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Abstract 

Background: Suffix arrays and their variants are used widely for representing genomes in search applications. 
Enhanced suffix arrays (ESAs) provide fast search speed, but require large auxiliary data structures for storing longest 
common prefix and child interval information. We explore techniques for compressing ESAs to accelerate genomic 
search and reduce memory requirements.

Results: We evaluate various bitpacking techniques that store integers in fewer than 32 bits each, as well as byte-
coding methods that reserve a single byte per integer whenever possible. Our results on the fly, chicken, and human 
genomes show that bytecoding with an exception guide array is the fastest method for retrieving auxiliary informa-
tion. Genomic searching can be further accelerated using a data structure called a discriminating character array, 
which reduces memory accesses to the suffix array and the genome string. Finally, integrating storage of the auxiliary 
and discriminating character arrays further speeds up genomic search.

Conclusions: The combination of exception guide arrays, a discriminating character array, and integrated data stor-
age provide a 2- to 3-fold increase in speed for genomic searching compared with using bytecoding alone, and is 
20 % faster and 40 % more space-efficient than an uncompressed ESA.
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Background
High-throughput sequencing  [1] makes it critical to 
accelerate the alignment of query reads to a genome, 
and influences the design of genomic data structures for 
fast pattern search. Although pattern search is germane 
to many fields, genomic search is of such fundamen-
tal and timely importance in biology that accelerating 
genomic search is worthwhile in its own right. Further-
more, genomics is a distinctive domain, characterized by 
(1) very large texts, such as the 3 billion base pairs in the 
human genome; (2) a small alphabet size, with only four 
nucleotides and a possible fifth character to represent 
ambiguity or uncertainty; (3) various types of repetition 
in the genomic text, on both small and large scales; and 
(4) the need to handle mismatches and gaps between the 
query read and the genome, which can require searches 

on short substrings in a query and result in large num-
bers of matches in a genome.

In a companion paper, we show how hash tables for 
representing genomes can be made faster by introduc-
ing novel bitpacking compression techniques, which 
allow for larger k-mers and therefore higher specificity. 
In this paper, we consider the prevailing alternative to 
hash tables, namely, suffix arrays [2] and related variants. 
A suffix array (SA) represents a genome sequence as a 
list of positions, arranged according to the lexicographic 
ordering of their corresponding suffixes. Suffix arrays are 
used in such programs as segemehl [3], last [4], mum-
mer [5], reputer [6], star [7], and as an initial stage in 
recent versions of gsnap  [8], which also employs hash 
tables for more complex alignments.

For suffix arrays, as with any representation, there is a 
tradeoff between time and space. Uncompressed repre-
sentations generally offer the fastest retrieval times, but 
require the most space, and therefore may not fit within 
the available amount of memory on a given computer. 
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Accordingly, many proposals for compressing suf-
fix arrays have been advanced  [9]. We are interested in 
investigating how such methods work in genomics appli-
cations. For the purpose of genomic search, we do not 
necessarily need all of the functionality of a suffix array, 
but can consider representations that support only the 
task of pattern matching.

In general, pattern matching can be considered as 
two related tasks: (1)  counting the number of pattern 
matches, and (2)  locating their positions in the target 
text. For most applications in genomics, the locating task 
is the relevant one, which yields all genomic positions 
that match a given query read or substring in the read. 
Table 1 demonstrates how suffix arrays perform on both 
tasks, in the two columns labeled SA. Two possible suffix 
array algorithms for pattern matching are reverse search, 
which uses a successor array called Psi, and forward 
search, which performs a binary search through the suf-
fix array entries. More detailed descriptions of these and 
other established algorithms can be found elsewhere [13].

A standard suffix array can be improved by increas-
ing search speed, reducing memory requirements, or 
both. To reduce memory usage, techniques have been 
developed for compressing the array, such as the pro-
posal by Sadakane [10] or wavelet trees [11], which con-
tain bitmaps for subsets of the genomic alphabet. These 
methods are benchmarked as CSA-Sada and CSA-WT 
in Table  1, as well as using the wavelet tree component 
with an uncompressed suffix array, shown as method 
SA-WT. The methods above are available in a widely 
used library called the Succinct Data Structure Library 
(SDSL) 2.0 [12].

The scope of this paper does not permit a full descrip-
tion of these various compression methods. However, the 
data clearly show that both space and retrieval time can 
vary widely, depending on which representation method 
is used. Therefore, for our goal of accelerating genomic 
search speed, it is critical to choose an appropriate 
genomic representation, as allowed within the amount of 
available memory.

If sufficient memory is available, we can augment the 
suffix array with auxiliary data structures to create an 
enhanced suffix array (ESA) [14]. The ESA auxiliary data 
structures are the longest common prefix (LCP) array and 
the child array. The LCP array records the length of the 
common substring between adjacent entries in the suf-
fix array, and allows a search algorithm to search against 
the common region when comparing a query sequence 
against the suffix array. Common prefixes impose a hier-
archical, or parent–child, structure upon the suffix array. 
For each set of suffix array entries that share a common 
prefix, the character following the prefix serves to parti-
tion the set into smaller children subsets. The child array 

records where each subset begins, and allows a search 
algorithm to traverse the hierarchy of common prefixes 
efficiently.

The drawback of an ESA is the extra space required for 
the LCP and child arrays. These arrays are similar in size 
to the suffix array, so they offer a worthwhile opportunity 
for space savings. For example, a straightforward repre-
sentation of the suffix array, LCP array, and child array 
requires 12  GB each for the human genome, with its 3 
billion base pairs. Although modern computers often 
have large amounts of primary random-access mem-
ory, or RAM, compression of data structures can still 
have benefits. In particular, smaller data structures can 
improve the effectiveness of caching, in which recently 
used blocks of data are kept temporarily in ultrafast stor-
age for subsequent use.

Accordingly, compression of the LCP and child arrays 
has been investigated by others. For example, one pro-
posal for compressing the LCP array permutes the order 
of elements in text order, rather than in suffix array 
order  [15], which allows the permuted array to be rep-
resented by monotonically increasing values. Another 
proposal represents the child array as a bitmap repre-
sentation of balanced parentheses  [16], which is bench-
marked in Table 1 as ESA-bp.

As an alternative to these relatively complex compres-
sion schemes, we consider a simpler technique called 
bitpacking, in which integers are represented with fewer 
than the 32 bits that they are normally allocated. The idea 
of bitpacking itself is not new, and bitpacking techniques, 
such as Elias delta codes and Fibonacci codes, have been 
applied to suffix arrays in the literature  [17]. However, 
vectorized bitpacking, which uses parallel arithmetic 
operations available on modern computers, represents 
a recent area of research, and is shown in our compan-
ion paper to be particularly useful for offset arrays in 
genomic hash tables. It is therefore worth considering 
whether such bitpacking methods could be applied to 
LCP or child arrays.

A technique similar to bitpacking is bytecoding, either 
using variable numbers of bytes for each integer, or using 
a fixed number of bytes, with exceptionally large values 
stored in a separate array. In fact, a bytecoding scheme 
for the LCP and child arrays was proposed in the origi-
nal paper on enhanced suffix arrays  [14]. We can con-
sider this to be a reference benchmark, and we show the 
results of this approach for genomes in Table 1 as ESA-
byte, which is relatively fast for both counting and locat-
ing tasks.

The goal of this paper, then, is to explore whether 
improvements upon ESA-byte are possible for genomic 
search. Our end result is shown in Table 1 as the right-
most column, method ESA-gdi. The acronym “gdi” stands 
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for three concepts introduced in this paper, namely, an 
exception guide (EG) array for accelerating bytecoding; 
a discriminating character (DC) array for streamlining 
the ESA forward search algorithm; and an integrated 
data structure appropriate for storing related LCP, DC, 
and child array values. These enhancements result in 
a genomic search method that reduces space usage for 
the LCP and child arrays, is faster than the ESA-byte 

benchmark, and is  both faster and more space-efficient 
than the native uncompressed ESA.

Methods
Suffix arrays
A suffix array is an indexed representation of a genome [2]. 
Although we use the term “genome”, our methods can be 
used generally to represent any target sequence or set of 

Table 1 Speed of genomic search and space usage

Genome sources: Drosophila melanogaster version 5.25.64 (Fly), Gallus gallus gg4 (Chick), and Homo sapiens hg19 (Human)

 SA uncompressed suffix array; CSA-Sada compressed suffix array using Sadakane method; SA-WT and CSA-WT uncompressed and compressed suffix array, 
respectively, using wavelet tree. ESA enhanced suffix array, ESA-bp ESA with balanced parenthesis representation; ESA-byte ESA with bytecoding; ESA-gdi ESA with 
exception guide arrays, discriminating character array, and integrated data structure

Reverse search Forward search

SA CSA-Sada SA-WT CSA-WT SA ESA ESA-bp ESA-byte ESA-gdi

Space used (bytes per genome length)

 Fly 3.5 0.9 4.9 0.9 3.5 11.4 8.0 6.6 7.1

 Chick 3.8 1.0 5.1 0.9 3.8 11.9 8.5 6.3 6.8

 Human 4.0 1.0 5.5 0.9 4.0 12.4 9.0 7.1 7.6

Counting task (microseconds per query)

 Fly 12-mers 42.9 45.6 1.6 1.7 46.8 2.3 52.6 5.2 1.7

24-mers 81.5 88.8 4.7 4.8 47.6 2.5 54.0 5.3 2.1

36-mers 119.1 130.0 5.9 7.0 42.5 2.8 54.6 5.6 2.2

 Chick 12-mers 52.4 44.5 2.0 2.1 54.7 2.8 61.4 7.3 2.3

24-mers 98.0 90.3 4.5 5.3 53.5 3.6 65.7 8.7 3.0

36-mers 148.1 137.4 9.0 8.2 54.5 3.8 67.1 7.9 3.3

 Human 12-mers 59.8 49.3 2.4 2.7 58.4 3.4 75.0 10.0 3.1

24-mers 101.5 94.5 5.8 5.6 66.8 5.1 76.7 12.1 4.0

36-mers 151.0 139.3 9.3 9.4 70.2 5.2 81.1 11.9 4.0

Locating task (microseconds per query)

 Fly 12-mers 49.6 223.8 21.5 147.8 52.0 3.5 52.2 6.7 2.9

24-mers 86.5 135.0 12.0 45.2 47.4 3.1 53.9 5.5 2.5

36-mers 130.2 157.6 12.9 32.1 51.3 3.1 59.3 6.5 2.4

 Chick 12-mers 62.0 682.7 45.8 628.3 61.5 5.2 63.9 10.7 4.3

24-mers 104.5 102.9 7.2 16.3 54.2 4.0 64.1 7.9 2.8

36-mers 141.0 134.5 8.8 13.5 51.7 3.8 65.6 7.7 3.3

 Human 12-mers 80.1 6300.8 602.6 5798.1 99.0 30.4 94.1 37.6 28.5

24-mers 101.4 393.6 40.8 264.0 68.1 6.8 77.4 13.8 5.5

36-mers 149.7 175.8 12.6 46.1 60.0 5.1 79.3 12.7 4.3

Locating task (nanoseconds per match result)

 Fly 12-mers 69.2 312.4 30.1 206.2 72.5 4.8 72.9 9.3 4.1

24-mers 360.5 562.8 50.2 188.6 197.8 13.0 224.6 23.1 10.3

36-mers 941.9 1140.1 93.8 232.7 371.5 22.8 429.3 47.0 17.3

 Chick 12-mers 36.7 404.1 27.1 371.9 36.4 3.1 37.8 6.3 2.5

24-mers 2993.0 2948.3 206.9 467.4 1551.5 115.8 1836.9 226.7 81.5

36-mers 9723.0 9274.2 606.4 928.8 3566.7 259.6 4527.3 533.2 226.3

 Human 12-mers 3.3 259.9 24.9 239.1 4.1 1.3 3.9 1.6 1.2

24-mers 71.0 275.6 28.6 184.8 47.7 4.7 54.2 9.7 3.9

36-mers 800.8 940.7 67.7 246.5 320.8 27.3 424.5 68.2 23.2
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sequences, such as a set of genomic contigs or transcripts, 
that serve as a reference for alignment. In this paper, we 
will use a running example based on the genomic string 
S = acaaacatat$, an example introduced by others  [14]. 
A genomic string S of length n consists of nucleotides 
drawn from the alphabet �S = {a, c, g , t, x}, and ends with 
a special terminating character “$”. We use the character 
“x” to represent a nucleotide whose identity is unknown 
or considered irrelevant for search, such as in the repeti-
tive end regions of chromosomes called telomeres.

In our convention, positions in a string are indexed 
starting with 0, so the terminating character “$” is located 
at position n. A genomic string has (n+ 1) suffixes, 
Suffix[0] through Suffix[n], where Suffix[k] represents 
the substring S[k..n]. These suffixes can be sorted lexico-
graphically, giving rise to a suffix array SA[k], which rep-
resents the starting positions of the suffixes after the sort. 
In our exposition, the terminating character “$” is consid-
ered to have the lowest lexicographic order, preceding “a”. 
The sorted suffixes and corresponding suffix array for our 
example are given in Fig.  1, in the columns labeled Suffix 
and SA.

A suffix array can be used by itself to search for a given 
query string P of length m. The query string consists of 
nucleotides drawn from the alphabet �P = {a, c, g , t} , 
which excludes the character “x”, since uncertain readings 
are generally rejected by sequencing machines, so all of 
P is typically known unambiguously. (In the rare event 
of an uncertain character reported in the query string, 

hash table methods could be used for pattern matching.) 
The search process involves a binary search through the 
suffix array to find indices i and j, such that Suffix[SA[i]] 
and Suffix[SA[j]] are the narrowest pair of suffixes that 
enclose P lexicographically. If i and j exist and i ≤ j, the 
values of SA[i] through SA[j] give the positions in the 
genome that match P. In other words, the values SA[i] 
through SA[j] represent the solution for the locating task 
in pattern search, while the quantity (j − i + 1) repre-
sents the solution for the counting task. A binary search 
process can find all occurrences of a query string P in a 
genome in O(m log n) time.

Compression of bucket arrays
The binary search process can be boosted by using a 
bucket array  [2], which stores the starting and ending 
indices i and j in the suffix array for each possible q-mer 
drawn from �P, for some well-chosen value q. Then, if the 
query string P has sufficient length m ≥ q, a constant-
time lookup of the q-mer in the bucket array can replace 
the first q steps of the binary search. Because the bucket 
array is a series of successive pointers into the suffix array, 
it is amenable to differential coding techniques, such as 
those that we explored for offset arrays in our companion 
paper. However, if q is sufficiently small, typically with 
a value of 12 or less, where a single array of indices for 
12-mers occupies only 67 MB, compression may not be 
so critical. (Since �S also contains the character “x”, which 
is not included in any q-mer, we must explicitly store two 
arrays of indices, one for the starting index i and one for 
the ending index j, to encode the lcp-interval [i..j] for 
each q-mer, entailing a total storage space of 134  MB.) 
Since bucket arrays are well established as a technique 
for accelerating pattern search, we will not evaluate their 
effectiveness in this paper, or even employ them. Instead, 
we will investigate other techniques for accelerating 
genomic search and reducing memory usage. In the sec-
tions below, we describe various techniques to be evalu-
ated computationally in this paper.

Compression of the LCP array
Search using a suffix array involves comparing charac-
ters in the pattern against entries in the suffix array. This 
comparison process can be made more efficient by using 
an LCP (longest common prefix) array [2]. The LCP value 
at index k is the longest prefix shared between the suf-
fix at SA[k] and the one at SA[k − 1], shown in Fig. 1 as 
the column labeled LCP. The LCP array can speed up 
search in practice by allowing one to skip some of the 
character comparisons needed to differentiate among 
candidate suffixes when they share a common prefix. 
Instead, we can compare the pattern characters directly 
against the common prefix, as represented by any one 

k SA[k] LCP[k] DC U D N C Su�x[SA[k]]

2
5 5

4
6
3
9
8

10

4 6

3 8 9

8 10

2 4

73 7

1

0 10 0 $
1 2 0 $a aaacatat $
2 3 2 ac aacatat $
3 0 1 ac acaaacatat $
4 4 3 at acatat $
5 8 1 ct at$
6 6 2 $a atat $
7 1 0 ac caaacatat $
8 5 2 at catat$
9 9 0 ct t$

10 7 1 $a tat$

Fig. 1 Enhanced suffix array tables for the string acaaacatat$. Values 
are shown for the suffix array SA, longest common prefix LCP array, 
and the Child C array, consisting of Up U, Down D, and Next N values, 
with Next values taking precedence over Down values. Up values can 
be stored in the preceding array position. These values are colored 
to correspond with the arrows in Fig. 2. The suffixes in lexicographic 
order are given by Suffix[SA[k]]. The discriminating character 
(DC) array introduced in this paper represents the first characters 
that differ between two adjacent suffixes at Suffix[SA[k − 1]] and 
Suffix[SA[k]]. The locations of these characters among the suffixes are 
shown as grey bars
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of the candidate suffixes, to determine whether the pre-
fix matches. Whereas a suffix array by itself can find all 
occurrences of a pattern P in O(m log n) time, with the 
addition of an LCP array, search can be performed in 
O(m+ log n) time.

An LCP array generally contains small values, and 
these values can be bitpacked in various ways, including 
a direct coding scheme as used in vectorized bitpacking. 
In such a scheme, we encode arrays of integers in blocks 
of 64, each with a uniform bit width as needed to repre-
sent the largest integer in the block. Various versions of 
block-based bitpacking were developed and evaluated 
in our companion paper for representing offset arrays in 
genomic hash tables. However, that application required 
differential coding, or encoding differences between 
elements of a vector of ascending values. In contrast, 
although LCP values are not monotonically increasing 
and hence not amenable to differential coding, they are 
nevertheless candidates for direct coding.

In direct coding, we could conceivably arrange the 
integers of each block in any layout, including the BP64-
horizontal, BP64-vertical, or BP64-columnar layout, as 
described in our companion paper. Since extracting a 
single value does not require parallel loads or additions, 
SIMD operations are unnecessary. Rather, a separate sca-
lar procedure is needed for each possible bit width (i.e., 
the 16 even bit widths used in BP64), and for each possi-
ble entry xi within the block (64 entries in BP64). Hence, 
it would seem that implementation in each of the three 
layouts would require 16× 64 = 1024 separate access 
procedures. However, if we use the BP64-vertical layout 
and consider the contents of the bitpacked array to be a 
series of 32-bit words, rather than 128-bit vectors, the 
64 entries can be reduced to 16 distinct cases, where xi 
selects a procedure based on ⌊xi/4⌋, applied to the series 
starting at one of  the four starting words in the block, 
as determined by the quantity (xi mod 4). This scheme 
reduces the number of procedures to be 16× 16 = 256.

Because values in an LCP array are generally small, 
another option is to use a bytecoding scheme, as pro-
posed by others [14]. In this scheme, each LCP value can 
be stored in a single byte, if it is less than 255. If the LCP 
value is 255 or greater, then a value of 255 is used as a 
flag to indicate that the actual value is stored in a sepa-
rate data structure for exceptions. Although exceptions 
could be represented in a true hash table, where the key k 
is evaluated using a hash function to determine the cor-
responding bucket of possible key/value pairs, a simpler 
representation stores key/value pairs in a single array, in 
ascending order of their keys. Such an array of exceptions 
can then be processed by binary search.

Alternatively, by adding an exception guide (EG) array, 
we can restrict the scope of the binary search to a portion 

of the exception array, effectively making the search pro-
cess closer to that of a true hash table. An EG array con-
tains the corresponding location in the exception array at 
regular intervals of k. For example, for a guide interval of 
64, the array would store the position of the first excep-
tion that satisfies k ≥ 64, k ≥ 128, k ≥ 192, and so on. 
Therefore, given a key k, we would divide the key value 
by the guide interval, look up that entry in the EG array, 
and then obtain the approximate subsection to search in 
the exception array. We would then require only a small 
sequential or binary search through that subsection. 
(Our implementation uses binary search.) An exception 
array plus an EG array achieves the same behavior as a 
true hash table, with the hash function being division by 
the guide interval. In fact, an EG array is analogous to a 
bucket array, which stores pointers to starting positions 
in a suffix array, at intervals corresponding to successive 
q-mers. However, as far as we can tell, guide arrays have 
not been proposed in the literature for bytecoding rep-
resentations, and are not currently implemented within 
SDSL 2.0, perhaps because exceptions are typically not as 
prevalent as they are in genomics applications.

Although bitpacking or bytecoding of small LCP val-
ues already provides a compact representation, these 
values can be compressed even further by using wave-
let trees  [11], which use bit arrays as a representation. 
Another general approach to representing integer arrays 
is called directly addressable variable-length coding 
(DAC) [18], which allows for a variable number of bytes.

Another possible technique for compressing an 
LCP array is to permute it  [15]. A permuted LCP 
array, or PLCP array, contains the LCP values in text 
order a, rather than in lexicographic order k, satisfying 
PLCP[a] = PLCP[SA[k]] = LCP[k]. One way to repre-
sent this PLCP array is by a succinct bitarray [15]  that can 
be queried using a select function, which is how this method 
is implemented within SDSL. Alternatively, it has been 
observed  [10] that the sequence of values PLCP[a] + a is 
nondecreasing, making it amenable to differential coding 
techniques such as those used in vectorized bitpacking. In 
that compression scheme, to retrieve LCP[k], we would look 
up a = SA[k], perform differential decoding of the value 
located at position a, and subtract a from the result. Appli-
cable differential coding methods include the BP64-vertical, 
BP64-columnar, or BP32-columnar formats discussed in our 
companion paper, as well as existing universal code formats.

Compression of the child array
The speed of pattern matching can be improved further 
by adding a child array, which represents the hierarchi-
cal structure of common prefixes in a suffix array (Fig. 1). 
A child array allows search to be done in O(m|�S |) time, 
independent of the text length, and dependent instead on 
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the length m of the pattern and the size of the alphabet. 
Therefore, for genomic search, where the text length can 
be quite large, the child array can be particularly effec-
tive. Also, for genomic applications, the alphabet size is 
small, limited to the four nucleotides and a character for 
an unknown or ambiguous nucleotide. A formal exposi-
tion of the child array can be found elsewhere  [14]; for 
our purposes, we aim to provide some intuition for the 
data structure and its possible improvements.

A suffix array can be searched as a hierarchy, consist-
ing of sets of entries with common prefixes. Each set, 
or lcp-interval [i..j] represents a range in the suffix array 
from index i through j, having a common prefix of length 
lcpij. The search process begins with the entire suffix 
array [1..n] and progressively narrows the range of indi-
ces, based on matches from the query string. The set of 
lcp-intervals can be conceptualized as a tree, although 
this tree is virtual and not constructed explicitly (Fig.  2). 
In this figure, each lcp-interval is shown as a bracketed 
range of numbers. A parent lcp-interval is connected to 
child lcp-intervals with branches, each of which is labeled 
with a substring. The leaves of the tree consist of single-
ton lcp-intervals where i = j, representing individual 
entries in the suffix array.

In pattern search, each lcp-interval represents a deci-
sion branch point, with a child interval to be selected 
based on a character from the query string P. Selection 
is based on the branch labels in the lcp-interval tree, as 
shown in Fig.  2, which is a virtual representation and not 
stored explicitly. The first parent interval is [1..n], and in 
our example, its child interval is selected based on the 
first letter of P, or P[0]. The child interval [1..6] is selected 
if P[0] is “a”; [7..8] if it is “c”, and [9..10] if it is “t”.

At a given parent lcp-interval [i..j], the search process 
selects from among the child lcp-intervals

or perhaps none of them, in which case the pattern match 
fails. The child lcp-intervals are separated by the ℓ-indices 
k1, k2, ..., kt, which, combined with i and j, are sufficient to 
define the child lcp-intervals for a given parent. Hence, ℓ
-indices are essentially decision breakpoints in the suffix 
array at various levels of the pattern comparison process. 
The ℓ-indices are shown in Fig.  2 as the bottom number 
inside each oval.

A critical observation is that the children ℓ-indices 
for a given parent lcp-interval are at the same level, and 
accordingly have a common LCP value lcpij for the pre-
fix shared among all suffixes from SA[i] through SA[j]. In 
other words,

Therefore, the relevant character from the query string 
P needed to select a child lcp-interval is the character 
located at lcpij, or P[lcpij]. In our example in Fig.  2, the 
parent lcp-interval [7..8] has a single child ℓ-index of 8, 
having an LCP value of 2. Selection between the child 
lcp-intervals [7..7] and [8..8] depends on the character 
P[2] in the query string. If P[2] is “a”, the child lcp-interval 
is [7..7]; if it is “t”, the child lcp-interval is [8..8]; and for all 
other cases, pattern matching fails.

Because each ℓ-index sits between two child lcp-inter-
vals, each of which is selected by a particular character, 
we can associate those characters with each ℓ-index. We 
propose to call these the discriminating characters for 
a given ℓ-index. In our example, the ℓ-index of 8 can be 
labeled with the discriminating characters “a” and “t”, as 
indicated by the letters “at” in the top of the oval for ℓ-
index 8. The discriminating characters for a given ℓ-index 
k are the first characters that differ between the suffixes 
Suffix[SA[k − 1]] and Suffix[SA[k]], as shown by the gray 
bars in the suffixes of Fig.   1. Since these two suffixes 
share a common prefix of length LCP[k], the discrimi-
nating characters are located in the genomic string at 
S[SA[k − 1] + LCP[k]] and S[SA[k] + LCP[k]]. The dis-
criminating characters can be organized in a DC array 
in order of the ℓ-indices, as shown in the column marked 
DC in Fig.  1. These discriminating characters represent a 
novel contribution of this paper, which we shall use later 
to accelerate the ESA search algorithm.

The ℓ-indices have relationships among themselves. 
The relationship from one child ℓ-index to its sibling 
can be represented as a Next value, shown as curved 
blue arrows in the Fig.  2. For example, the Next sibling 
for index 1 is index 7, and the Next sibling for index 7 
is index 9. The first child ℓ-index k1 for a parent interval 

[i..(k1 − 1)], [k1..(k2 − 1)], . . . , [kt ..j]

LCP[k1] = LCP[k2] = · · · = LCP[kt ]

[7..8] [9..10][1..6]

[3..4] [5..6][1..2]

[2..2][1..1]

[3..3] [4..4]

[5..5] [6..6] [7..7] [8..8]

[9..9] [10..10]

0

1

2

3

LCP [1..10]
a c t

a c t

a c $ a

$ a

aa at

aa at

11

1
$a

10
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9
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7
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5
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3
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6
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4
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Fig. 2 LCP-interval tree for the string acaaacatat$. The lcp-intervals 
are shown in square brackets, with lines pointing to their children 
intervals. Intervals are separated by ℓ-indices, shown as integers at 
the bottoms of ovals. Pairs of letters are shown above each ℓ-index, 
indicating its discriminating characters. Both lcp-intervals and their ℓ
-indices are arranged vertically by their LCP-value, and horizontally by 
their index. Child relationships among ℓ-indices are shown as arrows 
to the left (in red) for Up; right (green) for Down; and curved arcs (blue) 
for Next values, to correspond with the colors in Fig.  1
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[i..j] is given either as a Down value (green) from index 
i or an Up value (red) from index (j + 1). The directions 
Down and Up indicate whether the child ℓ-index is larger 
or smaller, respectively, than the starting index. In the 
figure, since the ℓ-indices are arranged horizontally by 
ascending value, a Down relationship is depicted by a 
green arrow to the right, and an Up relationship by a red 
arrow to the left. To avoid treating the initial lcp-interval 
[1..n] as a special case, we consider the ℓ-index (n+ 1) to 
have an Up relationship to the ℓ-index 1.

To compress a child array, we note from [14] that all rel-
evant Next, Down, and Up values can be stored in a single 
array (Fig.  1), by allowing Next values to take precedence 
over Down values, and storing an Up value at index ka 
at slot (ka − 1) in the array. Furthermore, as further pro-
posed by [14], the values in a child array can be reduced 
by representing them as differences relative to their origi-
nal index, as Next[k] − k, Down[k] − k, or k − Up[k]. 
Also, because index values differ by at least one, we can 
subtract an additional 1 from each of these differences. 
One proposal for compressing this array has been to use 
a bytecoding scheme, where the values are stored as a 
vector of bytes, with values of 255 or greater stored in an 
exception array, to which we can add an EG array. How-
ever, as with the LCP array, small integer values can also 
be directly coded using a vectorized bitpacking scheme. 

Alternatively, a more complex approach to compression 
is a balanced parenthesis representation  [16, 19], which 
can then be represented compactly as a bitmap, where an 
open parenthesis is encoded by 1 and a close parenthe-
sis by 0. This bitmap can then be navigated with auxil-
iary data structures that facilitate performing rank and 
select operations and finding matching open and close 
parentheses.

Branch lookup
So far, we have discussed various methods for compress-
ing the LCP and child arrays, which we will evaluate 
empirically. Our second line of analysis considers ways 
to streamline the ESA search algorithm, as presented 
in Algorithm 1, which is adapted from Algorithm 6.8 in 
[14].

In this algorithm, ESA pattern search is based on 
repeated steps of finding the child lcp-interval that 
matches the appropriate character P[lcpij] from the given 
query string P against the alternatives at each successive 
parent lcp-interval. At the end of the search, the algo-
rithm returns the length c of the longest prefix match 
between P and substrings in S, and the indices i through j 
in the suffix array that enclose those matches. If c equals 
m, then the entire query string matches; otherwise, only 

Algorithm 1 (Literature) Overall pattern matching with ESAs. Find the longest prefix
match between a query string P of length m and a target string S of length n, using a
suffix array SA, LCP array, and Child array. Returns the length c of the match and the
indices i and j in SA that enclose the target positions SA[i] through SA[j] that produce
the match.
1: c ← 0
2: [i..j] ← [1..n]
3: while c < m do
4: if i = j then {Singleton lcp-interval}
5: c ← c+ countMatches(S[(SA[i] + c)..(SA[i] +m− 1)], P [c..(m− 1)])
6: return (c, i, j)
7: else
8: k1 = Child[j + 1].up
9: if k1 ≤ i or k1 > j then k1 ← Child[i].down
10: lcpij ← LCP[k1]
11: if lcpij > c then
12: M ← min(lcpij ,m)
13: c ← c+ countMatches(S[(SA[i] + c)..(SA[i] +M − 1)], P [c..(M − 1)])
14: if c < M or c = m then return (c, i, j)
15: end if
16: [l..r] ← getInterval([i..j], lcpij , k1, P [c])
17: if [l..r] = null then return (c, i, j)
18: c ← c+ 1
19: [i..j] ← [l..r]
20: end if
21: end while
22: return (c, i, j)
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part of the query string does. The algorithm relies upon 
a procedure countMatches that counts the maximum 
number of matches in some suffix of P by comparing it 
to lookups from the target string S. The auxiliary LCP 
and child arrays in the ESA are designed to minimize the 
need to count character matches explicitly until the end 
of the search process, when a final set of positions cannot 
be discriminated any further. Instead, most of the search 
process consists of traversing the child array, using a pro-
cedure getInterval, which finds the child lcp-interval cor-
responding to a given character p = P[c] from the query 
string. The algorithm for getInterval is presented in Algo-
rithm 2, based on Algorithm 6.7 in [14].

In order to make pattern search more efficient, we focus 
on lines 1, 7, and 13 of Algorithm 2, which retrieve a char-
acter from each of the child suffixes for testing against 
the desired query character p. Since these characters can 
be found in the branch labels of the lcp-interval tree, we 
call this process branch lookup. The standard, or genome-
based, implementation of branch lookup consults the 

a lookup in the suffix array SA, which can be costly 
because its large size also makes caching unlikely, and if 
the suffix array is compressed, lookup consumes time to 
decompress each suffix array element.

One way to reduce the number of lookups in the 
genome and suffix array is to use the discriminating char-
acter (DC) array we introduced previously. A revised 
algorithm for getInterval that uses a DC array is shown in 
Algorithm 3. In this DC-based approach, a given ℓ-index 
k yields a corresponding DC array value DC[k] = (s1, s2) 
containing two branch characters s1 and s2 that can be 
used to select the child lcp-interval (line 1). In our exam-
ple, recall that the ℓ-index of 8 has a DC value of “at”. We 
can use the fact that s1 and s2 are in lexicographic order 
to facilitate the initial comparison between the query and 
the genome (lines 2–5), as follows: (1) if s1 < p < s2, then 
p was skipped and getInterval can return null, indicating 
that no match was found, and likewise (2)  if p < s1 for 
the first child lcp-interval or p �= s2 for the last child lcp-
interval, getInterval can return null. Subsequent accesses 
to the DC array (line 11) are useful only for obtaining the 

Algorithm 2 (Literature) Standard implementation of getInterval : Returns the child
lcp-interval for a parent lcp-interval [i..j] that matches a query character p, given lcp
lcpij for the interval and first child -value k1, using a suffix array SA, Child array, and
target string S.
1: s ← S[SA[i] + lcpij ] {Branch lookup using genome, SA}
2: if p < s then return null
3: else if p = s then return [i..(k1 − 1)]
4: end if
5: while k1 < j and LCP[k1] = lcpij do
6: k2 ← Child[k1].next
7: s ← S[SA[k1] + lcpij ] {Branch lookup using genome, SA}
8: if p < s then return null
9: else if p = s then return [k1..(k2 − 1)]
10: else k1 ← k2
11: end if
12: end while
13: s ← S[SA[k1] + lcpij ] {Branch lookup using genome, SA}
14: if p = s then return [k1..j]
15: else return null
16: end if

genomic string S to obtain the various alternatives. How-
ever, this lookup process can be costly for genomics appli-
cations, where jumps in suffix array entries over a long 
genomic text make it unlikely that any given character is 
stored in cache memory from a recent lookup. Further-
more, genomic strings are often bitpacked, either using 
2 bits per character or 3 bits in order to represent the 
ambiguous character “x” (as in our implementation of 
gmap  [20]), so accessing the genomic string can involve 
time-consuming shifting and masking operations. Finally, 
finding the desired position in the genomic string requires 

value of s2. But in all cases, each access to the DC array 
replaces potentially expensive accesses to both the suffix 
array and the genome text.

For genomes, we can store the entries of a DC array 
efficiently; in fact, each possible DC pair can be stored 
in 4 bits, or a nibble. Recall that the alphabet �S for the 
genomic string consists of the nucleotides a, c, g, t, and x. 
Because the two characters in a DC pair must be in lexi-
cographic order, there are 15 possibilities for a DC pair in 
the genomic domain: $a, $c, $g, $t, $x, ac, ag, at, ax, cg, 
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ct, cx, gt, gx, and tx. A nibble is sufficient to represent all 
15 possibilities. We can pack two nibbles into a byte, so 
for a genomic string of length n, the DC array occupies 
n / 2 bytes.

Integrated data structure
Our third concept for increasing ESA-based genomic 
search speed involves improving memory access. 
Because of memory caching  in CPUs, in which recently 
retrieved memory and surrounding data are kept tem-
porarily in ultrafast storage, procedures can be made 
faster by placing related data next to one another, when 
it is anticipated that they will be needed at approximately 
the same time. In pattern search, the child value for k1 
and its LCP value are needed sequentially (lines 8–10 in 
Algorithm 1 and lines 6–7 in Algorithm 3). Likewise, the 
DC values are also needed at this time (lines 1 and 11 in 
Algorithm 3).

Therefore, it makes sense to integrate the LCP, child, 
and DC data structures, so that LCP[k], Child[k], and 
DC[k] are retrieved in the same cache line. We have dis-
cussed previously that the LCP and child arrays can be 
represented in a bytecoding format with exceptions and 
an optional EG array. It is therefore relatively straightfor-
ward to interleave the bytes for LCP[k] and Child[k] into 
a single combined array. As for the DC array, a single byte 
in the DC array represents the two nibbles for two adja-
cent ℓ-indices. Therefore, we can include the DC array as 
well using an integrated data structure that stores aux-
iliary suffix array information in blocks of 5 bytes: two 
adjacent LCP values, two adjacent child values, and one 

byte representing two adjacent DC pairs. The excep-
tion array and EG array for the bytecoded LCP and child 
arrays are stored in separate data structures.

The idea of interleaving data structures is not new. Pro-
posals have been made to combine the suffix array and 
LCP array in raw or compressed format  [21, 22]. How-
ever, that format does not account for the child array 
used in ESAs. With our introduction of the DC array, 
accesses to the suffix array are eliminated during itera-
tions of selecting child intervals, so interleaving of the 
suffix array is no longer beneficial in our scheme. Rather 
than incorporating the suffix array, our integrated data 
structure includes only the LCP, child, and DC arrays that 
are closely linked in Algorithms 1 and 3.

Evaluation
Experimental setup
We evaluated the speed and space usage of various com-
pression and algorithmic methods by computational 
experiments. We used genomes of different sizes, namely, 
the fly genome (D. melanogaster version 5.25.64), chicken 
genome (Gallus gallus version 4), and human genome 
(version hg19). Although dedicated software is available 
for constructing enhanced suffix arrays, such as mkvtree 
(http://www.vmatch.de) and mkESA  [23], we wanted to 
augment the ESA approach and to compare ESA meth-
ods against other techniques for genomic search. There-
fore, we based our experiments and implementation on 
the Succinct Data Structure Library (SDSL)  2.0 package, 
which is publicly available as C++ source code  [12], but 
which we have augmented with code for our methods and 

Algorithm 3 (Novel) Revised implementation of getInterval : Returns the child lcp-
interval for a parent lcp-interval [i..j] that matches a query character p, given LCP
value lcpij for the interval and first child -value k1, using a discriminating characters
(DC) array and Child array.
1: (s1, s2) ← DC[k1] {Branch lookup using DC array}
2: if p < s1 then return null
3: else if p = s1 then return [i..(k1 − 1)]
4: else if p < s2 then return null
5: end if
6: while k1 < j and LCP[k1] = lcpij do
7: k2 ← Child[k1].next
8: if p = s2 then
9: return [k1..(k2 − 1)]
10: else
11: (s1, s2) ← DC[k2] {Branch lookup using DC array}
12: if p < s2 then return null
13: k1 ← k2
14: end if
15: end while
16: if p = s2 then return [k1..j]
17: else return null
18: end if

http://www.vmatch.de
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experimental benchmarks. The augmented version is avail-
able for download as Additional file 1, which is the same 
source code as provided in our companion paper on bit-
packing for hash tables. Genomic input files for our bench-
marking experiments are hosted on a public Web site, with 
downloading instructions available within the package. 
Alternatively, we have prepared a package, available for 
download as Additional file 2, that allows users to generate 
their own benchmarks from any DNA or RNA source.

Our additional methods for suffix arrays are imple-
mented in five classes: bp64_vlc_vector, which pro-
vides direct coding of integer arrays with a block size of 
64; byte_guide, which implements bytecoding of inte-
ger arrays, with or without an EG array at a user-specified 
interval; genome_esa, which builds an enhanced suffix 
array representation of a genome; genome_discrim, 
which builds a discriminating character (DC) array for a 
given genomic suffix array; and genome_integrated, 
which provides a data structure that interleaves the DC, 
LCP, and child arrays, with the LCP and child arrays rep-
resented using bytecoding with an EG array.

Our benchmarking programs evaluate these classes and 
native SDSL methods in retrieving LCP values, select-
ing a child at an lcp-interval, and performing genomic 
search. Details of each benchmarking program are pro-
vided in individual sections later. However, in general, 
for each benchmarking program, data structures were 
either read into memory from the filesystem or generated 
de novo in memory from the input files. A checksum 
was computed over the results to ensure that the meth-
ods gave consistent results and that the compiler did not 
optimize out the query.

All timing experiments were performed on a reserved 
Linux computer having 32 Intel Xeon E5-2667 v3 8-core 
processors running at 3.20  GHz. The computer had 
total memory of 264  GB and cache memory of 20  MB. 
The SDSL 2.0 library was compiled with the GNU g++ 
compiler, version 4.9.0, with the default settings, which 
turned off debugging code, and added the compiler flags 
“-O3 -ffast-math -funroll-loops -msse4.2”. Unless speci-
fied otherwise, all experiments were repeated for 9 trials, 
with each trial generating different random values and 
testing different compression strategies in a randomly 
selected order. Results are summarized by the median 
over the trials. We also measured the time for iterating 
through each dataset, obtaining the query and perform-
ing the checksum, and subtracted the median times from 
all runs. These times amounted to a negligible fraction of 
the overall running times.

Retrieval of LCP values
For retrieval of LCP information, the task in pattern 
search is to find LCP[k], for a given entry k in the suffix 

array. We therefore implemented a benchmarking pro-
gram that retrieves the LCP value for 1 million random 
indices drawn uniformly in the range of 1 through the 
genome length n. We tested various methods for storing 
the LCP array, as described in the Methods section, with 
the overall results shown in Fig.  3a, and an enlarged plot 
of the inset shown in Fig.  3b.

The most basic storage format is the int_vector 
class in SDSL, which corresponds closely to an uncom-
pressed array, except that a uniform bit width can be used 
over the entire array. The SDSL encoding uses 28, 30, 
and 32 bits, respectively, for the fly, chicken, and human 
LCP arrays. Retrieval times for int_vector arrays are 
16–24 ns/query, but they occupy approximately 3.5–4 
bytes per array element. (An uncompressed array using 
32 bits for each array element is not shown, but gives 
approximately the same retrieval times.)

At the other end of the spectrum, an implementation of 
a permuted LCP array using the lcp_support_sada 
class in SDSL requires the smallest amount of space, at 
0.28 bytes/entry, or 7 % of the space for an uncompressed 
array. However, retrieval times are extremely slow, at 
8963 ns/query, 11,173 ns/query, and 276,050 ns/query 
for the fly, chicken, and human genomes, respectively. 
These large values for time do not fit within our graph 
for Fig.  3a, so we represent only their space usage with 
a vertical dashed line. Figure  3a also shows space and 
time measurements for the Elias delta and wavelet tree 
methods for LCP arrays, implemented as lcp_vlc and 
lcp_wt, respectively. The Elias delta encoding provides 
compression of 30–35  % compared with the uncom-
pressed array, but retrieval times that are 36–47 times 
slower. The wavelet tree method is both smaller and 
faster, with space usage at 15–25  % and retrieval times 
that are 14–21 times slower than the uncompressed 
array.

Faster ways for retrieving compressed LCP values are 
shown in more detail in Fig.  3b. We implemented a bit-
packing method for representing a permuted LCP array 
using our BP64-columnar method, as implemented in 
the class bp64_encc_vector. We obtain space usage 
of 16–17 % and retrieval times that are 6–7 times slower 
than an uncompressed array. We applied the directly 
addressable variable coding (DAC) method from SDSL 
class lcp_dac, and obtain relatively fast retrieval for 
the fly and chicken genomes (3.3–3.6 times slower than 
the uncompressed array), but slow retrieval times for the 
human genome (8.4 times slower). A direct encoding 
of LCP values using the BP64 bitpacking method yields 
compression of 30–37 % and retrieval times that are 1.8, 
3.3, and 2.7 times slower than the uncompressed array 
for the fly, chicken, and human genomes, respectively.
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We also evaluated the bytecoding scheme in which 
LCP values less than 255 are stored in a vector of bytes, 
and values of 255 and greater are stored in an excep-
tion array, with or without an EG array. We find that the 
rate of exceptions differ across the three genomes, with 
the fly genome having 8.6  % and the human genome 
having 8.1  % of their LCP values being 255 or greater, 
but the chicken genome having only 2.2  % of its values 
being exceptional. This different characteristic of the 
chicken genome is reflected in the graph values for byte-
coding, where the chicken genome requires about 0.5 
bytes/genome length less storage than the fly or human 
genomes. As we discuss later, the chicken genome is 
remarkable for having relatively little noncoding DNA or 
duplicate DNA.

We benchmarked both our own implementation of 
bytecoding without an EG array and the SDSL imple-
mentation called lcp_byte. The SDSL implementation 
is slightly faster for the fly genome and slightly slower for 
the chicken genome than our implementation. Within 
our own implementation, bytecoding by itself is slightly 
faster than BP64 for the chicken genome, but slower for 
the fly and human genomes. This can be explained by the 
greater percentage of exception values in fly and human, 
which causes more time to be spent in binary search 
through the array of exceptions.

However, when an EG array is added, time for binary 
search is reduced, and bytecoding provides the fast-
est retrieval times of any compression method. For an 
EG array with an interval of 1024, the retrieval times 
are 1.6–2.7 times that of the uncompressed array; for a 
guide interval of 256, the times are 1.6–2.3 times slower; 
and for a guide interval of 64, the times are 1.5–2.0 times 
slower. A guide interval of 64 requires slightly more space 
than larger guide intervals, with the total compression 
being 33–50  % of the uncompressed array, compared 
with 31–48 % for bytecoding alone. Since the guide adds 
negligible space, there appear to be few drawbacks to 
using EG arrays with bytecoded data.

Selection of child lcp-intervals
Selection of a child lcp-interval corresponds to lines 
8–10 and 16 in Algorithm  1, with various data struc-
tures tested for these lines and the getInterval procedure. 
Benchmarking for this task involved 1 million random 
parent lcp-intervals, each drawn from a set of pre-com-
piled genomic 12-mers, plus a corresponding random 
query character to select a possible child lcp-interval. 
We excluded all singleton lcp-intervals, which have no 
child lcp-intervals. For SDSL methods, we used the child 
selection procedure from the library when available. We 
computed the time to return either the matching child 
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lcp-interval or an indication that no such match exists. 
For all child formats, the LCP array was represented 
using the lcp_bitcompressed format from SDSL.

The child array can be stored as an uncompressed 
SDSL int_vector, occupying 4n bytes, or approxi-
mately the same as the uncompressed suffix array and 
LCP array. The uncompressed child array gave selection 
times of 249 ns/query for fly, 295 for chicken, and 435 
for human (Fig.   4). We applied the balanced parenthe-
sis method  [16, 19] by using the cst_sada template 
with the csa_bitcompressed and lcp_bitcom-
pressed classes to avoid compression of the suffix or 
LCP array, and therefore isolate the effect of the balanced 
parenthesis representation. We obtained a compact space 
representation that was 15 % of the uncompressed child 
array. However, selection times were slow at 5–11 times 
that of the uncompressed array (Fig.  4a).

The inset is shown in more detail in Fig.   4b. We 
applied bitpacking using the BP64 scheme and obtained 
selection times that were 1.2–1.4 times those of the 
uncompressed child array. Bytecoding of the child array 
resulted in selection times that were 1.0–1.2 times those 
of the uncompressed array. Adding an EG array with an 
interval of 1024 resulted in a 2–9  % speedup. Smaller 
guide intervals (not shown) had only a minimal improve-
ment in speed beyond that. The smaller effect of the EG 
array for child values, compared with LCP values, may 
be explained by the lower incidence of exception values, 
with only 0.5 % of the child array values in the fly genome 

being 255 or greater, 0.3  % in the chicken genome, and 
0.4 % in the human genome.

We then tested our algorithmic variation (Algorithm 3) 
that uses a DC array to retrieve genomic characters, 
rather than a genome-based approach (Algorithm 2) that 
accesses the suffix array and then the genome string. The 
DC-based approach gave a substantial improvement in 
speed, by a factor of 1.7 over the genome-based approach 
using bytecoding and a guide interval of 1024.

ESA variants
Since our ultimate objective is to accelerate genomic 
search, we performed experimental tests on overall 
search speed, using various methods that were found 
to be efficacious in our separate LCP retrieval and child 
selection benchmarks. We wrote a benchmark program 
for search speed that, on each trial, generated 1 million 
random query sequences from a given genome, with 
lengths of 12, 24, and 36 nucleotides per sequence. Each 
method was then used to locate the genomic positions of 
these query sequences. Our methods of interest involved 
(1)  the child and LCP arrays represented as uncom-
pressed vectors (ESA); (2)  bytecoding of both arrays 
without an EG array (ESA-byte); (3)  bytecoding with 
EG arrays at  a guide interval of 1024 on both the child 
and LCP arrays; (4) the same bytecoding format with EG 
arrays, plus a discriminating character array; and (5) the 
two bytecoding arrays with EG arrays, and the DC array 
integrated into a single data structure (ESA-gdi). For 
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methods (1) through (4), we used the genome_esa class 
that we added to the SDSL package. These classes imple-
ment bytecoding, with or without EG arrays, for repre-
senting the LCP and child arrays. The results for ESA-gdi 
derive from the genome_integrated class that we 
added to SDSL, with guide intervals of 1024.

Figure  5 shows the resulting search times. Times 
increase from the fly to chicken genome, and from the 
chicken to human genome. This finding reflects primar-
ily the number of oligomers retrieved, with more oligom-
ers of a given size found in larger genomes. To account 
for this factor, we tallied the size distributions of match 
results. Figure 6 illustrates these distributions on a loga-
rithmic scale, as well as their arithmetic means, shown 
with a dashed vertical line. The shapes of the distributions 
show that 12-mers are non-specific in all species, requir-
ing hundreds to thousands of results to be retrieved on 
average for each query. In particular, the large number of 
match results for human 12-mers accounts for the rela-
tively long search times for that test scenario. The distri-
butions for 24-mers and 36-mers show a high frequency 
of specific, or singleton, matches, but a long tail to the 
right, indicating that occasional 24-mers and 36-mers are 
non-specific and yield large numbers of match results. 
These non-specific oligomers generally come from dupli-
cate or repetitive regions of the genome.   The greater 

overall specificity for the chicken genome, compared with 
the fly or human genome, may reflect its relative paucity 
of DNA repeats, duplications, and noncoding DNA [24]. 
To illustrate this difference, the chicken genome has 
approximately the same number of coding genes as the 
human genome, but is only one-third the size. 

Bytecoding by itself results in slower search times com-
pared with the uncompressed child and LCP arrays, by a 
factor of 1.8–2.5. However, addition of EG arrays improve 
the search times to be nearly those for the uncompressed 
ESA. To put it another way, EG arrays improve search 
speed by a factor of 1.5–2.0, compared with bytecoding 
alone.

The DC array gives additional increases in search 
speed, such that search becomes faster than for  the 
uncompressed ESA by a factor of 1.0–1.2. Finally, the 
use of an integrated data structure, to produce ESA-gdi, 
gives the greatest amount of speed up, with speeds that 
are 1.1–1.4 times faster than those for the uncompressed 
ESA. Compared with the bytecoding method, the inte-
grated data structure gives speeds that are 2.4–2.8 times 
faster for the fly genome, 2.2–2.7 times faster for the 
chicken genome, and 1.3–2.9 times faster for the human 
genome, over the various 12-, 24-, and 36-nucleotide pat-
tern lengths.
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Survey of approaches
We compared our ESA methods against existing methods 
from the literature. The results, shown in Table  1, were 
obtained by creating timing experiments for backward 
and forward search algorithms as implemented within 
SDSL. For the backward search algorithms, we used the 
count and locate algorithms as implemented within the 
suffix_array_algorithm class. The protocol was 
the same as for our ESA benchmarking experiment, 
except that each experimental run was based on 100,000 
randomly selected reads, instead of 1  million. Also, to 
obtain higher accuracy for these results, we performed 
27 runs of each combination before isolating the median 
value.

The standard suffix array method (shown as SA in 
Table  1) was benchmarked using the csa_bitcom-
pressed class implemented in SDSL, which allocates 
a uniform number of bits to every entry in the suffix 
array. The backward search algorithm uses either a suc-
cessor array called Psi  [10] or rank queries on a wavelet 
tree [11], while the forward search algorithm uses binary 
search through the suffix array.

Compression of the suffix array (shown as CSA-Sada 
and CSA-WT) was tested using the Sadakane  [10] and 
wavelet tree  [11] methods as implemented in the csa_
sada and csa_wt classes, respectively. Parameters for 
these methods were sampling densities of 10 for the suf-
fix array and 10 for the inverse suffix array, with sampling 
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performed using text order rather than suffix array 
order. These parameters were suggested by the author of 
the SDSL package (personal communication), because 
default parameters (sampling density of 32 for the suf-
fix array and 64 for the inverse suffix array) gave search 
speeds for the location task that were prohibitively slow. 
We also tested the wavelet tree method with an uncom-
pressed suffix array (shown as SA-WT), by using a sam-
pling density of 1.

Overall, these results show a tradeoff between the 
size and speed of a genomic  representation. The small-
est memory usage is provided by compressing the suffix 
array. The CSA-Sada method has approximately the same 
speed for the counting task as the uncompressed SA, 
whereas CSA-WT is significantly faster.

For the locating task, we find that the overall time per 
query correlates with the number of locations that must 
be enumerated. As we saw with the ESA variants and 
Fig.   6, the size of the match results varies significantly 
among the species and oligomer lengths. Therefore, in 
Table  1, we normalize the locating task times by the total 
number of match results for each condition, to obtain 
time per match.

Both the overall and normalized results show that the 
uncompressed SA is relatively slow for specific queries, 
such as 24-mers and 36-mers, when its speed is domi-
nated by traversing the suffix array, as reflected in the 
counting task. In these cases, CSA-WT was faster than 
uncompressed SA. However, for non-specific queries, 
such as 12-mers, the compressed suffix array methods 
are slower than uncompressed SA, since they require 
additional time for decompressing large numbers of 
match results.

The fastest method in almost all cases of the counting 
and locating tasks was ESA-gdi, which uses about twice 
as much memory as an uncompressed SA. Of note, ESA-
gdi was even faster than the uncompressed ESA, even 
though the compression reduces memory usage by 40 %. 
An exception held in the category of the counting task for 
12-mers, in which the SA-WT and CSA-WT methods 
were slightly faster than ESA-gdi.

Discussion
In this paper, we have explored practical issues of design-
ing algorithms and data structures for fast genomic 
search. In general, we observe that more complex 
approaches to compression, such as permuted LCP 
arrays and balanced parenthesis representations of child 
arrays, can occupy the smallest amounts of space but 
require significantly more time for decoding. In practice, 
this additional time can limit their utility for perform-
ing tasks such as high-throughput read alignment. In 
contrast, simpler bitpacking and bytecoding techniques 

are not as efficient in space usage but much faster for 
retrieval time and search speed.

In this paper, we have introduced three techniques for 
achieving improved speed and reduced space require-
ments for pattern search using enhanced suffix arrays. 
First, for both LCP and child arrays, bytecoding when 
combined with an EG array provides the fastest retrieval 
and selection times. These findings are further sup-
ported by the observation that search with EG arrays is 
faster than with bytecoding itself by a factor of 1.5–2.0. 
Bytecoding with EG arrays is even faster than vectorized 
bitpacking, which was extremely effective in our com-
panion paper on representing hash tables. One reason 
for this is that LCP and child arrays require direct coding 
of their values, rather than differential coding of differ-
ences between adjacent values. Therefore, vectorization, 
or SIMD, operations provide little advantage in this 
scenario.

Our second technique introduces a discriminating 
character (DC) array to speed up genomic search by 
reducing accesses to the suffix array and genome string. 
Third, integrating the LCP, child, and DC arrays into a 
single data structure achieves further speed up in pattern 
matching by improving memory access. Our integra-
tion scheme dovetails with our two previous techniques. 
Bytecoding of both the LCP and child arrays provides a 
uniform representation of small values that can be eas-
ily interleaved. Also, our use of a DC array eliminates 
accesses to the suffix array and genomic text, so that 
they do not need to be included in our integrated data 
structure.

Our work has been guided by our application of inter-
est, namely, genomic search, and it is an open question 
whether our techniques will necessarily generalize to 
other domains. Genomic pattern matching is charac-
terized by large numbers of match results per query. 
Even for relatively long oligomers, such as 24-mers and 
36-mers, which yield only a single match result in most 
cases, occasional oligomers are non-specific and require 
many match results to be enumerated. Therefore, in 
this domain, it appears better to leave the suffix array 
itself uncompressed for fast retrieval in the locating task. 
Likewise, genomic pattern matching is characterized by 
a small alphabet size. It is not clear whether larger alpha-
bets will benefit from a DC array if there are many child 
lcp-intervals for a given parent lcp-interval, which is 
potentially O(|�S |). In those domains, it may be faster to 
have a representation of the lcp-interval tree that allows 
the correct child to be found in O(log |�S |) time [16, 25].

Nevertheless, our results provide guidance for the 
important and timely task of designing genomic search 
algorithms. In particular, suffix array algorithms require 
the most time for the locating task when many positions 
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must be enumerated, as with the 12-mers studied in this 
paper. Therefore, for such queries, other representations, 
such as hash tables, may be more effective. In fact, our 
genomic alignment program gsnap  [8] uses both suffix 
arrays and hash tables to perform genomic alignment. 
The techniques reported in this paper and its compan-
ion were motivated by an attempt to increase the speed 
of that program. Genomic search remains an important 
domain of interest for computational and experimental 
biologists. We hope that our techniques will facilitate the 
analysis of ever-increasing volumes of data from high-
throughput sequencing.
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