-
labeled tree T is completely determined by Cl(T). That
is, if Cl(T) = Cl(T ′) for some other semi-labeled tree T ′,
then T is isomorphic to T ′.

Suppose A ⊆ L(T) for a semi-labeled tree
T = (T ,φ). The restriction of T to A, denoted
T |A, is the semi-labeled tree whose cluster set is
Cl(T |A) = {X ∩ A : X ∈ Cl(T) and X ∩ A �= ∅}. Intui-
tively, T |A is obtained from the minimal rooted subtree of
T that connects the nodes in φ(A) by suppressing all verti-
ces of degree two that are not in φ(A).

Let T = (T ,φ) and T ′ = (T ′,φ′) be semi-labeled trees
such that L(T ′) ⊆ L(T). T ancestrally displays T ′ if
Cl(T ′) ⊆ Cl(T |L(T ′)). Equivalently, T ancestrally dis-
plays T ′ if T ′ can be obtained from T |L(T ′) by contract-
ing edges, and, for any ℓ1, ℓ2 ∈ L(T ′),

(i) if ℓ1 <T ′ ℓ2, then ℓ1 <T ℓ2, and
(ii) if ℓ1 �T ′ ℓ2, then ℓ1 ‖T ℓ2.

The notion of “ancestrally displays” for semi-labeled trees
generalizes the well-known notion of “displays” for ordi-
nary phylogenetic trees [14].

For a semi-labelled tree T , let us define D(T) and N (T)
as follows.

Note that D(T) consists of ordered pairs, while N (T)
consists of unordered pairs.

Lemma 1 (Bordewich et al. [13]) Let T and T ′ be
semi-labelled trees such that L(T ′) ⊆ L(T). Then T
ancestrally displays T ′ if and only if D(T ′) ⊆ D(T) and
N (T ′) ⊆ N (T).

Profiles and ancestral compatibility
Throughout the rest of this paper P = {T1, T2, . . . , Tk}
denotes a set where, for each i ∈ [k], Ti = (Ti,φi) is a
semi-labeled tree. We refer to P as a profile, and write
L(P) to denote

⋃

i∈[k] L(Ti), the label set of P. Figure 1
shows a profile where L(P) = {a, b, c, d, e, f , g , h, i}. We
write V (P) for

⋃

i∈[k] V (Ti) and E(P) for
⋃

i∈[k] E(Ti), The
size of P is MP = |V (P)| + |E(P)|.
P is ancestrally compatible if there is a rooted semi-

labeled tree T that ancestrally displays each of the trees
in P. If T exists, we say that T ancestrally displays P (see
Fig. 2).

Given a subset X of L(P), the restriction of P to X,
denoted P|X, is the profile defined as

The proof of the following lemma is straightforward.

Lemma 2 Suppose P is ancestrally compatible and
let T be a tree that ancestrally displays P. Then, for any
X ⊆ L(P), T |X ancestrally displays P|X.

D(T) = {(ℓ, ℓ′) : ℓ, ℓ′ ∈ L(T) and ℓ <T ℓ′}

N (T) = {{ℓ, ℓ′} : ℓ, ℓ′ ∈ L(T) and ℓ �T ℓ′}

P|X = {T1|X ∩ L(T1), T2|X ∩ L(T2), . . . , Tk |X ∩ L(Tk)}.

e h i

f

a

g

db c

g

b c d e f

a

1 2
3

4

Fig. 1 A profile P = {T1,T2,T3}—trees are ordered left‑to‑right. The
letters are the original labels; grey numbers are labels added to make
the trees fully labeled (Adapted from [16])

Page 4 of 12Deng and Fernández‑Baca Algorithms Mol Biol (2017) 12:7

For technical reasons, fully labeled trees are easier
to handle than those that are not. Suppose P contains
trees that are not fully labeled. We can convert P into
an equivalent profile P ′ of fully-labeled trees as follows.
For each i ∈ [k], let li be the number of unlabeled nodes
in Ti. Create a set L′ of n′ =

∑

i∈[k] li labels such that
L′ ∩ L(P) = ∅. For each i ∈ [k] and each v ∈ V (Ti) such
that φ−1

i (v) = ∅, make φ−1
i (v) = {ℓ}, where ℓ is a distinct

element from L′. We refer to P ′ as the profile obtained by
adding distinct new labels to P (see Fig. 1).

Lemma 3 (Daniel and Semple [15]) Let P ′ be the pro-
file obtained by adding distinct new labels to P. Then, P is
ancestrally compatible if and only if P ′ is ancestrally com-
patible. Further, if T is a semi-labeled phylogenetic tree
that ancestrally displays P ′, then T ancestrally displays P.

From this point forward, we make the following
assumption.

Assumption 1 For each i ∈ [k], Ti is fully and singularly
labeled.

By Lemma 3, no generality is lost in assuming that all
trees in P are fully labeled. The assumption that the trees
are singularly labeled is inessential; it is only for clar-
ity. Note that, even with the latter assumption, a tree
that ancestrally displays P is not necessarily singularly
labeled. Figure 2 illustrates this fact.

The display graph
The display graph of a profile P, denoted HP, is the graph
obtained from the disjoint union of the underlying trees
T1,T2, . . . ,Tk by identifying nodes that have the same
label. Multiple edges between the same pair of nodes are
replaced by a single edge. See Fig. 3.
HP has O(MP) nodes and edges, and can be con-

structed in O(MP) time. By Assumption 1, there is a
bijection between the labels in L(P) and the nodes of
HP. Thus, from this point forward, we refer to the nodes
of HP by their labels. It is easy to see that if HP is not
connected, then P decomposes into label-disjoint sub-
profiles, and that P is compatible if and only if each sub-
profile is compatible. Thus, without loss of generality, we
shall assume the following.

Assumption 2 HP is connected.

Positions
Our compatibility algorithm processes the trees in P from
the top down, starting at the roots. We refer to the set
of nodes in P currently being considered as a “position”.
The algorithm advances from the current position to the

next by replacing certain nodes in the current position
by their children. Formally, a position (for P) is a vector
U = (U(1),U(2), . . . ,U(k)), where U(i) ⊆ L(Ti), for each
i ∈ [k]. Since labels may be shared among trees, we may
have U(i) ∩U(j) �= ∅, for i, j ∈ [k] with i �= j. For each
i ∈ [k], let Desci(U) = {ℓ : ℓ′ ≤Ti ℓ, for some ℓ′ ∈ U(i)},
and let DescP(U) =

⋃

i∈[k]Desci(U).

A position U is valid if, for each i ∈ [k],

(V1) if |U(i)| ≥ 2, then the elements of U(i) are sib-
lings in Ti and

(V2) Desci(U) = DescP(U) ∩ L(Ti).

Lemma 4 For any valid position U,

Proof By (V2), we have that Ti|Desci(U) and
Ti|DescP(U) ∩ L(Ti) are isomorphic, for each i ∈ [k]. The
lemma then follows from the definition of P|DescP(U) .
 �

For any valid position U, HP(U) denotes the subgraph
of HP induced by DescP(U).

P|DescP (U) = {T1|Desc1(U),T2|Desc1(U), . . . ,Tk |Desck (U)}.

b c d e

fa,4

1,2

g

h i

3

Fig. 2 A tree T that ancestrally displays the profile of Fig. 1 (Adapted
from [16])

b c ed

g

h i

f
a

1 2

3

4

Fig. 3 The display graph HP for the profile of Fig. 1

Page 5 of 12Deng and Fernández‑Baca Algorithms Mol Biol (2017) 12:7

Observation 1 For any valid position U, HP(U) is
the subgraph of HP obtained by deleting all labels in
V (HP) \ DescP(U), along with all incident edges.

A valid position of special interest to us is Uroot, the
root position, defined as follows.

That is, for each i ∈ [k], Uroot(i) is a singleton containing
only the label of r(Ti). In Fig. 3, Uroot = ({1}, {2}, {g}). It
is straightforward to verify that Uroot is indeed valid, that
DescP(Uroot) = L(P), and that HP(Uroot) = HP.

Semi‑universal labels
Let U be a valid position, and let ℓ be a label in U. Then, ℓ
is semi-universal in U if U(i) = {ℓ}, for every i ∈ [k] such
that ℓ ∈ L(Ti). In Fig. 3, labels 1 and 2 are semi-universal
in Uroot, but g is not, since g is in both L(T2) and L(T3),
but Uroot(2) �= {g}.

The term “semi-universal”, borrowed from Pe’er et al.
[19], derives from the following fact. Suppose that P is
ancestrally compatible, that T is a tree that ancestrally
displays P, and that ℓ is a semi-universal label for some
valid position U. Then, as we shall see, ℓ must label the
root uℓ of a subtree of T that contains all the descend-
ants of ℓ in Ti, for every i such that ℓ ∈ L(Ti). The quali-
fier “semi” is because this subtree may also contain labels
that do not descend from ℓ in any input tree, but descend
instead from some other semi-universal label ℓ′ in U. In
this case, ℓ′ also labels uℓ. We exploit this property of
semi-universal labels in our ancestral compatibility algo-
rithm and its proof of correctness (see "Testing ancestral
compatibility").

For each label ℓ ∈ L(P), let kℓ denote the number of
input trees that contain label ℓ. We can obtain kℓ for every
ℓ ∈ L(P) in O(MP) time during the construction of HP.

Lemma 5 Let U = (U(1), . . . ,U(k)) be a valid position.
Then, label ℓ is semi-universal in U if the cardinality of the
set Jℓ = {i ∈ [k] : U(i) = {ℓ}} equals kℓ.

Proof By definition, U(i) = {ℓ}, for every i ∈ Jℓ. Since
|Jℓ| = kℓ, the lemma follows. �

Successor positions
For every i ∈ [k] and every ℓ ∈ L(Ti), let Chi(ℓ) denote
the set of children of ℓ in L(Ti). For a subset A of L(Ti) ,
let Chi(A) =

⋃

ℓ∈A Chi(ℓ). Let U be a valid posi-
tion, and S be the set of semi-universal labels in U.
The successor of U with respect to S is the position
U ′ = (U ′(1),U ′(2), . . . ,U ′(k)), where, for each i ∈ [k],
U ′(i) is defined as follows.

(1)Uroot = (φ−1
i (r(T1)),φ

−1
i (r(T2)), . . . ,φ

−1
i (r(Tk))).

In Fig. 3, the set of semi-universal labels in Uroot is
S = {1, 2}. Since Ch1(1) = {3, f } and Ch2(2) = {e, f , g},
the successor of Uroot is U ′

root = ({3, f }, {e, f , g}, {g}).

Observation 2 Let U be a valid position, and let U ′ be
the successor of U with respect to the set S of semi-uni-
versal labels in U. Then, HP(U

′) can be obtained from
HP(U) by doing the following for each ℓ ∈ S: (1) for each
i ∈ [k] such that U(i) = {ℓ}, delete all edges between ℓ and
Chi(ℓ); (2) delete ℓ.

Let U be a valid position, and W be a sub-
set of DescP(U). Then, U|W denotes the position
(U(1) ∩W ,U(2) ∩W , . . . ,U(k) ∩W). In Fig. 3, the
components of HP(U

′), where U ′ is the successor of
Uroot, are W1 = {3, 4, a, b, c, d, e, g} and W2 = {f , h, i}.
Thus, U ′|W1 = ({3}, {e, g}, {g}) and U ′|W2 = ({f }, {f },∅).
We have the following result.

Lemma 6 Let U be a valid position, and S be the set of
all semi-universal labels in U. Let U ′ be the successor of U
with respect to S, and let W1,W2, . . . ,Wp be the label sets
of the connected components of HP(U

′). Then, U ′|Wj is a
valid position, for each j ∈ [p].

Proof It suffices to argue that U ′ satisfies conditions
(V1) and (V2). The lemma then follows from the fact that
the connected components of HP(U

′) are label-disjoint.

U ′ must satisfy condition (V1), since U does.
Suppose ℓ ∈ S. Then, for each i ∈ [k] such that
ℓ ∈ L(Ti), Desci(U

′) = Desci(U) \ {ℓ} and
DescP(U

′) ∩ L(Ti) = (DescP(U) ∩ L(Ti)) \ {ℓ}. Thus,
since (V2) holds for U, it also holds for U ′. �

Testing ancestral compatibility
Overview of the algorithm
BuildNT (Algorithm 1) is our algorithm for testing com-
patibility of semi-labeled trees. Its argument, U, is a valid
position in P such that HP(U) is connected. BuildNT
relies on the fact—proved later, in Theorem 1—that if
P|DescP(U) is compatible, then U must contain a non-
empty set S of semi-universal labels. If such a set S exists,
the algorithm replaces U by its successor U ′ with respect
to S. It then processes each connected component of
HP(U

′) recursively, to determine if the associated sub-
profile is compatible. If all the recursive calls are success-
ful, then their results are combined into a supertree for
P|DescP(U).

U ′(i) =

{

Chi(ℓ) if U(i) = {ℓ}, for some ℓ ∈ S,
U(i) otherwise.

Page 6 of 12Deng and Fernández‑Baca Algorithms Mol Biol (2017) 12:7

In detail, BuildNT proceeds as follows. Line 1 computes
the set S of semi-universal labels in U. If S is empty, then,
P|DescP(U) is incompatible, and, thus, so is P. This fact
is reported in Line 3. Line 4 creates a tentative root rU ,
labeled by S, for the tree TU for L(U). Line 5 checks if S
contains exactly one label ℓ, with no proper descendants.
If so, by the connectivity assumption, ℓ must be the sole
member of DescP(U); that is, L(U) = ℓ . Therefore, Line
6 simply returns the tree with a single node, labeled by
S = {ℓ}. Line 7 updates U, replacing it by its successor
with respect to S. Let W1,W2, . . . ,Wp be the connected
components of HP(U) after updating U. By Lemma
6, U |Wj is a valid position, for each j ∈ [p]. Lines 8–12
recursively invoke BuildNT on U |Wj for each j ∈ [p],
to determine if there is a tree tj that ancestrally displays
P|DescP(U ∩Wj). If any subproblem is incompatible,
Line 12 reports that P is incompatible. Otherwise, Line
13 returns the tree obtained by making the tjs the sub-
trees of root rU.

Next, we argue the correctness of BuildNT.

Correctness

Lemma 7 Let U be a valid position in P. If BuildNT(U)
returns a tree TU, then TU is a phylogenetic tree such that
L(TU) = L(U).

Proof We use induction on |L(U)|. The base case,
where |L(U)| = 1, is handled by Lines 5–6. In this case,
S = L(U) = {ℓ} and BuildNT(U) correctly returns the
tree consisting of a single node, labeled by {ℓ}. Otherwise,
let W1, . . . ,Wp be the connected components of HP(U)
in step 8. Since BuildNT(U) returns tree TU, it must be
the case that, for each j ∈ [p], the result tj returned by
the recursive call to BuildNT(U |Wj) in Line 10 is a tree.
Since |S| ≥ 1, we have |L(Wj)| < |L(U)|, for each j ∈ [p].

Thus, we can assume inductively that tj is a phylogenetic
tree for L(Wj). Since S ∪

⋃

j∈[p] L(Wj) = L(U), the tree
returned in Line 13 is a phylogeny with species set L(U).
 �

Theorem 1 Let P = {T1, T2, . . . , Tk} be a profile and
let Urootbe the root position, as defined in Eq. (1). Then,
BuildNT(Uroot) returns either (i) a semi-labeled tree T
that ancestrally displays P, if P is ancestrally compatible,
or (ii) incompatible otherwise.

Proof BuildNT(Uroot) either returns a tree or incompat-
ible. We consider each case separately.

(i) Suppose that BuildNT(Uroot) returns a semi-labeled
tree T . By Lemma 7, L(T) = L(P). We prove that
T ancestrally displays P. By Lemma 1, it suffices to
show that D(Ti) ⊆ D(T) and N (Ti) ⊆ N (T), for

each i ∈ [k] . Consider any (ℓ, ℓ′) ∈ D(Ti). Then, ℓ
has a child ℓ′′ in Ti such that ℓ′′ ≤Ti ℓ

′ —note that we
may have ℓ′′ = ℓ. There must be a recursive call to
BuildNT(U), for some valid position U, where ℓ is the
set S of semi-universal labels obtained in Line 1. By
Observation 2, label ℓ′′, and thus ℓ′, both lie in one of
the connected components of the graph obtained by
deleting all labels in S, including ℓ, and their incident
edges from HP(U). It now follows from the construc-
tion of T that (ℓ, ℓ′) ∈ D(T). Thus, D(Ti) ⊆ D(T).
Now, consider any {ℓ, ℓ′} ∈ N (Ti). Let v be the lowest
common ancestor of φi(ℓ) and φi(ℓ′) in Ti and let ℓv
be the label of v. Then, ℓv has a pair of children, ℓ1 and
ℓ2 say, in Ti such that ℓ1 ≤Ti ℓ, and ℓ2 ≤Ti ℓ

′. Because
BuildNT(Uroot) returns a tree, there are recursive calls
BuildNT(U1) and BuildNT(U2) for valid positions U1
and U2 such that ℓ1 is semi-universal for U1 and ℓ2 is
semi-universal for U2. We must have U1 �= U2; other-

Page 7 of 12Deng and Fernández‑Baca Algorithms Mol Biol (2017) 12:7

wise, |U1(i)| = |U2(i)| ≥ 2, and, thus, neither ℓ1 nor
ℓ2 is semi-universal, a contradiction. Further, it fol-
lows from the construction of T that we must have
DescP(U1) ∩ DescP(U2) = ∅. Hence, ℓ �T ℓ′, and,
therefore, {ℓ, ℓ′} ∈ N (T).

(ii) Asssume, by way of contradiction, that BuildNT(Uroot)
returns incompatible, but that P is ancestrally compat-
ible. By assumption, there exists a semi-labeled tree T
that ancestrally displays P. Since BuildNT(Uroot) returns
incompatible, there is a recursive call to BuildNT(U) for
some valid position U such that U has no semi-univer-
sal label, and the set S of Line 1 is empty. By Lemma 2,
T |DescP(U) ancestrally displays P|DescP(U).
Thus, by Lemma 4, T |DescP(U) ancestrally displays
Ti|Desci(U) , for every i ∈ [k]. Let ℓ be any label in the
label set of the root of T |DescP(U). Then, for each
i ∈ [k] such that ℓ ∈ L(Ti), ℓ must be the label of the root
of Ti|Desci(U). Thus, for each such i, U(i) = {ℓ}. Hence,
ℓ is semi-universal in U, a contradiction.

 �

L(U) in the supertree. The body of the loop closely fol-
lows the steps performed by a call to BuildNT(U). Line
5 computes the set S of semi-universal labels in U. If S is
empty, the algorithm reports that P is incompatible and
terminates (Lines 6–7). The algorithm then creates a ten-
tative root rU labeled by S for the tree TU for L(U), and
links rU to its parent (Line 8). If S consists of exactly one
element that has no proper descendants, we skip the rest
of the current iteration of the while loop, and continue to
the next iteration (Lines 9–10). Line 11 replaces U by its
successor with respect to S. Lines 13–14 enqueue each of
U |W1,U |W2, . . . ,U |Wp, along with rU, for processing in
a subsequent iteration. If the while loop terminates with-
out any incompatibility being detected, the algorithm
returns the tree with root rUroot.

Although the order in which BuildNTN processes
connected components differs from that of BuildNT —
breadth-first instead of depth-first—, it is straightforward

An iterative version
We now present BuildNTN (Algorithm 2), an iterative
version of BuildNT, which lends itself naturally to an
efficient implementation. BuildNTN performs a breadth-
first traversal of BuildNT’s recursion tree, using a first-in
first-out queue Q that stores pairs of the form (U , pred),
where U is a valid position in P and pred is a reference to
the parent of the node corresponding to U in the super-
tree built so far. BuildNTN simulates recursive calls in
BuildNT by enqueuing pairs corresponding to subprob-
lems. We explain this in more detail next.
BuildNTN initializes its queue to contain the starting

position, Uroot, with a null parent. It then proceeds to
the while loop of Lines 3–14. Each iteration of the loop
starts by dequeuing a valid position U, along with a ref-
erence pred to the potential parent for the subtree for

to see that the effect is equivalent, and the proof of cor-
rectness of BuildNT (Theorem 1) applies to BuildNTN as
well. We thus state the following without proof.

Theorem 2 Let P = {T1, T2, . . . , Tk} be a profile. Then,
BuildNTN(P) returns either (i) a semi-labeled tree T that
ancestrally displays P, if P is ancestrally compatible, or
(ii) incompatible otherwise.

Let Q be BuildNTN’s first-in first-out queue. In the rest
of the paper, we will say that a valid position U is in Q
if (U , pred) ∈ Q, for some pred. Let HQ be the subgraph
of HP induced by

⋃

{Desc(U) : U is in Q}. By Observa-
tion 1, HQ is obtained from HP through edge and node
deletions.

Page 8 of 12Deng and Fernández‑Baca Algorithms Mol Biol (2017) 12:7

Lemma 8 At the start of any iteration of BuildNTN

’s while loop, the set of connected components of HQ is
{V (HP(U)) : U is in Q}.

Proof The property holds at the outset, since, by
Assumption 2, HP = HP(Uroot) is a connected graph, and
the only element of Q is (Uroot,null). Assume that the
property holds at the beginning of iteration l. Let (U , pred)
be the element dequeued from Q in Line 4. Then, HP(U)
is connected. In place of (U , pred), Lines 13–14 enqueue
(U |Wj , rU), for each j ∈ [p], where, by construction,
HP(U |Wj) is a connected component of HP(U). Thus, the
property holds at the beginning of iteration l + 1. �

In other words, Lemma 8 states that each iteration of
BuildNTN(P) deals with a subgraph of HP, whose con-
nected components are in one-to-one correspondence
with the valid positions stored in Q. This is illustrated by
the next example.

An example
Figures 4, 5, 6, 7 and 8 illustrate the execution of BuildNTN
on the profile P = (T1, T2, T3) of Fig. 1. The figures show
how the graph HQ —initially equal to HP = HP(Uroot)
(Fig. 3)—evolves as its edges and nodes are deleted.

In each figure, HQ is shown on the left and the current
supertree is shown on the right. For brevity, the figures
only exhibit the state of HQ and the supertree after all
the nodes at each level are generated. The various valid
positions processed by BuildNTN(P) are denoted by Uα ,
for different subscripts α; Sα denotes the semi-universal
labels in Uα, and U ′

α denotes the successor of Uα with
respect to Sα. We write Lα as an abbreviation for L(Uα)
The root of the tree for Lα is rUα and is labeled by Sα.

Initially, Q = ((Uroot,null)). In what follows, the ele-
ments of Q are listed from front to rear.

Level 0. Refer to Fig. 4. As seen earlier, the set of semi-
universal labels of Uroot is Sroot = {1, 2}. Thus, HP(U

′
root)

has two components W1 and W2. Let U1 = U ′
root|W1 and

U2 = U ′
root|W2. Then,

After level 0 is processed, Q = ((U1, rUroot), (U2, rUroot)).
Thus, the roots of the subtrees for L1 and L2 will be chil-
dren of rUroot.

Level 1. Refer to Fig. 5. We have S1 = {3}, so HP(U
′
1)

has two components W11 and W12. Let U11 = U ′
1|W11 and

U12 = U ′
1|W12. Then,

We have S2 = {f }, so HP(U
′
2) has two components W21

and W22. Let U21 = U ′
2|W21 and U22 = U ′

2|W22. Then,

U1 = ({3}, {e, g}, {g}) and U2 = ({f }, {f }, ∅).

U11 = ({a, d}, {g}, {g}) and U12 = ({e}, {e}, ∅).

After level 1 is processed,
Q = ((U11, r1), (U12, r1), (U21, r2), (U22, r2)).

Level 2. Refer to Fig. 6. We have S11 = {g}, so HP(U
′
11)

has two components W111 and W112. Let U111 = U ′
11|W111

and U112 = U ′
11|W112. Then,

The only semi-universal labels in U12, U21, and U22
are, respectively, e, h, and i. Since none of these labels
have proper descendants, each of them is a leaf in the
supertree.

After level 2 is processed, Q = ((U111, r11), (U112, r11)).
Level 3. Refer to Fig. 7. We have S111 = {4, a}, so

HP(U
′
111) has two components W1111 and W1112. Let

U1111 = U ′
111|W1111 and U1112 = U ′

111|W1112. Then,

U21 = (∅, {h}, ∅) and U21 = (∅, {i}, ∅).

U111 = ({a}, {a}, {4}) and U112 = (∅, {d}, {d}).

U1111 = ({b}, ∅, {b}) and U1112 = ({c}, ∅, {c}).

b c ed

g

h i

f
a

3

4

1,2U1

U2 L2L1

Fig. 4 After generating all supertree nodes in level 0

b c ed

g

h i

a4

f

1,2

3

U11

U12

U21 U22 L12L11

L22L21

Fig. 5 After generating all supertree nodes in level 1

U112

b c ed

h i

a4

e

f

1,2

g

h i

3
U111

L111 L112

Fig. 6 After generating all supertree nodes in level 2

Page 9 of 12Deng and Fernández‑Baca Algorithms Mol Biol (2017) 12:7

The only semi-universal label in U112 is d. Since d has
no proper descendants, it becomes a leaf in the supertree.

After level 3 is processed,
Q = ((U1111, r111), (U1112, r111)).

Level 4. Refer to Fig. 8. The only semi-universal labels
in U1111 and U1112 are, respectively, b and c. Since neither
of these labels have proper descendants, each of them is a
leaf in the supertree.

After level 4 is processed, Q is empty, and BuildNTN(P)
terminates.

Implementation
Here we prove the following result.

Theorem 3 There is an algorithm that, given a pro-
file P of rooted trees, runs in O(MP log2MP) time, and
either returns a tree that displays P, if P is compatible, or
reports that is P is incompatible otherwise.

We prove this theorem by showing how to implement
BuildNTN so that the algorithm runs in O(MP log2MP)
on any profile P.

As in the section titled "An iterative version", let HQ
denote the subgraph of HP associated with the valid posi-
tions in BuildNTN’s queue. By Lemma 8, each valid posi-
tion U in Q corresponds to one connected component of
HQ —namely Desc(U) —and vice-versa. We use this fact
in the implementation of BuildNTN: alongside each valid
position U in Q, we also store a reference to the respec-
tive connected component, together with additional
information, described next, to quickly identify semi-uni-
versal labels.

Let U be any valid set in Q, let Y = V (HP(U)) be the
corresponding connected component of HQ, and let ℓ be
any label in Y. Our implementation maintains the follow-
ing data fields.

 • Let JU = {i ∈ [k] : U(i) �= ∅}. Then, Y .map is
a map from JU to L(U), where, for each i ∈ JU,
Y .map(i) = U(i).

 • For each ℓ ∈ Y , ℓ.count equals the cardinality of the
set {i ∈ [k] : Y .map(i) = {ℓ}}. (Recall that kℓ is the
number of input trees that contain ℓ.).

 • Y .exposed, a set consisting of all i ∈ [k] such
that Y .map(i) = {ℓ} for some ℓ ∈ Y such that
ℓ.count = kℓ.

 • Y .weight, which equals
∑

ℓ∈Y kℓ. This field is
needed for technical reasons, to be explained later.

For the purpose of analysis, we assume that the exposed
fields are represented as balanced binary search trees
(BSTs), which ensures O(log k) = O(logMP) time per
access and update. The map fields are also implemented
using BSTs. We store the set JU = {i ∈ [k] : U(i) �= ∅}
as a BST, enabling is to determine in O(log k) time if an
index i is in JU, and, if this is the case, to access Y .map(i) .
The latter is also stored as a BST, allowing us to search
and update Y .map(i) in O(log |U(i)|) = O(logMP) time.
Note that, in practice, hashing may be a better alternative
for both exposed and map fields, as it offers expected
constant time performance per operation.

The data fields listed above allow us to efficiently
retrieve the set S of semi-universal labels in U, as
needed in line 5 of BuildNTN(P). Indeed, suppose that
U is the valid position extracted from Q at the begin-
ning of an iteration of the while loop of Lines 3–14,
and that Y = V (HP(U)). Then, by Lemma 5, we have
S = {v ∈ Y .map(i) : i ∈ Y .exposed}. What remains is to
devise an efficient way to update these fields for each of
the connected components of HP(U) created by replac-
ing U with its successor in Line 11.

Let U ′ be the value of U after Line 11; thus, U ′ is the suc-
cessor of U. By Observation 2, HP(U

′) is obtained from
HP(U) through edge and node deletions. We need to

(a) Generate the new connected components resulting
from these deletions, and

(b) Produce the required map, count, and exposed data
fields for the various connected components.

We accomplish (a) using the dynamic graph connectiv-
ity data structure of Holm et al. [20], which we refer to
as HDT. HDT allows us to maintain the list of nodes in
each component, as well as the number of these nodes so

b c ed

h i d e

fa,4

1,2

g

h i

3
U1111U1112

L1111 L1112

Fig. 7 After generating all supertree nodes in level 3

b c ed

h i b c d e

fa,4

1,2

g

h i

3

Fig. 8 After generating all supertree nodes in level 4

Page 10 of 12Deng and Fernández‑Baca Algorithms Mol Biol (2017) 12:7

that, if we start with no edges in a graph with N nodes,
the amortized cost of each update is O(log2N). Since HP
has O(MP) nodes, each update takes O(log2MP) time.
The total number of edge and node deletions performed
by BuildNTN(P) —including all deletions in the intera-
tions—is at most the total number of edges and nodes
in HP, which is O(MP). HDT allows us to maintain con-
nectivity information throughout the entire algorithm
in O(MP log2MP) time, which is within the time bound
claimed in Theorem 3.

For part (b), we need to augment HDT in order to
maintain the the required data fields for the various con-
nected components created during edge and node dele-
tion. In the next subsections, we describe how to do this.
We begin by explaining how to initialize all the required
data fields for HP = HP(Uroot).

Initializing the data fields
Graph HP(Uroot) has a single connected component,
Yroot = L(P), which is the entire vertex set of the graph.
We initialize the data fields as follows.

 • For each i ∈ [k], Yroot.map(i) = {r(Ti)}. This takes
O(k) time.

 • Yroot.weight =
∑

ℓ∈L(P) kℓ. This takes O(MP) time.

We initialize the count fields in O(MP) time as follows:

1. Set ℓ.count to 0 for all ℓ ∈ L(P).
2. For each i ∈ [k], do the following.

(a) Let ρi denote the label of r(Ti).
(b) Increment ρi.count by one.

Once the count fields are initialized, it is easy to initial-
ize Yroot.exposed in O(k) time. Thus, we can initialize all
the required fields in O(MP) time.

Maintaining the data fields
Suppose that all data fields fields are correctly computed
for every connected component that is in Q at the begin-
ning of an iteration of the while loop in 3–14 of BuildNTN .
We now show how to generate the same fields efficiently
for the new connected components created by Line 11.

Computing successor positions
Let U be the valid position extracted from Q at the begin-
ning of an iteration of BuildNTN’s while loop, and let
Y = V (Desc(U)) be the associated connected compo-
nent. Assume all the data fields for Y have been correctly
computed. To obtain the successor of U in Line 11 of
BuildNTN, we perform the following steps.

1. Identify the set S of semi-universal labels
in U. As we saw, this set is given by
S = {ℓ ∈ Y .map(i) : i ∈ Y .exposed}.

2. Set Y .map(i) = ∅, for every i ∈ Y .exposed.
3. Make Y .exposed = ∅.
4. For each ℓ ∈ S and each i such that ℓ ∈ L(Ti), do the

following.

• If Chi(ℓ) �= ∅, replace Y .map(i) by Chi(ℓ). If Chi(ℓ)
is a singleton set {α}, increment α.count by one. If
α.count = kℓ, add i to Y .exposed.

• Otherwise, Y .map(i) is undefined.

5. For each label ℓ in S, delete the edges incident on ℓ
and then ℓ itself, updating the data fields as necessary
after each deletion.

The total number of operations on map and exposed
fields in Steps 1–4 is O(

∑

ℓ∈S kℓ). Since each label becomes
semi-universal at most once, the total number of operations
on map fields over the entire execution of BuildNTN(P) is
O(

∑

ℓ∈L(P) kℓ), which is O(MP). The same bound holds for
updates to count and exposed fields.

Next let us focus on how to handle the deletion of a sin-
gle edge in Step 5.

Deleting an edge
To delete an edge between ℓ and a child α of ℓ, we pro-
ceed as follows.

1. Delete (ℓ,α), querying HDT to determine whether this
disconnects Y.

• If Y remains connected, skip the next steps and pro-
ceed directly to the next child of ℓ.

• Otherwise, Y is split into two components, Y1 and Y2.

2. Update Y1.weight and Y2.weight.
3. Identify which of Y1 and Y2 has the smaller weight

field. Without loss of generality, assume that
Y1.weight ≤ Y2.weight.

4. Initialize Y1.map and Y1.exposed to null.
5. Initialize Y2.map and Y2.exposed to Y .map and

Y .exposed, respectively.
6. For each label β in Y1, perform the following steps for

each i such that β ∈ L(Ti).

(a) Delete β from Y2.map(i) and add β to Y1.map(i).
(b) Adjust count and exposed fields as necessary.

The connectivity test in Step 1 is done by querying HDT.
Steps 3–5 are trivial. We thus focus on Steps 2 and 6.

Page 11 of 12Deng and Fernández‑Baca Algorithms Mol Biol (2017) 12:7

To perform Step 2, we use the well-known tech-
nique of scanning the smaller component [21]. We
first consult HDT to determine which of Y1 or Y2
has fewer nodes. Assume, without loss of general-
ity, that |Y1| ≤ |Y2|. We initialize Y1.weight to 0 and
Y2.weight to Y .weight. We then scan the labels
of Y1, incrementing Y1.weight by kℓ for each label
ℓ ∈ Y1. When the scan of Y1 is complete, we make
Y2.weight = Y2.weight− Y1.weight. We claim that
any label ℓ ∈ L(P) is scanned O(logMP) times over the
entire execution of BuildNTN(P). To verify this, let
N (ℓ) be the number of nodes in the connected com-
ponent containing ℓ. Suppose that, initially, N (ℓ) = N .
Then, the rth time we scan ℓ, N (ℓ) ≤ N/2r. Thus, ℓ
is scanned O(logN) times. The claim follows, since
N = O(MP). Therefore, the total number of updates
over all labels is O(MP logMP).

Each execution of Step 6(a) updates each of Y1.map(i)
and Y2.map(i) once. Step 6(b) is more complex, but can
also be accomplished with O(1) data field updates. We
omit the (tedious) details. In summary, each execution
of step 6 for some β ∈ L(P) performs O(kβ) data field
updates.

Let us track the number of data field updates in Step
6 that can be attributed to some specific label β ∈ L(P)
over the entire execution of BuildNTN(P). Let wr(β)
be the weight of the connected component contain-
ing β at the beginning of Step 6, on the rth time that β
is considered in that step. Thus, w0(β) ≤

∑

ℓ∈L(P) kℓ. We
claim that wr(β) ≤ w0(β)/2

r. The reason is that we only
consider β if (a) β is contained in one of the two com-
ponents that result from deleting an edge in step 1 and
(b) the component containing β has the smaller weight.
Hence, the number of times β is considered in step 6 over
the entire execution of BuildNTN(P) is O(logw0(β)) ,
which is O(logMP), since w0(β) = O(MP). Therefore,
the total number of data field updates in Step 6, over all
labels in L(P) considered throughout the entire execu-
tion of BuildNTN(P), is O(logMP ·

∑

ℓ∈L(P) kℓ), which is
O(MP logMP).

Summary
Let us review the running times of each aspect of our
implementation of BuildNTN.

 • Initializing the data structures. This has two parts.

• Setting up the HDT data structure for HP. This takes
O(MP log2MP) time.

• Initializing the data fields for the single connected
component of HP. This takes O(MP) time.

 • Maintaining the data structures. This also has two parts.

• Updating the HDT data structure. There are O(MP)
edge and node deletions, at an amortized cost of
O(log2MP) per deletion, yielding a total time of
O(MP log2MP).

• Maintaining the relevant data fields for the connected
components. We have seen that the total number of
updates is O(MP logMP). Assume, conservatively,
that each update can be done in O(logMP) time.
Then, this part takes a total of O(MP log2MP) over
the entire execution of BuildNTN.

We conclude that the total running time of BuildNTN(P)
is O(MP log2MP), completing the proof of Theorem 3.

Discussion
Like our earlier algorithm for compatibility of ordinary
phylogenetic trees, the more general algorithm presented
here, BuildNTN, is a polylogarithmic factor away from
optimality (a trivial lower bound is �(MP), the time to
read the input). BuildNTN has a linear-space implemen-
tation, using the results of Thorup [22]. A question to be
investigated next is the performance of the algorithm on
real data. Another important issue is integrating our algo-
rithm into a synthesis method that deals with incompatible
profiles.

Authors’ contributions
Algorithms and proofs were developed jointly by YD and DFB. The first draft of
the paper was written by DFB, with substantial contributions from YD. YD and
DFB both proofread the manuscript. Both authors read and approved the final
manuscript.

Acknowledgements
The authors were supported in part by the National Science Foundation under
Grant CCF‑1422134.

Competing interests
The authors declare that they have no competing interests.

Received: 23 December 2016 Accepted: 4 March 2017

References
 1. Aho AV, Sagiv Y, Szymanski TG, Ullman JD. Inferring a tree from lowest

common ancestors with an application to the optimization of relational
expressions. SIAM J Comput. 1981;10(3):405–21.

 2. Deng Y, Fernández‑Baca D. Fast compatibility testing for rooted phyloge‑
netic trees. In: Grossi R, Lewenstein M (editors) 27th annual symposium
on combinatorial pattern matching (CPM 2016). Leibniz International
Proceedings in Informatics. Schloss Dagstuhl—Leibniz‑Zentrum für Infor‑
matik. Dagstuhl Publishing; 2016. p. 12. doi:10.4230/LIPIcs.CPM.2016.12.

 3. Henzinger MR, King V, Warnow T. Constructing a tree from homeomor‑
phic subtrees, with applications to computational evolutionary biology.
Algorithmica. 1999;24:1–13.

 4. Steel MA. The complexity of reconstructing trees from qualitative charac‑
ters and subtrees. J Classif. 1992;9:91–116.

 5. Baum BR. Combining trees as a way of combining data sets for phylo‑
genetic inference, and the desirability of combining gene trees. Taxon.
1992;41:3–10.

http://dx.doi.org/10.4230/LIPIcs.CPM.2016.12

Page 12 of 12Deng and Fernández‑Baca Algorithms Mol Biol (2017) 12:7

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

 6. Ragan MA. Phylogenetic inference based on matrix representation of
trees. Mol Phylogenet Evol. 1992;1:53–8.

 7. Bininda‑Emonds ORP, Cardillo M, Jones KE, MacPhee RDE, Beck RMD,
Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A. The delayed rise of
present‑day mammals. Nature. 2007;446:507–12.

 8. Page RM. Taxonomy, supertrees, and the tree of life. In: Bininda‑Emonds
ORP, editor. Phylogenetic supertrees: combining information to reveal the
tree of life. Dordrecht: Kluwer; 2004. p. 247–65.

 9. Sanderson MJ. Phylogenetic signal in the eukaryotic tree of life. Science.
2008;321(5885):121–3.

 10. Sayers EW, et al. Database resources of the national center for biotechnol‑
ogy information. Nucl Acids Res. 2009;37(Database issue):5–15.

 11. The Angiosperm Phylogeny Group. An update of the Angiosperm Phy‑
logeny Group classification for the orders and families of flowering plants:
APG IV. Bot J Linn Soc. 2016;181:1–20.

 12. Hinchliff CE, Smith SA, Allman JF, Burleigh JG, Chaudhary R, Coghill
LM, Crandall KA, Deng J, Drew BT, Gazis R, Gude K, Hibbett DS, Katz LA,
Laughinghouse HD IV, McTavish EJ, Midford PE, Owen CL, Reed RH,
Reesk JA, Soltis DE, Williams T, Cranston KA. Synthesis of phylogeny
and taxonomy into a comprehensive tree of life. Proc Natl Acad Sci.
2015;112(41):12764–9. doi:10.1073/pnas.1423041112.

 13. Bordewich M, Evans G, Semple C. Extending the limits of supertree meth‑
ods. Ann Comb. 2006;10:31–51.

 14. Semple C, Steel M. Phylogenetics. Oxford lecture series in mathematics.
Oxford: Oxford University Press; 2003.

 15. Daniel P, Semple C. Supertree algorithms for nested taxa. In: Bininda‑
Emonds ORP, editor. Phylogenetic supertrees: combining information to
reveal the tree of life. Dordrecht: Kluwer; 2004. p. 151–71.

 16. Berry V, Semple C. Fast computation of supertrees for compatible phylog‑
enies with nested taxa. Syst Biol. 2006;55(2):270–88.

 17. Bryant D, Lagergren J. Compatibility of unrooted phylogenetic trees is
FPT. Theor Comput Sci. 2006;351:296–302.

 18. Smith SA, Brown JW, Hinchliff CE. Analyzing and synthesizing phylog‑
enies using tree alignment graphs. PLoS Comput Biol. 2013;9(9):1003223.

 19. Pe’er I, Pupko T, Shamir R, Sharan R. Incomplete directed perfect
phylogeny. SIAM J Comput. 2004;33(3):590–607. doi:10.1137/
S0097539702406510.

 20. Holm J, de Lichtenberg K, Thorup M. Poly‑logarithmic determin‑
istic fully‑dynamic algorithms for connectivity, minimum span‑
ning tree, 2‑edge, and biconnectivity. J ACM. 2001;48(4):723–60.
doi:10.1145/502090.502095.

 21. Even S, Shiloach Y. An on‑line edge‑deletion problem. J ACM.
1981;28(1):1–4. doi:10.1145/322234.322235.

 22. Thorup M. Near‑optimal fully‑dynamic graph connectivity. In: Proceed‑
ings of the 32nd annual ACM symposium on theory of computing. ACM;
2000. p. 343–350.

http://dx.doi.org/10.1073/pnas.1423041112
http://dx.doi.org/10.1137/S0097539702406510
http://dx.doi.org/10.1137/S0097539702406510
http://dx.doi.org/10.1145/502090.502095
http://dx.doi.org/10.1145/322234.322235

	An efficient algorithm for testing the compatibility of phylogenies with nested taxa
	Abstract
	Background:
	Results:
	Conclusions:

	Introduction
	Background
	Our contributions
	Contents

	Preliminaries
	Graph notation
	Semi-labeled trees
	Profiles and ancestral compatibility

	The display graph
	Positions
	Semi-universal labels
	Successor positions

	Testing ancestral compatibility
	Overview of the algorithm
	Correctness
	An iterative version
	An example

	Implementation
	Initializing the data fields
	Maintaining the data fields
	Computing successor positions
	Deleting an edge

	Summary

	Discussion
	Authors’ contributions
	References

