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Abstract 

Background: The analysis of correlation in alignments generates a matrix of predicted contacts between positions 
in the structure and while these can arise for many reasons, the simplest explanation is that the pair of residues are 
in contact in a three-dimensional structure and are affecting each others selection pressure. To analyse these data, A 
dynamic programming algorithm was developed for parsing secondary structure interactions in predicted contact 
maps.

Results: The non-local nature of the constraints required an iterated approach (using a “frozen approximation”) but 
with good starting definitions, a single pass was usually sufficient. The method was shown to be effective when 
applied to the transmembrane class of protein and error tolerant even when the signal becomes degraded. In the 
globular class of protein, where the extent of interactions are more limited and more complex, the algorithm still 
behaved well, classifying most of the important interactions correctly in both a small and a large test case. For the 
larger protein, this involved examples of the algorithm apportioning parts of a single large secondary structure ele-
ment between two different interactions.

Conclusions: It is expected that the method will be useful as a pre-processor to coarse-grained modelling methods 
to extend the range of protein tertiary structure prediction to larger proteins or to data that is currently too ’noisy’ to 
be used by current residue-based methods.

Keywords: Protein structure prediction, Correlated substitution analysis, Contact matrix parsing, Frozen 
approximation algorithm
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Background
In recent years, the huge increase in the number of 
sequences, combined with a number of new methods for 
the analysis of correlated mutations (or substitutions) in 
multiple protein sequence alignments has led to a revival 
in the interest and ability to predict protein structure 
from sequence data alone. (See [1] for a review).

Results from the analysis of correlation in alignments 
take the form of predicted contacts between positions in 
the structure and while these can arise for many reasons, 
the simplest explanation is that the pair of residues are in 
contact in a three-dimensional structure and are affecting 
each others selection pressure.

The construct of a contact or distance matrix (or plot or 
map) has been used in the analysis of protein structure for 
many years and is still often referred to as a Phillips or Ooi 
plot from its original use in the early 1970s [2, 3]. The data 
in the plot contains almost all the information required 
to reconstruct the 3D protein (with the exception of chi-
rality) and as such has been used in many methods that 
deal with either observed distances [4, 5] or predicted dis-
tances [6, 7] and also in the comparison of 3D structures 
[8, 9]. (See [10] for a review of all these areas).

These early attempts to construct protein 3D struc-
tures from predicted distances were hampered by the 
poor quality and specificity of the predicted distance esti-
mates (which were based largely on just the preference of 
hydrophobic amino acids to lie closer together than aver-
age). With data from correlated mutations, specificity has 
been greatly improved but in many situations, the quality 
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of the data is too poor to directly construct a model using 
the distance-geometry methods mentioned above.

An approach to improve the success of these methods is 
to use a more coarse-grained approach and to group the 
predicted pairwise residue interactions into groups that are 
linked in a common secondary structure which can then 
be treated as a rigid body. Early attempts at this tended to 
focus on pattern-matching combined with combinatorial 
enumeration [11–15], however, these predicted contacts are 
generic in nature making it difficult to distinguish packing 
orientation. For example if two helices, A and B, each have a 
hydrophobic position at either end, An and Bn (amino ends) 
and Ac and Bc (carboxy ends) then all pairs (An/Bn, An/Bc, 
Ac/Bn, Ac/Bc) will appear equal and will, in general, lead to 
a “tartan” pattern such as that shown in Fig. 1 (top half).

By contrast, the method of correlated mutations predicts 
residue contacts that are specific and so can in principle 
distinguish the packing orientation of secondary structure 
segments. This produces a pattern of contact strips that 
run parallel to or orthogonal to the diagonal of the plot as 
shown in Fig. 1 (lower half). This pattern of contact is eas-
ily distinguished from the generic “tartan” pattern.

The aim of this work is to automatically identify these 
interaction patterns (diagonal stripes) in a contact matrix 
and to assign them as deriving either from the parallel 

or antiparallel packing of secondary structure elements 
(SSEs). In addition as the predicted end-points of the SSE 
are error prone, the definition of their packing can also 
be used to refine their end-points. The method is thus a 
general parser for secondary structure packing in protein 
contact maps.

Methods
An inter-residue distance or contact map is a square 
matrix with a size equal to the length of the protein in 
which each element holds a value for each distance 
between two residues or, a sometimes binary, assignment 
where a contact is defined between them. (Fig.  1, green 
dots).

Given the constraints of a three-dimensional space and 
in particular, the constraints imposed by a linear polymer 
chain, such plots are far from random. This is especially 
so when the underlying structure contains linear ele-
ments of substructure, such as the α-helix or β-strand. If 
these elements are roughly aligned (as is strictly imposed 
within a β-sheet), then the contact map exhibits stripes 
parallel to or orthogonal to the diagonal indicating paral-
lel and antiparallel packing respectively.

Packing orientation assignment
Moments of inertia
Given the submatrix (box) defined by two secondary 
structure elements in a contact map, The diagonal/
orthogonal trend can be quantified by the strength of 
fit of a regression line in each direction. Neglecting the 
angle at which the pair of segments pack (which will 
affect the gradient of the line), if exact parallel and 
antiparallel packing is assumed, then the fit to a line 
passing through a point o, will be the sum of the per-
pendicular distances of all points in the box to the diag-
onal line. For parallel interactions the line will have 
gradient 1 and −1 for antiparallel. The perpendicular 
distance, h, for each of these cases is simply: 
h2 = (x2 + y2)/2± xy, where x and y are the coordi-
nates of the point from the line which, in the case of a 
matrix, are the indices of the matrix element relative to 
o. The solution with +xy is for parallel and −xy for 
antiparallel interactions1. The root mean sum of the 
squared distances to each diagonal over all elements in 
the box is equivalent to the moment of inertia about an 
axis. As each element has a strength, this can be treated 
as a weight giving:

1 In a contact matrix, a diagonal line, d and an orthogonal line d′ pass 
through the element (point) o. If a point (element) p has a displacement x, y 
from o, then if d has a displacement 1,1 from o and d′ has a displacement 
−1,1 from o, the perpendicular distance from p to d′  is: (x + y)/

√
2 (from 

the dot product p · d.), giving the squared distance as (x2 + y2)/2+ xy. Sim-
ilarly for d.

Fig. 1 Comparison of predicted contacts for a typical domain sized 
protein (160 residues). The observed residue contacts are plotted in 
green and as the plot is symmetric the same contacts appear either 
side of the diagonal. In the top-left half, contacts predicted by the 
generic measure of conserved hydrophobicity are plotted in red 
which produces a characteristic “tartan” pattern. Contacts predicted 
using the correlated substitution method (PSICOV) are plotted in the 
lower-right half. These predicted contacts exhibit a clear pattern of 
diagonal and cross-diagonal stripes that are a much better match to 
the observed packing. Reproduced from Ref. [1], with permission
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where the point {p, q} lies at the intersection of the diag-
onal and orthogonal lines and {i,  j} is an element with 
weight wij in the surrounding box with dimensions a and 
b. W is the sum over all wij in the box and the signs are 
chosen for parallel/antiparallel as +/− (as for the ±xy 
term above), giving two quantities designated MP and 
MA, respectively.

As we are interested in a relative score between the 
lines, this was quantified by the ratio (R) of the parallel 
moment (MP) and the antiparallel moment (MA) as:

The moments were modified by adding 1 to avoid 
extreme values when all points lay close to or on the line 
and as the ratio is always greater than 1, the value of 1 was 
subtracted and the terms arranged to give positive values 
for parallel packing and negative values for antiparallel. 
(Note that the moment of inertia is large when values lie 
away from line and small when close.)

The ratio R was calculated for the point {p, q} that lies 
at the weighted centroid of the box. The sign of R then 
specifies parallel/antiparallel packing and its magnitude 
indicates the strength of the orientation bias.

Central overlap bias
In its current general formulation, the ratio score, R, 
might find a solution where the diagonal line is con-
fined to a corner of the box. Although this may reflect 
the true state of packing for a staggered pair of second-
ary structure elements2, it would be better avoided in 
favour of a more central solution, even if this is slightly 
lower in score. To implement this bias, an additional 
term was introduced as a Gaussian weight from the 
centre of the box and applied to the calculation of the 
centroid position, c = {p, q}. For a box with dimensions 
a and b:

where, m is the point at {i,  j} which lies at a distance d 
from the centre of the box (d2 = (i − a/2)2 + (j − b/2)2 ), 
s is the Gaussian damping term (c.f. standard deviation) 
and W ′ is now the sum over all wij values in the box, simi-
larly weighted:

(1)M2
pq =

1

W

a∑

i=1

b∑

j=1

wij((i − p)2 + (j − q)2 ± (i − p)(j − q)),

(2)R =

{
−(MP + 1)/(MA + 1)+ 1 ifMP > MA

(MA + 1)/(MP + 1)− 1 otherwise
.

2 This situation is more likely to indicate that the box is in the wrong place 
and a more general approach to this problem will be described below based 
on refining the box definition.

(3)c =
1

W ′

a∑

i=1

b∑

j=1

wij exp(−d2/ss)m,

The ’default’ value of s was assigned as 10 and the results 
indicated no reason to change this.

Refined diagonal selection
Having established a preferred orientation, the position 
of the diagonal line was refined by down-weighting out-
lying points. While an analytic form may exist for this, 
the simpler approach was taken to evaluate the weighted 
moment for each diagonal using Eq.  1 but selecting a 
point {p, q} on each diagonal line to be tested, between 
the limits of {a− b/4, b/4} and {b/4, 3b/4} which excludes 
two opposing corners of a box having sides of length a 
and b (with a > b).

The perpendicular distance to the line (h) was then 
weighted by a Gaussian function giving: h′ = h exp(−h2/r2),  
where h2 = (i − p)2 + (j − q)2 ± (i − p)(j − q) and r is 
a damping term. (r was also assigned a default value of 10 
which remained unchanged.) By alternately incrementing 
the values of p and q across the range defined above, the 
diagonal line (passing through {p, q}) was then found that 
gave a minimum weighted sum of squares of the predicted 
packing values (w). The moment (M) of the predicted pack-
ing scores about this best line is thus:

where h′ij is the distance-weighted perpendicular to the 
best diagonal line and W ′ is the distance-weighted sum of 
all scores in the box (from Eq. 4).

Segment end‑point refinement
As mentioned above, the diagonal packing assignment 
might be improved or extended by altering the end-
points of the two secondary structure elements (SSEs) 
that define the interaction box used in the calculation. 
This would not be an unreasonable approach as there is 
generally a substantial error associated with the predic-
tion of SSEs and by optimizing the degree of predicted 
packing between them, the definition of the elements 
themselves might even be improved.

This approach is similar to the applications to trans-
membrane segment prediction [16] and parsing linear 
3D structural segments [17] in both of which an opti-
mal solution can be obtained using the dynamic-pro-
gramming algorithm. However, in these applications, the 
evaluation score for a single SSE depends only on its own 
two end points, calculating the sum of the propensity 
for amino acids to be in a membrane environment and a 

(4)W ′ =

a∑

i=1

b∑

j=1

wij exp(−d2/s2).

(5)M2 =
1

W ′

a∑

i=1

b∑

j=1

wijh
′2
ij ,
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measure of how long and thin a set of 3D points appear, 
respectively. (The latter being defined by the moments of 
inertia of the point-set).

Despite clear similarity to the latter application, the 
current problem involves, as a minimum two SSEs and, 
in general, for every end-point that is altered, all inter-
actions involving that element will need to be recalcu-
lated. This non-local aspect to the problem is therefore 
more equivalent to the comparison of structural environ-
ments between two protein structures [8] or the problem 
of “threading” a sequence over a given structure [18]. 
These more complex problems (which are actually NP-
complete [19]) have been solved by a variety of methods 
ranging through brute-force stochastic approaches (e.g., 
Monte Carlo, simulated annealing), the “frozen-approx-
imation” algorithm (or FAA, in which each component 
is optimised in turn while the others are held fixed) 
[20], to double-dynamic-programming (DPP), which is 
a two-level dynamic programming algorithm [8]. (See 
chapter  15 in ref. [21] for an explanation of all these 
methods).

Although the number of SSEs is generally small in 
a protein of moderate size, each end can be displaced 
up and down independently giving a large combinato-
rial space to be explored so stochastic search methods 
were avoided. Unfortunately, the DDP algorithm does 
not map easily to the current problem so it too was not 
tried. However, given that there are reasonable predicted 
estimates for the SSE end-points and a deterministic 
dynamic programming algorithm to find a local solution, 
the FAA was adopted as the most practical alternative.

Iterated frozen approximation algorithm
For a set of given SSE end-points A, diagonal packing 
assignments (M) can be found as described above for 
each pair of SSEs (Eq. 5) and summed to give an overall 
score (MT) as:

where i and j specify a pair of SSEs with end-points 
ai = {ai,1, ai,2}, etc., (with ai,1 and ai,2 being the start and 
final sequence positions of SSE i), with the full set of N 
end-points, A = {a 1, . . . a N}.

For any individual segment, k, its partial score will be:

Following the dynamic programming formulation of Tay-
lor [8], as used previously for the definition of linear (3D) 
segments, a score matrix (T) was constructed with the 

(6)MT =

N∑

i=1

N∑

j=1,j>i

Mij ,

(7)Mk =

N∑

j=1,j �=k

Mkj ,

protein sequence (of length L) along one axis 
(R = r1 . . . rL) and segment size (S = {s1 . . . sL/2−1}) along 
the other. At any sequence position ri, segment size is 
specified as an equal displacement of ±sj from ri giving a 
segment length of 2sj + 1 with ends ri − sj and ri + sj. 
This segment is represented by the element Tij and the 
full matrix T thus specifies every possible segment size3 
at every position in the sequence.

However, not all elements of T are valid and segments 
spanning the sequence termini are excluded, giving a tri-
angular array from L− 2 segments of length 3 at the base 
to one segment of length L at the apex. Also, segments 
should not overlap so, given the current SSE end-point 
assignments (A), if position ri lies in SSE ak  (i.e., ri ≥ ak1 
and ri ≤ ak2), then if ri − sj ≤ ak−1,2 or ri + sj ≥ ak+1,1, 
the segment Tij overlaps its neighbours and is excluded. 
Given these constraints, each valid score matrix element 
(Tij) is assigned the value Mk (Eq. 7) calculated using A 
but with ak ,1 = ri − sj and ak ,2 = ri + sj whenever ri falls 
in ak. Given this score matrix construction, the dynamic 
programming algorithm finds the combination of seg-
ments that gives a maximum value for MT (Eq.  6; see 
Fig. 2).

Although the end-points of each SSE are re-calculated 
simultaneously by the dynamic programming algorithm, 
this has been done for each element using the fixed end-
points of all the others which have been treated as a “fro-
zen approximation” of their optimal values. If these initial 
end-points were reasonable, then a single pass of the 
algorithm would probably suffice, however the new defi-
nitions may allow further improvement so the algorithm 
should be iterated.

If A 0 is the starting set of ends, say, from a second-
ary structure prediction algorithm, then applying 
the dynamic-programming algorithm will generate a 
refined set (A1). If the process is iterated, then in gen-
eral, At → At+1 and when At = At−1, the process has 
converged.

Structure modified diagonal
Predicted contacts tend to be “noisy”, however, when 
large numbers of sequences can be gathered for analysis, 
there is the possibility to infer a packing angle from the 
contact pattern. An approach using a general regression 
fit to the data would be possible but, from a survey of the 
data in the “Results” section, is unlikely to be generally 
applicable. However it is obvious from the contact plots 
of the globular proteins, that many lines fall far from the 
expected 1:1 diagonal gradient.

3 These will only be the segments of odd lengths. The extra computational 
complexity of dealing with both odd and even lengths was considered 
unjustified given the large degree of uncertainty in the data.
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This more dominant effect on the gradient of the 
optimal diagonal derives from variations in the helical 
periodicity (or rise per residue along the axis) of differ-
ent secondary structure types. Fortunately, in proteins, 
there are only two dominant secondary types: the α-
helix, with a period of 1.5 Å/residue and the β-strand, 
with a more variable period spanning the range 2.5–3.5 
Å/residue. (See ref. [17]; Fig.  8 for a plot of these data 
from known structures). A good approximation is 
therefore to take the ratio 1:2 for the relative size of the 
α:β periodicities.

If two SSEs of the same type with the same length 
pack with aligned axes, then their interaction stripe in 
the contact plot will lie on a 1:1 diagonal line. However, 
if one of the elements has double the number of resi-
dues over the same length, then the slope of the diag-
onal packing stripe will run between the corners of a 
rectangle with sides in the ratio 1:2 and this factor will 
need to be accommodated in the calculation of the best 
fit.

To do this, the simple method of calculating the 
moment of inertia about the 1:1 diagonal was retained 
but when one SSE was an α-helix and the other was a β
-strand, then the interaction box was “padded” with 
alternating rows (or columns) of zeros along the dimen-
sion corresponding to the β-strand, allowing all aspects 
of the calculation to remain unchanged. These “dummy” 
rows were, of course, removed when the best fit line was 

marked on the full contact plot and were unnecessary 
when analysing the interaction of two β-strands.

Sequence analysis
Sequences were extracted from the non-redundant NCBI 
sequence databank using the jackHmmer program [22] 
and reduced to a small non-redundant selection for 
sequence analysis [23] which included secondary struc-
ture prediction using PsiPred [24] at: http://bio-
inf.cs.ucl.ac.uk/MetaPSICOV/.

Coevolution analysis
Each of the co-evolution analysis methods described 
below perform their own sequence search using either 
jackHmmer or a similar program. In each server we 
accepted the default search parameters. (These methods 
do not use the reduced alignment referred to above).
PSICOV: Sequences were submitted to the PSICOV 

server [25] at: http://bioinf.cs.ucl.ac.uk/
MetaPSICOV/.
GREMLIN: Sequences were submitted to the Gremlin 

server [26] at: http://gremlin.bakerlab.org/
submit.php.

TM‑helix prediction
TM helices were predicted as a consensus of the meth-
ods calculated by the TOPCONS server [27] at: http://
topcons.cbr.su.se/pred/.

Fig. 2 Dynamic programming score matrix construction. In both parts, a score matrix is shown with the protein sequence (Res. No.) running down 
and segment size running left to right. Any position thus specifies a unique segment on the sequence. In part (a) the raw scores Mk from Eq. 7 are 
entered, minus a penalty against large segments that increases linearly with larger segment size. In part (b) these scores have been summed over 
the triangle lying below each segment position (only positive scores are now shown for clarity) and a dynamic programming algorithm selects 
the highest sum of scores under the constraint the segments do not overlap. For the two segments illustrated (joined boxes), the scores are locally 
maximal for each segment but if, say, the 40 to the right of the boxed 58 had been 60 instead, then a larger first segment would have been selected 
at the small cost of displacing the second segment down one position where it still scores 340, giving a higher total score Reproduced from Ref.[17], 
with permission

http://bioinf.cs.ucl.ac.uk/MetaPSICOV/
http://bioinf.cs.ucl.ac.uk/MetaPSICOV/
http://bioinf.cs.ucl.ac.uk/MetaPSICOV/
http://bioinf.cs.ucl.ac.uk/MetaPSICOV/
http://gremlin.bakerlab.org/submit.php
http://gremlin.bakerlab.org/submit.php
http://topcons.cbr.su.se/pred/
http://topcons.cbr.su.se/pred/
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Results
Transmembrane proteins
An integral transmembrane (TM) protein was selected 
for initial analysis as the helices in this class of protein 
tend to be longer than those found in a globular protein 
of a similar size, giving a clearer signal for testing and 
development purposes. The well characterised family 
of rhodopsins was chosen (Fig.  3), using both the large 
family of eukaryotic GPCR proteins that include vari-
ous opsins, olfactory proteins and neurotransmitters and 
the smaller family of bacteriorhodopsins which act as a 
proton pump in some halophylic species. The first fam-
ily has almost 200 thousand sequences which generates 

a relatively clear signal compared to a few thousand for 
the bacterial family which have a correspondingly greater 
degree of “noise” in their predicted contacts (Fig. 4).

Fixed segment endpoints
The basic algorithm was tested initially without iteration 
using the TM segment endpoints predicted by TOP-
CONS and the results for both rhodopsin families using 
the GREMLIN contacts are shown in Fig.  5. (See the 
“Methods” section for details of the prediction methods).

For the eukaryotic family, it is clear that the algorithm 
has made the obvious choice of packing line assignment 
in every box. Given the clarity of the signal with this fam-
ily, any mis-assignment would have been easily identified 
(Fig. 5a).

For the bacterial family (Fig.  5b), most of the assign-
ments appear to be visually correct and consistent with 
the expected up/down packing expected as the helical 
segments cross the membrane back and forth. Only one 
assignments is inconsistent with this simple topology: 
which is between TM segments 1 and 4. (TM segments 
are the blue diagonal bars in the plots numbered from 1 
at the bottom left to 7, top right) (Fig. 5b). However, this 
pair has a weak signal which would be difficult to assign 
visually.

Free segment endpoints
Although most of the fixed TM endpoints corresponded 
well with the extent of the predicted packing interac-
tions, a clear example of a truncated interaction can be 
seen in the top-left corner involving the packing of TM 
segments 1 and 7. To see if this could be corrected, the 

Fig. 3 Rhodopsin structure. The eukaryotic rhodopsin structure 
(PDB:1gzmA) is shown as a stereo backbone cartoon as rendered 
by the program RASMOL [31] with secondary structures coloured as: 
magenta α-helix and yellow β-strands. The membrane runs horizon-
tally through the middle of the molecule at right angles to the page. 
The seven transmembrane helices run back and forth through the 
membrane

Fig. 4 Rhodopsin contact maps. a The predicted contacts (red) are compared with the observed (green) from the structure of rhodopsin (PDB 
code:1gzm). Top left are the top scoring 180 contacts predicted by the GREMLIN method and bottom-right, from the PSICOV program. b A similar 
plot for the bacteriorhodopsin protein (PDB code: 2brd). The top 50 highest scoring contact predictions have a slightly larger dot and both sets 
omit sequence separations under five
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program was then run with the activation of the full iter-
ated dynamic programming algorithm, taking five cycles 
to allow progressive refinement of the “frozen” endpoint 
approximations provided by the TOPCONS prediction.

The results from this run extended most helix end-
points to varying degrees and incorporated the “lost” 
pairs between segments 1 and 7 in the eukaryotic protein 
(Fig. 6a). Only one of the top 50 interactions (bigger red 
dots) now lies outside an interaction box. For the bacte-
rial protein (Fig. 6b), there were less obvious changes due 
to the shorter loop regions in this proteins, however, the 
only segment pair (1 and 4) to be mis-assigned previously 
in the alternating criss-cross packing pattern had man-
aged to pick-up an additional residue pair and fell into a 
consistent orientation.

Additional observations
Interestingly, from an algorithmic viewpoint, the 
refined end-points attained their final assignments after 
just one pass of the dynamic programming algorithm. 
This is perhaps not unexpected as the predicted starting 
definitions were reasonable accurate. (Discussed further 
below).

From a structural viewpoint, it is worth noting that the 
extension of these segments does not imply that there is a 
larger portion of the TM-helices in the membrane as it is 
quite common for TM-helices to continue unbroken out 
of the membrane and still continue to pack together.

The attainment of a perfect criss-cross packing pat-
tern can generally be taken as a sign that the interactions 
are meaningful and that there are no helices that have 
been completely missed by the prediction. However, this 
cannot be guaranteed as exceptions exist where a “re-
entrant” segment can dip in then out of the membrane on 
the same side or simply run along the membrane surface.

In the better quality data for the eukaryotic protein, 
there was no indication that anything other than a purely 
parallel/antiparallel packing model was required. From 
this it might be assumed that discriminating deviations 
from aligned packing is beyond the resolution of the 
predicted contacts, given that there is an apparent twist 
between pairs of helices in the structure (Fig.  3). How-
ever, pairs of helices often twist together as if forming 
a short segment of a coiled-coil (or double helix). This 
means that contacts between them maintain the same 
spacing which will still be seen as an exact diagonal line.

Globular proteins
The contact maps of globular proteins, whether predicted 
or derived from a known structure, tend to be more 
complex that those for helical transmembrane proteins. 
As the name implies, they are more globular in nature 
which means that for the same sized protein, fewer resi-
dues are required to cross from one side of the protein to 
the other and, without the constraint of the membrane, 
chain segments are not constrained to make a complete 

Fig. 5 Rhodopsin parsed contact maps (fixed ends). The TM segments predicted by TOPCONS are plotted in blue along the diagonal (with a larger 
mark where all methods agree). Each pair of segments defines an interaction box (green) and the predicted contacts (red dots, top left) that fall within 
a box are analysed to determine a preferred packing orientation (green lines). In the lower right half of the plot, the lines are marked at the points 
corresponding to the orthogonal projection of the predicted points onto the line. For comparison, the contacts observed on the known structure 
are marked with magenta dots. a  Data for the eukaryotic rhodopsin family (PDB code: 1gzm) and b  a similar plot for the bacteriorhodopsin protein 
(PDB code: 2brd)
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transversal. For the same reason, SSEs are also less 
restricted in their packing angles which leads to fewer 
simple patterns to recognise.

In addition, the two types of secondary structure can 
co-exist in the same protein and although this does not, 
in principle, affect the analysis of their packing, β-strands 
are roughly double the length of an α-helix with the 
same number of residues. This means that for a β-strand 
exactly aligned with an α-helix of the same spatial length, 
their interaction box will have a rectangular shape with 
interacting pairs falling along a corner-to-corner diago-
nal. As described in the “Methods” section, this correc-
tion was applied to the calculation of the best-fit lines for 
pairs of mixed type SSE interactions.

With this complication in mind, two proteins of the 
α/β-class were selected as test data, both have been 
used previously for testing structure prediction [28]. 
The first is the small bacterial chemotaxis-Y protein 
(PDB:3chyA, 128 residues) which has a very large 
family and consequently good contact and secondary 
structure predictions and consists of a central β-sheet 
packed above and below with α-helices. The second 
protein (PDB:2opiA, 202 res.) is a larger variant of 
the same type but almost double in length with a much 
more complex fold and longer loop regions between 
SSEs (Fig. 7). For both of these, the contacts were pre-
dicted by GREMLIN and the secondary structures by 

Fig. 6 Rhodopsin parsed contact maps (free ends). The data plotted in Fig. 5 was re-analysed with an iterated refinement of the segment end-
points. For the eukaryotic protein (a), little changes except that the first and last segments now include more residue pairs in their interaction box 
(top left). For the bacterial family (b), an incorrect orientation has been corrected between segments 1 and 4 (middle left edge)

Fig. 7 B/A test proteins. The two proteins used as test data for 
the methods are depicted as in Fig. 3. a The chemotaxis-Y protein 
(PDB:3chyA, len=128) and bl-fuculose-1-phosphate aldolase 
(PDB:2opiA, len=202). In both views, the termini lie on the left
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PSIPRED. (See the “Methods” section for details of the 
prediction methods).

Choice of “gap”‑penalty
The basic dynamic programming algorithm used by the 
current method has the equivalent of a gap-penalty in 
sequence alignment to penalise large segments (see Fig. 2 
and legend for details). In the application to the rhodop-
sin data, the segments were sufficiently well defined that 
a “token” gap-penalty of 1 was used (relative to segment 
scores over 100). However, from initial trials with the glob-
ular class of protein this was found to be unsatisfactory.

Although the algorithm is forbidden to include two 
SSEs in one segment, this is only defined in terms of the 
segments from the previous iteration (not the starting 
prediction) and if one of these is deleted then the neigh-
bouring segments can claim its space on the next itera-
tion. If a starting SSE is an erroneous prediction then this 
is desirable behaviour, however, it also allows potentially 
large segments to “swallow” their weaker neighbours 
even when they are correct. A way to prevent this is to 
increase the gap-penalty.

For the two proteins considered in this section, the gap-
penalty was increased from 1 in unit steps until every pre-
dicted segment retained an interaction box. This occurred 
at a value of 4 for both proteins and further increases over 
this produced no apparent change, even at high values. A 
’default’ value of 5 was used in the results below.

Chemotaxis‑Y protein
The parsed contact for the smaller protein PDB:3chyA, 
is shown in Fig. 8 (using the same representation as the 
rhodopsin plots in Fig. 6a). The data exhibits some clear 
packing interaction “stripes” which can be seen to be a 
good reflection (literally) of the observed packing. How-
ever, a few interactions are not predicted including two 
pairs of adjacent β-strands and helices: α2–β3 and β4–α
4. The latter contains a single predicted contact and as 
this cannot show any parallel/anti-parallel preference 
it scores zero and is not reported by the program. The 
interaction between the terminal helices was also missed, 
despite some nearby contacts.

Of algorithmic interest is the treatment of the numer-
ous interactions between β-strands and α-helices, where 
it can clearly be seen that the program has applied the 
appropriate correction to their diagonal gradients. (e.g., 
between β1−α1 and α1−β2, lower left in Fig. 8).

L‑Fuculose‑1‑phosphate aldolase
Compared to rhodopsin and the smaller chemotaxis-Y 
protein, the structure of L-fuculose-1-phosphate aldolase 
(2opiA) contains a number of more complex interac-
tions, including long helices that interact with more than 

one other SSE along their length and adjacent elements 
that continue along the same direction. In general, the 
interactions between SSE were well predicted and even 
using an older data set, were sufficient to allow the cor-
rect fold of the protein to be predicted [28].

In the current data, a few interactions were missed by 
the parsing algorithm: one was between a minor helix (α
3) and a hairpin loop (β7−β8) and between the following 
small helix, α4, and the start of α6. As the algorithm does 
not parse loop interaction, the former is expected and 
for the latter, only a single weak contact was predicted. 
In the same region, an α/β interaction was also missed 
between α5 and the following β6, also because of a weak 
prediction.

From an algorithmic viewpoint, it was interesting to 
note that a parallel interaction was correctly identified 
between two adjacent SSEs (β3−α2) which have a long 
loop between then that allows such packing. (Showing 
that the criss-cross packing pattern should not be univer-
sally expected).

Some unexpected behaviour was observed for the two 
long helices which were both parsed into two separate 
interactions. Although the algorithm is forbidden to 
include two distinct SSEs in the same interaction box, 
there is no constraint to prevent it breaking elements into 
sub-parts.

One of these interactions, involving the first helix, had 
an interaction box involving its amino (N) terminal part 
packing with the first β-strand and a carboxy (C) terminal 

Fig. 8 Parsed contact map for 3chyA. The contacts predicted by 
GREMLIN (red) are plotted for the small β/α protein 3chyA using the 
same conventions as Fig. 6a, with the exception that the blue diago-
nal marks are now smaller for an α-helix and larger for a β-strand
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part (including some of the following loop) allocated to 
an interaction with the longer helix near the end of the 
sequence. (see Fig. 9, left edge).

The second occurrence involved a complex set of pack-
ing between β5−α3 and β7−α6, which for clarity has 
been enlarged in Fig. 10b along with the associated struc-
tures (Fig. 10a). In this interaction, it can be seen that the 
first β α pair (green) is extended and β5 interacts with the 
the N-terminal portion of the helix (orange) whereas α3 
has the C-terminus. (Fig. 10b, top right interaction box in 
the enlarged inset). The preceding strand (β7) is also cor-
rectly identified as an forming an antiparallel interaction 
with its neighbour (β5, yellow).

Discussion
Summary of the results
The simple algorithm developed above for parsing sec-
ondary structure interactions in predicted contact maps 
has been shown to be effective in the transmembrane 
class of protein and error tolerant even when the signal 
becomes degraded.

In the globular class of protein, where the extent of 
interactions are more limited and more complex, the 
algorithm still behaved well, classifying most of the 
important interactions correctly in both a small and a 
large test case.

For the larger protein, this involved examples of the 
algorithm apportioning parts of a single secondary struc-
ture between two different interactions.

Fig. 9 Parsed contact map for 2opiA. The contacts predicted by 
GREMLIN (red) are plotted for the larger β/α protein 2opiA using the 
same conventions as Fig. 8

Fig. 10 Complex packing parsing. A submatrix from Fig. 9 is examined in detail along with the corresponding structures (a). The submatrix is 
expanded as an inset in b, showing its relationship to Fig. 9 in the background. The structure fragments are rendered as before but coloured green 
(residues 86–106) and yellow/orange (residues 159–188)
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Algorithmic evaluation
Need to iterate?
The method was initially designed to use an iterated fro-
zen approximation algorithm (FAA), simply on the theo-
retical grounds that the starting end-points should not 
be optimal. In the application of the algorithm, despite 
the end-points being redefined after the first pass of the 
dynamic programming algorithm, they were not seen to 
move again except when using a low gap-penalty with the 
globular proteins that allowed large segments to ’steal’ 
their neighbours space. With hind-sight, this may be the 
expected behaviour as the dynamic programming algo-
rithm will make an optimal segment assignment on the 
first pass almost certainly by expanding each segment 
to include more interactions. There will therefore be no 
scope for further expansion unless a segment is removed. 
As there can exist situations were weak predictions may 
be better removed, the iterated algorithm was retained 
but with just three cycles.

Undefined starting ends
A drawback of the frozen approximation is that initial 
values need to be provided and these can sometimes only 
be obtained from unreliable predictions, especially when 
there is a paucity of sequence data. The current algorithm 
has a degree of robustness to errors in the starting defi-
nitions as we have seen that it can divide long SSEs into 
multiple interaction regions or, as discussed above, delete 
weak SSEs. Two methods have recently been developed 
to recognise patterns in predicted contact maps [29, 30] 
that could provide more reliable initial data and a com-
bination of these with the current method might be 
beneficial.

Asumming, even with improved starting points, that 
some error might still remain, random end-points could 
be assigned and refined using a stochastic optimisation 
process (the Genetic Algorithm would be an attractive 
possibility). An alternative might be to use a recursive 
divide-and-conquer algorithm. Choosing any element in 
the score matrix divides the sequence into three pieces: 
the segment itself and the regions above and below, one 
of which may have zero length (but not both or there is 
nothing to pack). Similarly, points can then be selected 
in these flanking regions, again dividing them each into 
three pieces, and so on until no unassigned parts of the 
sequence remain. At this stage, the value of the origi-
nal starting element can be evaluated and the algorithm 
back-tracked. If a reasonably large limit can be imposed 
on the smallest segment, the approach might be practical.

However, the most effective approach would probably 
be to make use of variation in the biological data found 
in the multiple sequences (of which there must be many 
if the predicted contacts are at all useful). Variations in 

the secondary structure predictions, or random per-
turbations to them, could all be used to generate initial 
end-points which could also be combined with variation 
of the ’gap’-penalty value to allow segment deletion to 
occur. As the basic algorithm is very fast, taking a frac-
tion of a second to execute, many trials could be made 
and a selection of the best retained.

Conclusions
The method described in this work will provide a useful 
pre-processing analysis of predicted contact data that 
can then be used in the subsequent prediction of a 3D 
structure using coarse grained methods. It is hoped that 
this strategy will help extend the range of protein tertiary 
structure prediction to larger proteins or to data that is 
currently too ’noisy’ to be used by current residue-based 
methods.
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