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Abstract 

Background: While tree‑oriented methods for inferring orthology and paralogy relations between genes are based 
on reconciling a gene tree with a species tree, many tree‑free methods are also available (usually based on sequence 
similarity). Recently, the link between orthology relations and gene trees has been formally considered from the per‑
spective of reconstructing phylogenies from orthology relations. In this paper, we consider this link from a correction 
point of view. Indeed, a gene tree induces a set of relations, but the converse is not always true: a set of relations is not 
necessarily in agreement with any gene tree. A natural question is thus how to minimally correct an infeasible set of 
relations. Another natural question, given a gene tree and a set of relations, is how to minimally correct a gene tree so 
that the resulting gene tree fits the set of relations.

Results: We consider four variants of relation and gene tree correction problems, and provide hardness results for all 
of them. More specifically, we show that it is NP‑Hard to edit a minimum of set of relations to make them consistent 
with a given species tree. We also show that the problem of finding a maximum subset of genes that share consistent 
relations is hard to approximate. We then demonstrate that editing a gene tree to satisfy a given set of relations in a 
minimum way is NP‑Hard, where “minimum” refers either to the number of modified relations depicted by the gene 
tree or the number of clades that are lost. We also discuss some of the algorithmic perspectives given these hardness 
results.
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Background
Genes, the molecular units of heredity, hold the informa-
tion to build and maintain cells. In the course of evolu-
tion, they are duplicated, lost, and passed to organisms 
through speciation. Genes originating from the same 
ancestral copy are called homologs. Homologous gene 
are grouped into gene families, usually via sequence 
similarity methods. Moreover, homologous genes can 
be orthologous, if their parental origin is a speciation, or 
paralogous, if it is a duplication. Orthologous gene are 
considered to be more similar in function than paralogs, 
a conjecture known as the orthology conjecture [1]. This is 

a major motivation for inferring gene evolution, as it is a 
prerequisite for functional prediction purposes.

Starting usually from a DNA or protein sequence align-
ment, the tree-based method requires to build a phylo-
genetic tree, called gene tree, for the considered gene 
family. Reconciliation  [2] with the species tree then 
allows to infer evolutionary events (duplications and 
speciations) associated with the internal nodes of the 
gene tree. Hence the internal nodes of a gene tree can 
be labeled as duplications and losses, and such a labe-
ling induces a full orthology and paralogy set of rela-
tions between gene pairs. In order to detect orthology, 
tree-free methods are also available. These methods are 
based on gene clustering according to sequence similar-
ity, (cf. e.g. the COG database [3], OrthoMCL [4], InPara-
noid  [5], Proteinortho  [6]), synteny  [7, 8] or functional 
annotation of genes  [9]. Such methods usually are not 
able to detect a full set of relations, but only a partial set, 
i.e. some relations among genes are not inferred.
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Recent papers [10, 11] have investigated, from a graph 
theory point of view, the link between trees and orthol-
ogy/paralogy relations (we just say “relations” in the fol-
lowing). Given a gene family Ŵ and a set C of pairwise 
relations, a first problem is whether we can reconstruct 
a labeled gene tree for Ŵ inducing C. The problem can be 
subdivided into two parts. First, we can consider whether 
C is satisfiable, i.e. whether there exists an event-labeled 
gene tree G in agreement with C. However satisfiability is 
not sufficient to ensure the possibility for the relation set 
to reflect a true history, as nodes of G labeled as specia-
tions can be contradictory. This raises the second ques-
tion which is the existence of an S-consistent gene tree, 
namely an event-labeled tree that can be obtained by rec-
onciliation with a species tree S. A simple characteriza-
tion of satisfiability is given in  [10], when the set C is a 
full set of relations (i.e. each pair of genes of Ŵ is in C). On 
the other hand, checking for S-consistency can be done 
in polynomial-time for full sets [12, 13], and also partial 
sets of relations [14].

In this paper we explore the link between relations 
and trees in the perspective of relation and tree correc-
tion. Several gene tree databases from whole genomes are 
available, including for instance Ensembl Compara  [15], 
Hogenom  [16], Phog  [17], MetaPHOrs  [18], Phy-
lomeDB [19], Panther [20]. However, due to various limi-
tations such as alignment errors, systematic artifacts of 
inference methods or insufficient differentiation between 
sequences, trees are known to contain errors and uncer-
tainties. Consequently, a great deal of effort has been put 
towards tools for gene tree editing [21–29]. Most of them 
are based on selecting, in a neighborhood of an input 
tree, one best fitting the species tree.

Two years ago, we developed the first algorithm for 
gene tree correction using orthology relations  [7]. Here 
we address, from a complexity and approximation point 
of view, the more general problem of correcting a gene 
tree according to a set of orthology and paralogy rela-
tions. We consider two objective functions: the number 
of unchanged relations (from orthology to paralogy or 
vice-versa), leading to the Maximum Homology Cor-
rection problem, and the number of unchanged clades 
(the Robinson-Foulds distance [30]), leading to the Max-
imum Clade Correction problem. We provide NP-
completeness results for these two problems.

Conversely, we also address the problem of correct-
ing a set of relations so that it represents a valid history 
in terms of S-consistency. A set of relations is usually 
represented as a graph R, where edges represent orthol-
ogous relations and non-edges represent paralogous rela-
tions. The satisfiability problem related to S-consistency 
reduces to adding or removing a minimum number of 
edges of R in order to make it P4-free (that is, it contains 

no induced path of length three), as shown in  [10]. The 
problem is known to be NP-Hard and fixed parameter 
tractable  [31]. In  [11], an integer linear programming 
formulation is used to correct relation graphs of reason-
able size. A factor approximation algorithm of factor 4�, 
where � is the degree of the graph R, is given in [32]. The 
S-consistency problem, however, has never been studied.

In this paper, two criteria are considered for correct-
ing a set R of relations: minimize the number of modified 
relations, and maximize the number of genes inducing an 
S-consistent set of relations. The first problem is shown 
to be NP-complete, while the second problem is shown 
to be not approximable within factor dn

1
2 (1−ε), for any 

0 < ε < 1 and any constant d > 0.

Trees and orthology relations
All trees considered in this paper are assumed to be 
rooted. They are not necessarily binary, but we assume 
that all nodes are of degree at least three, except pos-
sibly the root that can be of degree two. Given a set X, 
a tree T for X is a tree whose leafset L(T ) is in bijection 
with X. We denote by V(T) the set of nodes and by r(T) 
the root of T. Given an internal node u of T, the subtree 
rooted at u is denoted Tu and we call the leafset L(Tu) 
the clade of u. A node u is an ancestor of v if u is on the 
(inclusive) path between v and the root, and we then call 
v a descendant of u. If u �= v, then v is a strict descend-
ant of u, and if u and v are connected by an edge of T, 
then v is a child of u. The lowest common ancestor (lca) 
of u and v, denoted lcaT (u, v), is the ancestor common to 
both nodes that is the most distant from the root. We say 
that u and v are separated if and only if lcaT (u, v) /∈ {u, v} 
(i.e. none is an ancestor of the other). We define lcaT (U) 
analogously for a set U of nodes. Let L′ be a subset of 
L(T ). The restriction T |L′ of T to L′ is the tree with leaf 
set L′ obtained from the subtree of T rooted as lcaT (L′) , 
by removing all leaves that are not in L′, and contracting 
all internal nodes of degree two, except the root. Let T ′ 
be a tree such that L(T ′) = L′ ⊆ L(T ). We say that T dis-
plays T ′ if and only if T |L′ is T ′.

Evolution of a gene family
Species evolve through speciation, which is the separation 
of one species into distinct ones. A species tree S for a spe-
cies set � represents an ordered set of speciation events 
that have led to �: an internal node is an ancestral species at 
the moment of a speciation event, and its children are the 
new descendant species. Inside the species’ genomes, genes 
undergo speciation when the species to which they belong 
do, but also duplications, and losses (other events such as 
transfers can happen, but we ignore them here). A gene 
family is a set of genes Ŵ accompanied by a mapping func-
tion s : Ŵ → � mapping each gene to its corresponding 
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species. The evolutionary history of Ŵ can be represented 
as a node-labeled gene tree for Ŵ, where each internal node 
refers to an ancestral gene at the moment of an event 
(either speciation or duplication), and is labeled as a specia-
tion (Spec) or duplication (Dup) accordingly.

Formally, we call a DS-tree for Ŵ a pair 
(G, evG), where G is a tree with L(G) = Ŵ, and 
evG : V (G) \ L(G) → {Dup, Spec} is a function labe-
ling each internal node of G as a duplication or a spe-
ciation node (we drop the G subscript from evG when 
it is clear from the context). Given a species tree S, 
the LCA-mapping function sG : V (G) → V (S) maps 
each gene of G, ancestral or extant, to a species as 
follows: if g ∈ L(G), then sG(g) = s(g); otherwise, 
sG(g) = lcaS({s(g

′) : g ′ ∈ L(Gg )}). An example is given in 
Fig.  1, where the label of each node of G represents its 
LCA-mapping with respect to S.

According to the Fitch [33] terminology, we say that two 
genes x, y of Ŵ are orthologous in G if ev(lcaG(x, y)) = Spec , 
and paralogous in G if ev(lcaG(x, y)) = Dup. We denote 
by O(G), respectively P(G), the set of all gene pairs 
that are orthologous, respectively paralogous in G. By 
xy ∈ O(G) we mean {x, y} ∈ O(G) (the same applies for 
P(G)). In Fig. 1, a1c1 ∈ O(G) while a1b1 ∈ P(G). We say 
that a1c1 (respec. a1b1) is an orthology (respec. paralogy) 
relation induced by G.

While a history for Ŵ can be represented as a DS-tree, 
the converse is not always true, as a DS-tree G for Ŵ does 
not necessarily represent a valid history. For this to hold, 
any speciation node of G should reflect a clustering of 
species in agreement with S [14]. Formally G should be 
S-consistent, as defined below.

Definition 1 Let S be a species tree and G be a DS-tree. 
Let v be an internal node of G such that ev(v) = Spec. 
Then the speciation node v is S-consistent if and only if 
for any two distinct children v1, v2 of v, sG(v1) and sG(v2) 
are separated in S.

We say that G is S-consistent if and only if every specia-
tion node of G is S-consistent.

Notice that G and S are not required to be binary. In 
particular, the definition of S-consistency for a specia-
tion node v of G does not require v to be binary, even 
if S is binary. The reason is that in such a case, one can 
“refine” v into a set of binary S-consistent speciation 
nodes based on the topology of S. This operation does 
not affect the orthology and paralogy relations of the 
genes of G (see Fig. 1). Duplication nodes can be refined 
as well. Lemma 1 formalizes this intuition. This will serve 
to show that our results hold for both non-binary and 
binary gene trees.

Lemma 1 Let G be an S-consistent DS-tree for some 
binary species tree S. Then there is a binary DS-tree G′ 
such that G′ is S-consistent, and such that O(G) = O(G′) 
and P(G) = P(G′).

Proof Let v be a highest non-binary node (i.e. v has no 
non-binary ancestors) of G with children v1, . . . , vk. We 
show that v can be made to be binary while preserving 
O(G) and P(G), which suffices to prove the Lemma since 
we can repeat this operation successively on every non-
binary node.

If evG(v) = Dup, obtain a DS-tree G∗ by remov-
ing v2, . . . , vk from the children of v, adding a child 
v′ to v and adding v2, . . . , vk as children of v′, setting 
evG∗(v′) = Dup. Notice that sG(w) = sG∗(w) for every 
w ∈ V (G) ∩ V (G∗) = V (G∗) \ {v′}, implying that all 
speciations remain S-consistent. It is readily seen that 
O(G) = O(G∗) and P(G) = P(G∗).

If instead evG(v) = Spec, let s1, s2 ∈ V (S) be the two 
children of sG(v). Let Vj = {vi : sj is an ancestor of sG(vi) , 
1 ≤ i ≤ k} for j ∈ {1, 2}. Notice that for any child vi of v, 
sG(vi) is a strict descendant of sG(v). For if not, v has a 
child vi such that sG(vi) = sG(v). But since v is a specia-
tion, sG(vi) = sG(v) is separated from sG(vj) for any j �= i,  
implying that sG(v) is not the lca of sG(vi) and sG(vj),  
contradicting the definition of sG. This strict descend-
ant condition implies that {V1,V2} partitions {v1, . . . , vk}.  
Also observe that V1 and V_2 cannot be empty, for other-
wise sG(v) would be equal to either s1 or s2. Obtain G∗ by 
removing the children of v, adding two children w1 and w2 
to v, then adding V1 as children of w1 and V2 as children of 
w2. Set evG∗(v) = evG∗(w1) = evG∗(w2) = Spec. Note that 
the children of w1 and w2 are still from separated species, 
and so both are S-consistent. As for v, by the definition 
of V1 and V2, sG∗(w1) is a descendant of s1 and sG∗(w2) is 
a descendant of s2 (not necessarily a strict descendant). 
Therefore, both are separated and so v is S-consistent. 
The species for every other node remaining unchanged, 
we conclude that G∗ preserves S-consistency and does 
not modify O(G) nor P(G). �

Fig. 1 A species tree S, a binary DS‑tree G and a non‑binary DS‑tree 
G
′. In DS‑trees, Dup nodes are indicated by squares. All other nodes 

are speciations nodes. Each leaf αi denotes a gene belonging to 
the genome α. G is a refinement of G′ such that O(G) = O(G′) and 
P(G) = P(G′). Notice that, although in this example the gene trees 
contain exactly one gene copy from each genome, this is not a 
requirement. Another example with multiple gene copies in genome 
a is given in Fig. 2
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We can verify that both DS-trees in Fig. 1 are S-consist-
ent. For example, the speciation node z in G′ has children 
from species v, c, d and w, which are pairwise separated 
in S. Notice that, from Definition 1, if G is a DS-tree, then 
the lca of two leaves of G belonging to the same species 
must be a duplication node. The converse is not true. 
For example, in the S-consistent gene tree G of Fig.  1, 
the parental node of e1 and f1 is a duplication node even 
though e1 and f1 belong to two different species.

Relation graph
A set of orthology/paralogy relations on Ŵ (or simply a 
relation set) is a pair C = (CO,CP) of subsets CO,CP ⊆

(

Ŵ
2

)

 
such that CO ∩ CP = ∅ and if s(x) = s(y), then {x, y} ∈ CP. 
The relation set is said full if CO ∪ CP =

(

Ŵ
2

)

. A DS-tree G 
induces a full set (O(G),P(G)) of relations.

We adopt the graph representation considered in  [14] 
for full relation sets. A relation graph R on a gene family 
Ŵ is a graph with vertex set V (R) = Ŵ, in which we inter-
pret each edge uv of the edge set E(R) of R as an orthol-
ogy relation between u and v, and each missing edge 
(non-edge) uv /∈ E(R) as a paralogy relation.1 Notice that 
if s(u) = s(v), then uv /∈ E(R). The relation graph of a DS-
tree G, denoted by R(G), is the graph with vertex set L(G) 
and edge set O(G) (for example, see the relation graph R 
in Fig. 2).

A DS-tree for a gene family Ŵ leads to a relation graph, 
but the converse is not always true. A relation graph R is 
satisfiable if there exists a DS-tree G such that R(G) = R . 
The problem of relation graph satisfiability has been 
addressed in [10]. The following theorem is a reformula-
tion of one of the main results of this paper.

Theorem  1 ([10]) A relation graph R is satisfiable if 
and only if R is P4-free, meaning that no four vertices of R 
induce a path of length three.

For example, in Fig. 2, the relation graphs R and R′′ are 
satisfiable, while the graph R′ is not. As a DS-tree does 

1 The term ‘relation graph’ is also used in phylogenetics in the form of a gen-
eralization of a median network to a set of partitions. To make it clear, rela-
tion graphs in this paper have nothing to do with this notion.

not necessarily represent a true history for Ŵ (see previ-
ous section and Definition  1), satisfiability of a relation 
graph does not ensure a possible translation in terms of a 
history for Ŵ. For this to hold, R should be consistent with 
the species tree, according to the following definition.

Definition 2 Given a species tree S, a relation graph R 
for Ŵ is S-consistent if and only if R is satisfiable by a DS-
tree G which is itself S-consistent.

For example the graph R in Fig. 2 is S-consistent. Notice 
that S-consistency implies satisfiability. Results from [14] 
complete the characterization of S-consistent graphs 
through Theorem  2. A triplet is a binary tree with leaf-
set L of size three. For L = {x, y, z}, we denote by xy|z the 
unique triplet T on L for which lcaT (x, y) �= r(T ) holds. 
Now P3(R) is the subset of triplets of species induced by 
paths having exactly three vertices in R = (V ,E):

We present in Theorem 2 a necessary and sufficient con-
dition for S-consistency of a relation graph in terms of 
P3(R). First, we introduce in Lemma  2 an intermediate 
property, that is useful for proving Theorem 2.

Lemma 2 Let G be a DS-tree and S be a species 
tree. Then for any internal node v of G, there exist 
leaves x,  y of Gv such that both the following hold: (1) 
lcaS(s(x), s(y)) = sG(v) and (2) lcaG(x, y) = v.

Proof We first show that (1) must hold for some 
x, y ∈ L(Gv). If sG(v) has two children s1 and s2 for which 
there exist leaves x and y of Gv such that s1 is an ancestor 
of s(x) and s2 an ancestor of s(y), then (1) holds. Thus if 
we suppose that (1) does not hold, then sG(v) has a child 
s′ such that all leaves of Gv belong to a species that has 
s′ as an ancestor. This implies that s′ is a lower common 
ancestor than sG(v) for the species present in Gv, contra-
dicting the definition of sG.

Now, take x and y satisfying (1). Suppose that (2) does 
not hold for x and y, i.e. lcaS(s(x), s(y)) = sG(v), but that 
lcaG(x, y) �= v. Take z ∈ L(Gv) such that z is separated 

P3(R) = {s(x)s(y)|s(z) : zx, zy ∈ E and xy /∈ E and s(x) �= s(y)}

Fig. 2 A species tree S and a DS‑tree G which is S‑consistent. The full orthology set induced by G is represented by the relation graph R. The 
graph R′ is an example of a not satisfiable graph, as {c1, b1, d1, a2} induces a P4, while R′′ is an example of a satisfiable (it has no induced P4), but not 
S‑consistent graph (explanation is given in the text)
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from lcaG(x, y) by v (i.e. lcaG(z, lcaG(x, y)) = v). We have 
lcaG(x, z) = lcaG(y, z) = v. If lcaS(s(x), s(z)) = sG(v), 
then we are done as x and z satisfy both (1) and (2). Oth-
erwise, lcaS(s(x), s(z)) is on the s(x)− sG(v) path, imply-
ing that lcaS(s(y), s(z)) = sG(v) since sG(v) separates s(x) 
from s(y). In this last case, y and z are the leaves of inter-
est, ending the proof. �

Theorem  2 Let R = (V ,E) be a satisfiable relation 
graph and let S be a species tree. Then R is S-consistent if 
and only if S displays all the triplets of P3(R).

Proof ⇒ : let G be an S-consistent gene tree satisfying R, 
and let x, y, z ∈ V (R) such that zx, zy ∈ E(R) but xy /∈ E(R) 
and s(x) �= s(y). Then we must have zx, zy ∈ O(G) 
and xy ∈ P(G). We claim that S must display the 
s(x)s(y)|s(z) triplet. Let α = lcaG(x, y),β = lcaG(x, z) 
and γ = lcaG(y, z). Since evG(α) �= evG(β) = evG(γ ) , 
xy|z must be a triplet of G. Moreover, since 
evG(γ ) = evG(β) = Spec, lcaS(s(x), s(y)) and s(z) must be 
separated in S, implying that s(x)s(y)|s(z) is a triplet of S.

⇐ : by assumption, R is satisfiable by some DS-tree G′. 
We first obtain from G′ a least-resolved DS-tree G satisfy-
ing R, in terms of speciation. That is, if G′ has any specia-
tion node v that has a speciation child w, we obtain G′′ by 
contracting v and w (delete w and give its children to v). 
Note that we have O(G′) = O(G′′) and so G′′ still satisfies 
R. We obtain the DS-tree G by repeating this operation 
until we cannot find such a v and w. We claim that if S 
displays the triplets of P3(R), then G is S-consistent.

Let v be a speciation node of G, and let v1, v2 be any 
two distinct children of v. By the construction of G, 
evG(v1) = evG(v2) = Dup. By Lemma  2, Gv1 has two 
leaves x1, x2 such that lcaS(s(x1), s(x2)) = sG(v1) and 
lcaG(x1, x2) = v1. Similarly, Gv2 has two leaves y1, y2 with 
lcaS(s(y1), s(y2)) = sG(v2) and lcaG(y1, y2) = v2 . Since 
v is a speciation while v1, v2 are duplications, we have 
x1x2, y1y2 /∈ E(R) while x1y1, x1y2, x2y1, x2y2 ∈ E(R). 
Thus, x1y1x2 and x1y2x2 are induced paths of length two 
in R, which implies that S displays the s(x1)s(x2)|s(y1) 
and s(x1)s(x2)|s(y2) triplets. Analogously, S displays 
the s(y1)s(y2)|s(x1) and s(y1)s(y2)|s(x2) triplets. This 
is only possible if lcaS(s(x1), s(x2)) = sG(v1) and 
lcaS(s(y1), s(y2)) = sG(v2) are separated in S. We deduce 
that all child pairs of v are from separated species, and 
hence that G is S-consistent. �

As an example, the graph R′′ in Fig.  2 is satisfiable 
but not S-consistent as the path of length 2 containing 
{a1, b1, c1} induces the triplet ac|b, while the triplet dis-
played by S is ab|c.

We end this section with additional notations that 
will be of use later. A subgraph H ′ of H is a graph with 
V (H ′) ⊆ V (H) and E(H ′) ⊆ E(H). For a graph H and 
some V ′ ⊆ V (H), the subgraph of H induced by V ′, 
denoted H [V ′], is the subgraph of H with vertex-set V ′ 
having the maximum number of edges. We say that H ′ is 
an induced subgraph of H if there is a subset V ′ ⊆ V (H) 
such that H ′ = H [V ′]. If I is another graph, we say H is 
I-free if there is no V ′ ⊆ V (H) such that H [V ′] is iso-
morphic to I. Finally, for some edge set E′ ⊆ E(H) , 
H − E′ is the subgraph H ′ with V (H ′) = V (H) and 
E(H ′) = E(H) \ E′.

Relation correction problems
We raise the issue of leaving out a minimum of informa-
tion from a relation graph R in order to reach satisfiability 
and S-consistency. Two optimality criteria are consid-
ered: (1) the minimum number of edges that need to be 
removed; (2) the maximum number of genes that can be 
kept.

The minimum edge‑removal consistency problem
Based on the same construction used in paper  [34], we 
show that adding the information on the species tree 
S does not make the problem of removing the mini-
mum number of edges leading to a P4-free graph sim-
pler. Although a similar reduction is likely to hold in 
the general case of edge-modification (removal or inser-
tion) [31], here we focus on edge removal, as this formu-
lation is needed in subsequent developments. We show 
the NP-Completeness of this problem, even when every 
gene from the family Ŵ comes from a distinct species.

Minimum edge-removal consistency problem:
Input: A relation graph R for a gene family Ŵ, a species 

tree S and an integer k;
Output: “Yes” if and only if there exists an S-con-

sistent subgraph R′ of R with V (R′) = V (R) such that 
|E(R) \ E(R′)| ≤ k.

Theorem  3 The Minimum Edge-Removal Con-
sistency Problem is NP-Complete, even if for any 
distinct g1, g2 ∈ Ŵ, s(g1) �= s(g2).

Proof Given R′ as a certificate, Theorem  2 easily 
translates into a polynomial-time algorithm to verify 
that R′ is S-consistent. It is also clear that verifying if 
|E(R) \ E(R′)| ≤ k can be done quickly. The problem is 
therefore in NP. As for NP-Hardness, the reduction is 
from the exact 3-cover problem, a classic NP-Hard prob-
lem  [35]: given a set W = {w1, . . . ,w3t} and a collection 
Z = {Z1, . . . ,Zr} of 3-elements of W, does there exists 
Z′ ⊆ Z such that |Z′| = t and Z′ is a partition of W ? We 
assume that r ≥ t.
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Given arbitrary W and Z, we construct R and S by 
first defining the species set �. Let α =

(3t
2

)

 and let 
X = {X1, . . . ,Xr} and Y = {Y1, . . . ,Yr} be two collec-
tions of all disjoint sets of species (i.e. for any distinct set 
A,B ∈ X ∪ Y , A ∩ B = ∅), with |Xi| = α and |Yi| = r2α, 
for all 1 ≤ i ≤ r. Let X� =

⋃

1≤i≤r Xi and Y� =
⋃

1≤i≤r Yi 
be the species in X and Y. Then the species set is 
� = W ∪ X� ∪ Y�. Let SW , SX and SY  be three trees such 
that L(SW ) = W ,L(SX ) = X� and L(SY ) = Y�. Then S is 
obtained by first connecting r(SY ) with r(SW ) to obtain 
a new tree SWY , then connecting r(SWY ) with r(SX ) (see 
Fig.  3). Therefore S has exactly |�| = 3t + r(α + r2α) 
leaves. The gene family Ŵ is then constructed so that it 
contains exactly one gene per species, as mentioned in 
the Theorem statement. In other words the mapping 
s : Ŵ → � is a bijection. Thus for simplicity, we make 
no distinction between a gene g and its species s(g). We 
then define R with V (R) = � such that each of the sets 
W ,X1, . . . ,Xr ,Y1, . . . ,Yr forms an individual clique. 
Finally we add two edge-sets E1 and E2 to R, where 
E1 = {g1g2 : g1 ∈ Xi, g2 ∈ Zi, for a given 1 ≤ i ≤ r} and 
E2 = {g1g2 : g1 ∈ Xi, g2 ∈ Yi, for a given 1 ≤ i ≤ r}  . 
Then R has 2r + 1 cliques, namely 
W ,X1, . . . ,Xr ,Y1, . . . ,Yr. Also, for 1 ≤ i ≤ r, all edges 
between Xi and Yi are present, as well as all edges 
between Xi and Zi. Figure 3 gives an example with t = 2 
and W = {1, 2, 3, 4, 5, 6}.

Notice that the construction of R described above can 
clearly be done in polynomial time. We now show that 
W and Z admit an exact 3-cover if and only if R admits 
an S-consistent DS-tree after the deletion of at most 
3α(r − t)+ (α − 3t) edges.

(⇒) : let Z′ ⊆ Z be a partition of W, |Z′| = t. Let R′ be 
the subgraph of R in which all edges between Zi and Xi are 
removed if and only if Zi /∈ Z′ (which removes 3α(r − t) 
edges), and the only edges not removed from the 
W-clique are those belonging to a Zi triangle with Zi ∈ Z′ 
(which removes α − 3t edges). An example of R′ is given 
in Fig.  3. Thus there are exactly 3α(r − t)+ (α − 3t) 
edges of R missing from R′, as desired. Clearly, R′ is P4

-free and thus satisfiable. To see that R′ is S-consistent, 
we use Theorem 2. Notice that any path of length 3 in R′ 
has the form wxiyi with w ∈ W , xi ∈ Xi and yi ∈ Yi for 
some i, inducing the wyi|xi speciation triplet, which is in 
agreement with S. Therefore there exists an S-consistent 
gene tree G′ satisfying R′.

(⇐) : let R′ be an S-consistent relation graph obtained 
by deleting at most 3α(r − t)+ (α − 3t) edges from R. 
Then, R′ must be P4-free. We show that R′[W ] is parti-
tioned into triangles which form a solution to the 3-cover 
instance. Let w ∈ W . We claim that in R′, there is exactly 
one Xi ∈ X such that w has neighbors in Xi. Suppose 
first there are x1 ∈ Xi and x2 ∈ Xj, i �= j, such that both 
x1 and x2 are neighbors of w in R′. Then there is some 
y ∈ Yi such that yx1wx2 induce a P4, unless all edges 
between x1 and Yi were deleted. But we reach a contra-
diction since there are r2α > 3α(r − t)+ (α − 3t) such 
edges. Therefore w has neighbors in at most one Xi ∈ X . 
Using that fact, we can see that w must have at least one 
neighbor in X, since otherwise at most (3t − 1)α edges 
between X and W would remain, implying the deletion of 
3αr − (3t − 1)α = 3α(r − t)+ α edges, more than per-
mitted. This proves our claim.

Thus at best, each w ∈ W  has α neighbors in X, imply-
ing that at least 3αr − 3tα = 3α(r − t) deleted edges 
are between X and W. This leaves a maximum of α − 3t 
other edges that can be deleted.

Now, let C be a connected component of R′[W ]. We 
claim that all vertices of C must have their X neighbors 
in the same Xi ∈ X. For suppose otherwise that there 
are two vertices c1, c2 of C such that c1 has a neighbor 
x1 ∈ Xi and c2 a neighbor x2 ∈ Xj with i �= j. It is easy to 
see that such c1 and c2 can be chosen to be neighbors. 
Then x1, c1, c2, x2 induce a P4, a contradiction. Thus all 
vertices of C have their X neighbors in a common Xi ∈ X . 
Since each vertex of Xi has three neighbors in W, this 
implies that C has at most three vertices. Suppose that 
C that has two vertices or less. Then since all vertices of 
R′[W ] have at most two neighbors, it can have at most 
1
2 (2(3t − 2)+ 2) = 3t − 1 edges (obtained by counting 

1 2 3 4 5 6

X1 X2 X3 X4

Y1 Y2 Y3 Y4

1 2 3 4 5 6

X1 X2 X3 X4

Y1 Y2 Y3 Y4

W Y X

R* S R'

W W

Fig. 3 S represents the species tree and R∗ the relation graph constructed from the sets W, Z, X and Y. The illustration is given for W = {1, 2, 3, 4, 5, 6} 
and Z = {{1, 2, 3}, {2, 3, 4}, {3, 5, 6}, {4, 5, 6}}. Z ′ = {{1, 2, 3}, {4, 5, 6}} is a subset of Z which is a partition of W. R′ is the “corrected” relation graph cor‑
responding to Z ′



Page 7 of 13Lafond et al. Algorithms Mol Biol  (2016) 11:4 

the sum of degrees). This, however, implies that at least 
α − (3t − 1) additional edges were deleted, more than 
the α − 3t available.

We conclude that R′[W ] is partitioned into t connected 
components, each having three vertices. Moreover, each 
vertex in a given component C has neighbors in the same 
Xi ∈ X, implying that Zi contains the members of C. 
Finally since the components are all associated with a dis-
ctinct Zi, R′[W ] effectively defines a solution to the exact 
cover instance.  �

The Maximum Node Consistency problem
We introduce the Maximum Node Consistency Problem 
(in its decision version) and we consider the approxima-
tion complexity of the corresponding optimization version.
Maximum Node Consistency problem:
Input: A relation graph R for a gene family Ŵ, a species 
tree S and an integer k;
Output: “Yes” if and only if there exists an S-consistent 
induced subgraph R′ of R with |V (R′)| ≥ k.

We show that Maximum Node Consistency  is 
hard to approximate within a factor dn

1
2 (1−ε) for any 

0 < ǫ < 1 and any constant d > 0, by giving a gap-
preserving reduction from Maximum Independet 
Set (n is the number of nodes of R). We refer the reader 
to [36] for a definition of gap-preserving reduction. Con-
sider an instance H = (VH ,EH ) of Maximum Inde-
pendet Set, with |VH | = m. We construct an instance 
of Maximum Node Consistency as follows.

First, we define the set of genes Ŵ, i.e. the nodes of 
the relation graph R. Denote VH = {v1, . . . , vm} and 
for each vi ∈ VH, we define a set I(vi) of m genes: 
I(vi) = {ri,j : 1 ≤ j ≤ m}. The gene set Ŵ is 

⋃

vi∈VH
I(vi).

Now, we define the species tree S. First consider S as any 
binary tree over m leaves ℓ1, . . . , ℓm, and replace each leaf 
ℓi by any binary subtree Ti having m leaves (thus S has m2 
leaves). Each gene in I(vi) is mapped to a leaf of Ti in a 
bijective manner, and so each species has exactly one gene 
in R. We make no distinction between g ∈ Ŵ and s(g).

Now, define the relation graph R = (VR,ER). Set 
VR = Ŵ, and we get that n = |VR| = m2. For each vi ∈ V  , 
I(vi) forms a clique in R. Moreover, for each {vi, vj} ∈ EH , 
define an edge {ri,t , rj,t} ∈ ER, for each t with 1 ≤ t ≤ m.

Let R′ be a solution of Maximum Node Consist-
ency over instance (R, S). Denote by R′(vi) the subset of 
nodes V (R′) ∩ I(vi), that is those nodes of I(vi) that have 
not been removed. We pay a particular attention to those 
R′(vi) that contain more than one node.

Lemma 3 Let R′(vi),R
′(vj) be two subsets of nodes of 

a solution R′of Maximum Node Consistency over 

instance (R, S) such that |R′(vi)| ≥ 2 and |R′(vj)| ≥ 2. Then 
there is no edge with one endpoint in R′(vi) and the other 
in R′(vj).

Proof Assume on the contrary that there is some q such 
that ri,q ∈ R′(vi) and rj,q ∈ R′(vj) share an edge. Con-
sider a node ri,z of R′(vi) \ {ri,q}, which must exist since 
|R′(vi)| ≥ 2. The P3 induced by ri,z , ri,q and rj,q implies 
the triplet (ri,z , rj,q|ri,q), while S contains the triplet 
(ri,z , ri,q|rj,q).  �

Now, we are ready to prove the main result of this 
section.

Lemma 4 Let a graph H be an instance Maximum 
Independet Set with m nodes, and let (R, S) be the 
corresponding instance of Maximum Node Consist-
ency with n = m2 nodes. Then

1. Given an independent set V ′ of H, we can compute 
in polynomial time a solution of Maximum Node 
Consistency of size at least |V ′|m;

2. Given a solution of Maximum Node Consist-
ency on instance (R, S) of size at least k m, we can 
compute in polynomial time an independent set V ′ of 
H such that |V ′| ≥ k.

Proof  
1. Consider an independent set V ′ of H and define a 

solution of Maximum Node Consistency  on 
instance (R,  S) of size at least |V ′|m as follows: 
remove each node of I(vi) if and only if vi /∈ V ′. Let 
R′ be the corresponding solution of Maximum Node 
Consistency. Since V ′ is an independent set, it 
follows that R′ consists only of cliques R′(vi), discon-
nected one from the other. It has |V ′|m nodes and as 
R′ is P3-free, it is S-consistent.

2. The case k = 1 is trivial so we assume k > 1. Con-
sider a solution R′ of Maximum Node Consist-
ency on instance (R, S) of size at least k m, and con-
sider the subsets R′(vi) in R′ such that |R′(vi)| > 1 . 
Notice that we can assume that there exist at least 
k such sets, otherwise R′ would contain at most 
(k − 1)m+m− (k − 1) < km nodes.

 Given an index j, consider the set 
Rj = {ri,j ∈ R′(vi) : |R

′(vi)| > 1, 1 ≤ i ≤ m}, i.e. 
the nodes with index j that belong to some sub-
set R′(vi) larger than one. By Lemma  3 each set Rj 
is an independent set. Now, pick the set Rj hav-
ing maximum cardinality. It follows that Rj con-
tains at least k nodes, since otherwise R′ would have 
at most m(k − 1)+m− k < mk nodes. Hence, 
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V ′ = {vi : ri,j ∈ Rj} is an independent set of size at 
least k, thus concluding the proof.  �

We say a maximization problem cannot be approxi-
mated within a factor α if, unless P = NP, for any approx-
imation algorithm A there are infinitely many instances 
for which A outputs a solution with value AP such that 
AP < 1

α
OPT , where OPT is the optimal value of a solu-

tion to the problem (note that equivalently, OPTAP > α). It is 
well-known that Maximum Independet Set cannot 
be approximated within a factor cm1−ε for any 0 < ε < 1 
and for any constant c > 0 [37].

Theorem  4 The optimization version of Maximum 
Node Consistency  cannot be approximated within 
a factor dn

1
2 (1−ε) for any 0 < ε < 1 and for any constant 

d > 0, where n is the number of nodes of the given rela-
tion graph. Moreover, this result holds even on instances 
in which for any distinct g1, g2 ∈ Ŵ, s(g1) �= s(g2).

Proof Let H be a graph with m nodes and let (R, S) be 
the corresponding instance of Maximum Node Con-
sistency  with n = m2 nodes. Denote by OPTI and 
OPTN , respectively, the values of an optimal solu-
tion for Maximum Independet Set  and Maxi-
mum Node Consistency. Let AN be any approxima-
tion algorithm for Maximum Node Consistency, 
and let AI be the approximation algorithm for Maxi-
mum Independet Set  that on input H, runs AN on 
the corresponding instance (R,  S) and returns the inde-
pendent set resulting from Lemma  4. Let API (H) and 
APN (R, S) denote, respectively, the sizes of the solutions 
found by AI (H) and AN (R, S). By Lemma 4 we get that 
API (H) ≥ ⌊APN (R, S)/m⌋ ≥ APN (R, S)/m− 1 and 
OPTN (R, S) ≥ OPTI (H)m. Now,

as we may assume that API (H) ≥ 1. Since Maximum 
Independet Set  cannot be approximated within a 
factor cm1−ε, for any 0 < ε < 1 and any constant c > 0, 
then for any 0 < ε < 1 and any constant c > 0 there exist 
infinitely many instances H on which OPTI (H)

2API (H)
> cm1−ε. 

Thus, it follows that

on infinitely many instances. Finally the fact that the result 
holds even on instances in which for any distinct g1, g2 ∈ Ŵ,  
s(g1) �= s(g2) follows from the construction of R. �

OPTN (R, S)

APN (R, S)
≥

OPTI (H)m

API (H)m+m
=

OPTI (H)

API (H)+ 1
≥

OPTI (H)

2API (H)

OPTN (R, S)

APN (R, S)
≥

OPTI (H)

2API (H)
>

c

2
m1−ε = dn

1
2 (1−ε)

We get the following as an immediate corollary, which 
will be of use later:

Corollary 1 The decision version of  Maximum Node 
Consistency  is NP-Hard, even on instances in which 
for any distinct g1, g2 ∈ Ŵ, s(g1) �= s(g2).

Gene tree correction problems
In this section, we are given a gene family Ŵ, a species tree 
S, an S-consistent DS-tree G for Ŵ, and a set C = (O,P) of 
orthology/paralogy constraints (not necessarily full). We 
focus on the problem of correcting G according to C in a 
minimal way. The goal is thus to find a DS-tree G′ induc-
ing C such that the difference between G and G′ is mini-
mum. We consider two ways of measuring the difference 
(or symetrically the similarity) between gene trees, one 
based on conserved orthology/paralogy relations induced 
by the two trees, and one based on the number of con-
served clades between the two trees, which is the Robin-
son-Foulds in the case that G, G′ and S are all binary trees.

The Maximum Homology Correction problem
Maximum Homology Correction problem:
Input: A species tree S, an S-consistent DS-tree G for a 
gene family Ŵ, an integer k, a set O of orthology and a set 
P of paralogy relations;
Output: “Yes” if there exists an S-consistent DS-
tree G′ for Ŵ with O ⊆ O(G′), P ⊆ P(G′) such that 
|O(G) ∩O(G′)| + |P(G) ∩ P(G′)| ≥ k.

Theorem  5 The Maximum Homology Correc-
tionproblem is NP-Complete, even if S, G and G′ are 
required to be binary.

Proof The problem is clearly in NP, as verifying S-consist-
ency can be done in polynomial time, as well as counting 
the common orthologs/paralogs relations (the set of rela-
tions is quadratic in size). For our reduction, we use the 
Minimum Edge-Removal Consistency problem 
for the case of a gene family with at most one gene per 
genome, which is NP-Hard by Theorem 3. Given a species 
tree S, a relation graph R with V(R) in bijection with L(S) 
and an integer k, we construct an instance of the Maximum 
Homology Correction Problem, i.e. a species tree 
S′, a DS-tree G, an orthologous set O and paralogous set P.

Let S′ = S and construct G by mimicking S - that is by 
first copying S and its leaf labels, then replacing each leaf 
ℓ of G by the gene s−1(ℓ). Note that if S is binary, then so 
is G. All internal nodes of G are labeled as speciations, 
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so all genes of Ŵ are pairwise orthologous. Thus R(G) is 
a clique. Finally, let O = ∅ and P = {g1g2 : g1g2 /∈ E(R)}. 
Therefore the objective is to break a minimum of orthol-
ogies of G in order to satisfy P.

We show that that there is an S-consistent subgraph 
R′ of R obtained by removing at most k edges if and only 
if there is an S′-consistent DS-tree G′ satisfying O and P 
with at most |P| + k relations that are not induced by G.
⇒ : Let R′ be a solution to the Minimum Edge-

Removal Consistency Problem for R and S. Then 
there exists a S-consistent DS-tree G′ satisfying R′ , which is 
obtained by deleting at most k edges from R. By Lemma 1, 
we may assume that if S is binary, then so is G′. Now, since 
R′ has at most |P| + k non-edges, G′ has at most k + |P| 
paralogs and is therefore a solution to the constructed 
instance of the Maximum Homology Correction 
Problem that breaks at most k + |P| orthologies of R(G).
⇐ : Let G′ be a solution, binary or not, to the con-

structed Maximum Homology Correction Prob-
lem instance and let R′ = R(G′). Since G′ satisfies P 
and breaks at most |P| + k orthologies, R′ must have 
P as non-edges, plus at most k other non-edges. Thus 
R′ can be obtained by removing at most k edges from 
R(G)− P = R, as desired. �

The maximum clade correction problem
Maximum clade correction problem:
Input: A gene tree G, a species tree S, a set O of orthol-
ogy and a set P of paralogy relations and an integer k;
Output: “Yes” if there exists an S-consistent DS-tree 
G′ satisfying O and P such that G and G′ have at least k 
clades in common.

Notice that if S, G and G′ are required to be binary, 
the effective measure between G and G′ is the Robin-
son-Foulds distance. This special case is handled as part 
of the general proof. But before we need the following 
lemma, which uses grafting operations to add leaves to G 
and satisfy a prescribed relation without breaking other 
relations.

Given two trees T1 and T2, connecting T1 with T2 cor-
responds to creating a new node x and giving it r(T1) and 
r(T2) as its two children. Grafting a new leaf x to a tree T 
corresponds to adding x to L(T ) by either: (1) adding x as 
a new child of some node u of T; (2) connecting T with x; 
(3) subdividing an edge uv and adding x as a child of the 
newly created vertex.

Lemma 5 Let G be an S-consistent gene tree, for some 
species tree S. Let x be a gene not in G and y be some gene 
in G with s(x) �= s(y). Then there exists a gene tree G′ 
obtained by grafting x to G such that the following condi-
tions are satisfied:

1 x and y are orthologs in G′;
2 O(G) ⊆ O(G′) and P(G) ⊆ P(G′);
3 G′ is S-consistent;

Proof If sG(r(G)) is a strict descendant of lcaS(s(x), s(y)), 
then it is easy to see that connecting x to r(G) under a com-
mon parent yields the desired result. So we assume sG(r(G)) 
is an ancestor of lcaS(s(x), s(y)). If there is some node u of G 
such that adding x as a child of u satisfies the three condi-
tions of the Lemma, then we are done. So assume that there 
is no node u to which we can add x as a child.

Let uv be an edge of G, and suppose that we graft   x 
on uv to obtain G′. Call p the parent of x on G′, and say 
that u is the parent of p (i.e. p has children x and v). 
Note that if sG(u) = sG′(u), then sG(w) = sG′(w) for any 
w ∈ V (G) ∩ V (G′), implying that setting evG′(z) = evG(z) 
for all z ∈ V (G) ∩ V (G′) \ {u} preserves S-consistency. 
We will find such a uv that guarantees this sG(u) = sG′(u) 
property, while ensuring that lcaG′(x, y) can be a spe-
ciation (i.e. evG′(lcaG′(x, y)) = Spec is S-consistent), and 
that evG(u) = evG′(u) is S-consistent. This will prove the 
Lemma.

Let sxy = lcaS(s(x), s(y)), and let g be the lowest ancestor 
of y in G such that sG(g) is sxy or an ancestor of sxy. Note 
that the case in which g does not exist was handled in the 
beginning of the proof. Now suppose that evG(g) = Dup . 
Denote by g ′ the child of g that is also an ancestor of y. 
Note that sG(g) is an ancestor of sxy and sG(g ′) is a strict 
descendant of sxy. We claim that uv = gg ′. To see this, 
obtain G′ by grafting x to gg ′, p being the parent of x and 
g the parent of p. Then, sG′(p) = sxy, and its children spe-
cies sG′(g ′) and sG′(x) are separated in S by our choice of 
g ′. Thus setting evG′(p) = evG′(lcaG′(x, y)) = Spec pre-
serves S-consistency. Also, sG(g) = sG′(g) since sG(g) is 
already an ancestor of sxy = sG′(p). Finally, we are free to 
set evG′(g) = Dup, satisfying all the required conditions.

So instead suppose that evG(g) = Spec. Recall that add-
ing x as a child of g to obtain a new tree G′′ is not a solu-
tion. Since in G′′, lcaG′′(x, y) = g, we must either have 
sG(g) �= sG′′(g), or evG′′(g) = Spec is not S-consistent. By 
the choice of g, only the latter is possible, implying that 
all children of g are from separated species in G, but not 
in G′′. Therefore, there must be a child g ′ of g such that 
sG(g

′) is an ancestor of s(x). Note that g ′ must be unique 
since otherwise, evG(g) = Spec would not be possible. 
We then claim that uv = gg ′. Indeed, obtain G′ by grafting 
x to gg ′, p being the parent of x. We have sG(p) = sG′(g ′) , 
and we set evG′(p) = Dup. The species of the children 
of g remain unchanged in G′, and so sG(g) = sG′(g) and 
evG′(g) = evG′(lcaG′(x, y)) = Spec is S-consistent, again 
satisfying all required conditions. �
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Theorem  6 The Maximum Clade Correction 
Problem  is NP-Complete, even if S, G and G′ are 
required to be binary.

Proof Verifying S-consistency and comparing the set 
of clades from G and G′ can clearly be done in polyno-
mial time, thus the problem is in NP. We use the Maxi-
mum Node Consistency problem for our reduction, 
which is NP-Hard by Corollary 1. Let R, S and k be the 
Maximum Node Consistency instance, letting R be 
the relation graph with V (R) = {v1, . . . , vn}, S the species 
tree and k an integer. Let α = n(n− 1− k)+ 2k (not-
ing that α > 0 when k ≤ n). The constructed instance of 
the Maximum Clade Correction Problem uses the 
same species tree S. Construct G as follows: first consider 
G as any binary tree with n leaves l1, . . . , ln, where each 
leaf li is mapped to vertex vi of R. Then, replace each leaf 
li by a subtree Ti constructed as follows: Ti is a caterpillar 
tree with n− 1+ α leaves, and each leaf ℓ of Ti is such 
that s(ℓ) = s(vi) (recall that a caterpillar tree is a path to 
which we add a leaf child to each internal node). Let Li 
denote the set of the n− 1 deepest leaves of Ti (the depth 
of a leaf ℓ being the number of nodes on the path between 
ℓ and the root). Each leaf of Li is mapped to a distinct 
node of V (R) \ {vi}. Denote by ℓi,j the leaf of Ti mapped to 
vj, and by Ni the subtree of Ti rooted at lca(Li). Then G has 
exactly n(n− 1+ α) leaves and n(n− 1+ α)− 1 clades 
(since it is binary). An example is given in Fig. 4. Finally 
define O = {{ℓi,j , ℓj,i} : vivj ∈ E(R)} the set of orthology 
relations to satisfy and P = {{ℓi,j , ℓj,i} : vivj /∈ E(R)} the 
set of paralogy relations to satisfy. Note that each ℓi,j is 
present in exactly one relation.

We show that R admits an S-consistent induced sub-
graph with at least k nodes if and only if G, O and P admit 
an S-consistent DS-tree G′ satisfying O and P such that G 
and G′ share at least k(α + n− 2) clades.

(⇒) Let R′ be a solution to the Maximum Node Con-
sistencyinstance, |V (R′)| ≥ k, and let H be a DS-
tree satisfying R′ that is S-consistent. By Lemma  1, we 
may assume that if S is binary, then so is H. Now, since 
L(H) ⊆ V (R), to each leaf vi of H corresponds a sub-
tree Ti in G. Then build a DS-tree G∗ from H by replac-
ing each leaf vi of H by Ti, and labeling all internal nodes 
of inserted trees as Dup (in Fig. 4, G∗ is the subtree of G′ 
rooted at the common ancestor of Ta,Tb and Tc). We first 
argue that G∗ is S-consistent and satisfies the subsets of 
O and P restricted to L(G∗). In a subsequent step, we will 
graft the genes missing from G∗ using Lemma  5. Notice 
that sH (vi) = sG∗(r(Ti)) and that all nodes of H that are 
in G∗ have the same LCA-mapping in both trees. It fol-
lows that G∗ is also S-consistent. Also, for all vi, vj ∈ L(H) , 
evH (lcaH (vi, vj)) = evG∗(lcaG∗(r(Ti), r(Tj)). Thus for 
any pair of leaves ℓi,j , ℓj,i in L(G∗) such that {ℓi,j , ℓj,i} ∈ O, 
lcaG∗(ℓi,j , ℓj,i) is a speciation (by the construction of O from 
R and the fact that H satisfies R′). By the same reasoning, if 
{ℓi,j , ℓj,i} ∈ P then ℓi,j and ℓj,i are paralogous in G∗.

The solution G′ is obtained by grafting to G∗ every leaf 
of G missing from G∗ whilst preserving the Ti clades, 
maintaining satisfiability of O and P and S-consist-
ency. If such a G′ exists, then G and G′ share at least k 
identical subtrees from {T1, . . . ,Tn}, and since each 
Ti contains α + n− 2 clades, it follows that G and 
G′ share at least k(α + n− 2) clades as required. Let 
L = L(G) \ L(G∗) be the leaves yet missing from G∗. Let 
LO = {ℓ ∈ L : ∃ℓ′ ∈ L(G∗), ℓℓ′ ∈ O} (i.e. the leaves of L 
subject to an orthology constraint with some leaf already 
in G∗). The complement LO is the set of leaves of L that 
are either subject to a paralogy constraint with some 
leaf of G∗, or not subject to any constraint with any leaf 
of G∗. Let R(LO) be the relation graph with vertex set LO 
and edge set {ℓ1ℓ2 : ℓ1, ℓ2 ∈ LO, ℓ1ℓ2 ∈ O}, depicting the 
required orthologies within LO. Recall that each leaf of L 
is contained in at most one relation, implying that each 

c d a c b d

ab ac ad ba bc bd ca cb cd da db dc

R S

G

c a c b

R' H

Ta Tb Tc Td

Ta Tc Tb

da db

dc

G'

α
{

b ab a

Fig. 4 R and S are the input relation graph and species tree, respectively, for an instance of the Maximum Node ConsistencyProblem 
(genes of R are labeled by their species). The gene tree G is constructed from R as described in the proof. Leaves of G related through orthology in O 
are joined by a black solid edge, while paralogs are joined by a dotted line. The graph R′ is a solution to the consistent induced subgraph with k = 3, 
and H is the DS‑tree corresponding to R′. The tree G′ is a solution to the Maximum Clade Correction Problem constructed from H
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node of R(LO) has maximum degree 1. Thus R(LO) is P3
-free and therefore is S-consistent. Let GLO be a DS-tree 
satisfying R(LO) that is S-consistent, assuming that GLO is 
binary if S is. We update G∗ by joining r(G∗) and r(GLO) 
under a common parent x, and labeling x as Dup. Notice 
that this does not modify any orthology or paralogy rela-
tion previously in G∗ or in GLO, nor does it break S-con-
sistency. This also ensures that paralogies ℓ1ℓ2 ∈ P with 
ℓ1 ∈ LO and ℓ2 ∈ L(G∗) are satisfied.

The final step is to graft the leaves of LO to G∗ in a way 
satisfying orthology requirements. This is done by suc-
cessively applying Lemma  5 to each ℓ ∈ LO. As shown, 
each such ℓ can be grafted into G∗ without modifying any 
orthology or paralogy relation already in G∗ whilst satis-
fying the orthology requirement that ℓ is subject to. It is 
straightforward to see that in addition, ℓ can be grafted 
without breaking any Ti clade present in G∗, since every 
vertex in Ti is mapped to the same species. The tree G′ 
obtained after all these grafting operations, satisfies every 
O and P and has the required common clades with G.

(⇐) Let G′ be a solution, binary or not, to the Maximum 
Clade Correction Problem instance. Denote by 
C the number of clades shared by both G and G′, with 
C ≥ k(α + n− 2). Recall that Li is the set of the n− 1 
deepest leaves of Ti in G, with Ni being the subtree rooted 
at lcaG(Li). Denote by G′

Li
 the subtree of G′ rooted at 

lcaG′(Li). We say that Ni was preserved if every leaf of G′
Li

 
belongs to L(Ti) (in other words, the Ni clade might have 
been extended, but only to include other leaves from Ti). 
We claim that at least k of the N = {N1, . . . ,Nn} subtrees 
are preserved in G′. Assume, on the contrary, that at least 
n− k + 1 subtrees from N are not preserved. Take a non-
preserved subtree Ni. Then some leaf ℓ /∈ L(Ti) belongs 
to the lcaG′(Li) clade. This implies that for any ancestor 
x of r(Ni) in G, G′ cannot contain the x clade. By con-
struction of Ti, r(Ni) has at least α ancestors in G. There-
fore, C ≤ n(n− 1+ α)− 1− α(n− k + 1). This leads to 
k(α + n− 2) ≤ C ≤ n(n− 1+ α)− 1− α(n− k + 1) , 
and then to α ≤ n(n− 1− k)+ 2k − 1, contradicting our 
choice of α.

Now, let Np = {Ni ∈ N : Ni is preserved in G′}. We 
have |Np| ≥ k. Let L =

⋃

{i:Ni∈Np} Li and H = G′|L . 
Notice that to each Ni ∈ Np corresponds exactly one 
subtree N ′

i  in H such that L(Ni) = L(N ′
i ) (and all such 

N ′
i  subtrees are disjoint). Let H∗ be the tree obtained by 

replacing every subtree N ′
i  in H by vi. Replacing N ′

i  by vi 
changes no LCA-mapping value since all vertices of N ′

i  
map to s(vi). Thus as G′ is S-consistent, then so are H and 
H∗. Now, we claim that H∗ induces the set of relations 
represented by R′ = R[L(H∗)], which proves the theo-
rem since |L(H∗)| = |Np| ≥ k. By contradiction, suppose 
that vivj ∈ E(R′) but lcaH∗(vi, vj) is labeled Dup. Then 
lcaH (ℓi,j , ℓj,i) is also labeled Dup, and so is lcaG′(ℓi,j , ℓj,i) . 

But ℓi,jℓj,i ∈ O, contradicting our assumption that G′ is a 
solution. The same reasoning applies when vivj /∈ E(R′), 
ending the proof  �

Algorithmic avenues
As the problems considered in this paper are all compu-
tationally hard, only non-polynomial exact algorithms 
or approximation algorithms avenues can realistically 
be explored. Let us generalize the Minimum Edge-
Removal Consistency problem to the minimum 
editing problem (i.e. minimzing edge removals and inser-
tions). It is not hard to imagine a branch-and-bound 
algorithm that solves the problem. Call an induced sub-
graph H of a relation graph R bad if it is a P4, or there is 
triplet of P3(H) not displayed by S. Each P4 can be solved 
by six possible edge editings, and each contradictory tri-
plet of P3(H) can be solved by three possible editings. 
Therefore, in a branch-and-bound process, one would 
verify if a given graph R′ contains a bad subgraph and 
if so, proceed recursively on each graph obtained by an 
editing that removes it. If no bad subgraph exists, then 
R′ is a possible solution and its number of editings is 
retained. If, at any point, R′ has had more editings than 
the best solution encountered so far, the algorithm can 
stop the recursion. Notice however that an edge should 
not be edited more than once in order to avoid infinite 
loops. The idea of this branch-and-bound algorithm can 
also be applied to the Maximum Node Consist-
ency  problem. It is known that a P4, if one exists, can 
be found in linear time [38], and clearly a contradictory 
triplet, if any, can be found in time O(n3) (though a more 
efficient algorithm may exist). A similar approach has 
been applied in [31] to design an FPT algorithm for the 
satisfiability problem.

As for approximations, an algorithm proposed 
in [32] can be directly applied to the Minimum Edge-
Removal Consistency problem and guarantees 
that we do not remove more than 4�(R) times more 
edges than the optimal solution, where �(R) is the maxi-
mum degree of R. The idea is simple: as long as R has a 
bad subgraph H, remove every edge incident to a vertex 
of H and continue. Even though this is the best known 
approximation algorithm so far, it has the undesirable 
effect of isolating many vertices, motivating the explo-
ration of alternative algorithms. One direction would be 
to consider existing ideas on the problem of satisfiability, 
i.e. finding the minimum number of editings required to 
make a graph P4-free, and adapt them to the consistency 
problem - for instance the Min-Cut algorithm proposed 
in [39].

As for gene tree correction, we have developed in [14] a 
polynomial-time algorithm which, given a species tree S 
and partial sets of relations O and P, verifies if there exists 
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an S-consistent gene tree G′ satisfying O and P and if so, 
constructs one among the set of all possible solutions. In 
ordre to correct a gene tree G, we can envisage an exten-
sion of this algorithm allowing to provide G as input, and 
pick, among the solutions of the algorithm the one which 
is the closest to G (either in terms of common homology 
relations or clades).

Conclusions
A gene tree induces a set of orthology and paralogy rela-
tions between members of a gene family, but the con-
verse is not always true. In this paper we have shown that 
attempting to modify a set of relations as least as possible 
in order to ensure consistency with a species tree leads 
to the formulation of NP-Complete problems. Moreo-
ver, even assuming that the given relations are error-free, 
it remains computationally difficult to correct a gene 
tree in order to fit the given set of relations. As various 
model-free methods are available to infer orthology and 
paralogy, these correction problems are of practical bio-
logical interest. A future direction would be to explore 
the exact branch-and-bound algorithms and heuristics 
mentioned in the last section, and design fast approxima-
tion algorithms for the relation graph and gene tree edit-
ing problems.
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