
Bork et al. Algorithms Mol Biol (2017) 12:6
DOI 10.1186/s13015-017-0098-8

RESEARCH

On the computational complexity of the
maximum parsimony reconciliation problem
in the duplication-loss-coalescence model
Daniel Bork1,2, Ricson Cheng3, Jincheng Wang1, Jean Sung1 and Ran Libeskind‑Hadas1*

Abstract

Background: Phylogenetic tree reconciliation is a widely‑used method for inferring the evolutionary histories of
genes and species. In the duplication‑loss‑coalescence (DLC) model, we seek a reconciliation that explains the incon‑
gruence between a gene and species tree using gene duplication, loss, and deep coalescence events. In the maxi‑
mum parsimony framework, costs are associated with these event types and a reconciliation is sought that minimizes
the total cost of the events required to map the gene tree onto the species tree.

Results: We show that this problem is NP‑hard even for the special case of minimizing the number of duplications.
We then show that the problem is APX‑hard when both duplications and losses are considered, implying that no
polynomial‑time approximation scheme can exist for the problem unless P = NP.

Conclusions: These intractability results are likely to guide future research on algorithmic aspects of the DLC‑recon‑
ciliation problem.

Keywords: Phylogenetic reconciliation, Duplication‑loss‑coalescence model, NP‑hardness, APX‑hardness

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Phylogenetic tree reconciliation is a fundamental tech-
nique in the study of the evolutionary relationships of
genes and species. Given a gene tree, a species tree, and
the association between their leaves, we seek to explain
the incongruence between the two trees using a set of
evolutionary events. In the widely-used DL model, dupli-
cation and loss events are considered, while the DTL
model considers horizontal transfers as well. Although
these models can explain paralogous gene families, they
do not address population effects. In contrast, coalescent
models [1] can explain population effects but implic-
itly assume that all genes are orthologs. Recently, a new
duplication-loss-coalescence (DLC) model has been pro-
posed that combines the duplication-loss tree reconcilia-
tion model with a coalescent model. This DLC model has
been shown to have higher accuracy of reconstructing
evolutionary events than the DL model alone [2, 3].

Reconciliation is often performed using a maximum
parsimony formulation in which each type of event in the
model has an associated non-negative cost and the objec-
tive is to find a reconciliation of minimum total cost. Wu
et al. [3] gave the first maximum parsimony algorithm
for the DLC reconciliation problem. That algorithm has
worst-case exponential time, leaving open the question of
whether the problem can be solved in polynomial time.

In this paper, we show that the DLC parsimony prob-
lem is NP-hard and, further, has no polynomial-time
approximation scheme (PTAS) unless P = NP. Specifi-
cally, we show that:

1 The DLC parsimony problem is NP-hard even when
only seeking to minimize the number of duplications
(i.e., loss and coalescence events have zero cost).
However, the problem of minimizing duplications
alone can be approximated using a PTAS for the
multicut problem [4].

2 The DLC parsimony problem is APX-hard even when
only duplications and losses are considered (i.e., coa-

Open Access

Algorithms for
Molecular Biology

*Correspondence: hadas@cs.hmc.edu
1 Department of Computer Science, Harvey Mudd College, Claremont, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-9120-1948
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-017-0098-8&domain=pdf

Page 2 of 12Bork et al. Algorithms Mol Biol (2017) 12:6

lescence events have zero cost), which implies that
no PTAS exists for this problem unless P = NP.

Just as complexity results for DTL parsimony [5–7]
guided the direction of algorithmic research on that
problem, these results serve to guide future work on algo-
rithms and heuristics for the DLC parsimony problem.

Finally, we note that while the DLC reconciliation
problem considers duplications and losses, those events
are treated differently from duplications and losses in the
DL and DTL models due to the introduction of explicit
gene loci in the DLC model. Thus, the complexity results
that we offer here are not directly related to those for the
DL and DTL models. The interested reader is referred
to [5–7] for discussions of the DL and DTL models and
known results about their computational complexity.

Problem statement and preliminaries
This section provides notation, definitions, and basic
results that will be used throughout the paper.

Graph definitions
We begin with notation and definitions adapted from Wu
et al. [3]. A tree is a rooted binary tree T = (V (T),E(T))
where V(T) denotes the set of nodes and E(T) denotes the
set of directed edges, also called branches. An edge termi-
nating at a leaf node is called a terminal edge. Denote by
L(T) ⊂ V (T) the set of leaves of T, I(T) = V (T) \ L(T)
the set of internal nodes, and r(T) ∈ I(T) the root node.
In a binary tree, leaves correspond to extant taxa whereas
internal nodes correspond to ancestral taxa.

Denote by c(v) the set of children of v, p(v) the parent of
v, and e(v) the directed edge (p(v), v). The partial orders
≤T and ≥T on V(T) are defined by u ≤T v if u is on the
path from r(T) to v and u ≥T v if v is on the path from
r(T) to u. Note that as required by a partial ordering,
≤T and ≥T are reflexive (u ≤T u and u ≥T u). If u ≤T v
and u �= v then u is said to be an ancestor of v and v is a
descendant of u. The distance from a node u to v, where
u ≤T v, is the length of the shortest path from u to v. The
least common ancestor of nodes u, v, denoted lca(u, v),
is the node w of maximum distance from r(T) such that
w ≤T u and w ≤T v. For two nodes u, v ∈ T , we say that
an edge e separates u and v if e is either on the path from
lca(u, v) to u or on the path from lca(u, v) to v. For con-
venience, we also use lca as shorthand for the term “least
common ancestor” when the context is clear.

Reconciliations
A leaf map is a function Le : L(G) → L(S) that associates
each leaf in the gene tree with the leaf in the species tree
in which that gene is found. This function need not be
one-to-one nor onto; gene tree leaves that map onto the

same species tree leaf correspond to paralogous genes.
The labeled coalescent tree, defined below, formalizes the
notion of a reconciliation in the DLC model.

Definition 1 (Labeled Coalescent Tree) Given gene
tree G, species tree S, and leaf map Le : L(G) → L(S) ,
a labeled coalescent tree (LCT) for (G, S, Le) is a tuple
(M,L,L) where:

 • M : V (G) → V (S) is a species map which maps
each node of G to a node of S;

 • L is a finite set, called the locus set of loci that have
evolved within the gene family;

 • L : V (G) → L is a locus map that maps each node
of G to a locus in L

subject to the following constraints:

1. If g ∈ L(G), then M(g) = Le(g);
2. If g ∈ I(G), then for g ′ ∈ c(g), M(g) ≤S M(g ′);
3. For g , g ′ ∈ L(G) where g �= g ′, if Le(g) = Le(g ′) then

L(g) �= L(g ′);
4. For ℓ ∈ L, there exists g ∈ V (G) s.t. L(g) = ℓ;
5. For ℓ ∈ L, let N (ℓ) = {g |g ∈ V (G); g �= r(G);

L(g) = ℓ;L(p(g)) �= ℓ}. Then |N (ℓ)| ≤ 1, where
equality holds everywhere except for ℓ = L(r(g)).

Constraint 1 asserts that the species map M extends
the leaf map Le; constraint 2 asserts that a gene node is
mapped to either the same node or an ancestor of each of
its children; constraint 3 asserts that since extant gene
nodes (leaves) mapped to the same extant species (leaves)
are paralogs, they must be mapped to different loci; con-
straint 4 asserts that the locus set only includes a locus if
at least one gene uses that locus; and constraint 5 asserts
that each locus is created only once.1

A gene node g is said to be a speciation node
with respect to map M if for each child g ′ ∈ c(g),
M(g) �= M(g ′). Since a branch of the gene tree may span
multiple branches of the species tree for a given map M,
implied speciation nodes are added as follows: For each
non-root internal node g ∈ I(G) \ {r(G)} such that either
(1) p(M(g)) �= M(p(g)) or (2) p(g) is not a speciation
node and M(g) �= M(p(g)), introduce a new node h
and replace edge (p(g), g) with the pair of edges (p(g), h)
and (h, g) and define M(h) = p(M(g)). This process

1 Wu et al. include one other relation in the LCT, a partial ordering relation
O on V(G). This relation is used solely to define and count the number of
so-called coalescence events. In this paper, we show that the reconciliation
problem is intractable even when the cost of coalescence events is ignored.
Therefore, while coalescence events are induced by the LCT, there is no
need to explicitly identify these events here and we thus omit the partial
ordering relation O from the above definition.

Page 3 of 12Bork et al. Algorithms Mol Biol (2017) 12:6

is repeated until there exists no node g that satisfies the
conditions above. Wu et al. stipulate that the species map
M is defined first, then implicit speciation nodes are
added as required, and finally the locus map is defined
on the vertices of the gene tree, which now includes any
implied speciation nodes.

The set of gene nodes mapped to a given species node s is
denoted nodes(s) = {g |g ∈ V (G);M(g) = s}; bottoms(s)
= {g |g ∈ nodes(s); g ∈ L(G) ∨ ∀g ′ ∈ c(g), g ′ /∈ nodes(s)}
is the subset of nodes(s) whose children are mapped to
descendants of s; and tops(s) = bottoms(p(s)).2 For any
set A ⊂ V (G), let loci(A) = {ℓ|∃g ∈ A s.t. ℓ = L(g)}
denote the set of loci present on all genes in set A.

Next, Wu et al. define duplication and loss events. A
duplication event corresponds to the creation of a new
locus while a loss event corresponds to a locus that is
present at either the top of a species branch, or created
via a duplication within the species branch, but no longer
present at the bottom of the species branch. More pre-
cisely, these events are defined as follows:

Definition 2 (Duplication and Loss Events) Let G,
S, and Le denote a gene tree, species tree, and leaf map
Le : L(G) → L(S), respectively, and let (M, L, L) be a
LCT for (G, S, Le).

2 Wu et. al use the names leaves and roots where we use bottoms and tops,
respectively.

 • Duplication events: Let g ∈ V (G), g �= r(G). If
L(g) �= L(p(g)) then g induces a duplication event on
the edge e(g) = (p(g), g).

 • Loss events: Let s ∈ V (S), s �= r(S). A locus ℓ ∈ L
induces a loss event on edge e(s) = (p(s), s) if
ℓ ∈ loci(tops(s) ∪ nodes(s)) \ loci(bottoms(s)).

Figure 1 shows a (a) gene tree, (b) species tree, and (c)
a species map and locus map with a duplication event.
Figure 2 shows a subtree of a gene tree and a subtree of
a species tree with the species and locus maps inducing
multiple loss events.

Definition 3 (Reconciliation Cost) Given gene tree G,
species tree S, leaf map Le : L(G) → L(S), and non-neg-
ative real number costs Cd and Cℓ for duplication and loss
events, respectively, the cost of a LCT for (G, S, Le) with d
duplications events and ℓ loss events is dCd + ℓCℓ.

Definition 4 (DCL Optimization Problem (DCLOP))
Given gene tree G, species tree S, leaf map Le : L(G) →
L(S), and non-negative costs Cd and Cℓ for duplication and
loss events, find a LCT for (G, S, Le) of minimum cost.

Definition 5 (DCL Decision Problem (DCLDP)) Given
gene tree G, species tree S, leaf map Le : L(G) → L(S) ,
non-negative costs Cd and Cℓ for duplication and loss
events, and non-negative decision parameter k, does
there exist a LCT for (G, S, Le) of cost at most k?

a b c
Fig. 1 a A species tree and a b gene tree with the leaf map indicated by solid, dashed, and dotted lines. c A species and locus map for these two
trees where circular nodes correspond to gene nodes in the gene tree and the rectangular node g′ is an implied speciation node. In this species
map, M(g1) = M(g2) = M(g′) = s1, M(g3) = s2, M(g4) = M(g5) = s3, M(g6) = M(g7) = s4, and M(g8) = M(g9) = s5. The two loci are
indicated in solid red and dashed blue. There is a single duplication on edge (g′ , g5) indicated by a star. This edge separates paralogs g6 and g7 as well
as paralogs g8 and g9

Page 4 of 12Bork et al. Algorithms Mol Biol (2017) 12:6

Duplication placement
Duplication events are determined entirely by the locus
map L whereas loss events depend on both the species
map and the locus map. For convenience in our subse-
quent analyses, we give an alternate characterization of
the locus map and prove its equivalence with the original
definition.

Definition 6 (Duplication Placement) Given gene tree
G, species tree S, and leaf map Le : L(G) → L(S), a dupli-
cation placement is a subset D of the edges of G such
that for every pair of leaves g , g ′ ∈ L(G) where g �= g ′, if
Le(g) = Le(g ′) then D contains an edge that separates g
and g ′.

Theorem 1 Given gene tree G, species tree S, and leaf
map Le : L(G) → L(S), for every locus map L in a LCT
inducing d duplication events, there exists a duplica-
tion placement D such that |D| = d. Conversely, for every
duplication placement D such that |D| = d, there exists a
locus map L that induces exactly d duplications.

Proof Let L be a locus map for (G, S, Le) and define D
to be the set of all edges e(g) = (p(g), g), g ∈ V (G), such
that there is a duplication on edge e(g). By definition, |D|
is the number of duplication events induced by L. To
show that D is a duplication placement, consider any pair
of leaves g , g ′ ∈ L(G) where g �= g ′ and Le(g) = Le(g ′). By
Definition 1 (3), L(g) �= L(g ′). Let P denote the path from

lca(g , g ′) to g and let P′ denote the path from lca(g , g ′) to
g ′. There must exist some edge (p(u), u) in P ∪ P′ such
that L(u) �= L(p(u)) since otherwise every node in P
and P′ is mapped to the same locus, contradicting the
assumption that L(g) �= L(g ′). Therefore, there is neces-
sarily a duplication event on an edge in P ∪ P′; this edges
separates g and g ′ and thus D is a duplication placement.

Conversely, let D be a duplication placement and con-
sider the set S(D) = {G1, . . . ,G|D|+1} comprising the
|D| + 1 subgraphs of G induced by the removal of the
edges of D from G. Note that S(D) partitions the nodes
V(G). Let L = {1, . . . , |D| + 1} and let L map all nodes
in Gi to i ∈ L. It follows directly that this satisfies the
requirements of a locus map in Definition 1 (3), (4), (5). �

Henceforth, we use locus maps and duplication place-
ments interchangeably. When defining a duplication
placement D, we say that a duplication is placed on an
edge (u, v) to mean that edge (u, v) is included in the set
D. We say that a duplication is placed between two leaves
g and g ′ to mean that there is a duplication placed on
some edge that separates g and g ′.

3SAT
Our reductions will be from 3SAT [8]: Given m Boolean
variables x1, . . . , xm and n clauses C1, . . . ,Cn where each
clause is the disjunction of exactly three literals over the
given set of variables, we wish to determine whether
there exists a valuation of the variables such that all
clauses are satisfied. Without loss of generality, each lit-
eral occurs at most once per clause. In addition, the lit-
erals in the clauses are assumed to be ordered so that
we may uniquely refer to the hth literal of each clause,
1 ≤ h ≤ 3. Since the clauses are ordered, we may also
uniquely refer to the qth occurrence of a literal xi (or xi)
in the 3SAT instance. Finally, without loss of generality,
we assume that no clause contains both a literal and its
negation (since such clauses are trivially satisfied by every
valuation and can thus be removed).

NP‑hardness
We show that DLCDP is NP-hard, even when loss events
have cost zero, by a reduction from 3SAT. To provide
intuition, we begin with a small example of the reduction
and sketch the proof of correctness. Afterwards, we for-
malize the reduction and prove its correctness.
Figure 3 shows the construction for the 3SAT instance
comprising a single clause, (x1 ∨ x2 ∨ x3). We construct a
gene tree with a single clause gadget on the left and one
variable gadget for each of x1, x2, and x3 on the right. The
variable gadget for variable xi is a subtree rooted at node
xi. That node has a true branch and a false branch,

Fig. 2 A part of a gene tree mapped onto a species tree. Circular
nodes correspond to gene nodes in the gene tree and rectangular
nodes g′ and g′′ correspond to implied speciation nodes. The two loci
are indicated in solid red and dashed blue. There is a loss on the edges
(g1, g2) and (g′ , g3) because the red locus is present at the tops of
each of those edges but not at the bottoms of those edges. There is
also a loss on edge (g′′ , g5) because the blue locus is present at the
top of that edge but not the bottom

Page 5 of 12Bork et al. Algorithms Mol Biol (2017) 12:6

corresponding to setting that variable true or false,
respectively. The nodes at the end of the true and false
branches each have two children, resulting in four leaves
for each variable gadget. (In general, variable gadgets can
be larger than this, with size dependent on the number
of clauses in which xi appears). One leaf on the true side
and one leaf on the false side of the variable gadget get
mapped to the same species tree leaf, as represented by
the dashed rectangles at the bottom right of Fig. 3 and
labeled 1, 2, and 3 for x1, x2, and x3, respectively. Since
each of these pairs of leaves are paralogs mapped to the
same species leaf, there must be a duplication placed
between them. As we shall see, our construction will
force there to be a duplication on exactly one of the true
or false branches incident on each xi, corresponding to
setting each variable to true or false, respectively.

Next, the gadget for clause 1 has five internal nodes
(this is true in general, not just in this small example).
The three important internal nodes are �1,1, �2,1, �3,1
corresponding to the first, second, and third literals in
clause 1. Each of these internal nodes has one leaf child
that is mapped to a shared species leaf, as indicated in
the dashed rectangle at the bottom left labeled A. Since
the first literal in clause 1 is x1, clause node �1,1 and the
true node in the variable gadget for x1 each have a leaf
child that is mapped to the same species node labeled B
in the figure. Similarly, since the second literal of clause 1
is x2, clause node �2,1 and the false node in the variable
gadget for x2 each have a leaf child that is mapped to the
same species node labeled C in the figure. Finally, �3,1 and
the true node in the x3 gadget have leaves on a shared

species node D. All remaining leaves in the variable gadg-
ets are mapped to their own individual unshared species
leaves, placing no constraints on their locus mappings.

We set the cost of duplication events, Cd, to 1 and the
cost of loss events, Cℓ, to 0. We set the decision parame-
ter in this example to 5 which will force two duplications
to be used in the clause gadget and one to be used in each
of the three variable gadgets in a way that corresponds to
choosing a valuation for the three variables (in general,
the decision parameter for the number of duplications
will be equal to the number of variables plus twice the
number of clauses).

As noted earlier, the variable gadget leaves mapped
to species 1, 2, and 3 require that there be at least one
duplication placed within each variable gadget. Similarly,
the three clause gadget leaves mapped to species A are
paralogs and imply that there must be two duplications
placed in the clause gadget rooted at δ1. Thus, in order to
use no more than the five given duplications, there must
be exactly one duplication placed in each variable gadget
and exactly two duplications placed in the clause gadget.
Moreover, without loss of generality, we can assume that
duplications do not occur on edges terminating at leaves,
since such duplications can be pushed up one level in the
tree without violating any of the species map constraints.

We now sketch how the proof of correctness will
proceed. First, assume that there is a satisfying assign-
ment for the 3SAT instance (for example, x1 = true,
x2 = true, x3 = false). We place duplications on the
corresponding edges in the variable gadgets. This satis-
fies the requirement that there exists a duplication placed

(x1 ∨ x2 ∨ x3)

x1 x2 x3
T T TF F F

λ1,1 λ2,1 λ3,1

δ1

δ1

Fig. 3 A small example of the reduction for a single clause (x1 ∨ x2 ∨ x3)

Page 6 of 12Bork et al. Algorithms Mol Biol (2017) 12:6

between each pair of leaves associated with species 1,
2, and 3. Since, in our valuation, x1 = true satisfies the
clause, we choose not to place a duplication on the edge
terminating at �1,1 in the clause gadget, instead placing
duplications on the two edges terminating at �2,1 and �3,1.
This satisfies the requirement that a duplication is placed
between each pair of the three clause leaves associated
with species A. Moreover, the two leaves associated with
species B have a duplication between them due to the
duplication on x1’s true edge and the leaves associated
with groups C and D have duplications between them
due to the duplications placed on the edges terminating
at �2,1 and �3,1.

To prove the converse direction, we assume a solution
to the constructed DLCDP instance; as noted above, this
implies that there exists one duplication placed in each
variable gadget and two in the clause gadget. At least one
duplication must be placed in the subtree rooted at δ′

1
,

as it is the lca of two leaves in group A. Therefore, only
one of the three remaining internal edges in the subtree
rooted at δ1 can contain a duplication. Thus, at least one
of the pairs of leaves mapped to species B, C, or D can-
not be separated by a duplication placed inside the clause
gadget and thus must be separated by a duplication
placed inside a variable gadget. Consider, for example,
the case that the pair of leaves in group B is separated by
an edge in a variable gadget. By construction, that dupli-
cation must then occur on the true side of the x1 gadget,
which corresponds to setting x1 to be true in the valua-
tion which, in turn, satisfies this 3SAT instance.

Formal reduction
Given a 3SAT instance with m variables x1, x2, . . . , xm
and n clauses C1,C2, . . . ,Cn, we construct an instance
of DLCDP comprising m variable gadgets and n clause
gadgets.

Variable gadgets
A variable gadget for variable xi, shown in Fig. 4, is a
binary tree with root node αi which, in turn, has two chil-
dren βi and β i which are roots of two subtrees. Node βi
has two children: a leaf yi and an internal node βi,1. Each
node βi,k has two children: a leaf yi,k and an internal node
βi,k+1, 1 ≤ k < n− 1. Node βi,n−1 has two children: leaves
yi,n−1 and yi,n. Similarly, node β i has a child labeled yi
and another child β i,1. Each node β i,k has a child yi,k and
a child β i,k+1, 1 ≤ k < n− 1. Node β i,n−1 has children
yi,n−1 and yi,n.

Clause gadgets
A clause gadget for clause Cj, shown in Fig. 5, is a binary
tree rooted at node δj which in turn has children δ′j
and �3,j. Node δ′j has children �1,j and �2,j. Finally, each
node �h,j has two leaf children, kh,j and k ′h,j, 1 ≤ h ≤ 3.

Gene tree
The gene tree is constructed by assembling m variable
gadgets and n clause gadgets into a single binary tree.
Specifically, the gene tree is constructed from an arbi-
trary binary tree with m+ n leaves. The first m leaves
become the roots of m variable gadgets corresponding to

Fig. 4 A variable gadget corresponding to variable xi

Page 7 of 12Bork et al. Algorithms Mol Biol (2017) 12:6

variables x1, . . . , xm while the remaining n leaves become
the roots of n clause gadgets corresponding to clauses
C1, . . . ,Cn.

Species tree
The species tree is an arbitrary binary tree with
2mn+m+ n leaves labeled 1, . . . , 2mn+m+ n.

Leaf map
We define Le : L(G) → L(S) as follows:

1. Le(yi) = Le(yi) = i, 1 ≤ i ≤ m.
2. Le(k1,j) = Le(k2,j) = Le(k3,j) = m+ j, 1 ≤ j ≤ n,
3. For each xi appearing as the h-th literal in clause Cj,

Le(k ′h,j) = Le(yi,j) = m+ n+ 3(j − 1)+ h,
4. For each xi appearing as the h-th literal in clause Cj,

Le(k ′h,j) = Le(yi,j) = m+ n+ 3(j − 1)+ h,
5. Every leaf g ∈ L(G) whose mapping is not specified

above is mapped to a unique species leaf s ∈ L(S)
such no other gene leaf is mapped to s.

Note that steps 1 through 4 of this leaf map define the map-
ping of gene tree leaves onto species leaves 1, . . . ,m+ 4n.
By construction, after these first four steps in the leaf
map, there remain 2mn− 3n gene tree leaves that are not
yet mapped and (2mn+m+ n)− (m+ 4n) = 2mn− 3n
species tree leaves that are not yet mapped onto. Thus, in
step 5 of the leaf map, every gene tree leaf whose mapping
was not established in parts 1 through 4 can be mapped to
a unique species tree leaf.

Event costs and decision parameter
We set the cost of a duplication event to be 1 and all
other event costs to be 0. The decision parameter is
2n+m, meaning in this case that we seek a reconciliation

with at most 2n+m duplications. It is easily seen that
this reduction can be performed in time polynomial in
the size of the given 3SAT instance.

Proof of correctness
3SAT → DLCDP
We first show that the existence of a satisfying valuation
to a given 3SAT instance implies that the corresponding
DLCDP instance is true. We prove this by constructing
a duplication placement D of size 2n+m as follows: For
each literal xi, place a duplication on edge e(βi) = (αi,βi)
if xi is true in the valuation and place a duplication on
edge e(β i) = (αi,β i) if xi is false. This ensures that all
pairs of leaves yi and yi, 1 ≤ i ≤ m, are separated by an
edge in D as required by part 1 of the leaf map above.

Next, consider an arbitrary clause Cj and one of the liter-
als xi whose true valuation satisfies Cj (the case that the
literal is xi is analogous). Without loss of generality, assume
that xi is the first literal in clause Cj (the case that the lit-
eral is the second or third literal in the clause is analogous).
The placement of a duplication on edge e(βi) ensures that
leaves k ′

1,j and yi,j are separated by an edge in D as required
by part 3 (analogously, part 4) of the leaf map. Next, we
place duplications on the edges e(�2,j) and e(�3,j) in the
clause gadget for Cj. This separates all leaves in part 2 of
the leaf map and separates the remaining leaves in parts 3
and 4. Part 5 of the leaf map has no leaves requiring sepa-
ration by D.

Since all of the duplication requirements implied by the
leaf map are satisfied by this duplication placement and it
uses exactly k = 2n+m duplications, this is a solution to
the constructed DLCDP instance.

DLCDP → 3SAT
Given a solution to the DLCDP instance, we construct a
satisfying valuation for the corresponding 3SAT instance.
Because part 1 of the leaf map associates each pair yi
and yi, 1 ≤ i ≤ m, with the same species node, each such
pair must be separated by an edge in D. By construction,
each such pair must be separated by a distinct edge in the
variable gadget for xi which is either an edge on the path
from αi to yi or on the path from αi to yi. Separating all
such pairs therefore requires m edges in D.

For each clause Cj, 1 ≤ j ≤ n, the leaves k1,j , k2,j, and
k3,j are mapped to the same species leaf by part 2 of the
leaf map. Therefore, each pair of those leaves must be
separated by an edge in D and, by the construction of
the clause gadget, this requires two edges in each clause
gadget and thus a total of 2n additional edges in D.

Thus, all k = 2n+m are required to satisfy parts 1 and
2 of the leaf map, with exactly m edges selected from the
variable gadgets and exactly 2n edges from the clause
gadgets.

Fig. 5 A clause gadget corresponding to clause Cj

Page 8 of 12Bork et al. Algorithms Mol Biol (2017) 12:6

We construct a valuation of the boolean variables in the
3SAT instance as follows: for 1 ≤ i ≤ m, set xi to true if
there is a duplication placed on some edge on the path
from αi to yi, and set xi to false if there is a duplication
along the path from αi to yi.

Consider an arbitrary clause Cj and its corresponding
gadget in the gene tree. Part 2 of the leaf map requires
that there be an edge in D separating each pair of of k1,j ,
k2,j, and k3,j, but, as noted above, only two edges of D are
placed within that clause gadget. Since δ′j is the lca of k1,j
and k2,j, at least one duplication must be placed in the
subtree rooted at δ′j. Therefore, at least one of the three
paths from δj to k ′

1,j, k
′
2,j, and k ′

3,j does not contain an edge
in D. Without loss of generality, assume that the path
from δj to k ′

1,j does not contain an edge in D and let xi
be the first literal in clause Cj (the argument is analogous
if xi is the second or third literal of the clause). Then, by
part 3 (analogously, part 4) of the leaf map, k ′

1,j and yi,j
must be separated by an edge in D. Since this edge occurs
in the variable gadget for xi, by the observations above it
must occur on the path from αi to yi, resulting in setting
xi = true and thereby satisfying clause Cj.

Thus, all clauses are satisfied and the 3SAT instance is
satisfiable. �

APX‑hardness of the DLC parsimony problem
When only the duplication cost is considered, the DLC
optimization problem, DLCOP, can be approximated
arbitrarily well using the polynomial-time approxima-
tion scheme (PTAS) for Multicut in binary trees [4] since
duplications correspond exactly to removed edges in the
Multicut problem. However, we now show that DLCOP
has no PTAS in general, unless P = NP. Specifically, we
show that DLCOP is APX-hard when duplications and
losses are considered. We establish this result by a pol-
ynomial-time reduction from max3sat(b) which com-
prises a Boolean formula in 3-CNF form in which each
variable appears at most B times in the clauses. Arora [9]
showed that, for some ǫ, 0 < ǫ < 1, there exists a con-
stant value of B (B = 13) and a polynomial-time reduc-
tion from any NP-complete problem � to max3sat(b)
that maps yes instances of � to satisfiable instances
of max3sat(b) and no instances of � to instances of
max3sat(b) in which less than 1− ǫ of the total number
of clauses are satisfiable.

Our reduction maps an instance of max3sat(b) with n
clauses (for sufficiently large values of n) to an instance of
DLCOP and a parameter b such that the optimal solution
to the DLCOP instance is less than b if the max3sat(b)
instance is satisfiable and more than (1+ α)b if at most
(1− ǫ)n clauses can be satisfied, for some constant α > 0.
If a polynomial-time (1+ α)-approximation algorithm
exists for DLCOP, we can apply our gap-preserving

reduction to generate a DLCOP instance from the
max3sat(b) instance and then run the putative approxi-
mation algorithm to distinguish between satisfiable and
(1− ǫ)-satisfiable instances of max3sat(b). Thus, the
existence of a (1+ α)-approximation algorithm for DLC
implies that P = NP, and the approximation-hardness of
DLCOP follows.

Reduction
Given an instance of max3sat(b) comprising m variables
and n clauses, we construct an instance of DLCOP com-
prising a gene tree, a species tree, a leaf map, and event
costs. The reduction is based on the NP-hardness reduc-
tion in the previous section but introduces more complex
gadgetry and uses nonzero cost for loss events.

Thorn gadget
An ℓ-thorn gadget, depicted in Fig. 6, is a binary tree with
ℓ leaves constructed as follows: let the root node be u1.
Each node ui has two children: internal node ui+1 and leaf
ti, 1 ≤ i ≤ ℓ− 2. Node uℓ−1 has two leaf children tℓ−1 and
tℓ. Leaf tℓ is denoted the end tip of the thorn gadget.

Variable gadgets
Let B(i) and B(i) denote the number of occurrences of
literals xi and xi, respectively. The variable gadget for
variable xi, illustrated in Fig. 7, consists of a root node,
αi, and two subtrees, one for each of the two literals of
this variable. The left subtree has root βi, with two chil-
dren: Internal node β ′

i and leaf yi. In turn, β ′
i has two

children: Internal node βi,1 and leaf y′i. Each node βi,q ,
1 ≤ q ≤ B(i)− 2, has a child βi,q+1 and a second child
which is the root of a (n2 − 1)-thorn gadget with end
tip yi,q. Node βi,B(i)−1 has two children, each of which is
the root of a (n2 − 1)-thorn gadget. The end tips of these
thorn gadgets are labeled yi,B(i)−1 and yi,B(i). This con-
struction introduces a distinct (n2 − 1)-thorn gadget for
each occurrence of xi in the 3SAT instance. We refer to
the thorn gadget terminating at end tip yi,q as the thorn
gadget for the qth occurrence of xi. The right subtree of αi ,

u1 u2
u −2 u −1

t1 t2
t −2 t −1 t

Fig. 6 An ℓ‑thorn gadget

Page 9 of 12Bork et al. Algorithms Mol Biol (2017) 12:6

representing literal xi, is symmetric to the left subtree,
but with βi and β ′

i replaced with β i and β ′
i, respectively,

each βi,j replaced by β ′
i,j, and each yi,j replaced by yi,j. This

construction introduces a distinct (n2 − 1)-thorn gadget
for each clause containing xi. We refer to the thorn
gadget terminating at end tip yi,q as the thorn gadget for
the qth occurrence of xi.

Clause gadgets
A clause gadget corresponding to clause Cj, shown in Fig. 8,
consists of root node δj with children δ′j and �3,j . Node δ′j
has two children �1,j and �2,j. Each node �h,j, 1 ≤ h ≤ 3, is
the root of a tree with two children, a leaf kh,j and a node
�
′
h,j, which in turn has two leaf children k ′h,j and k ′′h,j.

Gene tree
The gene tree G is constructed as follows: the root of the
gene tree is a node g0 with children g1 and g2. Node g1 is the
root of a (3n−m+ 1)-thorn gadget. Node g2 is the root of
an arbitrary binary subtree with n+m leaves. Each of the
first n of those leaves becomes the root of a clause gadget
for clauses C1, . . . ,Cn and the remaining m leaves become
the roots of m variable gadgets for variables x1, . . . , xm.

Species tree
The species tree, shown in Fig. 9, is rooted at node ρ0
and is constructed from a path ρ0, . . . , ρ2m followed by
σ1, σ

′
1
, . . . , σn, σ

′
n, and finally τ1,1, τ2,1, τ3,1, . . . , τ1,n, τ2,n, τ3,n .

This path is henceforth referred to as the trunk of the tree.
Each node ρi has a leaf child ri, 1 ≤ i ≤ 2m, and each node
σj and σ ′

j has a leaf child sj and s′j, respectively, 1 ≤ j ≤ n.
Finally, each node τh,j, which corresponds the hth literal
in clause Cj, has a child that is the root of a n2-thorn with
end tip th,j (henceforth referred to as the n2-thorn for τh,j),
1 ≤ h ≤ 3 , 1 ≤ j ≤ n. Node τ3,n has an additional leaf child
so that the tree is binary.

Leaf map and event costs
The leaf map Le is defined as follows:

1. Le(yi) = Le(yi) = r2i−1 and Le(y′i) = Le(y′i) = r2i,
1 ≤ i ≤ m;

2. Le(k1,j) = Le(k2,j) = Le(k3,j) = sj and
Le(k ′

1,j) = Le(k ′
2,j) = Le(k ′

3,j) = s′j, 1 ≤ j ≤ n;
3. Each leaf in the (3n−m+ 1)-thorn gadget rooted at

node g1 is mapped to r0;
4. If the hth literal of Cj is xi and this is the qth occur-

rence of xi in the 3SAT instance, then each leaf of the
(n2 − 1)-thorn gadget for the qth occurrence of xi is
mapped to the leaf with the same index in the n2-
thorn gadget for τh,j and k ′′h,j is mapped to the end tip,
th,j, of that n2-thorn gadget.

5. If the hth literal of Cj is xi and this is the qth occur-
rence of xi in the 3SAT instance, then each leaf of the
(n2 − 1)-thorn gadget for the qth occurrence of xi is
mapped to the leaf with the same index in the n2-
thorn gadget for τh,j and k ′′h,j is mapped to the end tip,
th,j, of that n2-thorn gadget.

Let the event costs be as follows: D = 2Bn2, L = 1,C = 0.
Finally, note that this reduction can be performed in pol-
ynomial time.

Proof of correctness
To prove the correctness of our reduction, we show that:

 • If the max3sat(b) instance is satisfiable, the optimal
cost of the constructed DLC instance is less than

 • For sufficiently large n, if at most (1− ǫ)n clauses of
the max3sat(b) instance can be satisfied, the opti-
mal cost is more than (1+ α)b, where

b = (10B+ 2)n3 + 121n2

αi

βiβiβi,1 βi,1
βi βi

yi
yi

yi,1
yi

yi,1
yi,B(i)

βi,B(i)−1| βi,B(i)−1|

yi,B(i)

yi

Fig. 7 A gene tree variable gadget corresponding to variable xi

Page 10 of 12Bork et al. Algorithms Mol Biol (2017) 12:6

Satisfiable MAX3SAT(B) instances
We first consider a satisfiable instance of max3sat(b).
We show how a satisfying valuation can be used to con-
struct a solution to the DLC instance whose cost is less
than b.

The species map M maps all internal nodes of G to
ρ0 except for g1 and its descendant (3n−m+ 1)-thorn
gadget which are mapped to r0; each leaf g ∈ L(G) is
mapped to Le(g).

α =
ǫ

20B+ 4

For each variable xi, we place one duplication in the cor-
responding variable gadget, on the edge e(β i) if xi is
assigned true and on the edge e(βi) if xi is assigned
false.3 This ensures that yi and yi are separated and that
y′i and y′i are separated, as required by part 1 of the leaf
map. For each clause Cj, identify any one literal that satis-
fies that clause. If the first literal in Cj satisfies the clause,
place duplications on edges e(�2,j) and e(�3,j). Alterna-
tively, if the second literal in Cj satisfies the clause, place

3 Note that this is opposite of what was done in the preceeding NP-hard-
ness proof. This switch is necessary as becomes evident in the subsequent
proof of correctness.

Fig. 8 A gene tree clause gadget corresponding to clause Cj

ρ0 ρ1
ρ2m

r2m
r1r0

σ1 σ1 σn σn

s1 s1 sn sn

τ1,1 τ2,1 τ3,1 τ1,n τ2,n τ3,n

t1,1

t3,n
Fig. 9 The species tree

Page 11 of 12Bork et al. Algorithms Mol Biol (2017) 12:6

duplications on edges e(�1,j) and e(�3,j); alternatively, if the
third literal in Cj satisfies the clause, place duplications on
edges e(�1,j) and e(�2,j). This placement of two duplica-
tions per clause gadget satisfies the constraints implied by
part 2 of the leaf map, which requires that each pair of
k1,j , k2,j , k3,j be separated and that each pair of k ′

1,j , k
′
2,j , k

′
3,j

be separated. Thus far, m+ 2n duplications have been
placed. Finally, we place 3n−m duplications on the ter-
minal edges of the (3n−m+ 1)-thorn gadget, since all
3n−m+ 1 of its leaves are mapped to r0 by part 3 of the
leaf map and thus each pair of leaves must be separated.
Note that parts 4 and 5 of the leaf mapping do not map
multiple species leaves to the same trees leaves and thus
require no additional duplication placements. The total
number of duplications is thus m+ 2n+ (3n−m) = 5n.

Next, we count the number of losses. We do this by
first counting losses on the n2-thorns of the species tree
and then on the trunk of the species tree.

Each clause Cj has three n2-thorns in the species tree,
one branching from each of τ1,j, τ2,j, and τ3,j. Without
loss of generality, assume that clause Cj is satisfied by its
first literal and thus duplications were placed on e(�2,j)
and e(�3,j). Also, without loss of generality, assume that
the first literal in Cj is xi (the case for xi is analogous) and
that this is the qth occurrence of xi in the 3SAT instance.
The duplication on e(�2,j) implies that leaf k ′′

2,j is mapped
to a different locus than all of the leaves of the (n2 − 1)

-thorn for the qth occurrence of xi in the variable gadget
for xi. Since Le(k ′′

2,j) = t2,j by part 4 of the leaf map, there
is a loss event on each of the n2 edges terminating at the
leaves of the n2-thorn gadget for τ2,j. Similarly, the dupli-
cation on edge e(�3,j) incurs n2 losses in the n2-thorn
gadget for τ3,j for a total of 2n2 losses for clause Cj. Since
Cj is satisfied by xi, we know that xi = true and thus a
duplication was placed on edge e(β i) in the variable
gadget for xi. Therefore, there is no duplication placed
between k ′′

1,j and the leaves of the (n2 − 1)-thorn for the q
th occurrence of xi and thus there are no losses incurred
on the n2-thorn for τ1,j. Since there are n clauses and each
contributes 2n2 losses in the corresponding n2-thorns,
2n3 losses are incurred thus far.

We next consider the number of losses incurred on the
trunk of the species tree. Since M(g1) = r0, none of the
loci created by the 3n−m duplications in the 3n−m+ 1

-thorn required by part 3 of the leaf map induce loss
events. There are 1+ 2m+ 2n+ 3n nodes on the trunk
and at most m+ 2n loci can be lost on each of the two
edges emanating from each such node since there only
m+ 2n other duplications.

Observing that m ≤ 3n, the total number of losses can
thus be bounded from above by

2(m+ 2n)(1+ 2m+ 2n+ 3n) ≤ 2 · 5n · 12n < 121n2.

Therefore, the total cost of this solution is bounded by

At most (1‑ǫ)‑satisfiable MAX3SAT(B) instances
To complete the proof, we show that given an instance of
max3sat(b) in which the fraction of satisfiable clauses is
at most (1-ǫ), the optimal cost of the corresponding DLC
instance, for sufficiently large n, is greater than:

Part 1 of the leaf map requires at least one duplication
placement per variable gadget, part 2 of the leaf map
requires at least two duplications per clause gadget, and
part 3 of the leaf map requires 3n−m duplications to be
placed in the (3n−m+ 1)-thorn gadget. Therefore, all
valid duplication placements for this instance use at least
m+ 2n+ (3n−m) = 5n duplications. We call a solution
that uses exactly 5n duplications well-behaved.

A well-behaved solution must use exactly one duplica-
tion in each variable gadget. For each variable gadget for
variable xi, this duplication must be placed on either the
edge e(βi) or the edge e(β i) in order to separate both yi
and yi and y′i and y′i. We interpret a duplication on edge
e(βi) as setting variable xi to false and a duplication on
edge e(β i) as setting xi to true. Thus, a well-behaved
solution to the DLC Optimization Problem has a corre-
sponding valuation of the variables in the 3SAT instance.

We now show that all optimal solutions to the DLC
Optimization Problem are necessarily well-behaved.
Consider a solution for our constructed DLC instance
that is not well-behaved and thus comprises more than
5n duplications. A duplication placed outside of a vari-
able, clause, or (3n−m+ 1)-thorn gadget cannot satisfy
any of the duplication requirements imposed by the leaf
map and thus can be removed, reducing the number of
duplications and not increasing the number of losses.

If a variable gadget for xi contains more than one dupli-
cation, we may replace all duplications in that variable
gadget with a single duplication on edge e(βi) = (αi,βi) ,
which satisfies the duplication requirements of the leaf
map and reduces the number of duplications by at least
one. Introducing a new duplication may increase the
number of losses. However, since each variable xi appears

5n · 2Bn2 + (2n3 + 121n2) · 1 = (10B+ 2)n3 + 121n2 = b.

(1+ α)b =

(

1+
ǫ

20B+ 4

)

(

(10B+ 2)n3 + 121n2
)

= (10B+ 2)n3 +
ǫ

20B+ 4
(10B+ 2)n3

+

(

1+
ǫ

20B+ 4

)

121n2

= (10B+ 2)n3 +
ǫ

2
n3 +

(

1+
ǫ

20B+ 4

)

121n2

=

(

10B+ 2+
ǫ

2

)

n3 +

(

1+
ǫ

20B+ 4

)

121n2.

Page 12 of 12Bork et al. Algorithms Mol Biol (2017) 12:6

in at most B clauses in the max3sat(b) instance, the
number of new losses introduced can be at most Bn2 due
to the B n2-thorn gadgets where losses are introduced
and the O(n) internal vertices in the trunk of the species
tree, which is dominated by Bn2 for sufficiently large n.
Thus, the total number of new losses incurred is less than
2Bn2 for sufficiently large n and thus less than the cost of
the saved duplication.

Similarly, if a clause gadget for Cj contains more than
two duplications, we can replace it with two duplications
on the edges e(�1,j) and e(�2,j). The saving of one duplica-
tion is larger than the cost of the additional losses.

We have established that an optimal solution to the
constructed DLC instance is necessarily well-behaved.
Next, observe that any species map must map �′h,j,
1 ≤ h ≤ 3, 1 ≤ j ≤ n, to a node v on the trunk of the spe-
cies tree such that v ≤T τh,j since �′h,j has children k ′h,j and
k ′′h,j and Le(k ′h,j) = s′j while Le(k ′′h,j) = th,j.

Consider an optimal solution for the DLC instance.
Since this solution is well-behaved, it induces a valuation
of the Boolean variables as described above. As noted
earlier, if clause Cj is satisfied by this valuation then a total
of 2n2 losses are incurred in two of the three n2-thorns
τ1,j, τ2,j, and τ3,j. Conversely, if clause Cj is not satisfied by
this valuation then a total of 3n2 losses are incurred in all
three of those n2-thorns. To see this, let the hth literal,
1 ≤ h ≤ 3, of Cj be xi (analogously, xi) and let this be the
qth occurrence of this literal in the 3SAT instance. Since
Cj is not satisfied xi = false [analogously, xi = false
and, therefore, there is a duplication placed on edge e(βi)
(analogously, e(β i)]. It follows that the loci of the leaves of
the (n2 − 1)-thorn for the qth occurrence of xi are differ-
ent from the locus of k ′′h,j, causing n2 losses in the n2-thorn
for τh,j since, as noted above, the path from M(�′h,j) to
M(k ′′h,j) = th,j passes through every internal node of this
thorn gadget. Thus, if Cj is unsatisfied, its three n2-thorns
in the species tree contribute 3n2 losses.

We have shown that every satisfied clause contributes
2n2 losses and every unsatisfied clause contributes 3n2
losses. Therefore, if there are fewer than 2n3 + ǫn3 losses
then there must be fewer than ǫn unsatisfied clauses. Since
there are more than ǫn unsatisfied clauses by assumption,
for sufficiently large n, the cost of a well-behaved solution,
and thus of an optimal solution, is at least:

 �

5n(2Bn2)+ 2n3 + ǫn3 = (10B+ 2+ ǫ)n3

>

(

10B+ 2+
ǫ

2

)

n3

+

(

1+
ǫ

20B+ 4

)

121n2

= (1+ α)b

Conclusion
We have shown that the DLC parsimony problem is NP-
hard even when only duplications are considered and APX-
hard when duplications and losses are considered. These
results may help guide the direction of future research on
algorithms and heuristics for the DLC parsimony problem.
In particular, although the existence of a polynomial-time
approximation scheme for the DLC parsimony problem
would imply that P = NP, approximation algorithms may
exist and would be of significant potential value.

Authors’ contributions
All authors contributed to the development of the results and writing of this
paper. All authors read and approved the final manuscript.

Author details
1 Department of Computer Science, Harvey Mudd College, Claremont, USA.
2 School of Medicine, University of Pittsburgh, Pittsburgh, USA. 3 School
of Computer Science, Carnegie Mellon University, Pittsburgh, USA.

Acknowlegements
The authors wish to thank Yi‑Chieh Wu and Mukul Bansal for valuable advice
and feedback.

Competing interests
The authors declare that they have no competing interests.

Funding
This work was funded by the U.S. National Science Foundation under Grant
Number IIS‑1419739. Any opinions, findings, and conclusions or recom‑
mendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

Received: 22 August 2016 Accepted: 5 February 2017

References
 1. Kingman JFC. The coalescent. Stoch Process Appl. 1982;13(3):235–48.
 2. Rasmussen M, Kellis M. Unified modeling of gene duplication, loss, and

coalescence using a locus tree. Genome Res. 2011;22:755–65.
 3. Wu Y‑C, Rasmussen MD, Bansal MS, Kellis M. Most parsimonious reconcili‑

ation in the presence of gene duplication, loss, and deep coalescence
using labeled coalescent trees. Genome Res. 2014;24(3):475–86.

 4. C‑ălinescu G, Fernandes CG, Reed B. Multicuts in unweighted graphs and
digraphs with bounded degree and bounded tree‑width. J Algorithm.
2003;48(2):333–59.

 5. Bansal MS, Alm EJ, Kellis M. Efficient algorithms for the reconciliation
problem with gene duplication, horizontal transfer and loss. Bioinformat‑
ics. 2012;28(12):283–91.

 6. Ovadia Y, Fielder D, Conow C, Libeskind‑Hadas R. The cophylogeny recon‑
struction problem is NP‑complete. J Comput Biol. 2011;18(1):59–65.

 7. Tofigh A, Hallett MT, Lagergren J. Simultaneous identification of duplica‑
tions and lateral gene transfers. IEEE/ACM Trans Comput Biol Bioinform.
2011;8(2):517–35.

 8. Garey MR, Johnson DS. Computers and intractability: a guide to the
theory of NP‑completeness. New York: W. H. Freeman & Co.; 1979.

 9. Arora S. Probabilistic checking of proofs and hardness of approximation
problems. Ph.D. Thesis, Princeton: Princeton University, Department of
Computer Science; 1994

	On the computational complexity of the maximum parsimony reconciliation problem in the duplication-loss-coalescence model
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Problem statement and preliminaries
	Graph definitions
	Reconciliations
	Duplication placement
	3SAT

	NP-hardness
	Formal reduction
	Variable gadgets
	Clause gadgets
	Gene tree
	Species tree
	Leaf map
	Event costs and decision parameter

	Proof of correctness
	3SAT DLCDP
	DLCDP 3SAT

	APX-hardness of the DLC parsimony problem
	Reduction
	Thorn gadget
	Variable gadgets
	Clause gadgets
	Gene tree
	Species tree
	Leaf map and event costs

	Proof of correctness
	Satisfiable MAX3SAT(B) instances
	At most (1-)-satisfiable MAX3SAT(B) instances

	Conclusion
	Authors’ contributions
	References

