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Abstract 

Background: Measuring sequence similarity is central for many problems in bioinformatics. In several contexts 
alignment-free techniques based on exact occurrences of substrings are faster, but also less accurate, than alignment-
based approaches. Recently, several studies attempted to bridge the accuracy gap with the introduction of approxi-
mate matches in the definition of composition-based similarity measures.

Results: In this work we present MissMax, an exact algorithm for the computation of the longest common substring 
with mismatches between each suffix of a sequence x and a sequence y. This collection of statistics is useful for the 
computation of two similarity measures: the longest and the average common substring with k mismatches. As a fur-
ther contribution we provide a “relaxed” version of MissMax that does not guarantee the exact solution, but it is faster 
in practice and still very precise.
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Background
Sequence similarity has long been playing a crucial role 
in Computational Biology and Bioinformatics as a key 
ingredient in the prediction of functional and structural 
properties, and of evolutionary mechanisms.

Since the introduction of high throughput techniques, 
hundreds of fully sequenced genomes of different species 
have been made available at a fast pace. The increasing 
number of available sequences makes all kind of sequence 
analysis, most notably assembly, phylogenetic recon-
struction, and multiple alignments, more challenging due 
to the time consuming and memory-demanding opera-
tions that need to be carried out on these huge datasets.

To try to cope with the increasing demand of time effi-
ciency, a wide range of alignment-free (or composition-
based) approaches have been proposed. The idea behind 
compositional approaches is to model each sequence 
in terms of the substrings that it contains, and then to 

devise appropriate similarity measures to compare two 
sequences based on this model [19].

Traditionally, alignment-free approaches rely on the 
frequency or presence of L-mers, for a fixed length L, and 
consider exact matches. Although usually very fast, in 
several contexts such approaches can be much less accu-
rate than alignment-based counter-parts.

For this reason, within the last decade, several 
approaches have been proposed to improve the ability 
to better capture the nature of the similarity/dissimilar-
ity between biological sequences with alignment-free 
techniques. Among the wide literature, we can mention, 
for example, the introduction of over-representation, 
rather than the raw frequency count, in the definition of 
the similarity measure for fixed length [17] and maximal 
length [3, 4] components; and the definition of distances 
based on average longest shared substrings [18], which 
frees the analysis from fixing the length of the substrings 
to analyse.

More recently, several studies proposed to model 
the intrinsic variability of biosequences by consider-
ing approximate matches with a bounded number of 
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mismatches, or by using spaced-words, in the charac-
terization of the sequence composition. Several related 
experiments showed that, in the context of phyloge-
netic tree reconstruction, the introduction of approxi-
mate matches can improve the quality of the detected 
sequence similarity [5, 13, 14].

Given these premises, we focused our attention on 
these more involved formulations of the alignment-free 
approach, in particular on those allowing for approxi-
mate matching within a bounded number of mismatches.

As a warm up we will give a brief overview of recently 
proposed approaches, and will use some of the presented 
results to introduce further notation used throughout the 
paper.

Let us consider two sequences x = x1 . . . xn and 
y = y1 . . . ym defined over an alphabet �. Let Xi = xi . . . xn 
and Yj = yj . . . ym be the suffixes of x and y starting at 
position i and j respectively. In the following we will 
assume, without loss of generality, that both sequences 
have the same length n.

An early result on speed-ups for the computation of 
empirical statistic with mismatches was presented in 
[15], where an O(n2) algorithm was proposed to com-
pute the number of occurrences with k mismatches of 
all the substrings of length L in a string x of length n. 
The key feature of this algorithm is that its complexity 
is independent on the number of mismatches that are 
allowed. The algorithm was proposed within the pat-
tern discovery framework [7, 8], thus the need to count 
the occurrences within the same string in order to sub-
sequently estimate their over-representation. However, 
the proposed solution can be easily adapted to com-
pute the number of occurrences of all the substrings 
of length L of a string x in another string y, leading to 
the definition of a similarity measure between the two 
sequences based on the frequency of shared approxi-
mate occurrences.

The first formal definition of similarity measures based 
on shared maximal substrings with mismatches was 
introduced in [5]. We report here the main concepts, 
but with a slightly different notation. Let LCPk(x, y) be 
the length of the longest common prefix between two 
strings x and y when k mismatches are allowed. Now, 
consider the set of LCPk(Xi,Yj) defined for all the suf-
fixes Xi, i = 1, 2, . . . , n of x, and for all the suffixes 
Yj , j = 1, 2, . . . , n of y.

The following measures of cross correlation were 
defined for a given number of mismatches k:

Definition 1 MaxCork(i) MaxCork(i), i = 1, 2, . . . , n, is 
an n-length vector storing the maximum value attained 
by LCPk(Xi,Yj) for each i over all values correspondingly 
spanned by j.

Definition 2 AvgCork(i) AvCork(i), i = 1, 2, . . . , n, is 
an n-length vector storing the average value attained by 
LCPk(Xi,Yj) for each i over all values correspondingly 
spanned by j.

Definition 3 MaxCork MaxCork is the maximum value 
attained by LCPk(Xi,Yj) over all values of i ∈ (1, 2, . . . , n) 
in x and j ∈ (1, 2, . . . , n) in y.

Definition 4 AvCork AvCork is the average value 
attained by LCPk(Xi,Yj) over all values of i ∈ (1, 2, . . . , n) 
of x and j ∈ (1, 2, . . . , n) in y.

For measures such as MaxCork and AvCork in [5] it was 
also proposed a subquadratic algorithm for their compu-
tation. This can futher be improved to O( n2

log n
) [6].

In [14] kmacs, a greedy heuristic, was proposed to 
generalize the well known Average Common Substring 
(ACS) distance [18] so to account for k mismatches when 
considering the longest common substring between pairs 
of positions in the two strings. We refer to this variant of 
the ACS problem as kACS. The algorithm proposed in 
[14] has time complexity O(nkz), where z is the maximum 
number of occurrences in y of a string of maximal length 
occurring in both x and y. Being based on a heuristic, this 
method is very fast in practice, but it does not guarantee 
to find the optimal solution to the problem. Note that the 
kACS problem can be described in terms of the measures 
of cross correlation previously defined as the mean over 
all positions i in x of MaxCork(i).

We end our overview with some recently published 
theoretical results. In [9] the k-LCF problem is intro-
duced as the generalization of the longest common sub-
string (there named “factor” to avoid confusion with 
LCS as the Longest Common Subsequence problem) as 
finding the longest common shared match between two 
sequences when up to k mismatches are allowed. Also 
this problem can be described in terms of the previously 
defined scheme, as it corresponds to MaxCork. In [9] an 
O(nm) time and O(1) space solution is provided for a 
generic k and two strings of length n and m respectively, 
and also an O(n+m) log(n+m) solution for the case 
k = 1. Finally, in [2] an O(n logk+1 n) time and O(n) space 
algorithm was proposed to provide a subquadratic solu-
tion to the kACS problem.

Within this framework we developed a new strat-
egy based on filtering for the computation of the long-
est common substring with mismatches between all the 
suffixes of a sequence x and another sequence y. This 
primitive is at the basis of recently proposed similarity 
measures for the problem of phylogentic tree reconstruc-
tion as the longest and the average common substring 
distances with mismatches.
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Formally, we will compute the values of MaxCork(i), 
for all i = 1 . . . n, because this vector allows us to derive 
the values of both MaxCork (or equally k-LCF) and of 
kACS, being respectively:

The paper is organized as follows: in "Methods" section 
we will describe the proposed filtering-based approach 
to compute the values of all MaxCork(i). In "Results 
and discussion" section we will discuss the results of a 
set of experiments we devised to test the performances 
of the proposed algorithms in practice. In "Concluding 
remarks" section we will lead to the conclusions.

Methods
Our aim is to compute the values of MaxCork(i) for 
each position i in x. The main idea behind the proposed 
approach is to avoid the computation of the LCPk(Xi,Yj) 
for all pairs of positions i ∈ x and j ∈ y. To this purpose 
we will compute the value of MaxCork(i + 1) starting 
from the value of the already computed MaxCork(i). This 
procedure will initially give us a candidate longest match 
Lmax that is at least equal to MaxCork(i − 1)− 1. We will 
use this information, among some others that will be dis-
cussed in the following subsections, to reduce the cardi-
nality of the set C of possible candidates for approximate 
matches longer than Lmax, and then we will verify them.

Note that, when computing the MaxCork(i) for each i, 
one can either take track of their maximum value to com-
pute MaxCork, or of their sum to later compute kACS at 
no extra cost.

In the description of the algorithm we will refer to 
techniques that allow us to keep the worst case analysis 
within the claimed worst case quadratic bound, but for 
practical purposes we will use different approaches that 
will be discussed in a dedicated subsection.

Initial set up: MaxCork(1)

We start with the computation of MaxCork(1) as the 
maximum approximate match with k mismatches of the 
suffix X1 against the sequence y. For this purpose we will 
start from, and exploit, the classical concept of longest 
common substring (without any mismatch allowed).

Definition 5Longest common substring Given two 
sequences x and y, of length n, find the maximum 
length L for which a pair of indexes (i, j) exists such that 
xi . . . xi+L−1 = yj . . . jj+L−1.

(1)MaxCork = max
i=1...n

MaxCork(i)

(2)kACS =
1

n

∑

i=1...n

MaxCork(i)

The problem of finding the longest common substring 
between two sequences is a well known problem in pat-
tern matching that can be solved in linear time by the tra-
versal of a generalized suffix tree of the two sequences. 
More in details, we want to be able to find the longest 
common match starting at any two positions i in x and 
j in y. This problem can be solved through a call to the 
Lowest Common Ancestor of the corresponding leaves 
ni and nj in the generalized suffix tree. The length of the 
label of the path from the root to LCA(ni, nj) is the length 
of their longest common prefix. LCA queries can be car-
ried out for any i and j in constant time after a linear-time 
preprocessing step [10].

In particular, similarly to the routine step in [14], we 
will perform k + 1 jump-extensions to compute the long-
est approximate match between X1 and the generic Yj . 
As after the first jump-extension of length l1 we know 
we will have a mismatch, we will call LCA on the nodes 
corresponding to positions 1+ l1 + 1 and j + l1 + 1, and 
repeat the procedure until the (k + 1)-th mismatch is 
found. This is repeated for each j = 1 . . . n, thus taking 
O(kn) time overall.

Minimum MaxCork from the previous step
Assume now we have computed L = MaxCork(i), and we 
want to compute MaxCork(i + 1). Let j be the position in 
y of a longest approximate match of Xi. Two cases may 
hold, which are illustrated in Figs. 1 and 2 respectively:

1. xi = yj: in this case the k mismatches all lie within 
x[i + 1, i + L− 1] and y[j + 1, j + L− 1], respec-
tively. Therefore we have LCPk(Xi+1,Yj+1) = L− 1 . 
Note that this might or might not be the final 
MaxCork(i + 1) over all positions of y.

2. xi �= yj: in this case the mismatch between the 
first characters will be lost when considering the 
alignment of i + 1 and j + 1, leading to k − 1 mis-
matches in the following L− 1 positions. After 
L positions we know we must have a mismatch, 
which is now counted as the k-th. To finally obtain 
LCPk(Xi+1,Yj+1) we need a further call to LCA on 
the nodes corresponding to the positions i + L+ 1 
and j + L+ 1 to obtain LCP0(Xi+L+1,Yj+L+1) that 
will end on the (k + 1)-th mismatch. In summary: 
LCPk(Xi+1,Yj+1) = L+ LCP0(Xi+L+1,Yj+L+1) . 
Again, note that this might or might not be the final 
MaxCork(i + 1) over all positions of y.

It is possible that several suffixes in y are the site of a 
longest match with k mismatches with Xi. All the start-
ing positions of these longest matches are considered 
for further extension at this step. This is done for two 
purposes:
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  • to obtain the longest possible candidate length with 
k mismatches from the previous step at the mini-
mum cost (only a jump till the next mismatch to the 
right is needed to have the exact length for the pairs 
of positions considered at this step);

  • to avoid or reduce the possibility that we have to 
deal with special cases in the following steps (see 
Observation 4 in "Theoretical and Practical Consid-
erations" section).

Let Lmax be the candidate value for MaxCork(i + 1) 
obtained either from Case 1 or Case 2.

Potential candidates from the previous step
Let us consider now a generic position r in Y. We must 
have L′ = LCPk(Xi,Yr) < L, since L was the absolute 
maximum found in the step to compute MaxCork(i), and 
the ties have already been considered.

If xi = yr then k mismatches lie between 
x[i + 1, i + L′ − 1] and y[r + 1, r + L′ − 1], respectively, 
and LCPk(Xi+1,Yr+1) = L′ − 1 < L− 1. As a conse-
quence, the pair (i + 1, r + 1) can be ruled out as one 

that cannot have an approximate match longer than the 
one we are currently considering (which is greater or 
equal than L− 1). Note that this observation allows us to 
exclude from the candidate set C all the positions r + 1 in 
y that are preceded by a symbol matching xi.

The case where xi �= yr is more involved. With refer-
ence to Fig.  3, the alignment (Xi+1,Yr+1) loses the mis-
match in the first position of the alignment (Xi,Yr),  
and includes the one at position i + L′ and r + L′,  
in x and y respectively. To obtain the length of LCPk 
for this alignment we should add to L′ the value of 
LCP0(Xi+L′+1,Yr+L′+1) , which gives the last exact contri-
bution till the (k + 1)-th match. It may happen that the 
addition of this term to L′ allows one to obtain a match 
longer than the potential MaxCork(i + 1) = Lmax we had 
from the previously discussed Case 1 or Case 2. The main 
problem here is that we do not know the value of L′.

We will then proceed by assuming r is indeed the site 
of a match longer than the current maximum Lmax . If 
this is the case, the gap with Lmax must be closed assum-
ing the (k + 1)-th mismatch occurs after the positions 
i + L and r + L in the two strings. As a consequence, 

Fig. 1 Candidate MaxCork(i + 1) from MaxCork(i) when xi = yj

Fig. 2 Candidate MaxCork(i + 1) from MaxCork(i) when xi �= yj
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LCP0(Xi+L+1,Yr+L+1) will end exactly where 
LCP0(Xi+L′ ,Yr+L′) would end (see Fig. 3).

If this value is indeed bigger than or equal to Lmax we 
need to make sure no further mismatch was present 
between i + L′ and i + L. This can be checked by running 
the jump-extension performed in the initial setup start-
ing from positions i + 1 and r + 1 until k + 1 mismatches 
are found. Let Ltrue be the reached extension. If its value 
is equal to L+ LCP0(Xi+L+1,Yr+L+1) then the position r 
is the new candidate position for the longest match of the 
suffix Xi in y, and the list of ties is reset, otherwise the 
position is dropped, and the next candidate is considered. 
If L+ LCP0(Xi+L+1,Yr+L+1) is equal to Lmax, then r is 
added to the list of ties.

Theoretical and practical considerations
We now discuss some theoretical and practical issues 
emerging from the proposed approach.

Observation 1. The worst case complexity occurs when 
we inherit from step i an initial candidate that is smaller 
or equal than MaxCork(i). In such a case any position 
r for which xi+Lmax+1 = yr+Lmax+1 is a possible longer 
match that we need to verify with the jump-extension. 
This lead to potential O(n) candidate pairs per position i, 
and to a worst case time complexity O(kn2).

Observation 2. We observe that even in the worst case, 
we can rule out all the positions j + 1 of y that are pre-
ceded by a character that matches xi. Assuming equal 
distribution, we will drop n

|�|
 positions. In practice, we 

will drop a number of position equal to the frequency of 
xi in y.

Observation 3. Whenever we impose a matching 
condition we potentially reduce the candidate set of 
a fraction equal to |�|−1

|�|
. When searching for a match 

longer than the current one we have that at least the 
first symbol of the last jump must be a match in order 
to have a longer match. Furthermore, if the value of 

Lmax computed from the longest matches at the pre-
vious step is longer than L− 1 (which is the mini-
mum) we can impose a match for the whole segment 
[xi+L . . . xi+Lmax−1], thus further reducing the size of the 
candidate set.

Observation 4. At step i + 1, if the value of Lmax 
obtained from the longest matches at step i is L− 1 there 
is the possibility that the actual longest match for Xi+1 is 
smaller than the one at the previous step. Searching for 
ties when the longest match is L− 1 is a very time con-
suming operation because we cannot apply the reduc-
tion of the candidate positions explained in Observation 
3. This is because when Lmax = MaxCork(i)− 1 = L− 1 
and xi �= xr we will have that xr+L lands on the k-th mis-
match rather than on the first position after that, thus 
ending up to erroneously discard position r + 1 from fur-
ther processing. For this reason we will always try first to 
find a strictly longer match. If we cannot find it, we will 
search for ties at length L− 1 using only Observation 1 
(and excluding of course also the positions that were 
already processed).

Observation 5. The case discussed in Observation 4 is 
very time consuming because the candidate set remains 
pretty large. However, we have verified in practice that 
the number of ties that are actually found during that 
step is very small, and orders of magnitude less than the 
size of C. For this reason we develop an “relaxed” ver-
sion of our algorithm in which we ignore the search of 
ties for the case L− 1. This means that we are no longer 
guaranteed to find the longest match for each suffix Xi, 
but in practice in our experiments the error was always 
negligible, and the time needed for the computation was 
reduced of about a half as it will be shown in "Results and 
discussion" section.

Observation 6. Building indexing data structures can be 
expensive, and so can be operations that are theoretically 
efficient. For example, it was already observed in [14] that 

Fig. 3 Guessing the maximum extension between the suffix Xi and a candidate Yr
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a naive extension to account for k mismatches gave better 
performances than calling LCA (or than performing the 
equivalent operation on an enhanced suffix array [1], as 
they did). In our experiments we experienced the same. 
Moreover, in [12] it is shown that, in practical applica-
tions, a simple computation of the longest common 
extension (LCE) between two strings can substantially 
improve the performances of several algorithms that use 
the LCE as a subroutine. Therefore, by keeping the origi-
nal approach in mind, but avoiding reference to indexing 
data structures, we developed a tool, implementing our 
algorithm MissMax, in which the extensions are per-
formed naively. Note that in many cases we just need to 
perform a one-step extension, as the k-step extensions 
are performed only in the initial step, and whenever we 
have a candidate with an approximate match longer than 
Lmax.

Observation 7. In its current implementation MissMax 
uses |�| arrays of bits to take track of the presence or 
absence of symbols at specific positions in y, in order to 
quickly compute the set of candidates for further inspec-
tion. For DNA applications, when reading the input, we 
will build 4 arrays As, one for each symbol s ∈ �. The 
position i of As is set if and only if yi = s. When comput-
ing MaxCork(i + 1), the first filter is given by the com-
plement of Axi. To get the second filter we take the array 
Axi+L and shift it of L positions to the left. The bitwise 
AND of the two vectors is the bitvector B mentioned 
above that holds the positions of the candidate set C (to 
avoid a further shift of one position to the right, when 
considering position j we look at the value of this vector 
at position j − 1). This particular implementation limits 
the applicability to genomic sequences. However, this 
is not a theoretical limit of the approach. By changing 
the data structures used to store the sequences, and the 
approach to candidate identification, it will be also possi-
ble to deal with larger alphabets. For this purpose we plan 
in the near future to develop a library to compute statistic 
with mismatches on all kind of biological sequences.

Results and discussion
In this section we present the results of a set of experi-
ments that we run to test the performances of the exact 
and relaxed version of MissMax. Here we are not mainly 
interested in the improvement of the quality of the tree 
reconstruction with mismatches, with respect of cor-
responding measures without mismatches, as they were 
already discussed in [5, 14]. We are rather interested on 
the time needed to compute the values of MaxCork(i), 
for all the positions i in a sequence x with respect to a 
second sequence y, and on the precision achievable by 
heuristics. As explained in "Methods" section, these sta-
tistics can be used to compute both the MaxCork (i.e. the 

longest common substring with k mismatches) based dis-
tance discussed in [5], and the kACS distance discussed 
in [14]. Moreover, as our algorithms are based on filter-
ing, we will investigate also the filtering power of our 
approach for both the exact version and relaxed version 
discussed in Observation 4.

For what concerns the comparison with other algo-
rithms, the algorithm described in [2], which holds the 
best known asymptotic complexity for the exact com-
putation of the n values of MaxCork(i), has no available 
implementation yet. For the exact computation we will 
thus refer to the naive algorithm. On the other side of 
the spectrum, the greedy-based approach of kmacs [14], 
is uncomparably fast in almost all cases (we will discuss 
in details one experiment in which this did not occur). 
With respect to this approach we will therefore focus our 
attention on the precision achievable in the estimate of 
the actual value of the longest matches.

For our experiments we considered two datasets that 
were previously used in other studies (e.g. [5, 14, 18]). 
The first dataset consists of the mitochondrial genomes 
of 34 mammals, including species from Euarchontog-
lires, Laurasiatheria, Afrotheria, Xenarthra, Ameridel-
phia, and Monotremata. The second dataset consists of 
the mitochondrial genomes of 27 primates. The length of 
the genomes is between 16,000 and 17,000 bp each. All 
the sequences were downloaded from the NCBI web site. 
All the experiments were performed on an Intel Core 
i5-4590 at 3,3 GHZ, with 8 GB of memory.

Time performances
As a first experiment we measured the time performances 
of both the exact and the “relaxed” version of MissMax 
on omogeneous and heterogeneous subsets of the 34 
mammals datasets. In particular, we considered the sub-
set of Rodents (rat, dormouse, house mouse, guinea pig, 
squirrel), the subset of Carnivora (cat, dog, harbor sail, 
grey sail), and a mixed set of the two. We then meas-
ured the average time needed to compute the similarity 
between two sequences within each of the omogeneous 
set, and between elements of different sets in the mixed 
subset. Finally we added to our analysis a set of 5 random 
sequences and measured the performances within the 
subset. Tables 1 and 2 report, for different k, the average 
time for the comparison of a pair of sequences in each 
dataset for the relaxed and the exact version of MissMax, 
respectively.

It is immediate to observe that the relaxed version of 
MissMax takes about half of the time needed by the exact 
version. Nevertheless, even the exact algorithm allows for 
a full pairwise comparison of typical datasets in about 
an hour on our desktop computer. The time required for 
each comparison is consistent with the one showed for 
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the smaller datasets, thus the time required for the over-
all analysis is a function of the size of the dataset. For 
example, with k = 5 the analysis of the full dataset of 27 
primates took about 55 min, while the full analysis of the 
34 mammals dataset took 1  h and 24  min. Moreover, if 
we take advantage of multithreading, the full analysis of 
the Primate dataset requires about 15  min, and the full 
analysis of the Mammals dataset about 23 min.

With respect to the kind of sequences that are analized, 
we can see how both algorithms are faster on the random 
dataset than on the biological datasets. The difference 
is much more evident for the exact version of the algo-
rithm, when k increases.

For comparison with other approaches, we run the 
naive algorithm on the Rodents datasets. The average 
time was: 7.1  s for k = 5; 10.6  s for k = 10; 17.8  s for 
k = 20; 39.3  s for k = 50; and 74.99  s for k = 100. On 
the contrary, the software kmacs is generally much faster 
than MissMax: on such small datasets it ends practi-
cally istantaneously. We recall that the theoretical time 
complexity of kmac is O(kzn), where z is the number of 
positions in which there is a tie for the first longest exact 
match. It is shown in [14] that in practice the values of 
z are usually pretty small. Nevertheless, we report, for 
completeness of discussion, the following observation. 
While running our experiments, we had a case in which, 
increasing the length of the sequences to compare, kmacs 
performances had a suddent drop. After ruling out this 

could depend on the actual input length of the sequences 
(the performances were good on random sequences of 
the same length), or on some bug (the results were what 
we were expecting), a closer inspection of the input 
sequences revealed the probable cause. More or less in 
correspondance of the input length that was showing the 
slow down, there was an undefined region in one of the 
two sequences. Note that the computed value of the long-
est matches of suffixes was not affected, as the N region 
was present just in one sequence. Nevertheless, the first 
exact longest match of a suffix starting in the N region 
is 0, and in such a case, z becomes equal to n, and all the 
positions of the other sequence need to be extended to 
find the maximum extension with mismatches.

Finally, to further investigate the scalability of the filter-
based approach we performed a similar test on longer 
sequences. The results are reported in Fig.  4, where we 
show the time required for three different values of k, 
on sequences up to 100k bp, as a function of the input 
length. The trends for the exact version are the same. We 
reported a slowdown of about 2, with the actual values 
slightly increasing with k. Specifically, the average slow-
down factor was 1.87 for k = 5; 2.22 for k = 50; and 2.29 
for k = 100.

Exact vs heuristics
The tradeoff between exact algorithms and heuristics 
could be easily summarized saying that heuristics are 
faster, but do not guarantee the correct solution to the 
problem. This is of course true also in our case, but we 
performed anyway some further analysis to assess the 
performances of MissMax (both exact and relaxed ver-
sion) and kmacs, in terms of precision in the computa-
tion of sequence similarity based on the aforementioned 
distances with mismatches.

Table 1 Average time (in seconds) for  the comparison 
of  two sequences on  several datasets with  the “relaxed” 
version of MissMax

k Rodents Carnivora Mixed Random

5 2.11 2.22 2.15 1.85

10 2.45 2.56 2.47 2.18

20 3.07 3.17 3.09 2.72

50 4.74 4.87 4.82 4.28

100 7.42 7.62 7.57 6.65

Table 2 Average time (in seconds) for  the comparison 
of  two sequences on  several datasets with  the exact ver-
sion of Missmax

k Rodents Carnivora Mixed Random

5 4.50 5.16 4.45 3.26

10 5.16 6.39 5.64 3.81

20 7.47 8.46 7.52 4.85

50 12.08 14.29 12.9 8.26

100 21.01 23.55 21.28 13.15

Fig. 4 Time performance of relaxed MissMax for different values of k, 
as a function of the input length
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In terms of reconstruction of the correct phylogeny, we 
tested the algorithms on the Primates datasets. MissMax 
reported the same reference tree as in [11] (see Fig.  5; 
the permutations within a same level of the tree are con-
sidered as equivalents) for a relatively small number of 

allowed mismatches (k = 4 and k = 5). kmacs reported 
an overall good reconstruction, but with some differ-
ences with respect to the references (in [14] a wide range 
of k’s have been tested on the same dataset, but the exact 
reference phylogeny was never captured).

Galeopterus variegat

Lemur catta

Nycticebus coucang

Tarsius bancanus

Gorilla gorilla

Homo sapiens

Pan paniscus

Pan troglodytes

Pongo pygmaeus

Pongo pygmaeus abeli

Hylobates lar

Chlorocebus aethiops

Chlorocebus tantalus

Chlorocebus pygeryth

Chlorocebus sabaeus

Macaca mulatta

Macaca sylvanus

Papio hamadrya

Colobus guereza

Procolobus badius

Nasalis larvatus

Rhinopithecus roxell

Pygatrix nemaeus

Presbytis melalophos

Trachypithecus obscu

Semnopithecus entell

Cebus albifrons
Fig. 5 The tree for the 27 primates dataset reconstructed by MissMax with k = 4. It is in perfect agreement with the reference tree reported in [11]
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As previosuly stated, kmacs is usually much faster 
even than the relaxed version of MissMax. However, 
in terms of computation of the actual value of the aver-
age common substring between two sequences, relaxed 
MissMax is much more precise. In fact, we measured a 
relative error of 0.53 % with respect to the real measure 
for both the Rodents and the Carnivora datasets, and 
0.46 % for the mixed dataset. For the full Primate date-
set, we measured the relative error for both k = 5 and 
k = 10 , reporting 0.45 % and 0.43 % respectively. kmacs 
did not achieve such a precision in the approximation 
of the correct value. In our experiments it usually esti-
mates half of the length the average common substring. 
This lack of precision was noted also by the authors of 
kmacs in a set of experiments reported on their paper 
(although on simulated sequences with a given error 
rate). Anyway, as reported in [14], this does not seem 
to heavily affect the reconstruction of a phylogenetic 
tree. This may be due to the fact that the understimation 
holds equally for all pair of sequences. However, if the 
statistics need to be collected for other kind of analy-
sis, then one has to keep in mind that the approxima-
tion provided by kmacs could not be as good as the one 
provided by relaxed MissMax.

Filtering power

A set of experiments was performed to measure the 
goodness of our filters, investigating on the percent-
age of pair of positions that are actually considered with 
respect to the maximum possible. The results are shown 
in Table 3 for the relaxed and in Table 4 for the exact ver-
sion of MissMax.

We note that in the biological sequences the difference 
between the size of the candidate set of the relaxed and 
exact version is quite small for k = 5, but then increases 
substantially with k up to k = 50, and then remains pretty 
much constant for k = 100. The random sequences fol-
low the same trend, but they appear to reach the satura-
tion level earlier at k = 20.

It is interesting to note that the analysis on random 
sequences is faster than in biological sequences (see 
Tables 1, 2) although the size of the candidate set is big-
ger. We explain this behavior as due to the time needed to 
make full check for a match. The comparison is stopped 
either when the expected length is reached or when the 
number of mismatches is k + 1. It is possible that with 
random sequences the second condition occurs more 
often after few comparisons, thus speeding up the entire 
process, even if the number of positions to check is bigger.

Concluding remarks
In this work we proposed a filtering-based approach for 
the computation of the longest common substring with 
k mismatches between each suffix of a sequence x and a 
sequence y we want to compare to. This statistics is use-
ful for the computation of alignment free distances based 
on approximate matching, that are a promising approach 
to improve the quality of alignment free sequence com-
parison. We developed both an exact and a relaxed ver-
sion of the algorithm. While the relaxed version cannot 
guarantee to find the optimal solution, it is in practice 
faster and still very precise.
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