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Abstract 

Background:  The deviation of the observed frequency of a word w from its expected frequency in a given sequence 
x is used to determine whether or not the word is avoided. This concept is particularly useful in DNA linguistic analysis. 
The value of the deviation of w, denoted by dev(w), effectively characterises the extent of a word by its edge contrast 
in the context in which it occurs. A word w of length k > 2 is a ρ-avoided word in x if dev(w) ≤ ρ, for a given thresh-
old ρ < 0. Notice that such a word may be completely absent from x. Hence, computing all such words naïvely can be 
a very time-consuming procedure, in particular for large k.

Results:  In this article, we propose an O(n)-time and O(n)-space algorithm to compute all ρ-avoided words of 
length k in a given sequence of length n over a fixed-sized alphabet. We also present a time-optimal O(σn)-time 
algorithm to compute all ρ-avoided words (of any length) in a sequence of length n over an integer alphabet of size σ . 
In addition, we provide a tight asymptotic upper bound for the number of ρ-avoided words over an integer alphabet 
and the expected length of the longest one. We make available an implementation of our algorithm. Experimental 
results, using both real and synthetic data, show the efficiency and applicability of our implementation in biological 
sequence analysis.

Conclusions: The systematic search for avoided words is particularly useful for biological sequence analysis. We pre-
sent a linear-time and linear-space algorithm for the computation of avoided words of length k in a given sequence 
x. We suggest a modification to this algorithm so that it computes all avoided words of x, irrespective of their length, 
within the same time complexity. We also present combinatorial results with regards to avoided words and absent 
words.
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Background
Introduction
The one-to-one mapping of a DNA molecule to a 
sequence of letters suggests that DNA analysis can be 
modelled within the framework of formal language the-
ory  [1]. For example, a region within a DNA sequence 
can be considered as a “word” on a fixed-sized alphabet 

in which some of its natural aspects can be described by 
means of certain types of automata or grammars. How-
ever, a linguistic analysis of the DNA needs to take into 
account many distinctive physical and biological charac-
teristics of such sequences: The genome consists of cod-
ing regions that encode for polypeptide chains associated 
with biological functions as well as a plethora of regula-
tory and potentially functional non-coding regions, iden-
tified through multiple alignment of genomes of several 
organisms, and termed conserved non-coding elements 
(CNEs). In addition, it contains large non-coding regions 
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most of which are not linked to any particular function. 
All these genomic components appear to have many sta-
tistical features in common with natural languages [2].

A computational tool oriented towards the system-
atic search for avoided words is particularly useful for in 
silico genomic research analyses. The search for absent 
words is already undertaken in the recent past and sev-
eral results exist on the application and computation of 
such words [3–6]. However, words which may be present 
in a genome or in genomic sequences of a specific role 
(e.g., protein coding segments, regulatory elements, con-
served non-coding elements etc.) but they are strongly 
underrepresented—as we can estimate on the basis of the 
frequency of occurrence of their longest proper factors—
may be of particular importance. They can be words of 
nucleotides which are hardly tolerated because they neg-
atively influence the stability of the chromatin or, more 
generally, the functional genomic conformation; they can 
represent targets of restriction endonucleases which may 
be found in bacterial and viral genomes; or, more gener-
ally, they may be short genomic regions whose presence 
in wide parts of the genome are not tolerated for less 
known reasons. The understanding of such avoidances is 
becoming an interesting line of research (for recent stud-
ies, see [7, 8]).

On the other hand, short words of nucleotides may be 
systematically avoided in large genomic regions or whole 
genomes for entirely different reasons, i.e. just because 
they play important signaling roles which confine 
their appearance only in specific positions: consensus 
sequences for the initiation of gene transcription and of 
DNA replication are well-known such oligonucleotides. 
Other such cases may be insulators, sequences anchoring 
the chromatin on the nuclear envelope like lamina-asso-
ciated domains, short sequences like dinucleotide repeat 
motifs with enhancer activity, and several other cases. 
Again, we cannot exclude that this area of research could 
lead to the identification of short sequences of regulatory 
activities still unknown.

Brendel et al. in [9] initiated research into the linguis-
tics of nucleotide sequences that focuses on the concept 
of words in continuous languages—languages devoid 
of blanks—and introduced an operational definition of 
words. The authors suggested a method to measure, for 
each possible word w of length k, the deviation of its 
observed frequency from the expected frequency in a 
given sequence. The values of the deviation, denoted by 
dev(w), were then used to identify words that are avoided 
among all possible words of length k. The typical length 
of avoided (or of overabundant) words of the nucleotide 
language was found to range from 3 to 5 (tri- to pentam-
ers). The statistical significance of the avoided words 
was shown to reflect their biological importance. This 

work, however, was based on the very limited sequence 
data available at the time: only DNA sequences from two 
viral and one bacterial genomes were considered. Also 
note that k might change when considering eukaryotic 
genomes, the complex dynamics and function of which 
might impose a more demanding analysis. The authors 
in [10–12] have studied the concept of unusual words—
based on different definitions than the ones Brendel et al. 
use for expectation and variance—focusing on the factors 
of a string, whereas based on Brendel et  al. definitions, 
we consider here any word over the alphabet.

Our contributions
The computational problem can be described as follows. 
Given a sequence x of length n, an integer k, and a real 
number ρ < 0, compute the set of ρ-avoided words of 
length k, i.e. all words w of length k for which dev(w) ≤ ρ . 
We call this set the ρ-avoided words of length k in x. 
Brendel et al. did not provide an efficient solution for this 
computation  [9]. Notice that such a word may be com-
pletely absent from x. Hence the set of ρ-avoided words 
can be naïvely computed by considering all possible σ k 
words, where σ is the size of the alphabet.

Here we present an O(n)-time and O(n)-space algo-
rithm for computing all ρ-avoided words of length k in 
a sequence of length n over a fixed-sized alphabet. For 
words over an integer alphabet of size σ, the algorithm 
requires time O(σn), which is optimal for sufficiently 
large σ. We also present a time-optimal O(σn)-time algo-
rithm to compute all ρ-avoided words (of any length) in 
a sequence of length n over an integer alphabet of size σ. 
We provide a tight asymptotic upper bound for the num-
ber of ρ-avoided words over an integer alphabet and the 
expected length of the longest one. We also prove that 
the same asymptotic upper bound is tight for the number 
of ρ-avoided words of fixed length when the alphabet is 
sufficiently large.

As shown subsequently, the set of absent ρ-avoided 
words is a subset of the set of minimal absent words of a 
word. Hence the tight asymptotic bounds for ρ-avoided 
words are based on the proof we provide for the tight-
ness of the known asymptotic bound on minimal absent 
words and the tightness of this bound for minimal absent 
words of fixed length over sufficiently large alphabets.

We make available an open-source implementation of 
our algorithm. Experimental results, using both real and 
synthetic data, show its efficiency and applicability. Spe-
cifically, using our method we confirm that restriction 
endonucleases which target self-complementary sites are 
not found in eukaryotic sequences  [8]. In addition, we 
apply our algorithm in the case of CNEs, which are classes 
of sequences whose functions in our genomes remain 
largely enigmatic [13, 14]. We observe interesting patterns 
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of occurring avoided words within CNEs compared to 
CNE-like sequences (surrogates) that are in accordance 
with their distinct sequence characteristics which classify 
them from other non-functional sequences [15, 16].

A preliminary version of this article has appeared 
in [17].

Methods
Terminology and technical background
Definitions and notation
We begin with basic definitions and notation generally 
following [18]. Let x = x[0]x[1] · · · x[n− 1] be a word of 
length n = |x| over a finite ordered alphabet � of fixed 
size σ, i.e. σ = |�| = O(1). We also consider the case of 
an integer alphabet; in this case each letter is replaced by 
its rank such that the resulting string consists of integers 
in the range {1, . . . , n}. For two positions i and j on x, we 
denote by x[i . . . j] = x[i] · · · x[j] the factor (sometimes 
called subword) of x that starts at position i and ends at 
position j (it is empty if j < i), and by ε the empty word, 
word of length 0. We recall that a prefix of x is a factor 
that starts at position 0 (x[0 . . . j]) and a suffix is a factor 
that ends at position n− 1 (x[i . . . n− 1]), and that a fac-
tor of x is a proper factor if it is not x itself. A factor of x 
that is neither a prefix nor a suffix of x is called an infix 
of x. We say that x is a power of a word y if there exists a 
positive integer k, k > 1, such that x is expressed as k con-
secutive concatenations of y; we denote that by x = yk .

Let w = w[0]w[1] · · ·w[m− 1] be a word, 0 < m ≤ n. 
We say that there exists an occurrence of w in x, or, more 
simply, that w occurs in x, when w is a factor of x. Every 
occurrence of w can be characterised by a starting posi-
tion in x. Thus we say that w occurs at the starting posi-
tion i in x when w = x[i . . . i +m− 1]. Further let f(w) 
denote the observed frequency, that is, the number of 
occurrences of a non-empty word w in word x. Note that 
overlapping occurrences are considered as distinct ones; 
e.g. f (TT) = 2 in TTT. If f (w) = 0 for some word w, then 
w is called absent, otherwise, w is called occurring.

By f (wp), f (ws), and f (wi) we denote the observed fre-
quency of the longest proper prefix wp, suffix ws, and infix 
wi of w in x, respectively. We can now define the expected 
frequency of word w, |w| > 2, in x as in Brendel et al. [9]:

The above definition can be explained intuitively as fol-
lows. Suppose we are given f (wp), f (ws), and f (wi). 
Given an occurrence of wi in x, the probability of it being 
preceded by w[0] is f (wp)

f (wi)
 as w[0] precedes exactly f (wp) 

of the f (wi) occurrences of wi. Similarly, this occurrence 
of wi is also an occurrence of ws with probability f (ws)

f (wi)
. 

(1)

E(w) =
f (wp)× f (ws)

f (wi)
, if f (wi) > 0; else E(w) = 0.

Although these two events are not always independent, 
the product f (wp)

f (wi)
×

f (ws)

f (wi)
 gives a good approximation 

of the probability that an occurrence of wi at position j 
implies an occurrence of w at position j − 1. It can be 
seen then that by multiplying this product by the num-
ber of occurrences of wi we get the above formula for the 
expected frequency of w.

Moreover, to measure the deviation of the observed 
frequency of a word w from its expected frequency in x, 
we define the deviation (χ2 test) of w as:

For more details on the biological justification of these 
definitions see  [9].

Using the above definitions and a given threshold, we 
are in a position to classify a word w as either avoided or 
common in x. In particular, for a given threshold ρ < 0, a 
word w is called ρ-avoided if dev(w) ≤ ρ. In this article, 
we consider the following computational problems.

Suffix trees
In our algorithms, suffix trees are used extensively as 
computational tools. For a general introduction to suffix 
trees, see [18].

The suffix tree T (x) of a non-empty word x of length 
n is a compact trie representing all suffixes of x. The 
nodes of the trie which become nodes of the suffix tree 
are called explicit nodes, while the other nodes are called 
implicit. Each edge of the suffix tree can be viewed as an 
upward maximal path of implicit nodes starting with an 
explicit node. Moreover, each node belongs to a unique 
path of that kind. Then, each node of the trie can be rep-
resented in the suffix tree by the edge it belongs to and an 
index within the corresponding path.

We use L(v) to denote the path-label of a node v, 
i.e., the concatenation of the edge labels along the path 
from the root to v. We say that v is path-labelled L(v). 
Additionally, D(v) = |L(v)| is used to denote the word-
depth of node v. Node v is a terminal node, if and only 
if, L(v) = x[i . . . n− 1], 0 ≤ i < n; here v is also labelled 
with index i. It should be clear that each occurring 
word w in x is uniquely represented by either an explicit 
or an implicit node of T (x). The suffix-link of a node v 
with path-label L(v) = αy is a pointer to the node path-
labelled y, where α ∈ � is a single letter and y is a word. 
The suffix-link of v exists if v is a non-root internal node 

(2)dev(w) =
f (w)− E(w)

max{
√
E(w), 1}

.



Page 4 of 12Almirantis et al. Algorithms Mol Biol  (2017) 12:5 

of T (x). We denote by Child(v,α) the explicit node that 
is obtained from v by traversing the outgoing edge whose 
label starts with α ∈ �.

In any standard implementation of the suffix tree, 
we assume that each node of the suffix tree is able to 
access its parent. Note that once T (x) is constructed, it 
can be traversed in a depth-first manner to compute the 
word-depth D(v) for each node v. Let u be the parent 
of v. Then the word-depth D(v) is computed by adding 
D(u) to the length of the label of edge (u, v). If v is the 
root then D(v) = 0. Additionally, a depth-first traversal 
of T (x) allows us to count, for each node v, the number 
of terminal nodes in the subtree rooted at v, denoted by 
C(v), as follows. When internal node v is visited, C(v) 
is computed by adding up C(u) of all the nodes u, such 
that u is a child of v, and then C(v) is incremented by 
1 if v itself is a terminal node. If a node v is a leaf then 
C(v) = 1.

Example 1  Consider the word x = AGCGCGACGTCTGTGT.  
Fig.  1 represents the suffix tree T (x). Note that word 
GCG is represented by the explicit internal node v; 
whereas word TCT is represented by the implicit node 
along the edge connecting the node labelled 15 and the 
node labelled 9. Consider node v in T (x); we have that 
L(v) = GCG, D(v) = 3, and C(v) = 2.

Tight bounds on minimal absent words

Definition 1 [4] An absent word w of x is minimal if 
and only if all proper factors of w occur in x.

We first show that the known asymptotic upper bound 
on the number of minimal absent words of a word is 
tight.

Lemma 1 [19] The upper bound O(σn) on the number 
of minimal absent words of a word of length n over an 
alphabet of size σ is tight if 2 ≤ σ ≤ n.

Proof  To prove that the bound is tight it suffices to 
construct a word with these many minimal absent words 
asymptotically.

Let � = {a1, a2}, i.e.  σ = 2, and consider the word 
x = a2a

n−2
1 a2 of length n. All words of the form a2ak1a2 

for 0 ≤ k ≤ n− 3 are minimal absent words in x. Hence x 
has at least n− 2 = �(n) minimal absent words.

Let � = {a1, a2, a3, . . . , aσ } with 3 ≤ σ ≤ n and con-
sider the word x = a2a

k
1a3a

k
1a4a

k
1 · · · aia

k
1ai+1 · · · aσa

k
1a

m
1  , 

where k = ⌊
n

σ−1⌋ − 1 and m = n− (σ − 1)(k + 1) . 
Note that x is of length n. Further note that aia

j
1 is a 

factor of x, for all 2 ≤ i ≤ σ and 0 ≤ j ≤ k. Similarly, 
a
j
1al is a factor of x, for all 3 ≤ l ≤ σ and 0 ≤ j ≤ k . 

Thus all proper factors of all the words in the set 
S = {aia

j
1al | 0 ≤ j ≤ k , 2 ≤ i ≤ σ , 3 ≤ l ≤ σ } occur in x. 

However, the only words in S that occur in x are the ones 
of the form aiak1ai+1, for 2 ≤ i < σ. Hence x has at least 
(σ − 1)(σ − 2)(k + 1)− (σ − 2) = (σ − 1)(σ − 2)⌊ n

σ−1
⌋

−(σ − 2) = �(σn) minimal absent words.  �

In the following lemma we show that, for sufficiently 
large alphabets, O(σn) is a tight asymptotic bound for the 
number of minimal absent words of fixed length.

Fig. 1 The suffix tree T (x) for x = AGCGCGACGTCTGTGT. Double-lined nodes represent terminal nodes labelled with the associated indices. The 
suffix-links for non-root internal nodes are dashed
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Lemma 2 The upper bound O(σn) on the number of 
minimal absent words of fixed length of a word of length n 
over an alphabet of size σ is tight if 

√
n+ 1 ≤ σ ≤ n.

Proof  Let � = {a1, a2, a3, . . . , aσ } be an alphabet of 
size σ. We will show that we can construct words of any 
length n, with σ ≤ n ≤ σ(σ − 1), that have �(σn) mini-
mal absent words of length 3.

We first construct the strings (blocks) Bi = ai+1aiai+2ai 
· · · ai+jai · · · aσai, for 1 ≤ i ≤ σ − 1 . Note that 
|Bi| = 2(σ − i) and that a letter ai occurs in Bj if and only if 
j ≤ i. We then consider the word x = B1B2 · · ·Bi · · ·Bσ−1 
which has length |x| =

∑σ−1
i=1 2(σ − i) = σ(σ − 1).

Now consider any prefix y of x with |y| > 2(σ − 1) . 
Then y = B1B2 · · ·Bj−1Bj , where Bj  is a prefix of Bj for 
some j > 1. For any i < j the words of length 3 with ai 
as the mid-letter that occur in y are the ones in the  
set Ui = {aℓaiaℓ | 1 ≤ ℓ ≤ i − 2} ∪ {akaiak+1 | i + 1 ≤ k 
 ≤ σ − 1} ∪ {ai−2aiai−1} ∪ {aσaiai+2} , with the last sin-
gleton not included if i = j − 1 and Bj = ε . We thus have 
|Ui| ≤ σ.

We notice that the strings of the form akai for 
all k ∈ Pi = {1, 2, . . . , σ } \ {i − 1, i} occur in y 
and similarly the strings of the form aiaℓ for all 
ℓ ∈ Si = {1, 2, . . . , σ } \ {i, i + 1} occur in y. Hence, all 
proper factors of all strings in Vi = {akaiaℓ | k ∈ Pi, ℓ ∈ Si} 
occur in y and |Vi| = (σ − 2)2. Then all the words in 
Mi = Vi \ Ui are minimal absent words of y of length 
3 with mid-letter ai and they are at least (σ − 2)2 − σ. 
Now, since |Bi| < 2σ for all i, we have that j > |y|

2σ . Hence ∑j−1
i=1 |Mi| ≥ ((σ − 2)2 − σ)×

|y|
2σ . Since the sets Mi are 

pairwise disjoint it then follows that y has �(σ |y|) minimal 
absent words of length 3.

Hence, given an alphabet of size σ we can construct 
words of any length n, such that 2σ < n ≤ σ(σ − 1), that 
have �(σn) minimal absent words of length 3.

Note that when σ ≤ n ≤ 2σ the example of 
y = a1a2a3 · · · aσ (possibly padded with aσ’s) gives the 
desired result as at most σ out of the σ 2 possible combi-
nations aiaj (of length 2) occur in y, while all proper fac-
tors of all such combinations occur in y. �

Useful properties of avoided words
In this section, we provide some useful insights of com-
binatorial nature which were not considered by Brendel 
et al.  [9]. By the definition of ρ-avoided words it follows 
that a word w may be ρ-avoided even if it is absent from x. 
In other words, dev(w) ≤ ρ may hold for either f (w) > 0 
(occurring) or f (w) = 0 (absent).

Example 2  Consider again the word 
x = AGCGCGACGTCTGTGT, k = 3, and ρ = −0.4.

  • Word w1 = CGT, at position 7 of x, is an occurring ρ
-avoided word: 

  • Word w2 = AGT is an absent ρ-avoided word: 

This means that a naïve computation should consider 
all possible σ k words. Then for each possible word w, the 
value of dev(w) can be computed via pattern matching on 
the suffix tree of x. In particular, we can search for the 
occurrences of w, wp, ws, and wi in x in time O(k) [18]. In 
order to avoid this inefficient computation, we exploit the 
following crucial lemmas.

Lemma 3 Any absent ρ-avoided word w in x is a mini-
mal absent word of x.

Proof  For w to be a ρ-avoided word it must hold that

This implies that f (w)− E(w) < 0, which in 
turn implies that E(w) > 0 since f (w) = 0. From 
E(w) =

f (wp)×f (ws)

f (wi)
> 0, we conclude that f (wp) > 0 and 

f (ws) > 0 must hold. Since f (w) = 0, f (wp) > 0, and 
f (ws) > 0, w is a minimal absent word of x: all proper 
factors of w occur in x.  �

Lemma 4 Let w be a word occurring in x and T (x) be 
the suffix tree of x. Then, if wp is a path-label of an implicit 
node of T (x), dev(w) ≥ 0.

Proof  For any w that occurs in x it holds 
that f (wi) ≥ f (ws), which implies that 
f (wp) ≥

f (wp)×f (ws)

f (wi)
= E(w). Furthermore, by the defini-

tion of the suffix tree, if w occurs in x and wp is a path-
label of an implicit node then f (wp) = f (w). It thus fol-
lows that f (w)− E(w) = f (wp)− E(w) ≥ 0, and since 
max{1,

√
E(w)} > 0, the claim holds.  �

Lemma 5 The number of ρ-avoided words of length 
k > 2 in a word of length n over an alphabet of size σ 
is O(σn); in particular, this number is no more than 
(σ + 1)n− k + 1. The upper bound O(σn) is tight if 
√
n+ 1 ≤ σ ≤ n.

Proof  By Lemma  3, every ρ-avoided word is either 
occurring or a minimal absent word. It is known that the 
number of minimal absent words in a word of length n 
is smaller than or equal to σn  [20]. Clearly, the occur-
ring ρ-avoided words in a word of length n are at most 

E(w1) = 3× 3/6 = 1.5, dev(w1) = (1− 1.5)/
√

1.5 = −0.408248.

E(w2) = 1× 3/6 = 0.5, dev(w2) = (0− 0.5)/1 = −0.5.

dev(w) =
f (w)− E(w)

max{
√
E(w), 1}

≤ ρ < 0.
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n− k + 1. Therefore the number of ρ-avoided words 
of length k are no more than (σ + 1)n− k + 1. This 
implies that O(σn) is an asymptotic upper bound. In the 
case of an alphabet of size 

√
n+ 1 ≤ σ ≤ n, it follows 

from Lemma 2 that there exist words with �(σn) mini-
mal absent words of a fixed length k > 2. Consider such 
a word x, the respective k, and some ρ ≥ −

1
n. Let w be 

any minimal absent word of x. We have that f (wp) ≥ 1 , 
f (ws) ≥ 1, and f (wi) ≤ n; and hence E(w) ≥ 1

n. Since 
f (w) = 0, it follows that dev(w) ≤ −

1
n ≤ ρ. Thus, every 

minimal absent word of x is ρ-avoided, and since there 
are �(σn) of them of length k, we conclude that O(σn) is 
a tight asymptotic bound in this case.  �

Avoided words algorithm
In this section, we present Algorithm AvoidedWords 
for computing all ρ-avoided words of length k in a given 
word x. The algorithm builds the suffix tree T (x) for 
word x, and then prepares T (x) to allow constant-time 
observed frequency queries. This is mainly achieved 
by counting the terminal nodes in the subtree rooted at 
node v for every node v of T (x). Additionally during this 
pre-processing, the algorithm computes the word-depth 
of v for every node v of T (x). By Lemma  3, ρ-avoided 
words are classified as either occurring or (minimal) 
absent, therefore Algorithm AvoidedWords calls Rou-
tines AbsentAvoidedWords and OccurringAvoid-
edWords to compute both classes of ρ-avoided words 
in x. The outline of Algorithm AvoidedWords is as 
follows.

Computing absent avoided words
In Lemma 3, we showed that each absent ρ-avoided word 
is a minimal absent word. Thus, Routine AbsentAvoid-
edWords starts by computing all minimal absent words 
in x; this can be done in time and space O(n) for a fixed-
sized alphabet or in time O(σn) for integer alphabets [4, 
5]. Let < (i, j),α > be a tuple representing a minimal 
absent word in x, where for some minimal absent word w 
of length |w| > 2, w = x[i . . . j]α, α ∈ �; this representa-
tion is clearly unique.

Intuitively, the idea is to check the length of every 
minimal absent word. If a tuple < (i, j),α > represents a 
minimal absent word w of length k = j − i + 2, then the 
value of dev(w) is computed to determine whether w is 
an absent ρ-avoided word. Note that, if w = x[i . . . j]α 
is a minimal absent word, then wp = x[i . . . j], 
wi = x[i + 1 . . . j], and ws = x[i + 1 . . . j]α occur in x by 
Definition  1. Thus, there are three (implicit or explicit) 
nodes in T (x) path-labelled wp, wi, and ws, respectively.

The observed frequencies of wp, wi, and ws are already 
computed during the pre-processing of T (x). For an explicit 
node v of T (x), path-labelled w′

= x[i′ . . . j′], the value C(v), 
which is the number of terminal nodes in the subtree rooted 
at v, is equal to the number of occurrences (observed fre-
quency) of w′ in x. For an implicit node along the edge (u, v) 
path-labelled w′′, the number of occurrences of w′′ is equal to 
C(v) (and not C(u)). The implementation of this procedure is 
given in Routine AbsentAvoidedWords.

Computing occurring avoided words
Lemma  4 suggests that for each occurring ρ-avoided 
word w, wp is a path-label of an explicit node v of T (x) . 
Thus, for each internal node v such that D(v) = k − 1 
and L(v) = wp, Routine OccurringAvoidedWords 
computes dev(w), where w = wpα, α ∈ �, is a path-label 
of a child (explicit or implicit) node of v. Note that if wp 
is a path-label of an explicit node v then wi is a path-
label of an explicit node u of T (x); node u is well-defined 
and it is the node pointed at by the suffix-link of v. The 
implementation of this procedure is given in Routine 
OccurringAvoidedWords.
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Analysis of the algorithm

Lemma 6 Given a word x, an integer k > 2, and a real 
number ρ < 0, Algorithm AvoidedWords computes all 
ρ-avoided words of length k in x.

Proof By definition, a ρ-avoided word w is either an 
absent ρ-avoided word or an occurring one. Hence, the 
proof of correctness relies on Lemmas  3 and  4. First, 
Lemma 3 indicates that an absent ρ-avoided word in x is 
necessarily a minimal absent word. Routine AbsentA-
voidedWords considers each minimal absent word w 
and verifies if w is a ρ-avoided word of length k.

Second, Lemma  4 indicates that for each occurring ρ
-avoided word w, wp is a path-label of an explicit node v 
of T (x). Routine OccurringAvoidedWords considers 
every child of each such node of word-depth k, and veri-
fies if its path-label is a ρ-avoided word.  �

Lemma 7 Given a word x of length n over a fixed-sized 
alphabet, an integer k > 2, and a real number ρ < 0,  
Algorithm AvoidedWords requires time and space 
O(n) ; for integer alphabets, it requires time O(σn).

Proof  Constructing the suffix tree T (x) of the input 
word x takes time and space O(n) for a word over 
a fixed-sized alphabet  [18]. Once the suffix tree is 
constructed, computing arrays D and C by travers-
ing T (x) requires time and space O(n). Note that the 
path-labels of the nodes of T (x) can by implemented 
in time and space O(n) as follows: traverse the suffix 
tree to compute for each node v the smallest index i 
of the terminal nodes of the subtree rooted at v. Then 
L(v) = x[i . . . i +D(v)− 1].

Next, Routine AbsentAvoidedWords requires time 
O(n). It starts by computing all minimal absent words of 
x, which can be achieved in time and space O(n) over a 
fixed-sized alphabet [4, 5]. The rest of the procedure deals 
with checking each of the O(n) minimal absent words of 
length k. Checking each minimal absent word w to deter-
mine whether it is a ρ-avoided word or not requires time 
O(1). In particular, an O(n)-time pre-processing of T (x) 
allows the retrieval of the (implicit or explicit) node in 
T (x) corresponding to the longest proper prefix of w in 
time O(1)  [21]. Finally, Routine OccurringAvoided-
Words requires time O(n). It traverses the suffix tree 
T (x) to consider all explicit nodes of word-depth k − 1 . 
Then for each such node, the procedure checks every 
(explicit or implicit) child of word-depth k. The total 
number of these children is at most n− k + 1. For every 
child node, the procedure checks whether its path-label is 
a ρ-avoided word in time O(1) via the use of suffix-links.

For integer alphabets, the suffix tree can be con-
structed in time O(n) [22] and all minimal absent words 
can be computed in time O(σn)  [4, 5]. The efficiency of 
Algorithm AvoidedWords is then limited by the total 
number of words to be considered, which, by Lemma 5, 
is O(σn). Note that for integers alphabets, a batch of 
q Child(v,α) queries can be answered off-line in time 
O(n+ q) with the aid of radix sort (in Routine AbsentA-
voidedWords) or on-line in time O(q log σ) (in Routine 
OccurringAvoidedWords). �

Lemmas 5, 6 and 7 imply the first result of this article.

Theorem 1 Algorithm AvoidedWords solves Problem 
AvoidedWordsComputation in time and space O(n). 
For integer alphabets, the algorithm solves the problem in 
time O(σn); this is time-optimal if 

√
n+ 1 ≤ σ ≤ n.

Optimal computation of all ρ‑avoided words
Although the biological motivation is yet to be shown 
for this, we present here how we can modify Algorithm 
AvoidedWords so that it computes all ρ-avoided 
words (of all lengths) in a given word x of length n over 
an integer alphabet of size σ in time O(σn). We further 
show that this algorithm (AllAvoidedWords) is in fact 
time-optimal.

Based on Lemma  1 and similarly to the proof of 
Lemma 5 we obtain the following result.

Lemma 8 The number of ρ-avoided words in a word of 
length n over an alphabet of size 2 ≤ σ ≤ n is O(σn) and 
this bound is tight.

It is clear that if we just remove the condition on 
the length of each minimal absent word in Line 2 of 
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AbsentAvoidedWords we then compute all absent ρ
-avoided words in time O(σn). In order to compute all 
occurring ρ-avoided words in x it suffices by Lemma  4 
to investigate the children of explicit nodes. We can thus 
traverse the suffix tree T (x) and for each explicit inter-
nal node, check for all of its children (explicit or implicit) 
whether their path-label is a ρ-avoided word. We can do 
this in O(1) time as described. The total number of these 
children is at most 2n− 1, as this is the bound on the 
number of edges of T (x) [18]. This modified algorithm is 
clearly time-optimal for fixed-sized alphabets as it then 
runs in time O(n). The time optimality for integer alpha-
bets follows directly from Lemma 8. Hence we obtain the 
second result of this article.

Theorem  2 Algorithm AllAvoidedWords solves 
Problem AllAvoidedWordsComputation in time 
O(σn). This is time-optimal if 2 ≤ σ ≤ n.

Remark 1 In [23], it is shown that all |A| minimal absent 
words of a word x of length n over an integer alphabet 
can be computed in time O(n+ |A|) and space O(n) . 
Computing minimal absent words and checking for each 
of them if it is an avoided word is the bottleneck for algo-
rithms AvoidedWords and AllAvoidedWords. The 
result of  [23] implies that for a word x of length n over 
an integer alphabet we can make both algorithms to 
require time O(n+ |A|) and space O(n). We can do that 
by checking for each minimal absent word output by the 
algorithm whether it is avoided, instead of storing a rep-
resentation of them and then making the check.

Remark 2 As the complexity of algorithms Avoided-
Words and AllAvoidedWords does not depend on 
the value of ρ, one can use a negative ρ close to 0, sort the 
output ρ-avoided words with respect to dev(w), and con-
sider the extreme ones.

Lemma 9 The expected length of the longest ρ-avoided 
word in a word x of length n over an alphabet � of size 
σ > 1 is O(logσ n) when the letters are independent and 
identically distributed random variables uniformly dis-
tributed over �.

Proof  By Lemma 4 the length of the longest occurring 
word is bounded above by the word-depth of the deepest 
internal explicit node in T (x) incremented by 1. We note 
that the greatest word-depth of an internal node corre-
sponds to the longest repeated factor in word x. Moreo-
ver, for a word w to be a minimal absent word, wi must 
appear at least twice in x (in the occurrences of wp and 
ws). Hence the length of the longest ρ-avoided word is 
bounded by the length of the longest repeated factor in 

x incremented by 2. The expected length of the longest 
repeated factor in a word is known to be O(logσ n)  [24] 
and hence the lemma follows.  �

Experimental results
Algorithm AvoidedWords was implemented as a pro-
gram to compute the ρ-avoided words of length k in one or 
more input sequences; there is an option to run Algorithm 
AllAvoidedWords instead. The program was imple-
mented in the C++ programming language and developed 
under GNU/Linux operating system. Our program makes 
use of the implementation of the compressed suffix tree 
available in the Succinct Data Structure Library [25]. The 
input parameters are a (Multi)FASTA file with the input 
sequence(s), an integer k > 2 , and a real number ρ < 0.  
The output is a file with the set of ρ-avoided words of 
length k per input sequence. The implementation is dis-
tributed under the GNU General Public License, and it is 
available at http://github.com/solonas13/aw. The experi-
ments were conducted on a Desktop PC using one core of 
Intel Core i5-4690 CPU at 3.50 GHz under GNU/Linux. 
The program was compiled with g++ version 4.8.4 at 
optimisation level 3 (−O3). We also implemented a brute-
force approach for the computation of ρ-avoided words. 
We mainly used it to confirm the correctness of our imple-
mentation. Here we do not plot the results of the brute-
force approach as it is easily understood that it is orders of 
magnitude slower than our approach.

Experiment I
To evaluate the time performance of our implementa-
tion, synthetic DNA (σ = 4) and protein (σ = 20) data 
were used. The input sequences were generated using a 
randomised script. In the first experiment, our task was 
to establish that the performance of the program does not 
essentially depend on k and ρ; i.e., the elapsed time of the 
program remains unchanged up to some constant with 
increasing values of k and decreasing values of ρ. As input 
datasets, for this experiment, we used a DNA and a protein 
sequence both of length 1M (1 Million letters). For each 
sequence we used different values of k and ρ. The results, 
for elapsed time are plotted in Fig.  2. It becomes evident 
from the results that the time performance of the program 
remains unchanged up to some constant. The longer time 
required for the protein sequences for some value of k is 
explained by the increased number of branching nodes in 
this depth in the corresponding suffix tree due to the size of 
the alphabet (σ = 20). To confirm this we counted the num-
ber of nodes considered by the algorithm to compute the ρ
-avoided words for k = 4 and ρ = −10 for both sequences. 
The number of considered nodes for the DNA sequence 
was 260 whereas for the protein sequence it was 1,585,510.

http://github.com/solonas13/aw
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Experiment II
In the second experiment, our task was to establish the fact 
that the elapsed time and memory usage of the program 
grow linearly with n, the length of the input sequence. 
As input datasets, for this experiment, we used synthetic 
DNA and proteins sequences ranging from 1 to 128 M. For 
each sequence we used constant values for k and ρ: k = 8 
and ρ = −10. The results, for elapsed time and peak mem-
ory usage, are plotted in Fig.  3. It becomes evident from 
the results that the elapsed time and memory usage of the 

program grow linearly with n. The longer time required for 
the protein sequences compared to the DNA sequences 
for increasing n is explained by the increased number of 
branching nodes in this depth (k = 8) in the correspond-
ing suffix tree due to the size of the alphabet (σ = 20).  
To confirm this we counted the number of nodes consid-
ered by the algorithm to compute the ρ-avoided words 
for n = 64M for both the DNA and the protein sequence. 
The number of nodes for the DNA sequence was 69,392 
whereas for the protein sequence it was 43,423,082.
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Fig. 2 Experiment I. Elapsed time of Algorithm AvoidedWords using synthetic DNA (σ = 4) and proteins (σ = 20) data of length 1M for variable k 
and variable ρ
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Experiment III
 In the next experiment, our task was to evaluate the time 
and memory performance of our implementation with 
real data. As input datasets, for this experiment, we used 
all chromosomes of the human genome. Their lengths 
range from around 46M (chromosome 21) to around 
249M (chromosome 1). For each sequence we used k = 8 
and ρ = −10. The results, for elapsed time and peak 
memory usage, are plotted in Fig. 4. The results with real 
data confirm that the elapsed time and memory usage of 
the program grow linearly with n.

Experiment IV
 In an experiment with a prokaryote, we computed the 
set of avoided words for k = 6 (hexamers) and ρ = −10 
in the complete genome of Escherichia coli and sorted 
the output in increasing order of their deviation. The 
most avoided words were extremely enriched in self-
complementary (palindromic) hexamers. In particular, 
within the output of 28 avoided words, 23 were self-com-
plementary; and the 17 most avoided ones were all self-
complementary. For comparison, we computed the set of 
avoided words for k = 6 and ρ = −10 from an eukary-
otic sequence: a segment of the human chromosome 21 
(its leftmost segment devoid of N’s) equal to the length 

of the E. coli genome. In the output of 10 avoided words, 
no self-complementary hexamer was found. Our results 
confirm that the restriction endonucleases which tar-
get self-complementary sites are not found in eukaryotic 
sequences [8].

Experiment V
 Then, we proceeded to the examination of several col-
lections of CNEs obtained through multiple sequence 
alignment between the human and other genomes. The 
detailed description of how those CNEs were identified 
could be found in  [15]. For each CNE of these datasets, 
a sequence stretch (surrogate sequence) of non-coding 
DNA of equal length and equal GC content was taken 
at random from the repeat-masked human genome. 
The CNEs of each collection were concatenated into a 
single long sequence and the same procedure was fol-
lowed for the corresponding surrogates. Seven CNEs 
concatenates and the corresponding surrogate datasets 
have been formed and used in this experiment. We have 
determined through the proposed algorithm the avoided 
words for k = 10 (decamers) and ρ = −2 for these four-
teen datasets and the results are presented in Table 1. In 
Table  2, we show likewise for k > 2 (all avoided words) 
and ρ = −2.
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Fig. 4 Experiment III. Elapsed time and peak memory usage of Algorithm AvoidedWords using all chromosomes of the human genome

Table 1 The number of avoided words, for k = 10 and ρ = −2, for each concatenate of surrogates (Row 1); the number 
of avoided words of the corresponding CNE dataset (Row 2); and their ratio (Row 3)

CNEs 75–80 CNEs 80–85 CNEs 85–90 CNEs 90–95 CNEs 95–100 Mammalian Amniotic

Surr. 1658 810 445 256 429 29,677 6043

CNE 514 153 51 40 45 2821 623

Ratio 3.23 5.29 8.73 6.40 9.53 10.52 9.70
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The first five CNEs collections have been composed 
through multiple sequence alignment of the same set 
of genomes and they differ only in the thresholds of 
sequence similarity applied between the considered 
genomes: from 75 to 80 (the least conserved CNEs, which 
thus are expected to serve less demanding functional 
roles) to 95–100 which represent the extremely conserved 
non-coding elements (UCNEs or CNEs 95–100) [15]. The 
remaining two collections have been composed under dif-
ferent constraints and have been derived after alignment 
of genomes belonging to the Mammalian and Amniotic 
groups. In Tables  1 and  2, the last line shows the ratios 
formed by the numbers of avoided words of each con-
catenate of surrogates divided by the numbers of avoided 
words of the corresponding CNE dataset.

Two immediate results stem from inspection of 
Tables 1 and 2:

1. In all cases, the number of avoided words from the 
non-functional (surrogate) concatenate of sequences 
far exceeds the corresponding number derived from 
the corresponding CNE dataset.

2. In the case of datasets with increasing degree of 
similarity between aligned genomes (from 75–80 to 
95–100) the ratios of the numbers of avoided words 
show a clear increasing trend.

Both these findings can be understood on the basis of the 
difference in functionality, and thus tolerance to muta-
tions, between CNE and surrogate datasets. One particu-
larly frequent source of mutations is the slippage error 
during DNA replication; see e.g. reference [26]. Within 
a genomic sequence, this phenomenon causes the gen-
eration and increase in length, during evolutionary time, 
of polypyrimidine and polypurine nucleotide tracts. The 
expansion of those tracts is impeded at a considerable 
degree in the case of sequences which serve a functional 
role (as CNEs do) due to several constraints. On the other 
hand, in non-functional regions (as our surrogates mostly 
are) this procedure ceases to be tolerated only when it 
reaches to the formation of a polypyrimidine/polypurine 
tract with length affecting the proper folding or other 
structural features of the chromatin. Then, selection 

eliminates it, while its longer proper factors are tolerated 
in sufficient numbers within the sequence, thus resulting 
to an avoided word. In support of this explanation is the 
observation that all lists of avoided words found by our 
algorithm in concatenates of surrogates exhibit a consid-
erable enrichment in oligopurines and oligopyrimidines. 
Taking at random some examples, for k = 10, we notice: 
AAAAAAAAAT, AAAAAACCAC, ACAAAAAAAA, CTC-
CTCTTTT, etc.

Our second observation, i.e. the positive correlation 
between (1) the paucity of avoided decamers in CNEs 
collections and (2) the similarity thresholds used for 
their identification comes in accordance with the above 
argument. CNEs extracted under a stricter requirement 
of sequence similarity between evolutionary distant 
species are CNEs whose functionality is less tolerant to 
alterations due to random mutations in general. Hence, 
they also tolerate less the propagation within their 
sequence of parasite polypyrimidine/polypurine tracts 
too.

Conclusions
We presented an O(n)-time and O(n)-space algorithm to 
compute all ρ-avoided words of length k in a sequence of 
length n over a fixed-sized alphabet. For integer alpha-
bets, our algorithm runs in time O(σn) and is optimal for 
a sufficiently large alphabet of size σ. We also presented 
a time-optimal O(σn)-time algorithm to compute all ρ
-avoided words (of any length) in a sequence of length n 
over an integer alphabet. Moreover, we provided a tight 
asymptotic upper bound for the number of ρ-avoided 
words over an integer alphabet and the expected length 
of the longest one.

In the process, we showed that the known asymptotic 
upper bound on the number of minimal absent words of 
a sequence is tight for integer alphabets. We also showed 
that the same asymptotic bound is tight for the number 
of minimal absent words of a fixed length if the alphabet 
is sufficiently large.

Finally, we made available an implementation of our 
algorithm. Experimental results, using both real and syn-
thetic data, show its efficiency and applicability in biolog-
ical sequence analysis.

Table 2 The number of  avoided words, for k > 2 and ρ = −2, for  each concatenate of  surrogates (Row 1); the number 
of avoided words of the corresponding CNE dataset (Row 2); and their ratio (Row 3)

CNEs 75–80 CNEs 80–85 CNEs 85–90 CNEs 90–95 CNEs 95–100 Mammalian Amniotic

Surr. 10,734 7202 5351 3849 4540 112,181 22,595

CNE 3207 1847 1296 1043 1030 17,685 3635

Ratio 3.35 3.90 4.13 3.69 4.41 6.34 6.22
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