
Almirantis et al. Algorithms Mol Biol (2017) 12:5
DOI 10.1186/s13015-017-0094-z

RESEARCH

On avoided words, absent words,
and their application to biological sequence
analysis
Yannis Almirantis1, Panagiotis Charalampopoulos2, Jia Gao2, Costas S. Iliopoulos2, Manal Mohamed2,
Solon P. Pissis2* and Dimitris Polychronopoulos3

Abstract

Background: The deviation of the observed frequency of a word w from its expected frequency in a given sequence
x is used to determine whether or not the word is avoided. This concept is particularly useful in DNA linguistic analysis.
The value of the deviation of w, denoted by dev(w), effectively characterises the extent of a word by its edge contrast
in the context in which it occurs. A word w of length k > 2 is a ρ-avoided word in x if dev(w) ≤ ρ, for a given thresh-
old ρ < 0. Notice that such a word may be completely absent from x. Hence, computing all such words naïvely can be
a very time-consuming procedure, in particular for large k.

Results: In this article, we propose an O(n)-time and O(n)-space algorithm to compute all ρ-avoided words of
length k in a given sequence of length n over a fixed-sized alphabet. We also present a time-optimal O(σn)-time
algorithm to compute all ρ-avoided words (of any length) in a sequence of length n over an integer alphabet of size σ .
In addition, we provide a tight asymptotic upper bound for the number of ρ-avoided words over an integer alphabet
and the expected length of the longest one. We make available an implementation of our algorithm. Experimental
results, using both real and synthetic data, show the efficiency and applicability of our implementation in biological
sequence analysis.

Conclusions: The systematic search for avoided words is particularly useful for biological sequence analysis. We pre-
sent a linear-time and linear-space algorithm for the computation of avoided words of length k in a given sequence
x. We suggest a modification to this algorithm so that it computes all avoided words of x, irrespective of their length,
within the same time complexity. We also present combinatorial results with regards to avoided words and absent
words.

Keywords: Avoided words, Underrepresented words, Absent words, Suffix tree, Conserved non-coding elements,
Ultraconserved elements

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Introduction
The one-to-one mapping of a DNA molecule to a
sequence of letters suggests that DNA analysis can be
modelled within the framework of formal language the-
ory [1]. For example, a region within a DNA sequence
can be considered as a “word” on a fixed-sized alphabet

in which some of its natural aspects can be described by
means of certain types of automata or grammars. How-
ever, a linguistic analysis of the DNA needs to take into
account many distinctive physical and biological charac-
teristics of such sequences: The genome consists of cod-
ing regions that encode for polypeptide chains associated
with biological functions as well as a plethora of regula-
tory and potentially functional non-coding regions, iden-
tified through multiple alignment of genomes of several
organisms, and termed conserved non-coding elements
(CNEs). In addition, it contains large non-coding regions

Open Access

Algorithms for
Molecular Biology

*Correspondence: solon.pissis@kcl.ac.uk
2 Department of Informatics, King’s College London, The Strand,
London WC2R 2LS, UK
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-017-0094-z&domain=pdf

Page 2 of 12Almirantis et al. Algorithms Mol Biol (2017) 12:5

most of which are not linked to any particular function.
All these genomic components appear to have many sta-
tistical features in common with natural languages [2].

A computational tool oriented towards the system-
atic search for avoided words is particularly useful for in
silico genomic research analyses. The search for absent
words is already undertaken in the recent past and sev-
eral results exist on the application and computation of
such words [3–6]. However, words which may be present
in a genome or in genomic sequences of a specific role
(e.g., protein coding segments, regulatory elements, con-
served non-coding elements etc.) but they are strongly
underrepresented—as we can estimate on the basis of the
frequency of occurrence of their longest proper factors—
may be of particular importance. They can be words of
nucleotides which are hardly tolerated because they neg-
atively influence the stability of the chromatin or, more
generally, the functional genomic conformation; they can
represent targets of restriction endonucleases which may
be found in bacterial and viral genomes; or, more gener-
ally, they may be short genomic regions whose presence
in wide parts of the genome are not tolerated for less
known reasons. The understanding of such avoidances is
becoming an interesting line of research (for recent stud-
ies, see [7, 8]).

On the other hand, short words of nucleotides may be
systematically avoided in large genomic regions or whole
genomes for entirely different reasons, i.e. just because
they play important signaling roles which confine
their appearance only in specific positions: consensus
sequences for the initiation of gene transcription and of
DNA replication are well-known such oligonucleotides.
Other such cases may be insulators, sequences anchoring
the chromatin on the nuclear envelope like lamina-asso-
ciated domains, short sequences like dinucleotide repeat
motifs with enhancer activity, and several other cases.
Again, we cannot exclude that this area of research could
lead to the identification of short sequences of regulatory
activities still unknown.

Brendel et al. in [9] initiated research into the linguis-
tics of nucleotide sequences that focuses on the concept
of words in continuous languages—languages devoid
of blanks—and introduced an operational definition of
words. The authors suggested a method to measure, for
each possible word w of length k, the deviation of its
observed frequency from the expected frequency in a
given sequence. The values of the deviation, denoted by
dev(w), were then used to identify words that are avoided
among all possible words of length k. The typical length
of avoided (or of overabundant) words of the nucleotide
language was found to range from 3 to 5 (tri- to pentam-
ers). The statistical significance of the avoided words
was shown to reflect their biological importance. This

work, however, was based on the very limited sequence
data available at the time: only DNA sequences from two
viral and one bacterial genomes were considered. Also
note that k might change when considering eukaryotic
genomes, the complex dynamics and function of which
might impose a more demanding analysis. The authors
in [10–12] have studied the concept of unusual words—
based on different definitions than the ones Brendel et al.
use for expectation and variance—focusing on the factors
of a string, whereas based on Brendel et al. definitions,
we consider here any word over the alphabet.

Our contributions
The computational problem can be described as follows.
Given a sequence x of length n, an integer k, and a real
number ρ < 0, compute the set of ρ-avoided words of
length k, i.e. all words w of length k for which dev(w) ≤ ρ .
We call this set the ρ-avoided words of length k in x.
Brendel et al. did not provide an efficient solution for this
computation [9]. Notice that such a word may be com-
pletely absent from x. Hence the set of ρ-avoided words
can be naïvely computed by considering all possible σ k
words, where σ is the size of the alphabet.

Here we present an O(n)-time and O(n)-space algo-
rithm for computing all ρ-avoided words of length k in
a sequence of length n over a fixed-sized alphabet. For
words over an integer alphabet of size σ, the algorithm
requires time O(σn), which is optimal for sufficiently
large σ. We also present a time-optimal O(σn)-time algo-
rithm to compute all ρ-avoided words (of any length) in
a sequence of length n over an integer alphabet of size σ.
We provide a tight asymptotic upper bound for the num-
ber of ρ-avoided words over an integer alphabet and the
expected length of the longest one. We also prove that
the same asymptotic upper bound is tight for the number
of ρ-avoided words of fixed length when the alphabet is
sufficiently large.

As shown subsequently, the set of absent ρ-avoided
words is a subset of the set of minimal absent words of a
word. Hence the tight asymptotic bounds for ρ-avoided
words are based on the proof we provide for the tight-
ness of the known asymptotic bound on minimal absent
words and the tightness of this bound for minimal absent
words of fixed length over sufficiently large alphabets.

We make available an open-source implementation of
our algorithm. Experimental results, using both real and
synthetic data, show its efficiency and applicability. Spe-
cifically, using our method we confirm that restriction
endonucleases which target self-complementary sites are
not found in eukaryotic sequences [8]. In addition, we
apply our algorithm in the case of CNEs, which are classes
of sequences whose functions in our genomes remain
largely enigmatic [13, 14]. We observe interesting patterns

Page 3 of 12Almirantis et al. Algorithms Mol Biol (2017) 12:5

of occurring avoided words within CNEs compared to
CNE-like sequences (surrogates) that are in accordance
with their distinct sequence characteristics which classify
them from other non-functional sequences [15, 16].

A preliminary version of this article has appeared
in [17].

Methods
Terminology and technical background
Definitions and notation
We begin with basic definitions and notation generally
following [18]. Let x = x[0]x[1] · · · x[n− 1] be a word of
length n = |x| over a finite ordered alphabet � of fixed
size σ, i.e. σ = |�| = O(1). We also consider the case of
an integer alphabet; in this case each letter is replaced by
its rank such that the resulting string consists of integers
in the range {1, . . . , n}. For two positions i and j on x, we
denote by x[i . . . j] = x[i] · · · x[j] the factor (sometimes
called subword) of x that starts at position i and ends at
position j (it is empty if j < i), and by ε the empty word,
word of length 0. We recall that a prefix of x is a factor
that starts at position 0 (x[0 . . . j]) and a suffix is a factor
that ends at position n− 1 (x[i . . . n− 1]), and that a fac-
tor of x is a proper factor if it is not x itself. A factor of x
that is neither a prefix nor a suffix of x is called an infix
of x. We say that x is a power of a word y if there exists a
positive integer k, k > 1, such that x is expressed as k con-
secutive concatenations of y; we denote that by x = yk .

Let w = w[0]w[1] · · ·w[m− 1] be a word, 0 < m ≤ n.
We say that there exists an occurrence of w in x, or, more
simply, that w occurs in x, when w is a factor of x. Every
occurrence of w can be characterised by a starting posi-
tion in x. Thus we say that w occurs at the starting posi-
tion i in x when w = x[i . . . i +m− 1]. Further let f(w)
denote the observed frequency, that is, the number of
occurrences of a non-empty word w in word x. Note that
overlapping occurrences are considered as distinct ones;
e.g. f (TT) = 2 in TTT. If f (w) = 0 for some word w, then
w is called absent, otherwise, w is called occurring.

By f (wp), f (ws), and f (wi) we denote the observed fre-
quency of the longest proper prefix wp, suffix ws, and infix
wi of w in x, respectively. We can now define the expected
frequency of word w, |w| > 2, in x as in Brendel et al. [9]:

The above definition can be explained intuitively as fol-
lows. Suppose we are given f (wp), f (ws), and f (wi).
Given an occurrence of wi in x, the probability of it being
preceded by w[0] is f (wp)

f (wi)
 as w[0] precedes exactly f (wp)

of the f (wi) occurrences of wi. Similarly, this occurrence
of wi is also an occurrence of ws with probability f (ws)

f (wi)
.

(1)

E(w) =
f (wp)× f (ws)

f (wi)
, if f (wi) > 0; else E(w) = 0.

Although these two events are not always independent,
the product f (wp)

f (wi)
×

f (ws)

f (wi)
 gives a good approximation

of the probability that an occurrence of wi at position j
implies an occurrence of w at position j − 1. It can be
seen then that by multiplying this product by the num-
ber of occurrences of wi we get the above formula for the
expected frequency of w.

Moreover, to measure the deviation of the observed
frequency of a word w from its expected frequency in x,
we define the deviation (χ2 test) of w as:

For more details on the biological justification of these
definitions see [9].

Using the above definitions and a given threshold, we
are in a position to classify a word w as either avoided or
common in x. In particular, for a given threshold ρ < 0, a
word w is called ρ-avoided if dev(w) ≤ ρ. In this article,
we consider the following computational problems.

Suffix trees
In our algorithms, suffix trees are used extensively as
computational tools. For a general introduction to suffix
trees, see [18].

The suffix tree T (x) of a non-empty word x of length
n is a compact trie representing all suffixes of x. The
nodes of the trie which become nodes of the suffix tree
are called explicit nodes, while the other nodes are called
implicit. Each edge of the suffix tree can be viewed as an
upward maximal path of implicit nodes starting with an
explicit node. Moreover, each node belongs to a unique
path of that kind. Then, each node of the trie can be rep-
resented in the suffix tree by the edge it belongs to and an
index within the corresponding path.

We use L(v) to denote the path-label of a node v,
i.e., the concatenation of the edge labels along the path
from the root to v. We say that v is path-labelled L(v).
Additionally, D(v) = |L(v)| is used to denote the word-
depth of node v. Node v is a terminal node, if and only
if, L(v) = x[i . . . n− 1], 0 ≤ i < n; here v is also labelled
with index i. It should be clear that each occurring
word w in x is uniquely represented by either an explicit
or an implicit node of T (x). The suffix-link of a node v
with path-label L(v) = αy is a pointer to the node path-
labelled y, where α ∈ � is a single letter and y is a word.
The suffix-link of v exists if v is a non-root internal node

(2)dev(w) =
f (w)− E(w)

max{
√
E(w), 1}

.

Page 4 of 12Almirantis et al. Algorithms Mol Biol (2017) 12:5

of T (x). We denote by Child(v,α) the explicit node that
is obtained from v by traversing the outgoing edge whose
label starts with α ∈ �.

In any standard implementation of the suffix tree,
we assume that each node of the suffix tree is able to
access its parent. Note that once T (x) is constructed, it
can be traversed in a depth-first manner to compute the
word-depth D(v) for each node v. Let u be the parent
of v. Then the word-depth D(v) is computed by adding
D(u) to the length of the label of edge (u, v). If v is the
root then D(v) = 0. Additionally, a depth-first traversal
of T (x) allows us to count, for each node v, the number
of terminal nodes in the subtree rooted at v, denoted by
C(v), as follows. When internal node v is visited, C(v)
is computed by adding up C(u) of all the nodes u, such
that u is a child of v, and then C(v) is incremented by
1 if v itself is a terminal node. If a node v is a leaf then
C(v) = 1.

Example 1 Consider the word x = AGCGCGACGTCTGTGT.
Fig. 1 represents the suffix tree T (x). Note that word
GCG is represented by the explicit internal node v;
whereas word TCT is represented by the implicit node
along the edge connecting the node labelled 15 and the
node labelled 9. Consider node v in T (x); we have that
L(v) = GCG, D(v) = 3, and C(v) = 2.

Tight bounds on minimal absent words

Definition 1 [4] An absent word w of x is minimal if
and only if all proper factors of w occur in x.

We first show that the known asymptotic upper bound
on the number of minimal absent words of a word is
tight.

Lemma 1 [19] The upper bound O(σn) on the number
of minimal absent words of a word of length n over an
alphabet of size σ is tight if 2 ≤ σ ≤ n.

Proof To prove that the bound is tight it suffices to
construct a word with these many minimal absent words
asymptotically.

Let � = {a1, a2}, i.e. σ = 2, and consider the word
x = a2a

n−2
1 a2 of length n. All words of the form a2ak1a2

for 0 ≤ k ≤ n− 3 are minimal absent words in x. Hence x
has at least n− 2 = �(n) minimal absent words.

Let � = {a1, a2, a3, . . . , aσ } with 3 ≤ σ ≤ n and con-
sider the word x = a2a

k
1a3a

k
1a4a

k
1 · · · aia

k
1ai+1 · · · aσa

k
1a

m
1 ,

where k = ⌊
n

σ−1⌋ − 1 and m = n− (σ − 1)(k + 1) .
Note that x is of length n. Further note that aia

j
1 is a

factor of x, for all 2 ≤ i ≤ σ and 0 ≤ j ≤ k. Similarly,
a
j
1al is a factor of x, for all 3 ≤ l ≤ σ and 0 ≤ j ≤ k .

Thus all proper factors of all the words in the set
S = {aia

j
1al | 0 ≤ j ≤ k , 2 ≤ i ≤ σ , 3 ≤ l ≤ σ } occur in x.

However, the only words in S that occur in x are the ones
of the form aiak1ai+1, for 2 ≤ i < σ. Hence x has at least
(σ − 1)(σ − 2)(k + 1)− (σ − 2) = (σ − 1)(σ − 2)⌊ n

σ−1
⌋

−(σ − 2) = �(σn) minimal absent words. �

In the following lemma we show that, for sufficiently
large alphabets, O(σn) is a tight asymptotic bound for the
number of minimal absent words of fixed length.

Fig. 1 The suffix tree T (x) for x = AGCGCGACGTCTGTGT. Double-lined nodes represent terminal nodes labelled with the associated indices. The
suffix-links for non-root internal nodes are dashed

Page 5 of 12Almirantis et al. Algorithms Mol Biol (2017) 12:5

Lemma 2 The upper bound O(σn) on the number of
minimal absent words of fixed length of a word of length n
over an alphabet of size σ is tight if

√
n+ 1 ≤ σ ≤ n.

Proof Let � = {a1, a2, a3, . . . , aσ } be an alphabet of
size σ. We will show that we can construct words of any
length n, with σ ≤ n ≤ σ(σ − 1), that have �(σn) mini-
mal absent words of length 3.

We first construct the strings (blocks) Bi = ai+1aiai+2ai
· · · ai+jai · · · aσai, for 1 ≤ i ≤ σ − 1 . Note that
|Bi| = 2(σ − i) and that a letter ai occurs in Bj if and only if
j ≤ i. We then consider the word x = B1B2 · · ·Bi · · ·Bσ−1
which has length |x| =

∑σ−1
i=1 2(σ − i) = σ(σ − 1).

Now consider any prefix y of x with |y| > 2(σ − 1) .
Then y = B1B2 · · ·Bj−1Bj , where Bj is a prefix of Bj for
some j > 1. For any i < j the words of length 3 with ai
as the mid-letter that occur in y are the ones in the
set Ui = {aℓaiaℓ | 1 ≤ ℓ ≤ i − 2} ∪ {akaiak+1 | i + 1 ≤ k
 ≤ σ − 1} ∪ {ai−2aiai−1} ∪ {aσaiai+2} , with the last sin-
gleton not included if i = j − 1 and Bj = ε . We thus have
|Ui| ≤ σ.

We notice that the strings of the form akai for
all k ∈ Pi = {1, 2, . . . , σ } \ {i − 1, i} occur in y
and similarly the strings of the form aiaℓ for all
ℓ ∈ Si = {1, 2, . . . , σ } \ {i, i + 1} occur in y. Hence, all
proper factors of all strings in Vi = {akaiaℓ | k ∈ Pi, ℓ ∈ Si}
occur in y and |Vi| = (σ − 2)2. Then all the words in
Mi = Vi \ Ui are minimal absent words of y of length
3 with mid-letter ai and they are at least (σ − 2)2 − σ.
Now, since |Bi| < 2σ for all i, we have that j > |y|

2σ . Hence ∑j−1
i=1 |Mi| ≥ ((σ − 2)2 − σ)×

|y|
2σ . Since the sets Mi are

pairwise disjoint it then follows that y has �(σ |y|) minimal
absent words of length 3.

Hence, given an alphabet of size σ we can construct
words of any length n, such that 2σ < n ≤ σ(σ − 1), that
have �(σn) minimal absent words of length 3.

Note that when σ ≤ n ≤ 2σ the example of
y = a1a2a3 · · · aσ (possibly padded with aσ’s) gives the
desired result as at most σ out of the σ 2 possible combi-
nations aiaj (of length 2) occur in y, while all proper fac-
tors of all such combinations occur in y. �

Useful properties of avoided words
In this section, we provide some useful insights of com-
binatorial nature which were not considered by Brendel
et al. [9]. By the definition of ρ-avoided words it follows
that a word w may be ρ-avoided even if it is absent from x.
In other words, dev(w) ≤ ρ may hold for either f (w) > 0
(occurring) or f (w) = 0 (absent).

Example 2 Consider again the word
x = AGCGCGACGTCTGTGT, k = 3, and ρ = −0.4.

 • Word w1 = CGT, at position 7 of x, is an occurring ρ
-avoided word:

 • Word w2 = AGT is an absent ρ-avoided word:

This means that a naïve computation should consider
all possible σ k words. Then for each possible word w, the
value of dev(w) can be computed via pattern matching on
the suffix tree of x. In particular, we can search for the
occurrences of w, wp, ws, and wi in x in time O(k) [18]. In
order to avoid this inefficient computation, we exploit the
following crucial lemmas.

Lemma 3 Any absent ρ-avoided word w in x is a mini-
mal absent word of x.

Proof For w to be a ρ-avoided word it must hold that

This implies that f (w)− E(w) < 0, which in
turn implies that E(w) > 0 since f (w) = 0. From
E(w) =

f (wp)×f (ws)

f (wi)
> 0, we conclude that f (wp) > 0 and

f (ws) > 0 must hold. Since f (w) = 0, f (wp) > 0, and
f (ws) > 0, w is a minimal absent word of x: all proper
factors of w occur in x. �

Lemma 4 Let w be a word occurring in x and T (x) be
the suffix tree of x. Then, if wp is a path-label of an implicit
node of T (x), dev(w) ≥ 0.

Proof For any w that occurs in x it holds
that f (wi) ≥ f (ws), which implies that
f (wp) ≥

f (wp)×f (ws)

f (wi)
= E(w). Furthermore, by the defini-

tion of the suffix tree, if w occurs in x and wp is a path-
label of an implicit node then f (wp) = f (w). It thus fol-
lows that f (w)− E(w) = f (wp)− E(w) ≥ 0, and since
max{1,

√
E(w)} > 0, the claim holds. �

Lemma 5 The number of ρ-avoided words of length
k > 2 in a word of length n over an alphabet of size σ
is O(σn); in particular, this number is no more than
(σ + 1)n− k + 1. The upper bound O(σn) is tight if
√
n+ 1 ≤ σ ≤ n.

Proof By Lemma 3, every ρ-avoided word is either
occurring or a minimal absent word. It is known that the
number of minimal absent words in a word of length n
is smaller than or equal to σn [20]. Clearly, the occur-
ring ρ-avoided words in a word of length n are at most

E(w1) = 3× 3/6 = 1.5, dev(w1) = (1− 1.5)/
√

1.5 = −0.408248.

E(w2) = 1× 3/6 = 0.5, dev(w2) = (0− 0.5)/1 = −0.5.

dev(w) =
f (w)− E(w)

max{
√
E(w), 1}

≤ ρ < 0.

Page 6 of 12Almirantis et al. Algorithms Mol Biol (2017) 12:5

n− k + 1. Therefore the number of ρ-avoided words
of length k are no more than (σ + 1)n− k + 1. This
implies that O(σn) is an asymptotic upper bound. In the
case of an alphabet of size

√
n+ 1 ≤ σ ≤ n, it follows

from Lemma 2 that there exist words with �(σn) mini-
mal absent words of a fixed length k > 2. Consider such
a word x, the respective k, and some ρ ≥ −

1
n. Let w be

any minimal absent word of x. We have that f (wp) ≥ 1 ,
f (ws) ≥ 1, and f (wi) ≤ n; and hence E(w) ≥ 1

n. Since
f (w) = 0, it follows that dev(w) ≤ −

1
n ≤ ρ. Thus, every

minimal absent word of x is ρ-avoided, and since there
are �(σn) of them of length k, we conclude that O(σn) is
a tight asymptotic bound in this case. �

Avoided words algorithm
In this section, we present Algorithm AvoidedWords
for computing all ρ-avoided words of length k in a given
word x. The algorithm builds the suffix tree T (x) for
word x, and then prepares T (x) to allow constant-time
observed frequency queries. This is mainly achieved
by counting the terminal nodes in the subtree rooted at
node v for every node v of T (x). Additionally during this
pre-processing, the algorithm computes the word-depth
of v for every node v of T (x). By Lemma 3, ρ-avoided
words are classified as either occurring or (minimal)
absent, therefore Algorithm AvoidedWords calls Rou-
tines AbsentAvoidedWords and OccurringAvoid-
edWords to compute both classes of ρ-avoided words
in x. The outline of Algorithm AvoidedWords is as
follows.

Computing absent avoided words
In Lemma 3, we showed that each absent ρ-avoided word
is a minimal absent word. Thus, Routine AbsentAvoid-
edWords starts by computing all minimal absent words
in x; this can be done in time and space O(n) for a fixed-
sized alphabet or in time O(σn) for integer alphabets [4,
5]. Let < (i, j),α > be a tuple representing a minimal
absent word in x, where for some minimal absent word w
of length |w| > 2, w = x[i . . . j]α, α ∈ �; this representa-
tion is clearly unique.

Intuitively, the idea is to check the length of every
minimal absent word. If a tuple < (i, j),α > represents a
minimal absent word w of length k = j − i + 2, then the
value of dev(w) is computed to determine whether w is
an absent ρ-avoided word. Note that, if w = x[i . . . j]α
is a minimal absent word, then wp = x[i . . . j],
wi = x[i + 1 . . . j], and ws = x[i + 1 . . . j]α occur in x by
Definition 1. Thus, there are three (implicit or explicit)
nodes in T (x) path-labelled wp, wi, and ws, respectively.

The observed frequencies of wp, wi, and ws are already
computed during the pre-processing of T (x). For an explicit
node v of T (x), path-labelled w′

= x[i′ . . . j′], the value C(v),
which is the number of terminal nodes in the subtree rooted
at v, is equal to the number of occurrences (observed fre-
quency) of w′ in x. For an implicit node along the edge (u, v)
path-labelled w′′, the number of occurrences of w′′ is equal to
C(v) (and not C(u)). The implementation of this procedure is
given in Routine AbsentAvoidedWords.

Computing occurring avoided words
Lemma 4 suggests that for each occurring ρ-avoided
word w, wp is a path-label of an explicit node v of T (x) .
Thus, for each internal node v such that D(v) = k − 1
and L(v) = wp, Routine OccurringAvoidedWords
computes dev(w), where w = wpα, α ∈ �, is a path-label
of a child (explicit or implicit) node of v. Note that if wp
is a path-label of an explicit node v then wi is a path-
label of an explicit node u of T (x); node u is well-defined
and it is the node pointed at by the suffix-link of v. The
implementation of this procedure is given in Routine
OccurringAvoidedWords.

Page 7 of 12Almirantis et al. Algorithms Mol Biol (2017) 12:5

Analysis of the algorithm

Lemma 6 Given a word x, an integer k > 2, and a real
number ρ < 0, Algorithm AvoidedWords computes all
ρ-avoided words of length k in x.

Proof By definition, a ρ-avoided word w is either an
absent ρ-avoided word or an occurring one. Hence, the
proof of correctness relies on Lemmas 3 and 4. First,
Lemma 3 indicates that an absent ρ-avoided word in x is
necessarily a minimal absent word. Routine AbsentA-
voidedWords considers each minimal absent word w
and verifies if w is a ρ-avoided word of length k.

Second, Lemma 4 indicates that for each occurring ρ
-avoided word w, wp is a path-label of an explicit node v
of T (x). Routine OccurringAvoidedWords considers
every child of each such node of word-depth k, and veri-
fies if its path-label is a ρ-avoided word. �

Lemma 7 Given a word x of length n over a fixed-sized
alphabet, an integer k > 2, and a real number ρ < 0,
Algorithm AvoidedWords requires time and space
O(n) ; for integer alphabets, it requires time O(σn).

Proof Constructing the suffix tree T (x) of the input
word x takes time and space O(n) for a word over
a fixed-sized alphabet [18]. Once the suffix tree is
constructed, computing arrays D and C by travers-
ing T (x) requires time and space O(n). Note that the
path-labels of the nodes of T (x) can by implemented
in time and space O(n) as follows: traverse the suffix
tree to compute for each node v the smallest index i
of the terminal nodes of the subtree rooted at v. Then
L(v) = x[i . . . i +D(v)− 1].

Next, Routine AbsentAvoidedWords requires time
O(n). It starts by computing all minimal absent words of
x, which can be achieved in time and space O(n) over a
fixed-sized alphabet [4, 5]. The rest of the procedure deals
with checking each of the O(n) minimal absent words of
length k. Checking each minimal absent word w to deter-
mine whether it is a ρ-avoided word or not requires time
O(1). In particular, an O(n)-time pre-processing of T (x)
allows the retrieval of the (implicit or explicit) node in
T (x) corresponding to the longest proper prefix of w in
time O(1) [21]. Finally, Routine OccurringAvoided-
Words requires time O(n). It traverses the suffix tree
T (x) to consider all explicit nodes of word-depth k − 1 .
Then for each such node, the procedure checks every
(explicit or implicit) child of word-depth k. The total
number of these children is at most n− k + 1. For every
child node, the procedure checks whether its path-label is
a ρ-avoided word in time O(1) via the use of suffix-links.

For integer alphabets, the suffix tree can be con-
structed in time O(n) [22] and all minimal absent words
can be computed in time O(σn) [4, 5]. The efficiency of
Algorithm AvoidedWords is then limited by the total
number of words to be considered, which, by Lemma 5,
is O(σn). Note that for integers alphabets, a batch of
q Child(v,α) queries can be answered off-line in time
O(n+ q) with the aid of radix sort (in Routine AbsentA-
voidedWords) or on-line in time O(q log σ) (in Routine
OccurringAvoidedWords). �

Lemmas 5, 6 and 7 imply the first result of this article.

Theorem 1 Algorithm AvoidedWords solves Problem
AvoidedWordsComputation in time and space O(n).
For integer alphabets, the algorithm solves the problem in
time O(σn); this is time-optimal if

√
n+ 1 ≤ σ ≤ n.

Optimal computation of all ρ‑avoided words
Although the biological motivation is yet to be shown
for this, we present here how we can modify Algorithm
AvoidedWords so that it computes all ρ-avoided
words (of all lengths) in a given word x of length n over
an integer alphabet of size σ in time O(σn). We further
show that this algorithm (AllAvoidedWords) is in fact
time-optimal.

Based on Lemma 1 and similarly to the proof of
Lemma 5 we obtain the following result.

Lemma 8 The number of ρ-avoided words in a word of
length n over an alphabet of size 2 ≤ σ ≤ n is O(σn) and
this bound is tight.

It is clear that if we just remove the condition on
the length of each minimal absent word in Line 2 of

Page 8 of 12Almirantis et al. Algorithms Mol Biol (2017) 12:5

AbsentAvoidedWords we then compute all absent ρ
-avoided words in time O(σn). In order to compute all
occurring ρ-avoided words in x it suffices by Lemma 4
to investigate the children of explicit nodes. We can thus
traverse the suffix tree T (x) and for each explicit inter-
nal node, check for all of its children (explicit or implicit)
whether their path-label is a ρ-avoided word. We can do
this in O(1) time as described. The total number of these
children is at most 2n− 1, as this is the bound on the
number of edges of T (x) [18]. This modified algorithm is
clearly time-optimal for fixed-sized alphabets as it then
runs in time O(n). The time optimality for integer alpha-
bets follows directly from Lemma 8. Hence we obtain the
second result of this article.

Theorem 2 Algorithm AllAvoidedWords solves
Problem AllAvoidedWordsComputation in time
O(σn). This is time-optimal if 2 ≤ σ ≤ n.

Remark 1 In [23], it is shown that all |A| minimal absent
words of a word x of length n over an integer alphabet
can be computed in time O(n+ |A|) and space O(n) .
Computing minimal absent words and checking for each
of them if it is an avoided word is the bottleneck for algo-
rithms AvoidedWords and AllAvoidedWords. The
result of [23] implies that for a word x of length n over
an integer alphabet we can make both algorithms to
require time O(n+ |A|) and space O(n). We can do that
by checking for each minimal absent word output by the
algorithm whether it is avoided, instead of storing a rep-
resentation of them and then making the check.

Remark 2 As the complexity of algorithms Avoided-
Words and AllAvoidedWords does not depend on
the value of ρ, one can use a negative ρ close to 0, sort the
output ρ-avoided words with respect to dev(w), and con-
sider the extreme ones.

Lemma 9 The expected length of the longest ρ-avoided
word in a word x of length n over an alphabet � of size
σ > 1 is O(logσ n) when the letters are independent and
identically distributed random variables uniformly dis-
tributed over �.

Proof By Lemma 4 the length of the longest occurring
word is bounded above by the word-depth of the deepest
internal explicit node in T (x) incremented by 1. We note
that the greatest word-depth of an internal node corre-
sponds to the longest repeated factor in word x. Moreo-
ver, for a word w to be a minimal absent word, wi must
appear at least twice in x (in the occurrences of wp and
ws). Hence the length of the longest ρ-avoided word is
bounded by the length of the longest repeated factor in

x incremented by 2. The expected length of the longest
repeated factor in a word is known to be O(logσ n) [24]
and hence the lemma follows. �

Experimental results
Algorithm AvoidedWords was implemented as a pro-
gram to compute the ρ-avoided words of length k in one or
more input sequences; there is an option to run Algorithm
AllAvoidedWords instead. The program was imple-
mented in the C++ programming language and developed
under GNU/Linux operating system. Our program makes
use of the implementation of the compressed suffix tree
available in the Succinct Data Structure Library [25]. The
input parameters are a (Multi)FASTA file with the input
sequence(s), an integer k > 2 , and a real number ρ < 0.
The output is a file with the set of ρ-avoided words of
length k per input sequence. The implementation is dis-
tributed under the GNU General Public License, and it is
available at http://github.com/solonas13/aw. The experi-
ments were conducted on a Desktop PC using one core of
Intel Core i5-4690 CPU at 3.50 GHz under GNU/Linux.
The program was compiled with g++ version 4.8.4 at
optimisation level 3 (−O3). We also implemented a brute-
force approach for the computation of ρ-avoided words.
We mainly used it to confirm the correctness of our imple-
mentation. Here we do not plot the results of the brute-
force approach as it is easily understood that it is orders of
magnitude slower than our approach.

Experiment I
To evaluate the time performance of our implementa-
tion, synthetic DNA (σ = 4) and protein (σ = 20) data
were used. The input sequences were generated using a
randomised script. In the first experiment, our task was
to establish that the performance of the program does not
essentially depend on k and ρ; i.e., the elapsed time of the
program remains unchanged up to some constant with
increasing values of k and decreasing values of ρ. As input
datasets, for this experiment, we used a DNA and a protein
sequence both of length 1M (1 Million letters). For each
sequence we used different values of k and ρ. The results,
for elapsed time are plotted in Fig. 2. It becomes evident
from the results that the time performance of the program
remains unchanged up to some constant. The longer time
required for the protein sequences for some value of k is
explained by the increased number of branching nodes in
this depth in the corresponding suffix tree due to the size of
the alphabet (σ = 20). To confirm this we counted the num-
ber of nodes considered by the algorithm to compute the ρ
-avoided words for k = 4 and ρ = −10 for both sequences.
The number of considered nodes for the DNA sequence
was 260 whereas for the protein sequence it was 1,585,510.

http://github.com/solonas13/aw

Page 9 of 12Almirantis et al. Algorithms Mol Biol (2017) 12:5

Experiment II
In the second experiment, our task was to establish the fact
that the elapsed time and memory usage of the program
grow linearly with n, the length of the input sequence.
As input datasets, for this experiment, we used synthetic
DNA and proteins sequences ranging from 1 to 128 M. For
each sequence we used constant values for k and ρ: k = 8
and ρ = −10. The results, for elapsed time and peak mem-
ory usage, are plotted in Fig. 3. It becomes evident from
the results that the elapsed time and memory usage of the

program grow linearly with n. The longer time required for
the protein sequences compared to the DNA sequences
for increasing n is explained by the increased number of
branching nodes in this depth (k = 8) in the correspond-
ing suffix tree due to the size of the alphabet (σ = 20).
To confirm this we counted the number of nodes consid-
ered by the algorithm to compute the ρ-avoided words
for n = 64M for both the DNA and the protein sequence.
The number of nodes for the DNA sequence was 69,392
whereas for the protein sequence it was 43,423,082.

Time for n = 1M and ρ = −10 Time for n = 1M and k = 8

 0

 2

 4

 6

 8

 10

 12

 5 10 15 20 25 30

T
im

e
[s

]

Fixed Length k [-]

DNA
Proteins

 0

 2

 4

 6

 8

 10

 12

-20-15-10-5 0

T
im

e
[s

]

Threshold [-]

DNA
Proteins

Fig. 2 Experiment I. Elapsed time of Algorithm AvoidedWords using synthetic DNA (σ = 4) and proteins (σ = 20) data of length 1M for variable k
and variable ρ

Time for k = 8 and ρ = −10 Memory for k = 8 and ρ = −10

 0

 200

 400

 600

 800

 1000

 1200

 2e+07 4e+07 6e+07 8e+07 1e+08 1.2e+08

T
im

e
[s

]

Length n [-]

DNA
Proteins

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2e+07 4e+07 6e+07 8e+07 1e+08 1.2e+08

M
em

or
y

[K
b]

Length n [-]

DNA
Proteins

Fig. 3 Experiment II. Elapsed time and peak memory usage of Algorithm AvoidedWords using synthetic DNA (σ = 4) and proteins (σ = 20) data of
length 1–128M

Page 10 of 12Almirantis et al. Algorithms Mol Biol (2017) 12:5

Experiment III
 In the next experiment, our task was to evaluate the time
and memory performance of our implementation with
real data. As input datasets, for this experiment, we used
all chromosomes of the human genome. Their lengths
range from around 46M (chromosome 21) to around
249M (chromosome 1). For each sequence we used k = 8
and ρ = −10. The results, for elapsed time and peak
memory usage, are plotted in Fig. 4. The results with real
data confirm that the elapsed time and memory usage of
the program grow linearly with n.

Experiment IV
 In an experiment with a prokaryote, we computed the
set of avoided words for k = 6 (hexamers) and ρ = −10
in the complete genome of Escherichia coli and sorted
the output in increasing order of their deviation. The
most avoided words were extremely enriched in self-
complementary (palindromic) hexamers. In particular,
within the output of 28 avoided words, 23 were self-com-
plementary; and the 17 most avoided ones were all self-
complementary. For comparison, we computed the set of
avoided words for k = 6 and ρ = −10 from an eukary-
otic sequence: a segment of the human chromosome 21
(its leftmost segment devoid of N’s) equal to the length

of the E. coli genome. In the output of 10 avoided words,
no self-complementary hexamer was found. Our results
confirm that the restriction endonucleases which tar-
get self-complementary sites are not found in eukaryotic
sequences [8].

Experiment V
 Then, we proceeded to the examination of several col-
lections of CNEs obtained through multiple sequence
alignment between the human and other genomes. The
detailed description of how those CNEs were identified
could be found in [15]. For each CNE of these datasets,
a sequence stretch (surrogate sequence) of non-coding
DNA of equal length and equal GC content was taken
at random from the repeat-masked human genome.
The CNEs of each collection were concatenated into a
single long sequence and the same procedure was fol-
lowed for the corresponding surrogates. Seven CNEs
concatenates and the corresponding surrogate datasets
have been formed and used in this experiment. We have
determined through the proposed algorithm the avoided
words for k = 10 (decamers) and ρ = −2 for these four-
teen datasets and the results are presented in Table 1. In
Table 2, we show likewise for k > 2 (all avoided words)
and ρ = −2.

Time for k = 8 and ρ = −10 Memory for k = 8 and ρ = −10

 0

 20

 40

 60

 80

 100

 5e+07 1e+08 1.5e+08 2e+08 2.5e+08

T
im

e
[s

]

Length n [-]

Human Genome

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 5e+07 1e+08 1.5e+08 2e+08 2.5e+08

M
em

or
y

[K
b]

Length n [-]

Human Genome

Fig. 4 Experiment III. Elapsed time and peak memory usage of Algorithm AvoidedWords using all chromosomes of the human genome

Table 1 The number of avoided words, for k = 10 and ρ = −2, for each concatenate of surrogates (Row 1); the number
of avoided words of the corresponding CNE dataset (Row 2); and their ratio (Row 3)

CNEs 75–80 CNEs 80–85 CNEs 85–90 CNEs 90–95 CNEs 95–100 Mammalian Amniotic

Surr. 1658 810 445 256 429 29,677 6043

CNE 514 153 51 40 45 2821 623

Ratio 3.23 5.29 8.73 6.40 9.53 10.52 9.70

Page 11 of 12Almirantis et al. Algorithms Mol Biol (2017) 12:5

The first five CNEs collections have been composed
through multiple sequence alignment of the same set
of genomes and they differ only in the thresholds of
sequence similarity applied between the considered
genomes: from 75 to 80 (the least conserved CNEs, which
thus are expected to serve less demanding functional
roles) to 95–100 which represent the extremely conserved
non-coding elements (UCNEs or CNEs 95–100) [15]. The
remaining two collections have been composed under dif-
ferent constraints and have been derived after alignment
of genomes belonging to the Mammalian and Amniotic
groups. In Tables 1 and 2, the last line shows the ratios
formed by the numbers of avoided words of each con-
catenate of surrogates divided by the numbers of avoided
words of the corresponding CNE dataset.

Two immediate results stem from inspection of
Tables 1 and 2:

1. In all cases, the number of avoided words from the
non-functional (surrogate) concatenate of sequences
far exceeds the corresponding number derived from
the corresponding CNE dataset.

2. In the case of datasets with increasing degree of
similarity between aligned genomes (from 75–80 to
95–100) the ratios of the numbers of avoided words
show a clear increasing trend.

Both these findings can be understood on the basis of the
difference in functionality, and thus tolerance to muta-
tions, between CNE and surrogate datasets. One particu-
larly frequent source of mutations is the slippage error
during DNA replication; see e.g. reference [26]. Within
a genomic sequence, this phenomenon causes the gen-
eration and increase in length, during evolutionary time,
of polypyrimidine and polypurine nucleotide tracts. The
expansion of those tracts is impeded at a considerable
degree in the case of sequences which serve a functional
role (as CNEs do) due to several constraints. On the other
hand, in non-functional regions (as our surrogates mostly
are) this procedure ceases to be tolerated only when it
reaches to the formation of a polypyrimidine/polypurine
tract with length affecting the proper folding or other
structural features of the chromatin. Then, selection

eliminates it, while its longer proper factors are tolerated
in sufficient numbers within the sequence, thus resulting
to an avoided word. In support of this explanation is the
observation that all lists of avoided words found by our
algorithm in concatenates of surrogates exhibit a consid-
erable enrichment in oligopurines and oligopyrimidines.
Taking at random some examples, for k = 10, we notice:
AAAAAAAAAT, AAAAAACCAC, ACAAAAAAAA, CTC-
CTCTTTT, etc.

Our second observation, i.e. the positive correlation
between (1) the paucity of avoided decamers in CNEs
collections and (2) the similarity thresholds used for
their identification comes in accordance with the above
argument. CNEs extracted under a stricter requirement
of sequence similarity between evolutionary distant
species are CNEs whose functionality is less tolerant to
alterations due to random mutations in general. Hence,
they also tolerate less the propagation within their
sequence of parasite polypyrimidine/polypurine tracts
too.

Conclusions
We presented an O(n)-time and O(n)-space algorithm to
compute all ρ-avoided words of length k in a sequence of
length n over a fixed-sized alphabet. For integer alpha-
bets, our algorithm runs in time O(σn) and is optimal for
a sufficiently large alphabet of size σ. We also presented
a time-optimal O(σn)-time algorithm to compute all ρ
-avoided words (of any length) in a sequence of length n
over an integer alphabet. Moreover, we provided a tight
asymptotic upper bound for the number of ρ-avoided
words over an integer alphabet and the expected length
of the longest one.

In the process, we showed that the known asymptotic
upper bound on the number of minimal absent words of
a sequence is tight for integer alphabets. We also showed
that the same asymptotic bound is tight for the number
of minimal absent words of a fixed length if the alphabet
is sufficiently large.

Finally, we made available an implementation of our
algorithm. Experimental results, using both real and syn-
thetic data, show its efficiency and applicability in biolog-
ical sequence analysis.

Table 2 The number of avoided words, for k > 2 and ρ = −2, for each concatenate of surrogates (Row 1); the number
of avoided words of the corresponding CNE dataset (Row 2); and their ratio (Row 3)

CNEs 75–80 CNEs 80–85 CNEs 85–90 CNEs 90–95 CNEs 95–100 Mammalian Amniotic

Surr. 10,734 7202 5351 3849 4540 112,181 22,595

CNE 3207 1847 1296 1043 1030 17,685 3635

Ratio 3.35 3.90 4.13 3.69 4.41 6.34 6.22

Page 12 of 12Almirantis et al. Algorithms Mol Biol (2017) 12:5

Authors’ contributions
YA and SPP conceived the study. PC, JG, MM, CSI, and SPP devised the algo-
rithms. PC showed the tight asymptotic bounds. JG and SPP implemented the
algorithms. YA, JG, SPP, and DP conceived and conducted the experiments. All
authors contributed equally in writing up the manuscript. All authors read and
approved the final manuscript.

Author details
1 National Center for Scientific Research Demokritos, Neapoleos, 153 10 Ath-
ens, Greece. 2 Department of Informatics, King’s College London, The Strand,
London WC2R 2LS, UK. 3 Computational Regulatory Genomics, MRC Clinical
Sciences Centre (CSC), Du Cane Road, London W12 0NN, UK.

Acknowledgements
Open access for this article was funded by King’s College London.

Competing interests
The authors declare that they have no competing interests.

Funding
This research was partially supported by the Leverhulme Trust. PC is supported
by the Graduate Teaching Scholarship scheme of the Department of Informat-
ics at King’s College London. DP is supported by the UK Medical Research
Council (MRC) postdoctoral scheme.

Received: 14 November 2016 Accepted: 2 March 2017

References
 1. Searls DB. The linguistics of DNA. Am Sci. 1992;80(6):579–91.
 2. Mantegna RN, Buldyrev SV, Goldberger AL, Havlin S, Peng C-K, Simons M,

Stanley HE. Linguistic features of noncoding DNA sequences. Phys Rev
Lett. 1994;73(23):3169. doi:10.1103/PhysRevLett.73.3169.

 3. Acquisti C, Poste G, Curtiss D, Kumar S. Nullomers: really a matter of
natural selection? PLoS ONE. 2007;2(10):1022. doi:10.1371/journal.
pone.0001022.

 4. Barton C, Heliou A, Mouchard L, Pissis SP. Linear-time computation of
minimal absent words using suffix array. BMC Bioinform. 2014;15(1):1.
doi:10.1186/s12859-014-0388-9.

 5. Barton C, Heliou A, Mouchard L, Pissis SP. Parallelising the computation
of minimal absent words. In: Wyrzykowski R, Deelman E, Dongarra J,
Karczewski K, Kitowski J, Wiatr K, editors. Parallel processing and applied
mathematics—11th international conference, PPAM 2015, Krakow,
Poland, September 6–9, 2015. Revised selected papers, Part II. lecture
notes in computer science. vol. 9574. Berlin: Springer; 2015. p. 243–53.
doi:10.1007/978-3-319-32152-3_23.

 6. Crochemore M, Fici G, Mercas R, Pissis SP. Linear-time sequence com-
parison using minimal absent words and applications. In: Kranakis E,
Navarro G, Chávez E, editors. LATIN 2016: theoretical informatics: 12th
Latin American symposium, Ensenada, April 11–15, 2016, Proceedings.
Lecture notes in computer science. Berlin: Springer; 2016. p. 334–46.
doi:10.1007/978-3-662-49529-2_25.

 7. Belazzougui D, Cunial F. Space-efficient detection of unusual words. In:
International symposium on string processing and information retrieval.
Berlin: Springer; 2015. p. 222–33. doi:10.1007/978-3-319-23826-5_22.

 8. Rusinov I, Ershova A, Karyagina A, Spirin S, Alexeevski A. Lifespan of
restriction-modification systems critically affects avoidance of their rec-
ognition sites in host genomes. BMC Genom. 2015;16(1):1. doi:10.1186/
s12864-015-2288-4.

 9. Brendel V, Beckmann JS, Trifonov EN. Linguistics of nucleotide sequences:
morphology and comparison of vocabularies. J Biomol Struct Dyn.
1986;4(1):11–21. doi:10.1080/07391102.1986.10507643.

 10. Apostolico A, Bock ME, Lonardi S, Xu X. Efficient detec-
tion of unusual words. J Comput Biol. 2000;7(1–2):71–94.
doi:10.1089/10665270050081397.

 11. Apostolico A, Bock ME, Lonardi S. Monotony of surprise and large-
scale quest for unusual words. J Comput Biol. 2003;10(3–4):283–311.
doi:10.1089/10665270360688020.

 12. Apostolico A, Gong F-C, Lonardi S. Verbumculus and the discovery of
unusual words. J Comput Sci Technol. 2004;19(1):22–41. doi:10.1007/
BF02944783.

 13. Harmston N, Barešić A, Lenhard B. The mystery of extreme non-coding
conservation. Philos Trans R Soc B. 2013;368(1632):20130021. doi:10.1098/
rstb.2013.0021.

 14. Polychronopoulos D, Sellis D, Almirantis Y. Conserved noncoding ele-
ments follow power-law-like distributions in several genomes as a result
of genome dynamics. PloS ONE. 2014;9(5):95437. doi:10.1371/journal.
pone.0095437.

 15. Polychronopoulos D, Weitschek E, Dimitrieva S, Bucher P, Felici G,
Almirantis Y. Classification of selectively constrained DNA elements using
feature vectors and rule-based classifiers. Genomics. 2014;104(2):79–86.
doi:10.1016/j.ygeno.2014.07.004.

 16. Polychronopoulos D, Krithara A, Nikolaou C, Paliouras G, Almirantis
Y, Giannakopoulos G. In: Dediu AH, Martín-Vide C, Truthe B, editors.
Analysis and classification of constrained DNA elements with n-gram
graphs and genomic signatures. Berlin: Springer; 2014. p. 220–34.
doi:10.1007/978-3-319-07953-0_18

 17. Almirantis Y, Charalampopoulos P, Gao J, Iliopoulos CS, Mohamed
M, Pissis SP, Polychronopoulos D. Optimal computation of avoided
words. In: Algorithms in bioinformatics: 16th international work-
shop (WABI 2016). Berlin: Springer International Publishing. p. 1–13.
doi:10.1007/978-3-319-43681-4_1.

 18. Crochemore M, Hancart C, Lecroq T. Algorithms on strings. Cambridge:
Cambridge University Press; 2007.

 19. Charalampopoulos P, Crochemore M, Fici G, Mercas R, Pissis SP. Align-
ment-free sequence comparison using absent words (Under Review)

 20. Mignosi F, Restivo A, Sciortino M. Words and forbidden factors. Theor
Comput Sci. 2002;273(1):99–117. doi:10.1016/S0304-3975(00)00436-9.

 21. Gawrychowski P, Lewenstein M, Nicholson PK. Weighted ancestors in
suffix trees. Eur Symp Algorithms. 2014. doi:10.1007/978-3-662-44777-2.

 22. Farach M. Optimal suffix tree construction with large alphabets. In: Pro-
ceedings, 38th annual symposium on foundations of computer science.
New York City: IEEE; 1997. p. 137–43. doi:10.1109/SFCS.1997.646102.

 23. Fujishige Y, Tsujimaru Y, Inenaga S, Bannai H, Takeda M. Computing
DAWGs and minimal absent words in linear time for integer alphabets. In:
Faliszewski P, Muscholl A, Niedermeier R, editors. 41st International sym-
posium on mathematical foundations of computer science (MFCS 2016).
Leibniz international proceedings in informatics (LIPIcs), vol. 58: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik; 2016. p. 1–14. doi:10.4230/
LIPIcs.MFCS.2016.38.

 24. Manber U, Myers G. Suffix arrays: a new method for on-line string
searches. Siam J Comput. 1993;22(5):935–48. doi:10.1137/0222058.

 25. Gog S, Beller T, Moffat A, Petri M. From theory to practice: plug
and play with succinct data structures. In: International Sympo-
sium on experimental algorithms. Berlin: Springer; 2014. p. 326–37.
doi:10.1007/978-3-319-07959-2_28.

 26. Hile SE, Eckert KA. Positive correlation between DNA polymerase α
-primase pausing and mutagenesis within polypyrimidine/polypurine
microsatellite sequences. J Mol Biol. 2004;335(3):745–59. doi:10.1016/j.
jmb.2003.10.075.

http://dx.doi.org/10.1103/PhysRevLett.%2073.3169
http://dx.doi.org/10.1371/journal.pone.0001022
http://dx.doi.org/10.1371/journal.pone.0001022
http://dx.doi.org/10.1186/s12859-014-0388-9
http://dx.doi.org/10.1007/978-3-319-32152-3%5f23
http://dx.doi.org/10.1007/978-3-662-49529-2%5f25
http://dx.doi.org/10.1007/978-3-319-23826-5%5f22
http://dx.doi.org/10.1186/s12864-015-2288-4
http://dx.doi.org/10.1186/s12864-015-2288-4
http://dx.doi.org/10.1080/07391102.1986.10507643
http://dx.doi.org/10.1089/10665270050081397
http://dx.doi.org/10.1089/10665270360688020
http://dx.doi.org/10.1007/BF02944783
http://dx.doi.org/10.1007/BF02944783
http://dx.doi.org/10.1098/rstb.2013.0021
http://dx.doi.org/10.1098/rstb.2013.0021
http://dx.doi.org/10.1371/journal.pone.0095437
http://dx.doi.org/10.1371/journal.pone.0095437
http://dx.doi.org/10.1016/j.ygeno.2014.07.004
http://dx.doi.org/10.1007/978-3-319-07953-0%5f18
http://dx.doi.org/10.1007/978-3-319-43681-4%5f1
http://dx.doi.org/10.1016/S0304-3975(00)00436-9
http://dx.doi.org/10.1007/978-3-662-44777-2
http://dx.doi.org/10.1109/SFCS.1997.646102
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.38
http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.38
http://dx.doi.org/10.1137/0222058
http://dx.doi.org/10.1007/978-3-319-07959-2%5f28
http://dx.doi.org/10.1016/j.jmb.2003.10.075
http://dx.doi.org/10.1016/j.jmb.2003.10.075

	On avoided words, absent words, and their application to biological sequence analysis
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Introduction
	Our contributions

	Methods
	Terminology and technical background
	Definitions and notation
	Suffix trees

	Tight bounds on minimal absent words
	Useful properties of avoided words
	Avoided words algorithm
	Computing absent avoided words
	Computing occurring avoided words
	Analysis of the algorithm

	Optimal computation of all ρ-avoided words

	Experimental results
	Experiment I
	Experiment II
	Experiment III
	Experiment IV
	Experiment V

	Conclusions
	Authors’ contributions
	References

