
Wu Algorithms Mol Biol (2016) 11:9
DOI 10.1186/s13015-016-0068-6

RESEARCH

Bitpacking techniques for indexing
genomes: II. Enhanced suffix arrays
Thomas D. Wu*

Abstract

Background: Suffix arrays and their variants are used widely for representing genomes in search applications.
Enhanced suffix arrays (ESAs) provide fast search speed, but require large auxiliary data structures for storing longest
common prefix and child interval information. We explore techniques for compressing ESAs to accelerate genomic
search and reduce memory requirements.

Results: We evaluate various bitpacking techniques that store integers in fewer than 32 bits each, as well as byte-
coding methods that reserve a single byte per integer whenever possible. Our results on the fly, chicken, and human
genomes show that bytecoding with an exception guide array is the fastest method for retrieving auxiliary informa-
tion. Genomic searching can be further accelerated using a data structure called a discriminating character array,
which reduces memory accesses to the suffix array and the genome string. Finally, integrating storage of the auxiliary
and discriminating character arrays further speeds up genomic search.

Conclusions: The combination of exception guide arrays, a discriminating character array, and integrated data stor-
age provide a 2- to 3-fold increase in speed for genomic searching compared with using bytecoding alone, and is
20 % faster and 40 % more space-efficient than an uncompressed ESA.

Keywords: Enhanced suffix array, Sequence alignment, Genomics, Data compression

© 2016 Wu. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/
zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
High-throughput sequencing [1] makes it critical to
accelerate the alignment of query reads to a genome,
and influences the design of genomic data structures for
fast pattern search. Although pattern search is germane
to many fields, genomic search is of such fundamen-
tal and timely importance in biology that accelerating
genomic search is worthwhile in its own right. Further-
more, genomics is a distinctive domain, characterized by
(1) very large texts, such as the 3 billion base pairs in the
human genome; (2) a small alphabet size, with only four
nucleotides and a possible fifth character to represent
ambiguity or uncertainty; (3) various types of repetition
in the genomic text, on both small and large scales; and
(4) the need to handle mismatches and gaps between the
query read and the genome, which can require searches

on short substrings in a query and result in large num-
bers of matches in a genome.

In a companion paper, we show how hash tables for
representing genomes can be made faster by introduc-
ing novel bitpacking compression techniques, which
allow for larger k-mers and therefore higher specificity.
In this paper, we consider the prevailing alternative to
hash tables, namely, suffix arrays [2] and related variants.
A suffix array (SA) represents a genome sequence as a
list of positions, arranged according to the lexicographic
ordering of their corresponding suffixes. Suffix arrays are
used in such programs as segemehl [3], last [4], mum-
mer [5], reputer [6], star [7], and as an initial stage in
recent versions of gsnap [8], which also employs hash
tables for more complex alignments.

For suffix arrays, as with any representation, there is a
tradeoff between time and space. Uncompressed repre-
sentations generally offer the fastest retrieval times, but
require the most space, and therefore may not fit within
the available amount of memory on a given computer.

Open Access

Algorithms for
Molecular Biology

*Correspondence: twu@gene.com
Department of Bioinformatics and Computational Biology, Genentech,
Inc., 1 DNA Way, South San Francisco, CA 94080, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-016-0068-6&domain=pdf

Page 2 of 16Wu Algorithms Mol Biol (2016) 11:9

Accordingly, many proposals for compressing suf-
fix arrays have been advanced [9]. We are interested in
investigating how such methods work in genomics appli-
cations. For the purpose of genomic search, we do not
necessarily need all of the functionality of a suffix array,
but can consider representations that support only the
task of pattern matching.

In general, pattern matching can be considered as
two related tasks: (1) counting the number of pattern
matches, and (2) locating their positions in the target
text. For most applications in genomics, the locating task
is the relevant one, which yields all genomic positions
that match a given query read or substring in the read.
Table 1 demonstrates how suffix arrays perform on both
tasks, in the two columns labeled SA. Two possible suffix
array algorithms for pattern matching are reverse search,
which uses a successor array called Psi, and forward
search, which performs a binary search through the suf-
fix array entries. More detailed descriptions of these and
other established algorithms can be found elsewhere [13].

A standard suffix array can be improved by increas-
ing search speed, reducing memory requirements, or
both. To reduce memory usage, techniques have been
developed for compressing the array, such as the pro-
posal by Sadakane [10] or wavelet trees [11], which con-
tain bitmaps for subsets of the genomic alphabet. These
methods are benchmarked as CSA-Sada and CSA-WT
in Table 1, as well as using the wavelet tree component
with an uncompressed suffix array, shown as method
SA-WT. The methods above are available in a widely
used library called the Succinct Data Structure Library
(SDSL) 2.0 [12].

The scope of this paper does not permit a full descrip-
tion of these various compression methods. However, the
data clearly show that both space and retrieval time can
vary widely, depending on which representation method
is used. Therefore, for our goal of accelerating genomic
search speed, it is critical to choose an appropriate
genomic representation, as allowed within the amount of
available memory.

If sufficient memory is available, we can augment the
suffix array with auxiliary data structures to create an
enhanced suffix array (ESA) [14]. The ESA auxiliary data
structures are the longest common prefix (LCP) array and
the child array. The LCP array records the length of the
common substring between adjacent entries in the suf-
fix array, and allows a search algorithm to search against
the common region when comparing a query sequence
against the suffix array. Common prefixes impose a hier-
archical, or parent–child, structure upon the suffix array.
For each set of suffix array entries that share a common
prefix, the character following the prefix serves to parti-
tion the set into smaller children subsets. The child array

records where each subset begins, and allows a search
algorithm to traverse the hierarchy of common prefixes
efficiently.

The drawback of an ESA is the extra space required for
the LCP and child arrays. These arrays are similar in size
to the suffix array, so they offer a worthwhile opportunity
for space savings. For example, a straightforward repre-
sentation of the suffix array, LCP array, and child array
requires 12 GB each for the human genome, with its 3
billion base pairs. Although modern computers often
have large amounts of primary random-access mem-
ory, or RAM, compression of data structures can still
have benefits. In particular, smaller data structures can
improve the effectiveness of caching, in which recently
used blocks of data are kept temporarily in ultrafast stor-
age for subsequent use.

Accordingly, compression of the LCP and child arrays
has been investigated by others. For example, one pro-
posal for compressing the LCP array permutes the order
of elements in text order, rather than in suffix array
order [15], which allows the permuted array to be rep-
resented by monotonically increasing values. Another
proposal represents the child array as a bitmap repre-
sentation of balanced parentheses [16], which is bench-
marked in Table 1 as ESA-bp.

As an alternative to these relatively complex compres-
sion schemes, we consider a simpler technique called
bitpacking, in which integers are represented with fewer
than the 32 bits that they are normally allocated. The idea
of bitpacking itself is not new, and bitpacking techniques,
such as Elias delta codes and Fibonacci codes, have been
applied to suffix arrays in the literature [17]. However,
vectorized bitpacking, which uses parallel arithmetic
operations available on modern computers, represents
a recent area of research, and is shown in our compan-
ion paper to be particularly useful for offset arrays in
genomic hash tables. It is therefore worth considering
whether such bitpacking methods could be applied to
LCP or child arrays.

A technique similar to bitpacking is bytecoding, either
using variable numbers of bytes for each integer, or using
a fixed number of bytes, with exceptionally large values
stored in a separate array. In fact, a bytecoding scheme
for the LCP and child arrays was proposed in the origi-
nal paper on enhanced suffix arrays [14]. We can con-
sider this to be a reference benchmark, and we show the
results of this approach for genomes in Table 1 as ESA-
byte, which is relatively fast for both counting and locat-
ing tasks.

The goal of this paper, then, is to explore whether
improvements upon ESA-byte are possible for genomic
search. Our end result is shown in Table 1 as the right-
most column, method ESA-gdi. The acronym “gdi” stands

Page 3 of 16Wu Algorithms Mol Biol (2016) 11:9

for three concepts introduced in this paper, namely, an
exception guide (EG) array for accelerating bytecoding;
a discriminating character (DC) array for streamlining
the ESA forward search algorithm; and an integrated
data structure appropriate for storing related LCP, DC,
and child array values. These enhancements result in
a genomic search method that reduces space usage for
the LCP and child arrays, is faster than the ESA-byte

benchmark, and is both faster and more space-efficient
than the native uncompressed ESA.

Methods
Suffix arrays
A suffix array is an indexed representation of a genome [2].
Although we use the term “genome”, our methods can be
used generally to represent any target sequence or set of

Table 1 Speed of genomic search and space usage

Genome sources: Drosophila melanogaster version 5.25.64 (Fly), Gallus gallus gg4 (Chick), and Homo sapiens hg19 (Human)

 SA uncompressed suffix array; CSA-Sada compressed suffix array using Sadakane method; SA-WT and CSA-WT uncompressed and compressed suffix array,
respectively, using wavelet tree. ESA enhanced suffix array, ESA-bp ESA with balanced parenthesis representation; ESA-byte ESA with bytecoding; ESA-gdi ESA with
exception guide arrays, discriminating character array, and integrated data structure

Reverse search Forward search

SA CSA-Sada SA-WT CSA-WT SA ESA ESA-bp ESA-byte ESA-gdi

Space used (bytes per genome length)

 Fly 3.5 0.9 4.9 0.9 3.5 11.4 8.0 6.6 7.1

 Chick 3.8 1.0 5.1 0.9 3.8 11.9 8.5 6.3 6.8

 Human 4.0 1.0 5.5 0.9 4.0 12.4 9.0 7.1 7.6

Counting task (microseconds per query)

 Fly 12-mers 42.9 45.6 1.6 1.7 46.8 2.3 52.6 5.2 1.7

24-mers 81.5 88.8 4.7 4.8 47.6 2.5 54.0 5.3 2.1

36-mers 119.1 130.0 5.9 7.0 42.5 2.8 54.6 5.6 2.2

 Chick 12-mers 52.4 44.5 2.0 2.1 54.7 2.8 61.4 7.3 2.3

24-mers 98.0 90.3 4.5 5.3 53.5 3.6 65.7 8.7 3.0

36-mers 148.1 137.4 9.0 8.2 54.5 3.8 67.1 7.9 3.3

 Human 12-mers 59.8 49.3 2.4 2.7 58.4 3.4 75.0 10.0 3.1

24-mers 101.5 94.5 5.8 5.6 66.8 5.1 76.7 12.1 4.0

36-mers 151.0 139.3 9.3 9.4 70.2 5.2 81.1 11.9 4.0

Locating task (microseconds per query)

 Fly 12-mers 49.6 223.8 21.5 147.8 52.0 3.5 52.2 6.7 2.9

24-mers 86.5 135.0 12.0 45.2 47.4 3.1 53.9 5.5 2.5

36-mers 130.2 157.6 12.9 32.1 51.3 3.1 59.3 6.5 2.4

 Chick 12-mers 62.0 682.7 45.8 628.3 61.5 5.2 63.9 10.7 4.3

24-mers 104.5 102.9 7.2 16.3 54.2 4.0 64.1 7.9 2.8

36-mers 141.0 134.5 8.8 13.5 51.7 3.8 65.6 7.7 3.3

 Human 12-mers 80.1 6300.8 602.6 5798.1 99.0 30.4 94.1 37.6 28.5

24-mers 101.4 393.6 40.8 264.0 68.1 6.8 77.4 13.8 5.5

36-mers 149.7 175.8 12.6 46.1 60.0 5.1 79.3 12.7 4.3

Locating task (nanoseconds per match result)

 Fly 12-mers 69.2 312.4 30.1 206.2 72.5 4.8 72.9 9.3 4.1

24-mers 360.5 562.8 50.2 188.6 197.8 13.0 224.6 23.1 10.3

36-mers 941.9 1140.1 93.8 232.7 371.5 22.8 429.3 47.0 17.3

 Chick 12-mers 36.7 404.1 27.1 371.9 36.4 3.1 37.8 6.3 2.5

24-mers 2993.0 2948.3 206.9 467.4 1551.5 115.8 1836.9 226.7 81.5

36-mers 9723.0 9274.2 606.4 928.8 3566.7 259.6 4527.3 533.2 226.3

 Human 12-mers 3.3 259.9 24.9 239.1 4.1 1.3 3.9 1.6 1.2

24-mers 71.0 275.6 28.6 184.8 47.7 4.7 54.2 9.7 3.9

36-mers 800.8 940.7 67.7 246.5 320.8 27.3 424.5 68.2 23.2

Page 4 of 16Wu Algorithms Mol Biol (2016) 11:9

sequences, such as a set of genomic contigs or transcripts,
that serve as a reference for alignment. In this paper, we
will use a running example based on the genomic string
S = acaaacatat$, an example introduced by others [14].
A genomic string S of length n consists of nucleotides
drawn from the alphabet �S = {a, c, g , t, x}, and ends with
a special terminating character “$”. We use the character
“x” to represent a nucleotide whose identity is unknown
or considered irrelevant for search, such as in the repeti-
tive end regions of chromosomes called telomeres.

In our convention, positions in a string are indexed
starting with 0, so the terminating character “$” is located
at position n. A genomic string has (n+ 1) suffixes,
Suffix[0] through Suffix[n], where Suffix[k] represents
the substring S[k..n]. These suffixes can be sorted lexico-
graphically, giving rise to a suffix array SA[k], which rep-
resents the starting positions of the suffixes after the sort.
In our exposition, the terminating character “$” is consid-
ered to have the lowest lexicographic order, preceding “a”.
The sorted suffixes and corresponding suffix array for our
example are given in Fig. 1, in the columns labeled Suffix
and SA.

A suffix array can be used by itself to search for a given
query string P of length m. The query string consists of
nucleotides drawn from the alphabet �P = {a, c, g , t} ,
which excludes the character “x”, since uncertain readings
are generally rejected by sequencing machines, so all of
P is typically known unambiguously. (In the rare event
of an uncertain character reported in the query string,

hash table methods could be used for pattern matching.)
The search process involves a binary search through the
suffix array to find indices i and j, such that Suffix[SA[i]]
and Suffix[SA[j]] are the narrowest pair of suffixes that
enclose P lexicographically. If i and j exist and i ≤ j, the
values of SA[i] through SA[j] give the positions in the
genome that match P. In other words, the values SA[i]
through SA[j] represent the solution for the locating task
in pattern search, while the quantity (j − i + 1) repre-
sents the solution for the counting task. A binary search
process can find all occurrences of a query string P in a
genome in O(m log n) time.

Compression of bucket arrays
The binary search process can be boosted by using a
bucket array [2], which stores the starting and ending
indices i and j in the suffix array for each possible q-mer
drawn from �P, for some well-chosen value q. Then, if the
query string P has sufficient length m ≥ q, a constant-
time lookup of the q-mer in the bucket array can replace
the first q steps of the binary search. Because the bucket
array is a series of successive pointers into the suffix array,
it is amenable to differential coding techniques, such as
those that we explored for offset arrays in our companion
paper. However, if q is sufficiently small, typically with
a value of 12 or less, where a single array of indices for
12-mers occupies only 67 MB, compression may not be
so critical. (Since �S also contains the character “x”, which
is not included in any q-mer, we must explicitly store two
arrays of indices, one for the starting index i and one for
the ending index j, to encode the lcp-interval [i..j] for
each q-mer, entailing a total storage space of 134 MB.)
Since bucket arrays are well established as a technique
for accelerating pattern search, we will not evaluate their
effectiveness in this paper, or even employ them. Instead,
we will investigate other techniques for accelerating
genomic search and reducing memory usage. In the sec-
tions below, we describe various techniques to be evalu-
ated computationally in this paper.

Compression of the LCP array
Search using a suffix array involves comparing charac-
ters in the pattern against entries in the suffix array. This
comparison process can be made more efficient by using
an LCP (longest common prefix) array [2]. The LCP value
at index k is the longest prefix shared between the suf-
fix at SA[k] and the one at SA[k − 1], shown in Fig. 1 as
the column labeled LCP. The LCP array can speed up
search in practice by allowing one to skip some of the
character comparisons needed to differentiate among
candidate suffixes when they share a common prefix.
Instead, we can compare the pattern characters directly
against the common prefix, as represented by any one

k SA[k] LCP[k] DC U D N C Su�x[SA[k]]

2
5 5

4
6
3
9
8

10

4 6

3 8 9

8 10

2 4

73 7

1

0 10 0 $
1 2 0 $a aaacatat $
2 3 2 ac aacatat $
3 0 1 ac acaaacatat $
4 4 3 at acatat $
5 8 1 ct at$
6 6 2 $a atat $
7 1 0 ac caaacatat $
8 5 2 at catat$
9 9 0 ct t$

10 7 1 $a tat$

Fig. 1 Enhanced suffix array tables for the string acaaacatat$. Values
are shown for the suffix array SA, longest common prefix LCP array,
and the Child C array, consisting of Up U, Down D, and Next N values,
with Next values taking precedence over Down values. Up values can
be stored in the preceding array position. These values are colored
to correspond with the arrows in Fig. 2. The suffixes in lexicographic
order are given by Suffix[SA[k]]. The discriminating character
(DC) array introduced in this paper represents the first characters
that differ between two adjacent suffixes at Suffix[SA[k − 1]] and
Suffix[SA[k]]. The locations of these characters among the suffixes are
shown as grey bars

Page 5 of 16Wu Algorithms Mol Biol (2016) 11:9

of the candidate suffixes, to determine whether the pre-
fix matches. Whereas a suffix array by itself can find all
occurrences of a pattern P in O(m log n) time, with the
addition of an LCP array, search can be performed in
O(m+ log n) time.

An LCP array generally contains small values, and
these values can be bitpacked in various ways, including
a direct coding scheme as used in vectorized bitpacking.
In such a scheme, we encode arrays of integers in blocks
of 64, each with a uniform bit width as needed to repre-
sent the largest integer in the block. Various versions of
block-based bitpacking were developed and evaluated
in our companion paper for representing offset arrays in
genomic hash tables. However, that application required
differential coding, or encoding differences between
elements of a vector of ascending values. In contrast,
although LCP values are not monotonically increasing
and hence not amenable to differential coding, they are
nevertheless candidates for direct coding.

In direct coding, we could conceivably arrange the
integers of each block in any layout, including the BP64-
horizontal, BP64-vertical, or BP64-columnar layout, as
described in our companion paper. Since extracting a
single value does not require parallel loads or additions,
SIMD operations are unnecessary. Rather, a separate sca-
lar procedure is needed for each possible bit width (i.e.,
the 16 even bit widths used in BP64), and for each possi-
ble entry xi within the block (64 entries in BP64). Hence,
it would seem that implementation in each of the three
layouts would require 16× 64 = 1024 separate access
procedures. However, if we use the BP64-vertical layout
and consider the contents of the bitpacked array to be a
series of 32-bit words, rather than 128-bit vectors, the
64 entries can be reduced to 16 distinct cases, where xi
selects a procedure based on ⌊xi/4⌋, applied to the series
starting at one of the four starting words in the block,
as determined by the quantity (xi mod 4). This scheme
reduces the number of procedures to be 16× 16 = 256.

Because values in an LCP array are generally small,
another option is to use a bytecoding scheme, as pro-
posed by others [14]. In this scheme, each LCP value can
be stored in a single byte, if it is less than 255. If the LCP
value is 255 or greater, then a value of 255 is used as a
flag to indicate that the actual value is stored in a sepa-
rate data structure for exceptions. Although exceptions
could be represented in a true hash table, where the key k
is evaluated using a hash function to determine the cor-
responding bucket of possible key/value pairs, a simpler
representation stores key/value pairs in a single array, in
ascending order of their keys. Such an array of exceptions
can then be processed by binary search.

Alternatively, by adding an exception guide (EG) array,
we can restrict the scope of the binary search to a portion

of the exception array, effectively making the search pro-
cess closer to that of a true hash table. An EG array con-
tains the corresponding location in the exception array at
regular intervals of k. For example, for a guide interval of
64, the array would store the position of the first excep-
tion that satisfies k ≥ 64, k ≥ 128, k ≥ 192, and so on.
Therefore, given a key k, we would divide the key value
by the guide interval, look up that entry in the EG array,
and then obtain the approximate subsection to search in
the exception array. We would then require only a small
sequential or binary search through that subsection.
(Our implementation uses binary search.) An exception
array plus an EG array achieves the same behavior as a
true hash table, with the hash function being division by
the guide interval. In fact, an EG array is analogous to a
bucket array, which stores pointers to starting positions
in a suffix array, at intervals corresponding to successive
q-mers. However, as far as we can tell, guide arrays have
not been proposed in the literature for bytecoding rep-
resentations, and are not currently implemented within
SDSL 2.0, perhaps because exceptions are typically not as
prevalent as they are in genomics applications.

Although bitpacking or bytecoding of small LCP val-
ues already provides a compact representation, these
values can be compressed even further by using wave-
let trees [11], which use bit arrays as a representation.
Another general approach to representing integer arrays
is called directly addressable variable-length coding
(DAC) [18], which allows for a variable number of bytes.

Another possible technique for compressing an
LCP array is to permute it [15]. A permuted LCP
array, or PLCP array, contains the LCP values in text
order a, rather than in lexicographic order k, satisfying
PLCP[a] = PLCP[SA[k]] = LCP[k]. One way to repre-
sent this PLCP array is by a succinct bitarray [15] that can
be queried using a select function, which is how this method
is implemented within SDSL. Alternatively, it has been
observed [10] that the sequence of values PLCP[a] + a is
nondecreasing, making it amenable to differential coding
techniques such as those used in vectorized bitpacking. In
that compression scheme, to retrieve LCP[k], we would look
up a = SA[k], perform differential decoding of the value
located at position a, and subtract a from the result. Appli-
cable differential coding methods include the BP64-vertical,
BP64-columnar, or BP32-columnar formats discussed in our
companion paper, as well as existing universal code formats.

Compression of the child array
The speed of pattern matching can be improved further
by adding a child array, which represents the hierarchi-
cal structure of common prefixes in a suffix array (Fig. 1).
A child array allows search to be done in O(m|�S |) time,
independent of the text length, and dependent instead on

Page 6 of 16Wu Algorithms Mol Biol (2016) 11:9

the length m of the pattern and the size of the alphabet.
Therefore, for genomic search, where the text length can
be quite large, the child array can be particularly effec-
tive. Also, for genomic applications, the alphabet size is
small, limited to the four nucleotides and a character for
an unknown or ambiguous nucleotide. A formal exposi-
tion of the child array can be found elsewhere [14]; for
our purposes, we aim to provide some intuition for the
data structure and its possible improvements.

A suffix array can be searched as a hierarchy, consist-
ing of sets of entries with common prefixes. Each set,
or lcp-interval [i..j] represents a range in the suffix array
from index i through j, having a common prefix of length
lcpij. The search process begins with the entire suffix
array [1..n] and progressively narrows the range of indi-
ces, based on matches from the query string. The set of
lcp-intervals can be conceptualized as a tree, although
this tree is virtual and not constructed explicitly (Fig. 2).
In this figure, each lcp-interval is shown as a bracketed
range of numbers. A parent lcp-interval is connected to
child lcp-intervals with branches, each of which is labeled
with a substring. The leaves of the tree consist of single-
ton lcp-intervals where i = j, representing individual
entries in the suffix array.

In pattern search, each lcp-interval represents a deci-
sion branch point, with a child interval to be selected
based on a character from the query string P. Selection
is based on the branch labels in the lcp-interval tree, as
shown in Fig. 2, which is a virtual representation and not
stored explicitly. The first parent interval is [1..n], and in
our example, its child interval is selected based on the
first letter of P, or P[0]. The child interval [1..6] is selected
if P[0] is “a”; [7..8] if it is “c”, and [9..10] if it is “t”.

At a given parent lcp-interval [i..j], the search process
selects from among the child lcp-intervals

or perhaps none of them, in which case the pattern match
fails. The child lcp-intervals are separated by the ℓ-indices
k1, k2, ..., kt, which, combined with i and j, are sufficient to
define the child lcp-intervals for a given parent. Hence, ℓ
-indices are essentially decision breakpoints in the suffix
array at various levels of the pattern comparison process.
The ℓ-indices are shown in Fig. 2 as the bottom number
inside each oval.

A critical observation is that the children ℓ-indices
for a given parent lcp-interval are at the same level, and
accordingly have a common LCP value lcpij for the pre-
fix shared among all suffixes from SA[i] through SA[j]. In
other words,

Therefore, the relevant character from the query string
P needed to select a child lcp-interval is the character
located at lcpij, or P[lcpij]. In our example in Fig. 2, the
parent lcp-interval [7..8] has a single child ℓ-index of 8,
having an LCP value of 2. Selection between the child
lcp-intervals [7..7] and [8..8] depends on the character
P[2] in the query string. If P[2] is “a”, the child lcp-interval
is [7..7]; if it is “t”, the child lcp-interval is [8..8]; and for all
other cases, pattern matching fails.

Because each ℓ-index sits between two child lcp-inter-
vals, each of which is selected by a particular character,
we can associate those characters with each ℓ-index. We
propose to call these the discriminating characters for
a given ℓ-index. In our example, the ℓ-index of 8 can be
labeled with the discriminating characters “a” and “t”, as
indicated by the letters “at” in the top of the oval for ℓ-
index 8. The discriminating characters for a given ℓ-index
k are the first characters that differ between the suffixes
Suffix[SA[k − 1]] and Suffix[SA[k]], as shown by the gray
bars in the suffixes of Fig. 1. Since these two suffixes
share a common prefix of length LCP[k], the discrimi-
nating characters are located in the genomic string at
S[SA[k − 1] + LCP[k]] and S[SA[k] + LCP[k]]. The dis-
criminating characters can be organized in a DC array
in order of the ℓ-indices, as shown in the column marked
DC in Fig. 1. These discriminating characters represent a
novel contribution of this paper, which we shall use later
to accelerate the ESA search algorithm.

The ℓ-indices have relationships among themselves.
The relationship from one child ℓ-index to its sibling
can be represented as a Next value, shown as curved
blue arrows in the Fig. 2. For example, the Next sibling
for index 1 is index 7, and the Next sibling for index 7
is index 9. The first child ℓ-index k1 for a parent interval

[i..(k1 − 1)], [k1..(k2 − 1)], . . . , [kt ..j]

LCP[k1] = LCP[k2] = · · · = LCP[kt]

[7..8] [9..10][1..6]

[3..4] [5..6][1..2]

[2..2][1..1]

[3..3] [4..4]

[5..5] [6..6] [7..7] [8..8]

[9..9] [10..10]

0

1

2

3

LCP [1..10]
a c t

a c t

a c $ a

$ a

aa at

aa at

11

1
$a

10
$a

9
ct

7
ac

5
ct

3
ac

2
ac

6
$a

8
at

4
at

Fig. 2 LCP-interval tree for the string acaaacatat$. The lcp-intervals
are shown in square brackets, with lines pointing to their children
intervals. Intervals are separated by ℓ-indices, shown as integers at
the bottoms of ovals. Pairs of letters are shown above each ℓ-index,
indicating its discriminating characters. Both lcp-intervals and their ℓ
-indices are arranged vertically by their LCP-value, and horizontally by
their index. Child relationships among ℓ-indices are shown as arrows
to the left (in red) for Up; right (green) for Down; and curved arcs (blue)
for Next values, to correspond with the colors in Fig. 1

Page 7 of 16Wu Algorithms Mol Biol (2016) 11:9

[i..j] is given either as a Down value (green) from index
i or an Up value (red) from index (j + 1). The directions
Down and Up indicate whether the child ℓ-index is larger
or smaller, respectively, than the starting index. In the
figure, since the ℓ-indices are arranged horizontally by
ascending value, a Down relationship is depicted by a
green arrow to the right, and an Up relationship by a red
arrow to the left. To avoid treating the initial lcp-interval
[1..n] as a special case, we consider the ℓ-index (n+ 1) to
have an Up relationship to the ℓ-index 1.

To compress a child array, we note from [14] that all rel-
evant Next, Down, and Up values can be stored in a single
array (Fig. 1), by allowing Next values to take precedence
over Down values, and storing an Up value at index ka
at slot (ka − 1) in the array. Furthermore, as further pro-
posed by [14], the values in a child array can be reduced
by representing them as differences relative to their origi-
nal index, as Next[k] − k, Down[k] − k, or k − Up[k].
Also, because index values differ by at least one, we can
subtract an additional 1 from each of these differences.
One proposal for compressing this array has been to use
a bytecoding scheme, where the values are stored as a
vector of bytes, with values of 255 or greater stored in an
exception array, to which we can add an EG array. How-
ever, as with the LCP array, small integer values can also
be directly coded using a vectorized bitpacking scheme.

Alternatively, a more complex approach to compression
is a balanced parenthesis representation [16, 19], which
can then be represented compactly as a bitmap, where an
open parenthesis is encoded by 1 and a close parenthe-
sis by 0. This bitmap can then be navigated with auxil-
iary data structures that facilitate performing rank and
select operations and finding matching open and close
parentheses.

Branch lookup
So far, we have discussed various methods for compress-
ing the LCP and child arrays, which we will evaluate
empirically. Our second line of analysis considers ways
to streamline the ESA search algorithm, as presented
in Algorithm 1, which is adapted from Algorithm 6.8 in
[14].

In this algorithm, ESA pattern search is based on
repeated steps of finding the child lcp-interval that
matches the appropriate character P[lcpij] from the given
query string P against the alternatives at each successive
parent lcp-interval. At the end of the search, the algo-
rithm returns the length c of the longest prefix match
between P and substrings in S, and the indices i through j
in the suffix array that enclose those matches. If c equals
m, then the entire query string matches; otherwise, only

Algorithm 1 (Literature) Overall pattern matching with ESAs. Find the longest prefix
match between a query string P of length m and a target string S of length n, using a
suffix array SA, LCP array, and Child array. Returns the length c of the match and the
indices i and j in SA that enclose the target positions SA[i] through SA[j] that produce
the match.
1: c ← 0
2: [i..j] ← [1..n]
3: while c < m do
4: if i = j then {Singleton lcp-interval}
5: c ← c+ countMatches(S[(SA[i] + c)..(SA[i] +m− 1)], P [c..(m− 1)])
6: return (c, i, j)
7: else
8: k1 = Child[j + 1].up
9: if k1 ≤ i or k1 > j then k1 ← Child[i].down
10: lcpij ← LCP[k1]
11: if lcpij > c then
12: M ← min(lcpij ,m)
13: c ← c+ countMatches(S[(SA[i] + c)..(SA[i] +M − 1)], P [c..(M − 1)])
14: if c < M or c = m then return (c, i, j)
15: end if
16: [l..r] ← getInterval([i..j], lcpij , k1, P [c])
17: if [l..r] = null then return (c, i, j)
18: c ← c+ 1
19: [i..j] ← [l..r]
20: end if
21: end while
22: return (c, i, j)

Page 8 of 16Wu Algorithms Mol Biol (2016) 11:9

part of the query string does. The algorithm relies upon
a procedure countMatches that counts the maximum
number of matches in some suffix of P by comparing it
to lookups from the target string S. The auxiliary LCP
and child arrays in the ESA are designed to minimize the
need to count character matches explicitly until the end
of the search process, when a final set of positions cannot
be discriminated any further. Instead, most of the search
process consists of traversing the child array, using a pro-
cedure getInterval, which finds the child lcp-interval cor-
responding to a given character p = P[c] from the query
string. The algorithm for getInterval is presented in Algo-
rithm 2, based on Algorithm 6.7 in [14].

In order to make pattern search more efficient, we focus
on lines 1, 7, and 13 of Algorithm 2, which retrieve a char-
acter from each of the child suffixes for testing against
the desired query character p. Since these characters can
be found in the branch labels of the lcp-interval tree, we
call this process branch lookup. The standard, or genome-
based, implementation of branch lookup consults the

a lookup in the suffix array SA, which can be costly
because its large size also makes caching unlikely, and if
the suffix array is compressed, lookup consumes time to
decompress each suffix array element.

One way to reduce the number of lookups in the
genome and suffix array is to use the discriminating char-
acter (DC) array we introduced previously. A revised
algorithm for getInterval that uses a DC array is shown in
Algorithm 3. In this DC-based approach, a given ℓ-index
k yields a corresponding DC array value DC[k] = (s1, s2)
containing two branch characters s1 and s2 that can be
used to select the child lcp-interval (line 1). In our exam-
ple, recall that the ℓ-index of 8 has a DC value of “at”. We
can use the fact that s1 and s2 are in lexicographic order
to facilitate the initial comparison between the query and
the genome (lines 2–5), as follows: (1) if s1 < p < s2, then
p was skipped and getInterval can return null, indicating
that no match was found, and likewise (2) if p < s1 for
the first child lcp-interval or p �= s2 for the last child lcp-
interval, getInterval can return null. Subsequent accesses
to the DC array (line 11) are useful only for obtaining the

Algorithm 2 (Literature) Standard implementation of getInterval : Returns the child
lcp-interval for a parent lcp-interval [i..j] that matches a query character p, given lcp
lcpij for the interval and first child -value k1, using a suffix array SA, Child array, and
target string S.
1: s ← S[SA[i] + lcpij] {Branch lookup using genome, SA}
2: if p < s then return null
3: else if p = s then return [i..(k1 − 1)]
4: end if
5: while k1 < j and LCP[k1] = lcpij do
6: k2 ← Child[k1].next
7: s ← S[SA[k1] + lcpij] {Branch lookup using genome, SA}
8: if p < s then return null
9: else if p = s then return [k1..(k2 − 1)]
10: else k1 ← k2
11: end if
12: end while
13: s ← S[SA[k1] + lcpij] {Branch lookup using genome, SA}
14: if p = s then return [k1..j]
15: else return null
16: end if

genomic string S to obtain the various alternatives. How-
ever, this lookup process can be costly for genomics appli-
cations, where jumps in suffix array entries over a long
genomic text make it unlikely that any given character is
stored in cache memory from a recent lookup. Further-
more, genomic strings are often bitpacked, either using
2 bits per character or 3 bits in order to represent the
ambiguous character “x” (as in our implementation of
gmap [20]), so accessing the genomic string can involve
time-consuming shifting and masking operations. Finally,
finding the desired position in the genomic string requires

value of s2. But in all cases, each access to the DC array
replaces potentially expensive accesses to both the suffix
array and the genome text.

For genomes, we can store the entries of a DC array
efficiently; in fact, each possible DC pair can be stored
in 4 bits, or a nibble. Recall that the alphabet �S for the
genomic string consists of the nucleotides a, c, g, t, and x.
Because the two characters in a DC pair must be in lexi-
cographic order, there are 15 possibilities for a DC pair in
the genomic domain: $a, $c, $g, $t, $x, ac, ag, at, ax, cg,

Page 9 of 16Wu Algorithms Mol Biol (2016) 11:9

ct, cx, gt, gx, and tx. A nibble is sufficient to represent all
15 possibilities. We can pack two nibbles into a byte, so
for a genomic string of length n, the DC array occupies
n / 2 bytes.

Integrated data structure
Our third concept for increasing ESA-based genomic
search speed involves improving memory access.
Because of memory caching in CPUs, in which recently
retrieved memory and surrounding data are kept tem-
porarily in ultrafast storage, procedures can be made
faster by placing related data next to one another, when
it is anticipated that they will be needed at approximately
the same time. In pattern search, the child value for k1
and its LCP value are needed sequentially (lines 8–10 in
Algorithm 1 and lines 6–7 in Algorithm 3). Likewise, the
DC values are also needed at this time (lines 1 and 11 in
Algorithm 3).

Therefore, it makes sense to integrate the LCP, child,
and DC data structures, so that LCP[k], Child[k], and
DC[k] are retrieved in the same cache line. We have dis-
cussed previously that the LCP and child arrays can be
represented in a bytecoding format with exceptions and
an optional EG array. It is therefore relatively straightfor-
ward to interleave the bytes for LCP[k] and Child[k] into
a single combined array. As for the DC array, a single byte
in the DC array represents the two nibbles for two adja-
cent ℓ-indices. Therefore, we can include the DC array as
well using an integrated data structure that stores aux-
iliary suffix array information in blocks of 5 bytes: two
adjacent LCP values, two adjacent child values, and one

byte representing two adjacent DC pairs. The excep-
tion array and EG array for the bytecoded LCP and child
arrays are stored in separate data structures.

The idea of interleaving data structures is not new. Pro-
posals have been made to combine the suffix array and
LCP array in raw or compressed format [21, 22]. How-
ever, that format does not account for the child array
used in ESAs. With our introduction of the DC array,
accesses to the suffix array are eliminated during itera-
tions of selecting child intervals, so interleaving of the
suffix array is no longer beneficial in our scheme. Rather
than incorporating the suffix array, our integrated data
structure includes only the LCP, child, and DC arrays that
are closely linked in Algorithms 1 and 3.

Evaluation
Experimental setup
We evaluated the speed and space usage of various com-
pression and algorithmic methods by computational
experiments. We used genomes of different sizes, namely,
the fly genome (D. melanogaster version 5.25.64), chicken
genome (Gallus gallus version 4), and human genome
(version hg19). Although dedicated software is available
for constructing enhanced suffix arrays, such as mkvtree
(http://www.vmatch.de) and mkESA [23], we wanted to
augment the ESA approach and to compare ESA meth-
ods against other techniques for genomic search. There-
fore, we based our experiments and implementation on
the Succinct Data Structure Library (SDSL) 2.0 package,
which is publicly available as C++ source code [12], but
which we have augmented with code for our methods and

Algorithm 3 (Novel) Revised implementation of getInterval : Returns the child lcp-
interval for a parent lcp-interval [i..j] that matches a query character p, given LCP
value lcpij for the interval and first child -value k1, using a discriminating characters
(DC) array and Child array.
1: (s1, s2) ← DC[k1] {Branch lookup using DC array}
2: if p < s1 then return null
3: else if p = s1 then return [i..(k1 − 1)]
4: else if p < s2 then return null
5: end if
6: while k1 < j and LCP[k1] = lcpij do
7: k2 ← Child[k1].next
8: if p = s2 then
9: return [k1..(k2 − 1)]
10: else
11: (s1, s2) ← DC[k2] {Branch lookup using DC array}
12: if p < s2 then return null
13: k1 ← k2
14: end if
15: end while
16: if p = s2 then return [k1..j]
17: else return null
18: end if

http://www.vmatch.de

Page 10 of 16Wu Algorithms Mol Biol (2016) 11:9

experimental benchmarks. The augmented version is avail-
able for download as Additional file 1, which is the same
source code as provided in our companion paper on bit-
packing for hash tables. Genomic input files for our bench-
marking experiments are hosted on a public Web site, with
downloading instructions available within the package.
Alternatively, we have prepared a package, available for
download as Additional file 2, that allows users to generate
their own benchmarks from any DNA or RNA source.

Our additional methods for suffix arrays are imple-
mented in five classes: bp64_vlc_vector, which pro-
vides direct coding of integer arrays with a block size of
64; byte_guide, which implements bytecoding of inte-
ger arrays, with or without an EG array at a user-specified
interval; genome_esa, which builds an enhanced suffix
array representation of a genome; genome_discrim,
which builds a discriminating character (DC) array for a
given genomic suffix array; and genome_integrated,
which provides a data structure that interleaves the DC,
LCP, and child arrays, with the LCP and child arrays rep-
resented using bytecoding with an EG array.

Our benchmarking programs evaluate these classes and
native SDSL methods in retrieving LCP values, select-
ing a child at an lcp-interval, and performing genomic
search. Details of each benchmarking program are pro-
vided in individual sections later. However, in general,
for each benchmarking program, data structures were
either read into memory from the filesystem or generated
de novo in memory from the input files. A checksum
was computed over the results to ensure that the meth-
ods gave consistent results and that the compiler did not
optimize out the query.

All timing experiments were performed on a reserved
Linux computer having 32 Intel Xeon E5-2667 v3 8-core
processors running at 3.20 GHz. The computer had
total memory of 264 GB and cache memory of 20 MB.
The SDSL 2.0 library was compiled with the GNU g++
compiler, version 4.9.0, with the default settings, which
turned off debugging code, and added the compiler flags
“-O3 -ffast-math -funroll-loops -msse4.2”. Unless speci-
fied otherwise, all experiments were repeated for 9 trials,
with each trial generating different random values and
testing different compression strategies in a randomly
selected order. Results are summarized by the median
over the trials. We also measured the time for iterating
through each dataset, obtaining the query and perform-
ing the checksum, and subtracted the median times from
all runs. These times amounted to a negligible fraction of
the overall running times.

Retrieval of LCP values
For retrieval of LCP information, the task in pattern
search is to find LCP[k], for a given entry k in the suffix

array. We therefore implemented a benchmarking pro-
gram that retrieves the LCP value for 1 million random
indices drawn uniformly in the range of 1 through the
genome length n. We tested various methods for storing
the LCP array, as described in the Methods section, with
the overall results shown in Fig. 3a, and an enlarged plot
of the inset shown in Fig. 3b.

The most basic storage format is the int_vector
class in SDSL, which corresponds closely to an uncom-
pressed array, except that a uniform bit width can be used
over the entire array. The SDSL encoding uses 28, 30,
and 32 bits, respectively, for the fly, chicken, and human
LCP arrays. Retrieval times for int_vector arrays are
16–24 ns/query, but they occupy approximately 3.5–4
bytes per array element. (An uncompressed array using
32 bits for each array element is not shown, but gives
approximately the same retrieval times.)

At the other end of the spectrum, an implementation of
a permuted LCP array using the lcp_support_sada
class in SDSL requires the smallest amount of space, at
0.28 bytes/entry, or 7 % of the space for an uncompressed
array. However, retrieval times are extremely slow, at
8963 ns/query, 11,173 ns/query, and 276,050 ns/query
for the fly, chicken, and human genomes, respectively.
These large values for time do not fit within our graph
for Fig. 3a, so we represent only their space usage with
a vertical dashed line. Figure 3a also shows space and
time measurements for the Elias delta and wavelet tree
methods for LCP arrays, implemented as lcp_vlc and
lcp_wt, respectively. The Elias delta encoding provides
compression of 30–35 % compared with the uncom-
pressed array, but retrieval times that are 36–47 times
slower. The wavelet tree method is both smaller and
faster, with space usage at 15–25 % and retrieval times
that are 14–21 times slower than the uncompressed
array.

Faster ways for retrieving compressed LCP values are
shown in more detail in Fig. 3b. We implemented a bit-
packing method for representing a permuted LCP array
using our BP64-columnar method, as implemented in
the class bp64_encc_vector. We obtain space usage
of 16–17 % and retrieval times that are 6–7 times slower
than an uncompressed array. We applied the directly
addressable variable coding (DAC) method from SDSL
class lcp_dac, and obtain relatively fast retrieval for
the fly and chicken genomes (3.3–3.6 times slower than
the uncompressed array), but slow retrieval times for the
human genome (8.4 times slower). A direct encoding
of LCP values using the BP64 bitpacking method yields
compression of 30–37 % and retrieval times that are 1.8,
3.3, and 2.7 times slower than the uncompressed array
for the fly, chicken, and human genomes, respectively.

Page 11 of 16Wu Algorithms Mol Biol (2016) 11:9

We also evaluated the bytecoding scheme in which
LCP values less than 255 are stored in a vector of bytes,
and values of 255 and greater are stored in an excep-
tion array, with or without an EG array. We find that the
rate of exceptions differ across the three genomes, with
the fly genome having 8.6 % and the human genome
having 8.1 % of their LCP values being 255 or greater,
but the chicken genome having only 2.2 % of its values
being exceptional. This different characteristic of the
chicken genome is reflected in the graph values for byte-
coding, where the chicken genome requires about 0.5
bytes/genome length less storage than the fly or human
genomes. As we discuss later, the chicken genome is
remarkable for having relatively little noncoding DNA or
duplicate DNA.

We benchmarked both our own implementation of
bytecoding without an EG array and the SDSL imple-
mentation called lcp_byte. The SDSL implementation
is slightly faster for the fly genome and slightly slower for
the chicken genome than our implementation. Within
our own implementation, bytecoding by itself is slightly
faster than BP64 for the chicken genome, but slower for
the fly and human genomes. This can be explained by the
greater percentage of exception values in fly and human,
which causes more time to be spent in binary search
through the array of exceptions.

However, when an EG array is added, time for binary
search is reduced, and bytecoding provides the fast-
est retrieval times of any compression method. For an
EG array with an interval of 1024, the retrieval times
are 1.6–2.7 times that of the uncompressed array; for a
guide interval of 256, the times are 1.6–2.3 times slower;
and for a guide interval of 64, the times are 1.5–2.0 times
slower. A guide interval of 64 requires slightly more space
than larger guide intervals, with the total compression
being 33–50 % of the uncompressed array, compared
with 31–48 % for bytecoding alone. Since the guide adds
negligible space, there appear to be few drawbacks to
using EG arrays with bytecoded data.

Selection of child lcp-intervals
Selection of a child lcp-interval corresponds to lines
8–10 and 16 in Algorithm 1, with various data struc-
tures tested for these lines and the getInterval procedure.
Benchmarking for this task involved 1 million random
parent lcp-intervals, each drawn from a set of pre-com-
piled genomic 12-mers, plus a corresponding random
query character to select a possible child lcp-interval.
We excluded all singleton lcp-intervals, which have no
child lcp-intervals. For SDSL methods, we used the child
selection procedure from the library when available. We
computed the time to return either the matching child

0

0
20

0
40

0
60

0
80

0

Space (bytes/genome length)

T
im

e
(n

se
c)

Inset

Elias delta

Wavelet

P
LC

P
 b

ita
rr

ay hg19
gg4
dm5

a

1 2 3 4 0 1 2 3 4

0
50

10
0

15
0

20
0

Space (bytes/genome length)

T
im

e
(n

se
c)

Int vector

SDSL byte
DAC

BP64

PLCP BP64−columnar

Byte +/− guide

hg19
gg4
dm5

b

Fig. 3 Timing results for LCP retrieval. Genomes tested are fly (dm5), chicken (gg4), and human (hg19). a Overall time and space usage. b Zoomed
image of fastest methods, as bounded by the horizontal dashed line in graph (a). Graphs plot the time in nanoseconds per query as a function of
the space required in bytes per genome length. Formats tested are: integer vectors (Int vector); permuted LCP (PLCP) array using a succinct bitarray;
direct coding using Elias delta encoding; wavelet trees; differential coding of the PLCP using a BP64-columnar format; direct coding in blocks of 64
(BP64); bytecoding as implemented within SDSL (SDSL byte); and our implementation of bytecoding with or without an exception guide array at
an interval of 1024, 256, or 64. Data points for the bytecoding format are joined by lines for each genome, where bytecoding without an exception
guide has the slowest time within each group, and a guide interval of 64 has the fastest time. The vertical line in (a) indicates the space usage of
permuted LCP, since its running time lies outside the bounds of the graph

Page 12 of 16Wu Algorithms Mol Biol (2016) 11:9

lcp-interval or an indication that no such match exists.
For all child formats, the LCP array was represented
using the lcp_bitcompressed format from SDSL.

The child array can be stored as an uncompressed
SDSL int_vector, occupying 4n bytes, or approxi-
mately the same as the uncompressed suffix array and
LCP array. The uncompressed child array gave selection
times of 249 ns/query for fly, 295 for chicken, and 435
for human (Fig. 4). We applied the balanced parenthe-
sis method [16, 19] by using the cst_sada template
with the csa_bitcompressed and lcp_bitcom-
pressed classes to avoid compression of the suffix or
LCP array, and therefore isolate the effect of the balanced
parenthesis representation. We obtained a compact space
representation that was 15 % of the uncompressed child
array. However, selection times were slow at 5–11 times
that of the uncompressed array (Fig. 4a).

The inset is shown in more detail in Fig. 4b. We
applied bitpacking using the BP64 scheme and obtained
selection times that were 1.2–1.4 times those of the
uncompressed child array. Bytecoding of the child array
resulted in selection times that were 1.0–1.2 times those
of the uncompressed array. Adding an EG array with an
interval of 1024 resulted in a 2–9 % speedup. Smaller
guide intervals (not shown) had only a minimal improve-
ment in speed beyond that. The smaller effect of the EG
array for child values, compared with LCP values, may
be explained by the lower incidence of exception values,
with only 0.5 % of the child array values in the fly genome

being 255 or greater, 0.3 % in the chicken genome, and
0.4 % in the human genome.

We then tested our algorithmic variation (Algorithm 3)
that uses a DC array to retrieve genomic characters,
rather than a genome-based approach (Algorithm 2) that
accesses the suffix array and then the genome string. The
DC-based approach gave a substantial improvement in
speed, by a factor of 1.7 over the genome-based approach
using bytecoding and a guide interval of 1024.

ESA variants
Since our ultimate objective is to accelerate genomic
search, we performed experimental tests on overall
search speed, using various methods that were found
to be efficacious in our separate LCP retrieval and child
selection benchmarks. We wrote a benchmark program
for search speed that, on each trial, generated 1 million
random query sequences from a given genome, with
lengths of 12, 24, and 36 nucleotides per sequence. Each
method was then used to locate the genomic positions of
these query sequences. Our methods of interest involved
(1) the child and LCP arrays represented as uncom-
pressed vectors (ESA); (2) bytecoding of both arrays
without an EG array (ESA-byte); (3) bytecoding with
EG arrays at a guide interval of 1024 on both the child
and LCP arrays; (4) the same bytecoding format with EG
arrays, plus a discriminating character array; and (5) the
two bytecoding arrays with EG arrays, and the DC array
integrated into a single data structure (ESA-gdi). For

0

0
50

0
10

00
20

00
30

00

Space (bytes/genome length)

T
im

e
(n

se
c)

Inset

Bal paren

hg19
gg4
dm5

a

1 2 3 4 0 1 2 3 4

0
10

0
20

0
30

0
40

0
50

0
60

0

Space (bytes/genome length)

T
im

e
(n

se
c)

Int vector

BP64

Byte +/− guide1024

Byte+guide+DC

hg19
gg4
dm5

b

Fig. 4 Timing results for child interval selection. Genomes tested are fly (dm5), chicken (gg4), and human (hg19). a Overall time and space usage.
b Zoomed image of fastest methods, as bounded by the horizontal dashed line in graph (a). Formats tested are: storage of the relative child values as
integer vectors (Int vector); balanced parentheses (Bal paren); direct coding in blocks of 64 (BP64); bytecoding with and without an exception guide
array at an interval of 1024; and bytecoding with an EG array and a discriminating character (DC) array. Data points for the bytecoding format are
joined by lines for each genome, where bytecoding without a guide has the slower time within each group

Page 13 of 16Wu Algorithms Mol Biol (2016) 11:9

methods (1) through (4), we used the genome_esa class
that we added to the SDSL package. These classes imple-
ment bytecoding, with or without EG arrays, for repre-
senting the LCP and child arrays. The results for ESA-gdi
derive from the genome_integrated class that we
added to SDSL, with guide intervals of 1024.

Figure 5 shows the resulting search times. Times
increase from the fly to chicken genome, and from the
chicken to human genome. This finding reflects primar-
ily the number of oligomers retrieved, with more oligom-
ers of a given size found in larger genomes. To account
for this factor, we tallied the size distributions of match
results. Figure 6 illustrates these distributions on a loga-
rithmic scale, as well as their arithmetic means, shown
with a dashed vertical line. The shapes of the distributions
show that 12-mers are non-specific in all species, requir-
ing hundreds to thousands of results to be retrieved on
average for each query. In particular, the large number of
match results for human 12-mers accounts for the rela-
tively long search times for that test scenario. The distri-
butions for 24-mers and 36-mers show a high frequency
of specific, or singleton, matches, but a long tail to the
right, indicating that occasional 24-mers and 36-mers are
non-specific and yield large numbers of match results.
These non-specific oligomers generally come from dupli-
cate or repetitive regions of the genome. The greater

overall specificity for the chicken genome, compared with
the fly or human genome, may reflect its relative paucity
of DNA repeats, duplications, and noncoding DNA [24].
To illustrate this difference, the chicken genome has
approximately the same number of coding genes as the
human genome, but is only one-third the size.

Bytecoding by itself results in slower search times com-
pared with the uncompressed child and LCP arrays, by a
factor of 1.8–2.5. However, addition of EG arrays improve
the search times to be nearly those for the uncompressed
ESA. To put it another way, EG arrays improve search
speed by a factor of 1.5–2.0, compared with bytecoding
alone.

The DC array gives additional increases in search
speed, such that search becomes faster than for the
uncompressed ESA by a factor of 1.0–1.2. Finally, the
use of an integrated data structure, to produce ESA-gdi,
gives the greatest amount of speed up, with speeds that
are 1.1–1.4 times faster than those for the uncompressed
ESA. Compared with the bytecoding method, the inte-
grated data structure gives speeds that are 2.4–2.8 times
faster for the fly genome, 2.2–2.7 times faster for the
chicken genome, and 1.3–2.9 times faster for the human
genome, over the various 12-, 24-, and 36-nucleotide pat-
tern lengths.

T
im

e
(m

se
c)

0
5

10
15

20
25

30
35

Length of query

12−bp
24−bp
36−bp

Fly Chick Human

ESA ESA ESAByte Byte ByteGuide Guide GuideDC DC DCGDI GDI GDI

Fig. 5 Timing results for variants of enhanced suffix arrays. The graph shows times in ms per query for the genomes tested: fly (dm5), chicken (gg4),
and human (hg19). Within each genome, methods tested are: integer vector representations of the LCP and child arrays (ESA); bytecoding of both
arrays (Byte); bytecoding with exception guide arrays at intervals of 1024 (Guide); addition of a discriminating character array (DC); and using an
integrated data structure that combines the LCP, child, and DC arrays (GDI). For each method, timing is measured for 12-, 24-, and 36-nucleotide
patterns

Page 14 of 16Wu Algorithms Mol Biol (2016) 11:9

Survey of approaches
We compared our ESA methods against existing methods
from the literature. The results, shown in Table 1, were
obtained by creating timing experiments for backward
and forward search algorithms as implemented within
SDSL. For the backward search algorithms, we used the
count and locate algorithms as implemented within the
suffix_array_algorithm class. The protocol was
the same as for our ESA benchmarking experiment,
except that each experimental run was based on 100,000
randomly selected reads, instead of 1 million. Also, to
obtain higher accuracy for these results, we performed
27 runs of each combination before isolating the median
value.

The standard suffix array method (shown as SA in
Table 1) was benchmarked using the csa_bitcom-
pressed class implemented in SDSL, which allocates
a uniform number of bits to every entry in the suffix
array. The backward search algorithm uses either a suc-
cessor array called Psi [10] or rank queries on a wavelet
tree [11], while the forward search algorithm uses binary
search through the suffix array.

Compression of the suffix array (shown as CSA-Sada
and CSA-WT) was tested using the Sadakane [10] and
wavelet tree [11] methods as implemented in the csa_
sada and csa_wt classes, respectively. Parameters for
these methods were sampling densities of 10 for the suf-
fix array and 10 for the inverse suffix array, with sampling

Fly, 12−mers

log10(number of matches)

F
re

qu
en

cy

0
20

00
0

40
00

0

265

Fly, 24−mers

log10(number of matches)

F
re

qu
en

cy

0
10

00
00

89

Fly, 36−mers

log10(number of matches)

F
re

qu
en

cy

0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6

0
10

00
00

51

Chick, 12−mers

log10(number of matches)

F
re

qu
en

cy

0
50

00
0

15
00

00

626

Chick, 24−mers

log10(number of matches)

F
re

qu
en

cy

0
10

00
00

25
00

00

12.9

Chick, 36−mers

log10(number of matches)

F
re

qu
en

cy

0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6

0
10

00
00

25
00

00

5.4

Human, 12−mers

log10(number of matches)

F
re

qu
en

cy

0e
+

00
6e

+
04

8980

Human, 24−mers

log10(number of matches)

F
re

qu
en

cy

0
10

00
00

25
00

00

529

Human, 36−mers

log10(number of matches)

F
re

qu
en

cy

0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6

0
10

00
00

25
00

00

69

Fig. 6 Distributions of search results. The histograms show the number of matches retrieved for various oligomer sizes in three genomes: fly (dm5),
chicken (gg4), and human (hg19). Each histogram is computed over 100,000 randomly generated oligomers from the respective genome. The
number of matches is shown on a logarithmic scale. The arithmetic mean of each distribution is shown by a dashed vertical line, and the numerical
value is shown next to the line

Page 15 of 16Wu Algorithms Mol Biol (2016) 11:9

performed using text order rather than suffix array
order. These parameters were suggested by the author of
the SDSL package (personal communication), because
default parameters (sampling density of 32 for the suf-
fix array and 64 for the inverse suffix array) gave search
speeds for the location task that were prohibitively slow.
We also tested the wavelet tree method with an uncom-
pressed suffix array (shown as SA-WT), by using a sam-
pling density of 1.

Overall, these results show a tradeoff between the
size and speed of a genomic representation. The small-
est memory usage is provided by compressing the suffix
array. The CSA-Sada method has approximately the same
speed for the counting task as the uncompressed SA,
whereas CSA-WT is significantly faster.

For the locating task, we find that the overall time per
query correlates with the number of locations that must
be enumerated. As we saw with the ESA variants and
Fig. 6, the size of the match results varies significantly
among the species and oligomer lengths. Therefore, in
Table 1, we normalize the locating task times by the total
number of match results for each condition, to obtain
time per match.

Both the overall and normalized results show that the
uncompressed SA is relatively slow for specific queries,
such as 24-mers and 36-mers, when its speed is domi-
nated by traversing the suffix array, as reflected in the
counting task. In these cases, CSA-WT was faster than
uncompressed SA. However, for non-specific queries,
such as 12-mers, the compressed suffix array methods
are slower than uncompressed SA, since they require
additional time for decompressing large numbers of
match results.

The fastest method in almost all cases of the counting
and locating tasks was ESA-gdi, which uses about twice
as much memory as an uncompressed SA. Of note, ESA-
gdi was even faster than the uncompressed ESA, even
though the compression reduces memory usage by 40 %.
An exception held in the category of the counting task for
12-mers, in which the SA-WT and CSA-WT methods
were slightly faster than ESA-gdi.

Discussion
In this paper, we have explored practical issues of design-
ing algorithms and data structures for fast genomic
search. In general, we observe that more complex
approaches to compression, such as permuted LCP
arrays and balanced parenthesis representations of child
arrays, can occupy the smallest amounts of space but
require significantly more time for decoding. In practice,
this additional time can limit their utility for perform-
ing tasks such as high-throughput read alignment. In
contrast, simpler bitpacking and bytecoding techniques

are not as efficient in space usage but much faster for
retrieval time and search speed.

In this paper, we have introduced three techniques for
achieving improved speed and reduced space require-
ments for pattern search using enhanced suffix arrays.
First, for both LCP and child arrays, bytecoding when
combined with an EG array provides the fastest retrieval
and selection times. These findings are further sup-
ported by the observation that search with EG arrays is
faster than with bytecoding itself by a factor of 1.5–2.0.
Bytecoding with EG arrays is even faster than vectorized
bitpacking, which was extremely effective in our com-
panion paper on representing hash tables. One reason
for this is that LCP and child arrays require direct coding
of their values, rather than differential coding of differ-
ences between adjacent values. Therefore, vectorization,
or SIMD, operations provide little advantage in this
scenario.

Our second technique introduces a discriminating
character (DC) array to speed up genomic search by
reducing accesses to the suffix array and genome string.
Third, integrating the LCP, child, and DC arrays into a
single data structure achieves further speed up in pattern
matching by improving memory access. Our integra-
tion scheme dovetails with our two previous techniques.
Bytecoding of both the LCP and child arrays provides a
uniform representation of small values that can be eas-
ily interleaved. Also, our use of a DC array eliminates
accesses to the suffix array and genomic text, so that
they do not need to be included in our integrated data
structure.

Our work has been guided by our application of inter-
est, namely, genomic search, and it is an open question
whether our techniques will necessarily generalize to
other domains. Genomic pattern matching is charac-
terized by large numbers of match results per query.
Even for relatively long oligomers, such as 24-mers and
36-mers, which yield only a single match result in most
cases, occasional oligomers are non-specific and require
many match results to be enumerated. Therefore, in
this domain, it appears better to leave the suffix array
itself uncompressed for fast retrieval in the locating task.
Likewise, genomic pattern matching is characterized by
a small alphabet size. It is not clear whether larger alpha-
bets will benefit from a DC array if there are many child
lcp-intervals for a given parent lcp-interval, which is
potentially O(|�S |). In those domains, it may be faster to
have a representation of the lcp-interval tree that allows
the correct child to be found in O(log |�S |) time [16, 25].

Nevertheless, our results provide guidance for the
important and timely task of designing genomic search
algorithms. In particular, suffix array algorithms require
the most time for the locating task when many positions

Page 16 of 16Wu Algorithms Mol Biol (2016) 11:9

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

must be enumerated, as with the 12-mers studied in this
paper. Therefore, for such queries, other representations,
such as hash tables, may be more effective. In fact, our
genomic alignment program gsnap [8] uses both suffix
arrays and hash tables to perform genomic alignment.
The techniques reported in this paper and its compan-
ion were motivated by an attempt to increase the speed
of that program. Genomic search remains an important
domain of interest for computational and experimental
biologists. We hope that our techniques will facilitate the
analysis of ever-increasing volumes of data from high-
throughput sequencing.

Authors’ contributions
TW conceived of the algorithms and data structures introduced in this paper,
implemented them, performed the experiments and analysis, and wrote the
paper. All authors read and approved the final manuscript.

Acknowledgements
The author thanks Simon Gog for advice on using his SDSL package.

Competing interests
The author declares that he has no competing interests.

Received: 2 November 2015 Accepted: 1 April 2016

References
 1. Kahn SD. On the future of genomic data. Science. 2011;331:728–9.
 2. Manber U, Myers G. Suffix arrays: a new method for on-line string

searches. In: symposium on discrete algorithms. 1990. p. 319–27.
 3. Hoffmann S, Otto C, Kurtz S, Sharma CM, Khaitovich P, Vogel J, Stadler

PF, Hackermüller J. Fast mapping of short sequences with mismatches,
insertions and deletions using index structures. PLoS Comput Biol.
2009;5:1000502.

 4. Kielbasa SM, Wan R, Sato K, Horton P, Frith MC. Adaptive seeds tame
genomic sequence comparison. Genome Res. 2011;21:487–93.

 5. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C,
Salzberg SL. Versatile and open software for comparing large genomes.
Genome Biol. 2004;5:12.

 6. Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich
R. REPuter: the manifold applications of repeat analysis on a genomic
scale. Nucleic Acids Res. 2001;29:4633–42.

 7. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P,
Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioin-
formatics. 2013;29:15–21.

Additional files

Additional file 1. Source code for methods: Source code in an archive
format, using tar and bzip2, for all implementations of enhanced suffix
arrays, based on a modification of the SDSL 2.0 package. Package also
includes benchmarking programs used for timing experiments. This is
the same package as provided in our companion paper on bitpacking for
hash tables.

Additional file 2. Source code for constructing benchmarks: Source
code in an archive format, using tar and bzip2, for users to generate their
own benchmarks for any genomic text in FASTA format. This is the same
package as provided in our companion paper on bitpacking for hash
tables.

 8. Wu TD, Nacu S. Fast and SNP-tolerant detection of complex variants and
splicing in short reads. Bioinformatics. 2010;26:873–81.

 9. Foschini L, Grossi R, Gupta A, Vitter JS. When indexing equals compres-
sion: experiments with compressing suffix arrays and applications. ACM
Transact Alg. 2006;2:611–39.

 10. Sadakane K. Succinct representations of lcp information and improve-
ments in the compressed suffix arrays. In: Proceedings. Thirteenth annual
ACM-SIAM symposium on discrete algorithms. 2002. p. 225–232.

 11. Ferragina P, Giancarlo R, Manzini G. The myriad virtues of wavelet trees.
Inform Comput. 2009;207:849–66.

 12. Gog S, Beller T, Moffat A, Petri M. From theory to practice: plug and
play with succinct data structures. In: 13th international symposium on
experimental algorithms. 2014. p. 326–37.

 13. Ohlebusch E. Bioinformatics algorithms: sequence analysis, genome rear-
rangements, and phylogenetic reconstruction. Oldenbusch Verlag; 2013.

 14. Abouelhoda MI, Kurtz S, Ohlebusch E. Replacing suffix trees with
enhanced suffix arrays. J Discrete Alg. 2004;2:53–86.

 15. Kärkkäinen J, Manzini G, Puglisi SJ. Permuted longest-common-prefix
array. In: Kucherov G, Ukkonen E, editors. Proc. 20th CPM, LNCS 5577.
2009. p. 181–192.

 16. Ohlebusch E, Gog S. A compressed enhanced suffix array supporting fast
string matching. In: Karlgren J, Tarhio J, Hyyrö H, editors. String processing
and information retrieval, vol. 5721., Lecture notes in computer science-
Heidelberg: Springer; 2009. p. 51–62.

 17. Gog S. Broadword computing and fibonacci code speed up compressed
suffix arrays. In: Vahrenhold J, editor. Experimental algorithms, vol. 5526.,
Lecture notes in computer scienceHeidelberg: Springer; 2009. p. 161–72.

 18. Brisaboa NR, Ladra S, Navarro G. Directly addressable variable-length
codes. In: Proceedings. 16th international symposium on string process-
ing and information retrieval. 2009. p. 122–130.

 19. Ohlebusch E, Fischer J, Gog S. Cst++. In: Chaves E, Lonardi S, editors.
String processing and information retrieval, vol. 6393., Lecture notes in
computer scienceHeidelberg: Springer; 2010. p. 322–33.

 20. Wu TD, Watanabe CK. GMAP: a genomic mapping and alignment pro-
gram for mRNA and EST sequences. Bioinformatics. 2005;21:1859–975.

 21. Sinha R, Puglisi SJ, Moffat A, Turpin A. Improving suffix array locality for
fast pattern matching on disk. In: proceedings of the ACM SIGMOD
international conferrence on management of data. 2008. p. 661–671.

 22. Moffat A, Puglisi SJ, Sinha R. Reducing space requirements for disk resi-
dent suffix arrays. In: Zhou X, Yokota H, Deng K, Liu Q, editors. Database
systems for advanced applications, vol. 5463., Lecture notes in computer
scienceHeidelberg: Springer; 2009. p. 730–44.

 23. Homann R, Fleer D, Giegerich R, Rehmsmeier M. mkESA: enhanced suffix
array construction tool. Bioinformatics. 2009;25:1084–5.

 24. Hillier LW, Miller W, Birney E, Warren W, Hardison RC, Ponting CP, Bork P,
Burt DW, Groenen MAM, Delany ME, Dodgson JB. Sequence and com-
parative analysis of the chicken genome provide unique perspectives on
vertebrate evolution. Nature. 2004;432:695–716.

 25. Kim DK, Kim M, Park H. Linearized suffix tree: an efficient data struc-
ture with the capabilities of suffix trees and suffix arrays. Algorithmica.
2008;52:350–77.

http://dx.doi.org/10.1186/s13015-016-0068-6
http://dx.doi.org/10.1186/s13015-016-0068-6

	Bitpacking techniques for indexing genomes: II. Enhanced suffix arrays
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Methods
	Suffix arrays
	Compression of bucket arrays
	Compression of the LCP array
	Compression of the child array
	Branch lookup
	Integrated data structure

	Evaluation
	Experimental setup
	Retrieval of LCP values
	Selection of child lcp-intervals
	ESA variants
	Survey of approaches

	Discussion
	Authors’ contributions
	References

