
Holley et al. Algorithms Mol Biol (2016) 11:3
DOI 10.1186/s13015-016-0066-8

RESEARCH

Bloom Filter Trie: an alignment-free
and reference-free data structure
for pan-genome storage
Guillaume Holley1,2,3*, Roland Wittler1,2,3 and Jens Stoye1,2,3

Abstract

Background: High throughput sequencing technologies have become fast and cheap in the past years. As a result,
large-scale projects started to sequence tens to several thousands of genomes per species, producing a high number
of sequences sampled from each genome. Such a highly redundant collection of very similar sequences is called a pan-
genome. It can be transformed into a set of sequences “colored” by the genomes to which they belong. A colored de
Bruijn graph (C-DBG) extracts from the sequences all colored k-mers, strings of length k, and stores them in vertices.

Results: In this paper, we present an alignment-free, reference-free and incremental data structure for storing a
pan-genome as a C-DBG: the bloom filter trie (BFT). The data structure allows to store and compress a set of colored
k-mers, and also to efficiently traverse the graph. Bloom filter trie was used to index and query different pangenome
datasets. Compared to another state-of-the-art data structure, BFT was up to two times faster to build while using
about the same amount of main memory. For querying k-mers, BFT was about 52–66 times faster while using about
5.5–14.3 times less memory.

Conclusion: We present a novel succinct data structure called the Bloom Filter Trie for indexing a pan-genome
as a colored de Bruijn graph. The trie stores k-mers and their colors based on a new representation of vertices that
compress and index shared substrings. Vertices use basic data structures for lightweight substrings storage as well
as Bloom filters for efficient trie and graph traversals. Experimental results prove better performance compared to
another state-of-the-art data structure.

Availability: https://www.github.com/GuillaumeHolley/BloomFilterTrie.

Keywords: Pan-genome, Similar genomes, Population genomics, Colored de bruijn graph, Bloom filter, Compression,
Trie, Index, Succinct data structure

© 2016 Holley et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
A string x is a sequence of characters drawn from a
finite, non-empty set, called the alphabet A. Its length
is denoted by |x|. The character at position i is denoted
by x[i], the substring starting at position i and ending at
position j by x[i..j]. Strings are concatenated by juxtaposi-
tion. If x = ps for (potentially empty) strings p and s, then
p is a prefix and s is a suffix of x.

A genome is the collection of all inheritable material
of a cell. Ideally it can be represented as a single string
over the DNA alphabet A = {a, c, g , t} (or as a few
strings in case of species with multiple chromosomes).
In practice, however, genomes in databases are often
less perfect, either left unchanged in form of the raw
data as produced by sequencing machines (millions of
short sequences called reads), or after some incomplete
assembly procedure in form of contiguous chromosome
regions (hundreds of contigs of various lengths). We are
interested in the problem of storing and compressing
a set of multiple highly similar genomes, e.g. the pan-
genome of a bacterial species, comprising hundreds, or

Open Access

Algorithms for
Molecular Biology

*Correspondence: gholley@cebitec.uni-bielefeld.de
3 International Research Training Group 1906, Bielefeld University,
Bielefeld, Germany
Full list of author information is available at the end of the article

https://www.github.com/GuillaumeHolley/BloomFilterTrie
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-016-0066-8&domain=pdf

Page 2 of 9Holley et al. Algorithms Mol Biol (2016) 11:3

even thousands of strains that share large sequence parts,
but differ by individual mutations from one another. An
abstract structure that has been proposed for this task is
the colored de Bruijn graph (C-DBG) [1]. It is a directed
graph G = (VG ,EG) in which each vertex v ∈ VG repre-
sents a k-mer, a string of length k over A, associated with
a set of colors representing the genomes in which the
k-mer occurs. A directed edge e ∈ EG from vertex v to
vertex v′, respectively from k-mer x to k-mer x′, exists if
x[2..k] = x′[1..k − 1]. Each k-mer x has |A| possible suc-
cessors x[2..k] c and |A| possible predecessors cx[1..k − 1]
with c ∈ A. An implementation of such a graph does not
have to store edges since they are implicitly given by ver-
tices overlapping on k − 1 characters.

In this paper, we propose a new data structure for
indexing and compressing a pan-genome as a C-DBG,
the Bloom Filter Trie (BFT). It is alignment-free, refer-
ence-free and incremental, i.e., it does not need to be
entirely rebuilt when a new genome is inserted. BFTs pro-
vide insertion and look-up operations for strings of fixed
length associated with an annotation. This paper is an
extended version of the preliminary work presented in [2].

In the next section, existing data structures and soft-
ware for pan-genome representation are reviewed. The
BFT and the operations it supports are then described,
followed by the traversal method of a C-DBG stored as
a BFT. Finally, experimental results showing the perfor-
mance of the data structure are provided.

Existing approaches
The BFT, as well as existing tools for pan-genome stor-
age, uses a variety of basic data structures reviewed in
the following. Existing tools for pan-genome storage will
then be discussed.

Data structures
One common way to index and compress a set of strings is
the Burrows-Wheeler Transform (BWT) [3] that rearranges
the input data to enable better compression by aggregating
characters with similar context. For multiple sets of strings,
a disk-based approach [4] or different terminator charac-
ters must be used. The FM-Index [5] allows to count and
locate the occurrences of a substring in the BWT.

Introduced by Bloom [6], a Bloom filter (BF) records
the presence of elements in a set. Based on the hash table
principle, look-up and insertion times are constant. The
BF is composed of a bit array B[1..m], initialized with 0s,
in which the presence of n elements is recorded. A set of
f independent hash functions h1, ..., hf is used such that
each hash function maps an element to an integer from
one to m. Inserting an element e into B and testing for its
presence are then

Insert(e,B) : B[hi(e)] ← 1 for all i = 1, ..., f

and

respectively, where
∧

 is the logical conjunction operator.
The BF does not generate false negatives but may gener-
ate false positives, as MayContain can report the pres-
ence of elements which are not present but a result of
independent insertions.

The Sequence Bloom Tree (SBT) [7] is a binary tree with
BFs as vertices. An internal vertex is the union of its two
children BFs, i.e., a BF where a slot is set to 1 if the slot at
the same position in at least one of the two children is 1.

A trie [8] is a rooted edge-labeled tree T = (VT ,ET)
storing a set of strings. Each edge e ∈ ET is labeled with
a character and no two edges starting at the same ver-
tex can have the same character. A path from the root
to a leaf represents the string obtained by concatenating
all the characters on this path. The depth of a vertex v in
T is denoted by depth(v, T) and is the number of edges
between the root of T and v. The height of T, denoted
by height(T), is the number of edges on the longest path
from the root of T to a leaf. The burst trie [9] is an effi-
cient implementation of a trie which reduces its number
of branches by compressing sub-tries into leaves. Its inter-
nal vertices are labeled with multiple prefixes of length 1,
linked to children. The leaves are labeled with multiple
suffixes of arbitrary length. A leaf has a limited capacity
of suffixes and is burst when this capacity is exceeded.
A burst splits suffixes of a leaf into prefixes of length 1,
linked to new leaves representing the remaining suffixes.

Software for pan‑genome storage
Existing tools for pan-genome storage are mostly align-
ment-based or reference-based and take a set of assembled
genomes as input. Alignments naturally exhibit shared and
unique regions of the pan-genome but are computationally
expensive to obtain. In addition, misalignments can lead to
an inaccurate estimation of the pan-genome regions [10].
PanCake [11] is an extension of string graphs, known from
genome assembly [12], which achieves compression based
on pairwise alignments. Experiments showed compression
ratios of 3:1 to 5:1. Nguyen et al. [13] formulated the pan-
genome construction problem as an optimization problem
of arranging alignment blocks for a set of genomes parti-
tioned by homology. The complexity of the problem has
been shown to be NP-hard, and a heuristic using Cactus
graphs [14] was provided. However, a multiple sequence
alignment is required for creating the blocks, another NP-
hard problem.

Among the reference-based tools, Huang et al. [15] pro-
posed to build a pan-genome by annotating a reference

MayContain(e,B) :

f
∧

i=1

B[hi(e)],

Page 3 of 9Holley et al. Algorithms Mol Biol (2016) 11:3

genome with all the variants detected between a set of
genomes and the reference. The BWT of the augmented
reference is then computed and can be used by an aligner
based on the FM-Index. While being more accurate with
the augmented reference genome than BWA [16] with the
reference alone, the aligner is between 10 to 100 times
slower, uses significantly more memory and can introduce
false positive alignments. RCSI [17] (Referentially Com-
pressed Search Index) uses referential compression with
a compressed suffix tree to store a pan-genome and to
search for exact or inexact matches. The inexact match-
ing allows a limited number of edit distance operations.
1092 human genomes totaling 3.09 TB of data were com-
pressed into an index of 115 GB, offering a compression
ratio of about 28:1. Yet, the index is built for a maximum
length query and a maximum number of edit operations.
MRCSI [18] improves on RCSI by proposing a com-
pressed search index based on multiple references.

Closer to our approach is SplitMEM [19], which uses a
C-DBG to build a pan-genome from assembled genomes
and extract the shared regions. The C-DBG is directly con-
structed in a compressed way, where a non-branching path
is stored in a single vertex, using an augmented suffix tree.
Baier et al. [20] improved SplitMEM in theory and practice
with two algorithms that use the BWT and a compressed
suffix tree. Unfortunately, both tools use more memory
than the original size of the input sequences.

The tool Khmer [21] provides a lightweight representa-
tion of de Bruijn graphs [22] based on Bloom filters and
a graph labeling method based on graph partitioning.
Unfortunately, the graph labeling method does not offer
yet enough flexibility to reproduce the experiments pre-
sented in this paper.

The SBT data structure has been implemented in an
alignment-free, reference-free and incremental software [7]
to label raw sequences with their colors. The proposed tool
is designed to index and compress data from sequenc-
ing experiments for effective query of full-length genes or
transcripts by separation into k-mers. A leaf of an SBT is
used to represent a sequencing experiment by extracting all

its k-mers and storing them in the BF of the leaf. The SBT
software does not represent exactly the set of k-mers of the
sequencing experiments they contain, though, due to the
inexact nature of BFs.

The Bloom Filter Trie
The Bloom Filter Trie (BFT) that we propose in this paper
is an implementation of a C-DBG. It is based on a burst
trie and is used to store k-mers associated with a set of
colors. For the moment we may assume that colors are
represented by a bit array color initialized with 0s. Each
color has an index icolor such that colorx[icolor] = 1 records
that k-mer x has color icolor. Sets of colors will later be
compressed. All arrays in a BFT are dynamic: An insertion
at position pos in an array A reallocates it and shifts every
slot having an index ≥ pos by one position in O(|A|) time.

In the following, let t = (Vt ,Et) be a BFT created for
a certain value of k where we assume that k is a multi-
ple of an integer l such that k-mers can be split into k

l

equal-length substrings. The maximum height of t is
heightmax(t) =

k
l
− 1. The alphabet we consider is the

DNA alphabet A = {a, c, g, t}, and because |A| = 4,
each character can be stored using two bits. A vertex in
a BFT is a list of containers, zero or more of which are
compressed, plus zero or one uncompressed container.
In the following, we will explain how the containers are
represented and how an uncompressed container is burst
when its capacity is exceeded.

Uncompressed container
An uncompressed container of a vertex v in a BFT is a
limited capacity set of tuples <s, colorps> where s is a
suffix and p is the prefix represented by the path from
the root to v such that |p| + |s| = k. Tuples are lexico-
graphically ordered in the set according to their suffixes.
Uncompressed containers are burst when the number of
suffixes stored exceeds their capacity c > 0. Then, each
suffix s of the uncompressed container is split into a pre-
fix spref of length l and a suffix ssuf of length |s| − l such
that s = spref ssuf . Prefixes are stored in a new compressed

Fig. 1 Insertion of six suffixes (that are here complete k-mers) with different colors (boxes with diagonal lines) into a BFT with k = 12, l = 4 and c = 5. In
a, the first five suffixes are inserted at the root into an uncompressed container. When a sixth suffix gcgccaggaatc is inserted, the uncompressed
container exceeds its capacity and is burst, resulting in the BFT structure shown in b

Page 4 of 9Holley et al. Algorithms Mol Biol (2016) 11:3

container. Suffixes, attached with their colors, are stored
in new uncompressed containers, themselves stored in
the children of the compressed container. An example of
a BFT and a bursting is given in Fig. 1.

Compressed container
A bursting replaces an uncompressed container by a
compressed one, used to:

 • store q ≤ c suffix prefixes in compressed form (in
Fig. 1b, q = 4),

 • store links to children containing the suffixes, and
 • reconstruct suffix prefixes and find the correspond-

ing children.

To store a suffix prefix spref efficiently, it is split into a pre-
fix a and a suffix b with respective binary representations
α and β of length � and µ bits. A compressed container is
composed of four structures quer, pref, suf and clust, where:

 • quer is a BF represented as a bit array of length m
and f hash functions, used to record and filter for the
presence of q suffix prefixes;

 • pref is a bit array of 2� bits initialized with 0s and
used to record prefix presence exactly. Here the
binary representation α of a prefix a is interpreted as
an integer such that pref [α] set to 1 records the pres-
ence of a;

 • suf is an array of q suffixes b sorted in ascending lexi-
cographic order of the original suffix prefixes they
belong to;

 • clust is an array of q bits, one per suffix of array suf,
that represents cluster starting points. A cluster is a list
of consecutive suffixes in array suf that share the same
prefix. It has an index icluster with 1 ≤ icluster ≤ 2�
and a start position poscluster in the array suf with
icluster ≤ poscluster ≤ q. Position pos in array clust is
set to 1 to indicate that the suffix in suf[pos] starts a
cluster because it is the lexicographically smallest
suffix of its cluster. A cluster contains n ≥ 1 suffixes
and, therefore, position i in array clust is set to 0 for
pos < i < pos + n. The end of a cluster is indicated by
the beginning of the next cluster or if pos ≥ q.

 • For example, the internal representation of the com-
pressed container shown in Fig. 1b with |a| = 2 and
|b| = 2 would be:

quer 0 0 1 0 1 1 0 0 0 1 1 1 suf gc ca cc gc

pref 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 clust 1 1 1 0

The size of q substrings in a compressed container
is m+ 2� + q · (µ+ 1) bits. A bursting minimizes this
size by choosing a prefix length |a| and a BF size m
such that the set of substrings stored in a compressed
container does not occupy more memory than their
original representation in an uncompressed container,
i.e., m+ 2� ≤ q · (�− 1). Each suffix prefix inserted after
a bursting costs only µ+ 1 bits. When the average size
per suffix prefix stored is close to µ+ 1 bits, arrays pref,
suf and clust can be recomputed by increasing |a| and
decreasing |b|, such that 2�′ + q · µ′ < 2� + q · µ, where
�
′ and µ′ are the values of � and µ, respectively, after

resizing.

Operations supported by the Bloom Filter Trie
The BFT supports all operations necessary for stor-
ing, traversing and searching a pan-genome, as well as
to extract the relevant information of the contained
genomes and subsets thereof. Here we describe the most
basic ones of them, Look-up and Insertion, as well as how
the sets of colors are compressed. The traversal of the
graph is discussed in the next section.

The algorithms use three auxiliary functions.
HammingWeight(α, pref) counts the number of 1s in
pref [1..α] and corresponds to how many prefixes repre-
sented in array pref are lexicographically smaller than or
equal to an inserted prefix a with binary representation
α of length � bits. This requires O(2�) time. The second
function, Rank(i, clust), iterates over array clust from its
first position until the ith entry 1 is found and returns
the position of this entry. It corresponds to the start posi-
tion of cluster i in array clust. If the entry is not found,
the function returns |clust| + 1 as a position. While
Rank could be implemented in O(1) time [5], we use a
more naive but space efficient O(q) time implementation,
where q is the number of suffix prefixes in a compressed
container. Finally, BinarySearch(uc, s) searches for the
suffix s in the uncompressed container uc in O(log2 c)
time, where c is the capacity of uc.

Look‑up
The function that tests whether a suffix prefix spref = ab
with binary representation αβ is stored in a compressed
container cc is given in Algorithm 1. Line 1 verifies the
presence of prefix a in the array pref in O(1) time. If a
is present, line 2 computes in O(2�) time the Hamming
weight i of a, i.e., the index of the cluster in which suffix

Page 5 of 9Holley et al. Algorithms Mol Biol (2016) 11:3

b is possibly situated. Line 3 locates the rank of i, i.e., the
start position of the cluster, and lines 4–7 compare the
suffixes of the cluster to b. Lines 3–7 are computed in
O(q) time. Algorithm 1 has therefore a worst case run-
ning time of O(2� + q).

Insertion
Prior to any k-mer insertion into a BFT t, a look-up veri-
fies if the k-mer is already present. If it is, only its set of
colors is modified. Otherwise, the look-up stops the
trie traversal on a container cont of a vertex v where the

searched suffix prefix or k-mer suffix is not present. If
cont is uncompressed, the insertion of the k-mer suffix
and its color is a simple O(log2 c) time process. If cont is
compressed, the insertion of suffix prefix spref = ab is a
bit more intricate. In fact, it will only be triggered if cont
is the first compressed container of v to have spref as a
false positive (MayContain(spref , cont.quer) = true and
Contains(spref , cont) = false). False positives are there-
fore “recycled”, which is a nice property of BFTs: The
BF quer remains unchanged, and only pref, suf and clust
need to be updated in a way similar to Algorithm 1. The
presence of prefix a must be first verified by testing the
value of pref [α] where α is the binary representation of
a. If pref [α] = 0, prefix a is not present and is recorded
by setting pref [α] to 1. Then, the index idcluster and start
position poscluster of the new cluster are computed using
HammingWeight and Rank. The suffix b is inserted into
suf [poscluster] and a 1 into clust[poscluster]. This takes
O(2� + 2q) time. If pref [α] = 1 prior to insertion, prefix a
is already present, and idcluster and poscluster have already
been computed by Contains(spref , cont). Let n be the
number of suffixes in cluster idcluster. Suffix b is inserted
into suf[pos] such that poscluster ≤ pos ≤ poscluster + n
and suf [pos − 1] < suf [pos]. If pos = poscluster, b starts its
cluster: A 1 is inserted into clust[pos] and clust[pos + 1]
is set to 0. Otherwise, a 0 is inserted into clust[pos]. This
takes O(2q) time. The worst case insertion time of a

The function that tests whether a k-mer x is present
in a BFT t = (Vt ,Et) is given in Algorithm 2. Each ver-
tex v ∈ Vt represents k-mer suffixes possibly stored in its
uncompressed container or rooted from its compressed
containers. The look-up traverses t from the root and, for
a vertex v, queries its containers one after the other for suf-
fix xsuf = x[l · depth(v, t)+ 1..k]. If the queried container
is compressed, its BF quer is queried for xsuf [1..l] using
the function MayContain in O(f) time where, as above,
f is the number of hash functions used by the BF. In case
of a positive answer, the function Contains is used for an
exact membership of xsuf [1..l]. If it is found, the travers-
ing procedure continues recursively on the correspond-
ing child. The absence of xsuf [1..l] indicates the absence
of x in t since xsuf [1..l] cannot be in another container of
v because of the insertion process explained later in this
paper. If the container is uncompressed, the presence of
xsuf is detected using the function BinarySearch . As an
uncompressed container has no children, a match indicates
the presence of the k-mer. Algorithm 2 is initially called as
TreeContains(x, 1, l, root). In the worst case, all vertices on
a traversed path represent all possible suffix prefixes and
the BFs quer have a false positive ratio of 0. In such case,
each traversed vertex contains

⌈

|A|l

c

⌉

 containers. The long-
est path of a BFT has k

l
 vertices. Therefore, the worst case

time of TreeContains is O
(

k
l
·

(⌈

|A|l

c

⌉

· f + 2� + q
))

.

Page 6 of 9Holley et al. Algorithms Mol Biol (2016) 11:3

k-mer is O(d + 2� + 2q) with d being the worst case time
look-up.

The internal representation of the compressed con-
tainer shown in Fig. 1b after insertion of the suffix pre-
fix gtat is given below (inserted parts are highlighted).
The presence of prefix gt is recorded in pref[12]. Then,
its cluster index and start position are computed as 4
and 5, respectively. Consequently, after reallocation of
arrays suf and clust, suffix at is inserted in suf[5] and
clust[5] is set to 1 to indicate that suf[5] starts a new
cluster.

quer 0 0 1 0 1 1 0 0 0 1 1 1 suf gc ca cc gc at

pref 0 0 1 0 0 0 0 1 0 1 0 1 0 0 0 0 clust 1 1 1 0 1

Lemma 1 Let G be a C-DBG represented by a
BFT t, x a k-mer in t and v a vertex of t that termi-
nates the shared subpath of the k-mers in succ(x, G). If
depth(v, t) = heightmax(t), succ(x, t) suffixes may be
stored in any container of v. If not, they are stored in the
uncompressed container of v.

Proof A vertex v is the root of a sub-trie storing k-mer
suffixes of length l · (heightmax(t)− depth(v, t)+ 1)
with l = k

heightmax(t)+1. Let s be a k-mer suffix of succ(x, t)

Color compression
Remember from the BFT description that color sets
associated with k-mers in a C-DBG are initially stored
as bit arrays in BFTs. However, these can be compressed
by storing sets of colors that are identical for multiple
k-mers once. To this end, a list of all color sets occurring
in the BFT is built and sorted in decreasing order of total
size, i.e., the number of k-mers sharing a color set mul-
tiplied by its size. Then, by iterating over the list, each
color set is added incrementally to an external array if the
integer encoding its position in the array uses less space
than the size of the color set itself. Finally, each color set
present in the external array is replaced in the BFT by its
position in the external array.

Traversing successors and predecessors
Let t be a BFT that represents a C-DBG G. For a k-mer
x, visiting all its predecessors or successors in G, denoted
pred(x, G) and succ(x, G), respectively, implies the look-up
of |A| different k-mers in t. Such a look-up would visit in
the worst case |A| · (heightmax(t)+ 1) vertices in t. This
section describes how to reduce the number of vertices and
containers visited in t during the traversal of a vertex in G.

Observation 1 Let G be a C-DBG represented by a
BFT t and x a k-mer corresponding to a vertex of G. All
k-mers of succ(x, G) share x[2..k] as a common prefix and
therefore share a common subpath in t starting at the
root. On the other hand, k-mers of pred(x, G) have differ-
ent first characters and, therefore, except for the root of
t do not share a common subpath. Hence, the maximum
number of visited vertices in t for all k-mers of succ(x, G)
is 1+ heightmax(t) and for all k-mers of pred(x, G) is
1+ |A| · heightmax(t).

rooted at a vertex v ∈ Vt. If depth(v, t) �= heightmax(t)
but s is rooted at a compressed container in v, then this
compressed container stores s[1..l], and s[l + 1..|s|] is
rooted in one of its children. As the divergent character
between the k-mer suffixes of succ(x) is in position |s| − 1 ,
this character is in s[l + 1..|s|], rooted at one child of this
compressed container. Therefore v does not terminate
the common subpath shared by succ(x, t) k-mers. �

Lemma 1 proves that the only two cases where a look-
up of pred(x, G) or succ(x, G) must search in different
containers of a vertex are:

 • searching at the root of t for k-mers of pred(x, G),
 • if depth(v, t) = heightmax(t), searching at vertex v for

suffixes of succ(x, G).

Restricting the hash functions used in the compressed
containers to take only positions 2 through l − 1 into
account, allows to limit the search space.

Lemma 2 Let t be a BFT where the f hash functions hi
of quer have the form hi(spref) : spref [2..l − 1] → {1, ..,m}
for i = 1, ..., f . Then, for a vertex v of t and a suffix prefix
spref , all possible substrings s′pref = c1spref [2..l − 1]c2 are
contained in the same container of v.

Proof Assume a k-mer suffix s inserted in a vertex v of
t. A look-up for s analyzes the containers of v from the
head to the tail of the container list. In the worst case, s
can be rooted, according to BFs quer, in all compressed
containers as a true positive or as a false positive. How-
ever, a look-up stops either on the first compressed con-
tainer claiming to contain the suffix prefix spref = s[1..l] ,

Page 7 of 9Holley et al. Algorithms Mol Biol (2016) 11:3

or on the uncompressed container. As the hash func-
tions of quer consider only spref [2..l − 1], a look-up will
therefore stop on the same container for any substring
s′pref = c1spref [2..l − 1]c2. �

As a consequence of Lemma 2, each suffix prefix spref
stored or to store in arrays pref, suf and clust is modified
such that s′pref = spref [2..l]spref [1], which guarantees that
all s′′pref = s′pref [1..l − 2]c2c1 are in the same container.
Furthermore, suffixes stored in array suf are required to
have a minimum length of two characters to ensure that
characters c1 and c2, the variable parts between the differ-
ent s′′pref , are stored in array suf. Hence, as all s′′pref share
s′pref [1..l − 2] as a prefix, they share the same cluster in
arrays suf and clust. Suffix prefixes s′′pref = s′pref [1..l − 1]c1
also have consecutive suffixes in their cluser.

Evaluation
We compared BFT, version 0.5, to SBT [7], version 0.3.5, on
a mid-class laptop with an SSD hard drive and an Intel Core
i5-4300M processor cadenced at 2.6 GHz, using a single
thread. It was not possible to include Khmer in this evalu-
ation as it does not support k > 32 and building a labeled
de Bruijn graph with it requires concatenated raw sequence
files as input, where it is not possible to specify a minimum
number of occurences per k-mer. Results provided in this
section can differ from those reported in the preliminary
version of this paper [2] as evaluated software versions are
different and computational cost of k-mer counting is now
excluded. Also main memory usage is now provided in
addition to the disk space usage. BFT and SBT were used
to represent one real and one simulated pan-genome data-
set. The real dataset consists of raw sequencing data from
473 clinical isolates of Pseudomonas aeruginosa sampled
from 34 patients (NCBI BioProject PRJEB5438), resulting
in 820.76 GB of FASTQ files. The simulated dataset cor-
responds to 154 isolates generated from 19 strains of Yers-
inia pestis. For each isolate, we used Wgsim [23] to create
6,000,000 reads of length 100 with a substitution sequenc-
ing error rate of 0.5 %, resulting in 233.84 GB of FASTQ
files. We first used KmerGenie [24] on a subsample of the
files for each dataset to estimate the best k-mer length
and the minimum number of occurrences for consider-
ing a k-mer valid (not resulting from a sequencing error).
A length of k = 63 with a minimum number of 3 occur-
rences was selected for the real and a length of k = 54
with a minimum of 15 occurrences for the simulated data
set. The capacity c influences the compression ratio as well
as the time for insertion and look-up. We chose a value of
c = 248, as it showed a good compromise in practice. The
prefix length l determines the size of several internal struc-
tures of the BFT and how efficiently they can be stored. We

selected l = 9, as this limits the internal fragmentation of
the memory. As the size of BFs used by the SBT software
must be specified prior to the k-mer insertion and should
be the same for all vertices, the authors of SBT suggested
to estimate the number of unique k-mers in each dataset to
design the size of BFs, at the price of an extra computation
time (personal communication). Since we knew the exact
number of unique k-mers from the BFT construction, we
used this instead: 93,201,551 63-mers for the real dataset
and 37,334,323 54-mers for the simulated dataset, resulting
in BF sizes of 11.11 MB and 4.45 MB, respectively. We also
reused unique k-mer counts computed by the BFT to esti-
mate the number of hash functions to use in SBT: One hash
function for the real dataset and two hash functions for
the simulated dataset. Insertion time and memory usage
are shown in Table 1. Insertion time and peaks of memory
include the compression steps proposed by both tools, i.e.,
color compression and RRR compression [25], respectively.
The SBT disk sizes are given for the leaves first, since the
internal vertices can be reconstructed from them, and
then for the complete tree. The compressed disk size cor-
responds to the size of both data structures on disk, com-
pressed using 7z [26] with the highest compression level
and LZMA2 [26] as compression method.

We suspect that 7z delivers such a high compression
ratio for the BFT because it takes advantage of the data
redundancy among the uncompressed containers, par-
ticularly among the sets of colors. Indeed, the color com-
pression step used by the BFT is rather simple but keeps
the sets of colors fully indexed and, therefore, does not
penalize insertion time. In contrast, SBT uses a more
advanced compression method, RRR, which explains
the lower compression ratio offered by 7z. The final size

Table 1 Insertion time and memory usage for the real
(P. aeruginosa) and simulated (Y. pestis) dataset. The com-
pression ratio is given w.r.t. the original file sizes. Disk
sizes for the SBT are given for the leaves first and then
for the complete tree

P. aeruginosa Y. pestis

BFT SBT BFT SBT

Insertion time
(min)

168.52 371.45 29.88 32.67

Peak of main
memory (MB/
compr. ratio)

7487/112:1 7356/114:1 1313/182:1 1586/151:1

Disk size (MB/
compr. ratio)

1644/511:1 2076–
4572/405:1–
184:1

484/495:1 538–
1117/445:1–
214:1

Compressed
disk size (MB/
compr. ratio)

833/1009:1 1906–
4280/441:1–
196:1

225/1064:1 528–
1099/454:1–
218:1

Page 8 of 9Holley et al. Algorithms Mol Biol (2016) 11:3

of the BFT in main memory and on disk for all pan-
genomes made of one up to all isolates for the real and
simulated dataset is shown in Figs. 2 and 3, respectively.
As shown, the memory growth of the BFT is largely sub-
linear with respect to the size of the input data.

For each dataset, a set of randomly selected k-mers of
the BFT was written to disk and reused as a batch query
for both data structures. Real and simulated dataset batch
queries contain ten million 63-mers and 54-mers, respec-
tively. Query times are shown in Table 2.

Fig. 2 BFT main memory and disk size for pan-genomes made of one up to all P. aeruginosa isolates

Fig. 3 BFT main memory and disk size for pan-genomes made of one up to all simulated Y. pestis isolates

Table 2 Total and per k-mer query times for the real
(P. aeruginosa) and simulated (Y. pestis) dataset with peaks
of main memory

P. aeruginosa Y. pestis

BFT SBT BFT SBT

Total query time (min) 1.19 61.86 0.57 37.42

Query time per k-mer (μs) 7.14 371.16 3.42 224.52

Peak of main memory (MB) 2076 11,678 544 7775

Page 9 of 9Holley et al. Algorithms Mol Biol (2016) 11:3

A third experiment gives an estimation of the time
required to traverse the graph represented by a BFT: It ver-
ifies for each k-mer of the batch queries whether its corre-
sponding vertex in the graph is branching. This experiment
first computes information about the root in a negligible
amount of time and memory. Then, the BFT is queried for
its branching vertices. For the real dataset, this experiment
took 55.52 s (average time of 5.55 µs per 63-mer), resulting
in 1,574,198 branching vertices. For the simulated dataset,
this experiment took 38.79 s (average time of 3.88 µs per
54-mer), resulting in 141,802 branching vertices.

In summary, in our experiments the BFT was up to two
times faster to build than the SBT while using about the
same amount of main memory. When written on disk,
the BFT used less memory than SBT for both datasets
and when compressed with 7z, the BFT was about two
times smaller than the SBT. For querying k-mers, the
BFT was about 52 to 66 times faster than the SBT while
using about 5.5 to 14.3 times less memory.

Conclusions
We proposed a novel data structure called the Bloom Fil-
ter Trie for storing a pan-genome as a colored de Bruijn
graph. The trie stores k-mers and their colors. A new rep-
resentation of vertices is proposed to compress and index
shared substrings. It uses four basic data structures that
allow to quickly verify the presence of substrings. In the
worst case, the compressed strings have a memory foot-
print close to their binary representation. However, we
observe in practice substantial memory savings. Future
work concerns the possiblity to compress non-branching
paths that share the same colors [19] and also the extrac-
tion of the different pan-genome regions.

Authors’ contributions
GH developed, implemented and evaluated the method. All authors wrote
the paper. All authors read and approved the final manuscript.

Author details
1 Genome Informatics, Faculty of Technology, Bielefeld University, Bielefeld,
Germany. 2 Center for Biotechnology, Bielefeld University, Bielefeld, Germany.
3 International Research Training Group 1906, Bielefeld University, Bielefeld,
Germany.

Acknowledgements
The authors wish to thank the authors of SBT for helpful comments. GH and
RW are funded by the International DFG Research Training Group GRK 1906/1.

Competing interests
The authors declare that they have no competing interests.

Received: 8 December 2015 Accepted: 31 March 2016

References
 1. Iqbal Z, Caccamo M, Turner I, Flicek P, McVean G. De novo assembly

and genotyping of variants using colored de Bruijn graphs. Nat Genet.
2012;44(2):226–32.

 2. Holley G, Wittler R, Stoye J. Bloom Filter Trie-a data structure for Pan-
genome storage. In: Proc. of 15th Workshop on Algorithms in Bioinfor-
matics, vol. 9289. 2015. p. 217–30.

 3. Burrows M, Wheeler DJ. A block-sorting lossless data compression algo-
rithm. Digital SRC Research Report 124. 1994.

 4. Cox AJ, Bauer MJ, Jakobi T, Rosone G. Large-scale compression of
genomic sequence databases with the Burrows–Wheeler transform.
Bioinformatics. 2012;28(11):1415–9.

 5. Ferragina P, Manzini G. An experimental study of an opportunistic
index. Proc. of the 12th ACM-SIAM Symposium on Discrete Algorithms.
2001;1:269–78.

 6. Bloom BH. Space/time trade-offs in hash coding with allowable errors.
Comm ACM. 1970;13(7):422–6.

 7. Solomon B, Kingsford C. Large-scale search of transcriptomic read sets
with sequence Bloom Trees. bioRxiv 017087. 2015.

 8. Fredking E. Trie Memory. Comm ACM. 1960;3(9):490–9.
 9. Heinz S, Zobel J, Williams HE. Burst tries: a fast, efficient data structure for

string keys. ACM Trans Inf Syst. 2002;20(2):192–223.
 10. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philip-

pakis AA, del Angel G, Rivas MA, Hanna M. A framework for variation
discovery and genotyping using next-generation DNA sequencing data.
Nat Genet. 2011;43(5):491–8.

 11. Ernst C, Rahmann S. PanCake: a data structure for pangenomes. Proc Ger-
man Conf Bioinform. 2013;34:35–45.

 12. Myers EW. The fragment assembly string graph. Bioinformatics.
2005;21:79–85.

 13. Nguyen N, Hickey G, Zerbino DR, Raney B, Earl D, Armstrong J, Haussler D,
Paten B. Building a pangenome reference for a population. J Comput Biol.
2015;22(5):387–401.

 14. Paten B, Diekhans M, Earl D, John JS, Ma J, Suh B, Haussler D. Cactus
graphs for genome comparisons. J Comput Biol. 2011;18(3):469–81.

 15. Huang L, Popic V, Batzoglou S. Short read alignment with populations of
genomes. Bioinformatics. 2013;29(13):361–70.

 16. Li H, Durbin R. Fast and accurate short read alignment with Burrows–
Wheeler transform. Bioinformatics. 2009;25(14):1754–60.

 17. Wandelt S, Starlinger J, Bux M, Leser U. RCSI: Scalable similarity search in
thousand(s) of genomes. Proc VLDB Endowment. 2013;6(13):1534–45.

 18. Wandelt S, Leser U. MRCSI: compressing and searching string collections
with multiple references. Proc VLDB Endowment. 2015;8(5):461–72.

 19. Marcus S, Lee H, Schatz MC. SplitMEM: a graphical algorithm for pan-
genome analysis with suffix skips. Bioinformatics. 2014;30(24):3476–83.

 20. Baier U, Beller T, Ohlebusch E. Graphical pan-genome analysis with com-
pressed suffix trees and the Burrows–Wheeler transform. Bioinformatics.
2016;32(4):497–504.

 21. Crusoe MR, Alameldin HF, Awad S, Bucher E, Caldwell A, Cartwright R,
Charbonneau A, Constantinides B, Edvenson G, Fay S, Fenton J, Fenzl
T, Fish J, Garcia-Gutierrez L, Garland P, Gluck J, Gonzalez I, Guermond S,
Guo J, Gupta A, Herr JR, Howe A, Hyer A, Harpfer A, Irber L, Kidd R, Lin D,
Lippi J, Mansour T, McA’Nulty P, McDonald E, Mizzi J, Murray K, Nahum JR,
Nanlohy K, Nederbragt AJ, Ortiz-Zuazaga H, Ory J, Pell J, Pepe-Ranney C,
Russ ZN, Schwarz E, Scott C, Seaman J, Sievert S, Simpson J, Skennerton
CT, Spencer J, Srinivasan R, Standage D, Stapleton JA, Steinman SR, Stein
J, Taylor B, Trimble W, Wiencko HL, Wright M, Wyss B, Zhang Q, Zyme E,
Brown CT. The khmer software package: enabling efficient nucleotide
sequence analysis. F1000Research 4. 2015.

 22. Pell J, Hintze A, Canino-Koning R, Howe A, Tiedje JM, Brown CT. Scaling
metagenome sequence assembly with probabilistic de Bruijn graphs.
Proc Natl Acad Sci. 2012;109(33):13272–7.

 23. Li H. Wgsim. 2011. https://github.com/lh3/wgsim (Accessed 26 Nov
2015).

 24. Chikhi R, Medvedev P. Informed and automated k-mer size selection for
genome assembly. Bioinformatics. 2014;30(1):31–7.

 25. Raman R, Raman V, Rao SS. Succinct indexable dictionaries with applica-
tions to encoding k-ary trees and multisets. In: Proc. of the 13h Annual
ACM-SIAM Symposium on Discrete Algorithms. 2002. p. 233–242.

 26. Pavlov I. 7-Zip compressor. 1999. http://www.7-zip.org/ (Accessed 26 Nov
2015).

https://github.com/lh3/wgsim
http://www.7-zip.org/

	Bloom Filter Trie: an alignment-free and reference-free data structure for pan-genome storage
	Abstract
	Background:
	Results:
	Conclusion:
	Availability:

	Background
	Existing approaches
	Data structures
	Software for pan-genome storage

	The Bloom Filter Trie
	Uncompressed container
	Compressed container

	Operations supported by the Bloom Filter Trie
	Look-up
	Insertion
	Color compression

	Traversing successors and predecessors
	Evaluation
	Conclusions
	Authors’ contributions
	References

