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Abstract 

Background: The mutual exclusivity of somatic genome alterations (SGAs), such as somatic mutations and copy 
number alterations, is an important observation of tumors and is widely used to search for cancer signaling pathways 
or SGAs related to tumor development. However, one problem with current methods that use mutual exclusivity is 
that they are not signal-based; another problem is that they use heuristic algorithms to handle the NP-hard problems, 
which cannot guarantee to find the optimal solutions of their models.

Method: In this study, we propose a novel signal-based method that utilizes the intrinsic relationship between SGAs 
on signaling pathways and expression changes of downstream genes regulated by pathways to identify cancer sign-
aling pathways using the mutually exclusive property. We also present a relatively efficient exact algorithm that can 
guarantee to obtain the optimal solution of the new computational model.

Results: We have applied our new model and exact algorithm to the breast cancer data. The results reveal that our 
new approach increases the capability of finding better solutions in the application of cancer research. Our new exact 
algorithm has a time complexity of O∗(1.325m)(Note: Following the recent convention, we use a star * to represent 
that the polynomial part of the time complexity is neglected), which has solved the NP-hard problem of our model 
efficiently.

Conclusion: Our new method and algorithm can discover the true causes behind the phenotypes, such as what SGA 
events lead to abnormality of the cell cycle or make the cell metastasis lose control in tumors; thus, it identifies the 
target candidates for precision (or target) therapeutics.
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Background
Cancers are genomic diseases in which genomic pertur-
bations, such as mutations or copy number alterations 
of genes encoding signal proteins, lead to perturbed cel-
lular signal pathways, which in turn causes uncontrolled 
cell growth. An important area of cancer research is to 
discover perturbed signal transduction pathways in can-
cers in order to gain insight into disease mechanisms and 

guide patient treatment. Since contemporary biotech-
nologies can easily detect SGAs in tumor cells, including 
mutations and copy number alterations, a huge amount 
of SGA data is readily available. For example, The Cancer 
Genome Atlas (TCGA) contains somatic mutation, copy 
number alteration, and gene expression data for more 
than ten thousand cancer samples. All of these data give 
us an unprecedented opportunity to study cancer sign-
aling pathways. However, each tumor usually has up to 
hundreds of SGAs, and they disperse in different path-
ways, some driving tumor genesis and others not related 
to cancers at all. Moreover, the SGA event that perturbs 
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a particular pathway in one tumor may be on a different 
gene to the SGA event that perturbs the same pathway 
in another tumor. Hence, it is a challenge to find SGAs 
across different patients that affect a common cancer 
signaling pathway.

Mutual exclusivity is an important property that is 
helpful in searching for driver SGAs, i.e., SGAs that lead 
to tumor development. This property is based on the 
observation that SGA events among the genes constitut-
ing a signaling pathway tend to occur in a mutually exclu-
sive fashion [1, 2], i.e., each tumor usually does not have 
two or more SGA events affecting the same pathway. This 
is because SGAs are relatively rare events, and one muta-
tion or copy number alteration in such a pathway is usu-
ally sufficient to disrupt the signal that prevents cancers.

Although mutual exclusivity has been successfully 
applied in searching for driver SGAs [3–6], the methods 
used in previous research to find driver SGAs have some 
limitations. One limitation is that all previous methods 
applied mutual exclusivity to all tumors in the given data 
set rather than applied this property to a selected subset 
of tumors with SGAs that perturbed a common signal. 
In their solutions, a set of genes with mutually exclusive 
SGA events could easily come from multiple pathways, 
including pathways that are not related to tumor devel-
opment, as SGA events of genes in the same pathway 
having the mutually exclusive tendency does not mean 
that genes with a mutually exclusive SGA pattern are in 
the same signaling pathway. Another problem is that pre-
vious works used heuristic algorithms when the compu-
tational problems of their models were NP-hard  [5, 6], 
which cannot guarantee to find the optimal solutions of 
their models.

In this paper, we first propose an improved model 
that can increase the possibility that genes of a solution 
with mutually exclusive SGA events come from a com-
mon pathway related to tumor development. We first 
compared the expressions of a gene signature in tumor 
and normal cells and used this information to partition 
the tumors under investigation into two subsets: those 
with an abnormal and a normal expression of the gene 
signature. As genes in a gene signature are usually co-
expressed and the expression pattern of a gene signature 
decides biological phenotype or medical condition of 
cells, it is highly likely that the expression of a gene sig-
nature is regulated by a common pathway and the abnor-
mal expressions of the signature in a subset of tumors 
are due to SGA events that perturb the common signal 
that regulates the signature. The partition of tumors was 
also used to evaluate the associations of SGA events to 
the common signal, i.e., to compute the information of 
SGA events with respect to a common signal. We then 
applied mutual exclusivity only to the subset of tumors 

with abnormal expressions of the gene signature (exclude 
tumors with normal expressions of the gene signature) 
and considered the information of SGAs with respect 
to the common signal that regulated the gene signature. 
Hence, our new method is signal-based. We also pre-
sented an exact algorithm to solve the NP-hard computa-
tional problem in our model, which guaranteed to obtain 
the optimal solutions of our model. We successfully 
applied this exact algorithm to search for driver SGAs in 
a previous research [7]. In this new paper, we give detail 
of the algorithm, the proof of its correctness and time 
complexity, and a new application of the algorithm in 
breast cancer data.

In the next two sections, we define the computational 
problem of our model and present an efficient exact algo-
rithm to solve it. In the section Data and Methods, we 
present how to transform the biological problem into our 
computational problem.

The weighted mutually exclusive maximum set cover 
problem is NP‑hard
In this paper, we formulate the driver SGA finding prob-
lem into a weighted mutually exclusive maxi-
mum set cover problem. The formal definition of 
the problem is: given a ground set X of n elements, a 
collection F  of m subsets of X, and a weight function 
w : F → (−∞,∞), if F ′

= {S1, S2, . . . , Sh} ⊂ F  such that 
|(∪h

i=1Si)| is maximized, and Si ∩ Sj = ∅ for any i �= j, then 
we say F ′ is a mutually exclusive maximum set cover 
of X and 

∑h
i=1 w(Si) is the weight of F ′; the goal of the 

problem is to find the mutually exclusive maximum set 
cover of X with the minimum weight, i.e., if there is more 
than one mutually exclusive maximum set cover of X, we 
choose the one with the minimum weight.

In this section, we first prove that the mutually 
exclusive maximum set cover problem, i.e. all sub-
sets in F  have weight 0, is NP-hard, which would in turn 
prove that the weighted mutually exclusive maxi-
mum set cover problem is NP-hard.

We will prove the NP-hardness of the mutually 
exclusive maximum set cover problem by reducing 
another NP-hard problem, the maximum 3-set pack-
ing problem, to it. Recall that the maximum 3-set 
packing problem is: given a collection S of subsets, 
where the size of each subset in S is three, try to find an 
S ′

⊂ S such that subsets in S ′ are pairwise disjoint and 
|S ′

| is maximized.

Theorem  1 The mutually exclusive maximum set 
cover problem is NP-hard.

Proof Let S = {S1, S2, . . . , Sm} be an instance of the 
maximum 3-set packing problem. We create an 
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instance of the mutually exclusive maximum set 
cover problem such that X = ∪

m
i=1Si and F = S.

It is obvious that P = {P1,P2, . . . ,Pk} is a solution of 
the mutually exclusive maximum set cover prob-
lem if and only if P = {P1,P2, . . . ,Pk} is a solution of the 
maximum 3-set packing problem. Thus, the mutu-
ally exclusive maximum set cover problem is NP-
hard.  �

Since the mutually exclusive maximum set 
cover problem is a special case of the weighted 
mutually exclusive maximum set cover problem, 
the Theorem  1 implies that the weighted mutually 
exclusive maximum set cover problem is NP-hard. In 
the Data and Methods section, we will introduce in detail 
how to formulate a biological problem into a weighted 
mutually exclusive maximum set cover problem. 
Next, we introduce background related to this problem.

The research on weighted mutually exclusive 
maximum set cover problems is limited. To the best 
of our knowledge, only Björklund et al.  [8] give an algo-
rithm of O∗(2n) for the related problem of finding k 
mutually exclusive subsets S = {S1, S2, . . . , Sk} such 
that S has the maximum weight sum and covers all ele-
ments in X (the solution may not exist). The weighted 
mutually exclusive maximum set cover problem 
is closely related to the set cover problem, which is a 
well-known NP-hard problem in Karp’s 21 NP-complete 
problems [9]. Much research about the set cover prob-
lem has been focused on approximation algorithms, such 
as papers   [10–13] giving polynomial time approxima-
tion algorithms that find solutions whose sizes are at 
most c log n times the size of the optimal solution, where 
c is a constant. There is also plenty of research about the 
hitting set problem, which is equivalent to the set 
cover problem. In this direction of research, people 
have mainly designed fixed-parameter tractable (FPT) 
algorithms that use the solution size k as a parameter 
for the hitting set problem under the constraint that 
the sizes of all subsets in the problem are bounded by d. 
For example, Niedermeier et  al. [14] gave a O∗(2.270k) 
algorithm, and Fernau et al. [15] gave a O∗(2.179k) algo-
rithm for the 3-hitting set problem, respectively. Very 
recently, people have also studied an extended version of 
the set cover problem that finds a subset F ′ of F  such 
that each element in X is covered by at least t subsets in 
F ′. For example, Hau et  al.  [16] designed an algorithm 
with time complexities of O∗((t + 1)n) for the problem; 
Lu et  al.  [17] further improved the algorithm under the 
constraint that some elements in X are included in at 
most d subsets in F . These two algorithms can be easily 
modified to solve the weighted mutually exclusive 

maximum set cover problem. However, in the appli-
cation of this work, n, the number of tumor samples, is 
large (can be several hundreds). Therefore, use of these 
two algorithms is not practical. At the same time, in this 
study, the number of genes with SGAs is bounded by a 
small number that is much smaller than the number of 
tumors. Hence, there is a need to design better algo-
rithms solving the weighted mutually exclusive 
maximum set cover problem, ones that use m, the 
number of subsets (genes with SGAs) in F , as parameter. 
We offer such an algorithm bellow.

The main algorithm
In this section, we introduce our main algorithm. The 
basic idea of our method is branch and bound. The algo-
rithm first finds a subset in F  and then branches on it. By 
the mutual exclusivity principle, if any two subsets in F  
overlap, then at most one of them can be chosen into the 
solution. Hence, suppose that the subset S intersects with 
other d subsets in F ; then if S is included into the solu-
tion, S and the other d subsets intersecting with S will be 
removed from the problem, and if S is excluded from the 
solution, S will be removed from the problem. We con-
tinue this process until the resulting sub-problems can 
be solved in constant or polynomial time. Letting T(m) 
be the number of leaves of the search tree when calling 
the algorithm with m subsets in F , we can obtain the 
recurrence relation T (m) ≤ T (m− (d + 1))+ T (m− 1) . 
As when d = 0, the subset S does not have a nonempty 
intersection with all other subsets in F , we do not need 
to branch and include S into the solution directly. As a 
result, we can suppose that d ≥ 1. It is easy to verify that 
if d ≥ 1, T (m) ≤ 1.619m satisfies this recurrence relation. 
In this paper, we improve the running time to solve the 
problem by carefully selecting subsets in F  for branching. 
The execution process of the algorithm involves going 
through a search tree and the running of the algorithm 
is proportional to the number of leaves in the search tree.

Before presenting our major results, we prove three 
lemmas. Given an instance (X ,F ,w) of the weighted 
mutually exclusive maximum set cover problem, 
we make a graph G, called the intersection graph, such 
that each subset in F  makes a node in G, and if any two 
subsets have a nonempty intersection, then an edge is 
added between them. For convenience, in the rest of 
paper, we use “a node in the intersection graph” and “a 
subset in F” interchangeably.

Suppose C = (Vc,Ec) is a connected component of 
G. We denote (X ,F ,w)C the sub-instance induced by 
component C, i.e., (X ,F ,w)C = (∪S∈VcS,Vc,w). In the 
algorithm, we say Solution1 is better than Solution2 if 1) 
Solution1 covers more elements in X than Solution2 cov-
ers, or 2) Solution1 and Solution2 cover the same number 
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of elements in x, but the weight of Solution1 is less than 
the weight of Solution2. In the intersection graph, 
neighbor(S) includes S and all nodes that are connected 
to S.

The first lemma shows that we can find the solution of 
the problem by finding the solutions of all sub-instances 
induced by connected components of the intersection 
graph G.

Lemma 1 Given an instance (X ,F ,w) of the weighted 
mutually exclusive maximum set cover problem, 
if the intersection graph obtained from the instance con-
sists of several connected components, then the solution of 
the problem is the union of solutions of all sub-instances 
induced by the connected components.

Proof As the subsets in each sub-instance have no ele-
ments in other sub-instances, we can solve each sub-
instance independently. It is obvious that the optimal 
solutions of all sub-instances make the optimal solution 
of the original instance.  �

In the next lemma, we show that if the maximum 
degree of the intersection graph obtained from the 
given instances is bounded by two, i.e., each subset in 
the instance is overlapped with at most two other sub-
sets, then the problem can be solved in polynomial time 
(Fig. 1).

Lemma 2 Given an instance (X ,F ,w) of the weighted 
mutually exclusive maximum set cover problem, if 

the degree of its intersection graph is bounded by two, then 
the problem can be solved in O(m2) time.

Proof We first prove that if the intersection graph has 
only one connected component, the running time of the 
algorithm WMEM-Cover-2 is polynomial (refer to Fig. 1).

As the degree of the intersection graph is bounded by 
two, the connected component can only be a simple path 
or a simple ring.

Case 1: Suppose that the intersection graph is a simple 
path. The algorithm first finds the middle node (subset) x 
of the path (Note: when the path has even nodes, choose 
any one of the two middle nodes.); then it branches on 
x such that branch one includes the node into the solu-
tion (three subsets are removed from the problem) and 
branch two excludes the node from the solution (one 
subset is removed from the problem). After the branch-
ing, the resulting intersection graphs are two connected 
components of almost equal sizes. Hence, if T(m) repre-
sents the number of leaves in the search tree, we have

From this recurrence relation, we have

Case 2: Suppose that the intersection graph is a sim-
ple ring. The algorithm chooses any node and branches 
on it. Similar to case 1, one branch removes three sub-
sets from the problem while the other branch removes 

T (m) ≤ (T (⌈(m− 3)/2⌉)+ T (⌊(m− 3)/2⌋))

+ (T (⌈(m− 1)/2⌉)+ T (⌊(m− 1)/2⌋)) < 4T (m/2).

T (m) ≤ 4logm = m2.

Fig. 1 Algorithm for the weighted mutually exclusive maximum set cover problem with overlapped degrees bounded by two
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one subset from the problem. After this operation, the 
resulting intersection graphs in both branches are simple 
paths. So with the analysis of case 1, we can obtain

If the intersection graph of the instance has multiple 
connected components, then by Lemma 1, we can solve 
sub-instances induced by connected components inde-
pendently. As each sub-instance induced by a connected 
component can be solved in polynomial time, the original 
instance can be solved in polynomial time. It is easy, then, 
to obtain that the running time is bounded by O(m2).

The correctness of the algorithm is straightforward. 
The algorithm WMEM-Cover-2 first chooses a node in 
the intersection graph, then branches on it. One branch 
includes the node into the solution while the other 
branch excludes the node from the solution. Hence, all 
possible combinations of mutually exclusive covers are 
considered and the algorithm returns the best solution, 
i.e., the solution that covers the maximum number of ele-
ments in X and has the minimum weight.  �

As an anonymous reviewer suggested, if the degree of 
nodes in the intersection graph is bounded by 2, then the 
problem can be solved by a dynamic programming algo-
rithm with a time complexity of O(m). The basic idea is 
that if v1, v2, ..., vk make a simple path and f(i) represents 
the current best sub-solution chosen from v1, v2, ..., vi, 
then f (i + 1) can be obtained from f (i − 1), vi+1 and f(i). 
We have, however, decided to leave this for future work.

In the next lemma, we present how to improve the run-
ning time of the algorithm when the degree of nodes in 
the intersection graph is bounded by three (Fig. 2).

Lemma 3 Given an instance (X ,F ,w) of the weighted 
mutually exclusive maximum set cover problem, if 
the degree of its intersection graph is bounded by three, 
then the problem can be solved in O∗(1.325m)1 time.

Proof We suppose that the intersection graph always 
has a node whose degree is less than three. At the begin-
ning, if all nodes in the intersection graph have degree 
three, then after the first branching, both subgraphs will 
have at least three nodes whose degrees are at most two. 
After that, when the algorithm makes new branchings, it 
is obvious that there are always new nodes whose degrees 
will be reduced. Hence, after the first branching, the 
intersection graph will always keep at least one node of 
degree bounded by two.

T (m) ≤ (m− 3)2 + (m− 1)2 < 2m2.

1 Note: We use a star * to represent that the polynomial part of the time 
complexity is neglected.

The algorithm WMEM-Cover-3   (refer to Fig.  2) first 
always finds a node x of degree three that is connected 
to a node with minimum degree (less than three) in the 
intersection graph directly or through a simple path, then 
branches at x. We analyze the running time of the algo-
rithm WMEM-Cover-3 by considering the following cases.

Case 1. The node x is connected by a simple path P 
such that one end of the path has degree one (refer to 
Fig.  3a). In the branch including x into the solution, x 
and three neighbors of x are removed. In the branch 
that excludes x from the solution, x is removed; the sim-
ple path P becomes an isolated component and the sub-
instance induced by P can be solved in polynomial time; 
thus at least two nodes are removed in this branch. We 
obtain the recurrence relation

which leads to T (m) ≤ 1.273m.
Case 2. Both ends of the simple path P are connected 

to x (refer to Fig. 3b), where in this case, the length of the 
simple path P is at least two. Then in the branch includ-
ing x into the solution, as with case 1, at least four nodes 
are removed and in the branch excluding x from the solu-
tion, the path P also becomes an isolated component. 
Hence, we have

which leads to T (m) ≤ 1.221m.
Case 3. One end of the simple path P is connected to 

x while the other end of P is connected to node y that is 
not x, where x and y can be connected by an edge or not 
(refer to Fig. 3c, d). In the branch that includes x into the 
solution, as with the above cases, at least four nodes are 
removed. In the other branch, after x is removed, a node 
of degree one is generated. If no node(s) of degree one 
is(are) in the connected component with nodes of degree 
three, then the node(s) of degree one is(are) in connected 
component(s) bounded by two. Hence, we have

which leads to T (m) ≤ 1.273m. If there is at least one 
node of degree one in the connected component with 
nodes of degree three, then the next branching is as in 
Case 1 (with node x removed). Therefore, even in the 
worst case, we have the recurrence relation

which leads to T (m) ≤ 1.325m.
The above analysis has included all possible situations 

where a node of degree at most two is connected to a 
node of degree three. Hence, we can obtain that the time 
complexity of the algorithm is O∗(1.325m).

T (m) ≤ T (m− 4)+ T (m− 2),

T (m) ≤ T (m− 4)+ T (m− 3),

T (m) ≤ T (m− 4)+ T (m− 2),

T (m) ≤ T (m− 4)+ (T (m− 5)+ T (m− 3)),
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As with Lemma  2, the correctness of the algorithm 
WMEM-Cover-3 is obvious.  �

Next, we present the main results.

Theorem  2 The weighted mutually exclu-
sive maximum set cover problem can be solved in 
O∗(1.325m) time.

Proof Like the above lemmas, the correctness of the 
algorithm WMEM-Cover-main is trivial (refer to Fig. 4) . 
We only prove the running time of the algorithm.

The algorithm WMEM-Cover-main always keeps 
searching for the node x with the maximum degree in the 
intersection graph; then it branches on the node. If the 
degree of x is d, then we obtain the recurrence relation

Furthermore, if d ≤ 3, the algorithm WMEM-Cover-
main will call the algorithm WMEM-Cover-3. Hence, 
we always have d ≥ 4 when we use algorithm WMEM-
Cover-main to branch, which leads to T (m) ≤ 1.325m.  
From Lemma  3, if d ≤ 3, we also have T (m) ≤ 1.325m.  
Therefore, the overall running time of the algorithm 
WMEM-Cover-main is O∗(1.325m).  �

T (m) ≤ T (m− (d + 1))+ T (m− 1).

Fig. 2 The main algorithm for the weighted mutually exclusive maximum set cover problem with overlapped degrees bounded by three

a b

x

a a b

x xy y

a a b

x xy y

a
b

x x

aa b

c d

Fig. 3 Different structures in the intersection graph with degree bounded by three. The dashed line means that nodes a and b are connected by an 
edge or a simple path
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Data and methods
Data on somatic mutation, copy number alteration, and 
gene expression from 1062 cancerous tumors and 113 
normal control samples (note: normal samples have 
only expression data) of breast tissue were downloaded 
from the TCGA [18]. Data of gene signatures with sizes 
of less than 50 genes were collected from the papers 
listed in Additional file  1: Table S1. A gene signature is 
a set of genes such that their combined expression pat-
tern decides biological phenotype or medical condition 
of cells. For example, high expression of genes in a gene 
signature related to cell proliferation are associated with 
worse clinical outcomes [19, 20]. Ellsworth et  al. have 
shown that high expression of genes in one particular 
gene signature are related to metastases [21]. We sup-
pose that genes in a signature are regulated by a common 
signal that can be perturbed by SGA events. The per-
turbations of the signal may cause the abnormal expres-
sion of genes in the signature and change the behaviors 
of cells; thus the normal cells become cancerous ones. In 
this study, first, we used expression status of gene signa-
tures as the signal readout to find tumors that had SGAs 
that perturbed common signals. Then, we used our new 
algorithm to search for cancer driver SGAs by applying 
mutual exclusivity only on the tumors that perturbed 
common signals.

Before generating the instances for the weighted 
mutually exclusive maximum set cover problem, 
we performed the following data pre-processing:

First, we found genes that had valid SGA events for 
each tumor, i.e., the SGA events would perturb the sig-
nals if those genes were on the pathways that carried 
the signals. If a gene had non-silent somatic mutation 
in a tumor, then the SGA event for the gene was valid in 

the tumor. If a gene had copy number alteration (with 
a GISTIC [22] score of 2 or −2) in a tumor, we further 
checked if the expression of the gene in the tumor had 
corresponding changes. For example, if a gene was ampli-
fied (with a GISTIC score 2) in a tumor, then the SGA 
of the gene was valid if the expression of the gene also 
increased significantly in the tumor. For each gene g, we 
used the distribution of the expression of the gene in all 
tumors with a GISTIC score 0 (no amplification and no 
deletion) as the background and obtained the mean mg 
and standard deviation dg. The mg and dg were then used 
to make a z-transformation for the expression of the gene 
in tumors with copy number alteration of the gene. If the 
gene g had a GISTIC score of 2 and z-score ≥ 1.64 or a 
GISTIC score of −2 and z-score ≤ −1.64 (the gene was 
up- or down-regulated with a p value of at least 0.05) in 
a tumor, the SGA event was valid for the gene g in the 
tumor. We removed genes that had valid SGA events 
in no more than five tumors and obtained a final set of 
genes with valid SGA events for each tumor.

Then for each gene signature, we found two tumor 
subsets Sp and Sn such that genes in the signature were 
expressed abnormally for all tumors in Sp and had expres-
sion patterns similar to normal cells for all tumors in Sn. 
By comparing the middle value of expression of the gene 
in normal samples, we were able to obtain the expres-
sion changes of the gene in the tumors. We deemed that 
a gene was up-/down-regulated significantly in a tumor 
if the expression change of the gene increased/decreased 
at least threefold in the tumor. If more than 75% of 
genes in a signature were up-regulated significantly in a 
tumor, we said that the gene signature was up-regulated 
in the tumor and added the tumor into Sp; similarly, we 
added the tumor into Sp if more than 75% of genes in 

Fig. 4 The main algorithm for the weighted mutually exclusive maximum set cover problem
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the signature were down-regulated significantly (the sig-
nature was down-regulated in the tumor). A tumor was 
added into Sn if the changes in expression level of at least 
50% of genes in the signature were less than twofold. We 
used a relatively strict threshold to find up-/down-reg-
ulated genes and partition tumors in order to increase 
the probability that the tumors in Sp had SGAs that per-
turbed a common signal while the tumors in Sn did not 
have SGAs that perturbed this common signal. Tumors 
in Sp were further divided into two sub-groups according 
to if the gene signature was up- or down-regulated in the 
tumors. The sub-group sizes were usually very different, 
and the tumors in the smaller sub-group were removed 
from Sp if the size of the smaller sub-group was less than 
10% of the size of the large sub-group. If the size of the 
small sub-group was not within 10% of the size of the 
large sub-group, we did not further consider this gene 
signature because if the signature was up- and down-reg-
ulated in considerable cancerous tumors, it appeared less 
likely to be related to cancer. We continued to work on a 
gene signature if the Sp had more than 30 tumors.

Finally, we calculated the weights of genes with SGAs 
for each gene signature such that the weights reflected 
the information between SGA events and tumors in Sp , 
which were supposed to have SGAs that perturbed a 
common signal. For example, if there are two genes g1 
and g2 such that g1 has 10 SGA events in tumors in Sp 
and 2 SGA events in tumors in Sn while g2 has 10 SGA 
events in tumors in Sp and 20 SGA events in tumors in 
Sn, then by intuition, g1 is more likely to be on the path-
way that carries the signal to regulate the expression of 
genes in the signature as there are too many cases where 
the SGA events of g2 do not affect the expression of genes 
in the given signature. So the gene g1 should have bet-
ter (smaller) weight. The previous methods [5, 6] did not 
treat g1 and g2 differently. We used the hypergeometric 
distribution [23] to measure the information between the 
SGA events and tumors in Sp, i.e., to define the weights of 
genes with SGAs. The introducing of the weights is help-
ful for using mutual exclusivity to search for genes that 
are from the same pathway and carry a common signal.

After the pre-processing, then, for each gene signa-
ture, we obtained two tumor subsets, Sp and Sn, and a 
weighted gene subset GSGA, where Sp was a set of tumors 
supposed to have SGAs that perturbed the common sig-
nal regulating the expression of genes in the signature, Sn 
was a set of tumors not supposed to have SGAs that per-
turbed this common signal, and the weight of a gene in 
GSGA reflected the information of the SGA events of the 
gene with respect to the tumors in Sp (or to the common 
signal). For each gene signature, we made an instance of 
the weighted mutually exclusive maximum set 
cover problem by transforming each gene g in GSGA into 

a subset Sg of Sp such that the Sg was a subset of tumors 
that had valid SGA events for the gene g. The minimum, 
average and maximum sizes of all Xs, Fs, and elements of 
Fs can be found in Additional file 1: Table S2.

For example, suppose for a given gene signature, we 
have Sp = {T1, . . . ,T5}, GSGA = {g1, g2, g3}, where the 
weights of g1, g2, g3 are w1, w2, w3, respectively; further, 
suppose that g1 has valid SGAs in tumors T1 and T2; g2 has 
valid SGAs in tumors T2, T3, and T4; and g3 has valid SGAs 
in tumors T2 and T5, then the instance of the weighted 
mutually exclusive maximum set cover problem 
is X = {T1, . . . ,T5}, F = {{T1,T2}, {T2,T3,T4}, {T2,T5}} 
with the weight of {T1,T2}, {T2,T3,T4}, {T2,T5} (i.e., g1 , 
g2, g3) to be w1, w2, w3 respectively. Then we used our 
new algorithm to find the optimal solution, called the up-
stream module, for the instance. The up-stream module 
is a subset of genes such that (1) the overall SGA events 
of the genes in the subset are mutually exclusive and 
cover the maximum number of tumors in Sp; and (2) the 
weight sum of genes in the subset is minimized. As for 
each gene signature, the SGA events of genes in the up-
stream module are mutually exclusive and have strong 
information with respect to tumors in Sp, providing 
strong evidence that genes in the up-stream module are 
on the same pathway that carries the signal regulating the 
expression of genes in the signature.

Results
We identified 59 up-stream modules (Additional file  1: 
Table S3). The sizes of the modules ranged from 3 to 12 
genes, with an average of 5.66 genes. We evaluated the 
results by mapping them to existing knowledge using 
Ingenuity Pathway Analysis (IPA–http://www.ingenuity.
com ); we found that 32 of our up-stream modules were 
significantly enriched in one of the IPA pathways (p value 
< 0.01, q value < 0.02); meanwhile 44 up-stream mod-
ules were strongly associated with different diseases (p 
value < 0.001, q value < 0.001), and among these 44, 25 
of the modules were related to cancers. We understand 
that while knowledge about the pathways and diseases in 
IPA may be incomplete, it is, nonetheless, an accessible 
approach that has been widely used by biologists to eval-
uate their results. Thus, evaluations with IPA can be used 
as references for the overall performance of the results.

We further conducted a literature search to verify the 
up-stream modules and found that the SGA events of 
genes in many modules were related to cancer or tumor 
development. One example is up-stream module 59, 
which included amplifications of CCND1 and NDRG1, 
and amplifications and mutations of TERF1 and USP5 
(refer to Fig.5a). CCND1 is a well-known oncogene (the 
function enhancement of the gene will lead to tumors) 
that has been found to be amplified in breast cancer 

http://www.ingenuity.com
http://www.ingenuity.com
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and head and neck carcinoma [24–26]. CCND1 can be 
used as a therapeutic target in cancer therapy [26, 27]. 
The amplification or overexpression of NDRG1 causes 
problems in hepatocellular carcinoma [28], esophageal 
cancer [29], and lung cancer [30]. Thus, reducing the 
expression of NDRG1 can decrease tumor growth rate 
[31]. Increased or high level TERF1/TRF1 expression 
has been observed in a large percentage of adult T-cell 
leukemia [32] and colorectal cancer samples [33]. The 
overexpression of USP5 has been found to be related to 
melanoma as it results in suppression of a very impor-
tant tumor suppressor (the function loss of the gene will 
cause cancers)—p53 [34]. The above previous discoveries 
by other researchers support our findings for the TCGA 
breast cancer samples. The gene signature correspond-
ing to up-stream module 59 was obtained from Bar-On’s 
paper [35]. The authors did not mention the function or 
biological process of this gene signature. As CCND1 in 
the up-stream module is a well-known gene related to the 
cell cycle, we presume that the genes in the signature are 
associated with the biological process of the cell cycle. 
When using the PASTAA database [36] to search for 
enriched transcription factor binding sites of genes in this 
signature, we found that the binding sites of transcription 
factors Ap-2alpha and Ap-2gamma were the most highly 
enriched region among the promoters of the genes in this 
signature (Additional file 1: Table S4). Transcription fac-
tors Ap-2alpha and Ap-2gamma are known to regulate 
genes involved in the cell cycle [37–39]. Therefore, it is 
highly likely that genes in this signature are involved in 
cell cycle processes. This presumption is further sup-
ported by additional literature, in which we found that 
both TRF1 [40] and USP3 [34] play a role in regulating 

the cell cycle. Hence we conclude that the SGA events 
of genes in up-stream module 59 contribute to breast 
tumors through the perturbation of the cell cycle.

Another example is up-stream module 35, which has 
four genes (refer to Fig.5b): MAP2K4, RSF1, CHD7, and 
MUC2; MAP2K4 had both mutations and deletions in 
tumors; CHD7 had amplifications and mutations; RSF1 
had amplifications and MUC2 had mutations in tumors. 
The literature provides evidence that SGA events of 
genes in module 35 contribute to tumor development. 
MAP2K4 is highly mutated in breast tumors [41]. Ahn 
et  al. found that MAP2K4 functioned as a tumor sup-
pressor in lung adenocarcinoma [42]. Vang et al. discov-
ered that ovarian cancer patients with RSF1 amplification 
or overexpression had a significantly worse clinical out-
come [43]. Low expression of CHD7 has been associated 
with better survival [44], and the depletion of CHD7 has 
been shown to reduce cell proliferation [45]. The loss of 
MUC2 expression has been related to recurrence of colo-
rectal carcinoma while the positive expression of MUC2 
has been associated with longer survival [46]. The sup-
pression of MUC2 has also been found to enhance the 
proliferation and invasion of colorectal cancer cells [47]. 
The gene signature corresponding to this up-stream 
module has also been related to metastasis [21]; we fur-
ther checked the relations between these four genes and 
the biological process of metastasis. MAP2K4 was found 
to be a tumor and metastasis suppressor gene [42, 48], 
which means that mutation and deletion of MAP2K4 
will enhance the metastasis of tumors. It was also found 
that a high expression of RSF1 was associated with lymph 
node metastasis in ovarian clear cell carcinoma [49]. Baj-
pai et  al. claimed that CHD7 gain-of-function may play 

Fig. 5 SGA events in up-stream-modules 59 and 35
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a role in tumor progression and that CHD7 function is 
essential for the expression of TWIST and SLUG genes, 
critical regulators of EMT and metastasis [50]. Hanski 
et  al. found that the suppression of MUC2 was associ-
ated with liver and lymph node metastasis of colorectal 
carcinomas [51]. Hence, all four genes in this up-stream 
module are related to cell metastasis regulation, which 
perfectly matches the biological process of the down-
stream gene signature.

Finally, we evaluated the overall performance of our 
method by comparing it with a well-known method, 
Dendrix [5], which also uses mutual exclusivity to search 
for driver SGAs. The goal of Dendrix is to seek solutions 
with a balance between coverage and mutual exclusiv-
ity of SGAs, i.e., the SGA events of genes in a solution 
should cover as many tumors as possible while having as 
few overlaps as possible. Both our method and Dendrix 
use the mutually exclusive property. The major advantage 
of our method is that each of our solutions carries the 
information with respect to a common signal. Dendrix 
has one merit in that it allows the small overlap of SGAs. 
Remember that for each gene signature, we obtained two 
tumor subsets Sp and Sn such that tumors in Sp were sup-
posed to have SGAs that perturbed a common signal 
while tumors in Sn were not supposed to have SGAs that 
perturbed this common signal. Hence, if genes in a solu-
tion have any SGA events that perturb the common sig-
nal, the SGA events should occur mostly or be enriched 
in tumors in Sp and happen only in a small number of 
tumors that are assigned into Sn by computation or data 
error in the last step. We used the hypergeometric dis-
tribution to measure the enrichment p-values of SGAs, 
where p values were associated with the information of 
the SGA events of a solution with respect to a common 
signal.

There are three major innovations in our framework. 
First, we applied mutual exclusivity to a preselected sub-
set Sp of tumors that are supposed to have SGA events 
that perturb a common signal that regulates the expres-
sion of a given gene signature. Second, we defined 
weights for SGA genes, or pathway candidates, which 
reflect the information with respect to the common sig-
nal that regulates the gene signature and pre-selected 
candidates of top weights for finding driver SGAs/signal-
ing pathways related to cancer development. Finally, we 
presented an exact algorithm that guarantees to find the 
optimal solution of the model to search for driver SGAs. 
We evaluated the performance of our method according 
to the above mentioned three aspects. A comparison of 
results from different methods or settings is shown in the 
Fig. 6, where the Y axis represents the negative log (base 
2) values of the enrichment p values. First we applied 
Dendrix to Sps that are subsets of tumors decided by gene 

signatures (Dendrix-all) and S′ps that are random tumor 
subsets with the same sizes as corresponding Sps (Den-
drix-random). Dendrix-random is similar to the situa-
tion in the original Dendrix, as all tumors in a given data 
set can be considered as a random tumor subset from all 
cancer tumors. The figure shows that using preselected 
tumor subsets improves the results by an average of 8.62. 
Then we applied Dendrix to Sps and constrained SGA 
gene candidates to those with weights within the top 200 
and less than 0.2 (Dendrix-top200). The results were then 
further improved more than 20.12 on average. Finally, we 
applied our own exact algorithm (WMEM) to the same 
data set as that used for the Dendrix-top200. The results 
were improved another 6.59 on average. As the values in 
the figure were log (base 2) values of the p-values, a dif-
ference of 6.59 corresponded to a 96-fold difference in 
the original p-values. Therefore, by considering and using 
the weights of SGAs, we can obtain solutions with high 
information with respect to common signals.

Conclusion and future works
In this paper, we introduced an innovative model and 
an efficient exact algorithm that can handle both mutual 
exclusivity and the weight arising from it. The new 
model, which is signal-based and considers the informa-
tion with respect to the common signals, utilizes mutual 
exclusivity in a proper manner while the new exact algo-
rithm guarantees to obtain optimal solutions of the new 
method. The results showed that our new method and 
algorithm could discover the true causes behind the phe-
notypes, such as what SGA events lead to abnormality of 
the cell cycle or make the cell metastasis lose control in 
tumors; thus, it provides target candidates for precision 
(or target) therapeutics.

The weighted mutually exclusive maximum set 
cover problem for the new model is NP-hard. The main 
reason the NP-hard problem is handled so efficiently by 
our new algorithm is that we have utilized parameterized 
technologies. This means that the running time of the 

Fig. 6 Comparing the enrichment p values of different methods
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new algorithm increases exponentially only in the param-
eter, which can be constrained within a small number, 
rather than to the problem input size, which is usually 
big and difficult to control. The running time of our algo-
rithm is O∗(1.325m), which can solve the NP-hard prob-
lems of application in a reasonable amount of time. We 
believe that the running time can be further improved.

While reducing the running time to solve the 
weighted mutually exclusive maximum set cover 
problem, which has important applications in cancer 
study, is a benefit, another variant of the problem should 
be particularly paid attention to. Strict mutual exclusiv-
ity is the extreme case; some tumors may have more than 
one SGA event to perturb one particular pathway. Hence, 
we need to relax the strict mutual exclusivity and modify 
the problem to a weighted small overlapped maxi-
mum set cover problem, which allows each tumor to 
be covered by a small number (such as two or three) of 
SGA events. This is another important problem that is 
worthwhile and needs to be solved quickly.
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