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Abstract 

Background: Traditionally, the merit of a rearrangement scenario between two gene orders has been measured 
based on a parsimony criteria alone; two scenarios with the same number of rearrangements are considered equally 
good. In this paper, we acknowledge that each rearrangement has a certain likelihood of occurring based on biologi-
cal constraints, e.g. physical proximity of the DNA segments implicated or repetitive sequences.

Results: We propose optimization problems with the objective of maximizing overall likelihood, by weighting the 
rearrangements. We study a binary weight function suitable to the representation of sets of genome positions that 
are most likely to have swapped adjacencies. We give a polynomial-time algorithm for the problem of finding a mini-
mum weight double cut and join scenario among all minimum length scenarios. In the process we solve an optimiza-
tion problem on colored noncrossing partitions, which is a generalization of the MaxiMuM independent Set problem on 
circle graphs.

Conclusions: We introduce a model for weighting genome rearrangements and show that under simple yet reason-
able conditions, a fundamental distance can be computed in polynomial time. This is achieved by solving a generali-
zation of the MaxiMuM independent Set problem on circle graphs. Several variants of the problem are also mentioned.
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Background
A huge body of work exists on modeling the evolution of 
whole chromosomes  [1]. The main difference between 
such models is the set of rearrangements that they allow. 
The moves of interest are usually inversion, transposition, 
translocation, chromosome fission and fusion, deletion, 
insertion, and duplication.

Almost all versions of the problem are NP-Hard if con-
tent modifying operations such at duplication, loss, and 
insertion are allowed  [2, 3]. Fortunately, a model that 
considers genomes with equal content (i.e., no duplica-
tions or insertions/deletions) is quite pertinent, par-
ticularly in eukaryotes, since syntenic blocks of genes 
can be assigned between genomes so that each block 

occurs exactly once in each genome. For two genomes 
with equal content, double cut and join (DCJ) has been 
the model of choice since it elegantly includes inversion, 
translocation, chromosome circularization and lineariza-
tion, as well as chromosome fission and fusion [4, 5].

One of the most important problems in comparative 
genomics is the inference of ancestral gene orders, i.e., 
paleogenetics. Given a realistic model of evolution, one 
can infer ancestral adjacencies of high confidence from 
present-day genomes  [6–8]. However, methods that 
attempt to infer deeper structure for ancestral species 
suffer due to the huge number of parsimonious scenarios 
between genomes [9–11].

The apparent difficulty of the ancestral inference prob-
lem—because of the potentially astronomical num-
ber of parsimonious sorting scenarios—highlights the 
importance of methods that infer scenarios that con-
form to some extra biological constraints. Yet, aside 
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from methods that weight inversions based on their 
length  [12–16], to our knowledge no algorithmic work 
exists in this direction.

In this paper we use a weight function on rearrange-
ments suitable for modeling positional constraints, i.e., 
sets of positions in the genome that are likely to swap 
adjacencies. Two examples of constraints that fit this par-
adigm are: (1) the physical 3D location of DNA segments 
in a nucleus and, (2) repetitive sequences that are the 
cause or consequence of rearrangement mechanisms. We 
illustrate the utility of our model with 3D constraints in 
the “Positional constraints as colored adjacencies” section.

We propose a general optimization problem that mini-
mizes the sum of weights over the moves in a scenario. 
A more constrained version of the problem asks for such 
a scenario out of all possible unweighted parsimonious 
scenarios. Our algorithm solves this version of the prob-
lem in polynomial time given a binary weight function, 
despite an exponential growth of the number of parsimo-
nious DCJ scenarios with respect to the distance [17, 18]. 
The commutation properties of DCJ moves as studied 
in  [17] link certain DCJ scenarios to noncrossing parti-
tions. Our algorithm relies on solving a new optimization 
problem on colored noncrossing partitions, called Mini-
mum Noncrossing Colored Partition. It is a gener-
alization of the Maximum Independent Set problem 
on circle graphs [19–21].

Genomes as sets of signed integers
A gene, or more generally a syntenic block of genes, will 
be represented by a signed integer. A chromosome is 
a sequence of blocks, and a genome is a set of chromo-
somes. Thus, we write a genome in list notation where a 
block is a positive integer if read in one direction in the 
genome, and a negative integer if read in the opposite 
direction. For example, a genome A can be written as

where ◦ represents a telomere at the end of a linear chro-
mosome. Genome A has two linear chromosomes and a 
circular chromosome (9, 10).

Alternatively, the organization of the blocks on the 
chromosomes can be given by the set of adjacencies 
between the extremities of consecutive blocks. A block 
b has a tail extremity, written bt, and a head extrem-
ity, written bh. Thus, the adjacency between 5 and −1 in 
A is {5h, 1h}. A block that is on the end of a linear chro-
mosome implies a telomeric adjacency. The first chro-
mosome has two such adjacencies: {◦, 5t} and {8t , ◦}. A 
circular chromosome has no telomeres, i.e., the last block 
is adjacent to the first. We can write genome A using 
adjacencies as

{(◦, 5,−1,−2, 6,−4,−8, ◦), (◦,−3, 7, ◦), (9, 10)},

DCJ and sorting DCJs
Double cut and join (DCJ) is an operation on a genome 
that cuts one or two adjacencies, and glues the resulting 
ends back together according to the following rules [4]:

1. If a single adjacency is cut, then add new telomeres 
to the resulting ends (resulting in two new telomeric 
adjacencies).

2. If two adjacencies are cut, then glue the adjacencies 
back in one of two new ways.

Application of a single DCJ corresponds to diverse 
genomic operations such as inversion, chromosome lin-
earization and circularization, transposition, and excision 
of a circular chromosome.

The DCJ distance between genomes A and B is the mini-
mum number of DCJ moves needed to transform A into 
B. DCJs that move A closer to B, called sorting DCJs, can 
be found using a graph. The colored adjacency graph for A 
and B is a graph G(A, B, col) whose vertices are the extremi-
ties and telomeres of A and B, and whose edges are colored 
by the color function col. For each adjacency in A or B an 
adjacency edge links the corresponding nodes of the adja-
cency, and a cross edge links non-telomere vertices from A 
to vertices with the same label in B. The graph for genomes

is given in Fig. 1. It is easy to confirm that the adjacency 
and cross edges each form a matching, so that each con-
nected component of the graph will be either a cycle or 
a path. Note that connected components of the graph 
are only loosely related to the chromosomes; connected 
components can span multiple chromosomes.

We denote a cross edge by the label of the vertices that 
they connect. We denote the connected components of 
the graph by the set of cross edges that comprise them. 
The connected components of the graph in Fig.  1 are 
{5t , 4h, 6h}, {5h, 6t , 2t , 1h, }, {1t , 2h, 3t , 7t}, {8t , 7h}, and 
{3h, 4t , 8h}. The length of a path or a cycle is the number 
of cross edges it has.

To find sorting DCJs, we categorize the connected 
components by length. In Fig.  1 there is one cycle, two 
even-length paths, and two odd-length paths. The for-
mula for the DCJ distance is

A =
{{

{◦, 5t}, {5h, 1h}, {1t , 2h}, {2t , 6t}, {6h, 4h}, {4t , 8h}, {8t , ◦}
}

,
{

{◦, 3h}, {3t , 7t}, {7h, ◦}
}

,
{

{9h, 10t}, {10h, 9t}
}}

.

A =
{{

{◦, 5t}, {5h, 1h}, {1t , 2h}, {2t , 6t}, {6h, 4h}, {4t , 8h}, {8t , ◦}
}

,
{

{◦, 3h}, {3t , 7t}, {7h, ◦}
}}

, and

B =
{{

{◦, 1t}, {1h, 2t}, {2h, 3t}, {3h, 4t}, {4h, 5t}, {5h, 6t}, {6h, ◦}
}

,
{

{◦, 7t}, {7h, 8t}, {8h, ◦}
}}
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where N is the number of blocks, C is the number of cycles, 
and I is the number of odd-length paths in G(A,  B)  [4]. 
Figure 2 depicts a comprehensive list of the possible sort-
ing DCJs on an adjacency graph, and describes the condi-
tions under which they may be applied. See Proposition 1 
of [17] for a more thorough treatment. G(A, A), for some 
genome A, will always have 2M paths of length one and 
N −M cycles of length two, where M is the number of 
chromosomes and N is the number of blocks.

The minimum weighted rearrangements problem
Consider a genome Ai made of a set of linear or circular 
chromosomes. Each rearrangement on this genome may 
have a certain likelihood of occurring. In the “Local-
ity and the adjacency graph” section we will describe 
a DCJ move on G(Ai,B) as a reconnection of two adja-
cency edges of G(Ai,B); the resulting graph G(Ai+1,B) is 
identical to G(Ai,B) aside from the connectivity of two 
adjacency edges. Therefore there is a bijection between 

(1)dDCJ (A,B) = N − (C + I/2)
edges of G(Ai,B) and edges of G(Ai+1,B), so we can 
weight all pairs of genome adjacencies occurring in a 
sorting scenario by weighting all pairs of adjacency edges 
in G(A, B). For the set P of all pairs of adjacency edges in 
genome A, the weight function for a pair is w : P �→ R+,  
where R+ denotes the non-negative real numbers. The 
higher the value of w the less likely the rearrangement 
is to occur, e.g., a value of 0 represents a most likely 
rearrangement.

A sequence of rearrangements ρ1, ρ2, . . . , ρd such that 
(· · · ((Aρ1)ρ2) · · · ρd) = B is called a sorting scenario. 
The weight of a scenario is the sum of the weights of all 
the rearrangements in the scenario, i.e., 

∑d
i=1 w(ρi). The 

Minimum Weighted Rearrangements problem is the 
following.

Problem 1 Minimum Weighted Rearrangements 
INPUT: Genomes A and B and a weight function w.
OUTPUT: A scenario of rearrangements turning A 
into B.
MEASURE: The weight of the scenario.

5  1  2 6  4  8  3 7

1 2 3 4 5 6 7 8

- - - - -

Fig. 1 The colored adjacency graph G(A, B, col). Black edges are adjacency edges and gray edges are cross edges. The color function col maps 
adjacency edges of genome A to the alphabet {a, b, c, d}

a b c

ed

Fig. 2 All possible DCJs that move one genome closer to the other. Adjacency edges are contracted, so that only the cross edges are shown in the 
connected components. Endpoints that are affected by the DCJ are circled. In the top row, extracting a cycle from (a) an even-length path, (b) an 
odd-length path, and (c) a cycle are depicted. Even-length paths can be combined to form two odd-length paths if one of the paths has endpoints 
in genome A and the other in genome B, as depicted in (d). An even-length path can be split into two odd length paths if the split is done in the 
genome with fewer vertices in the path, as depicted in (e)
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Positional constraints as colored adjacencies
Although chromosomes are represented as linear or cir-
cular sequences of syntenic blocks, in reality they cor-
respond to molecules whose conformation within the 
nucleus is complex. Recent technological advances, called 
Hi-C, allow the mapping of chromosome conformation 
in various cell types and species  [22–26]. The positional 
constraints introduced here are based on the principle 
that rearrangements (DCJ moves) involving pairs of adja-
cencies that are close in 3D space are more frequent than 
others. This model is supported by the pioneering work of 
Véron et al.  [27], who showed that loci that are distant in 
the linear ordering of the human chromosome yet close 
in the ordering of the mouse chromosome, are physi-
cally close (in 3D) in the human chromosome. Recently 
we have conducted a study on rearrangement scenarios 
showing that breakpoint pairs comprising a rearrange-
ment are closer than expected by chance for intrachromo-
somal and interchromosomal rearrangements. This is true 
for multiple cell types from multiple laboratories [28]. In 
this paper, we use the observation that many moves are 
local to constrain the rearrangement scenarios that we 
compute. We call this the positional constraint.

We incorporate the constraint by grouping adjacen-
cies of the genome into classes that are more likely to 
swap endpoints. This idea is illustrated in Fig.  3, where 
the physical (3D) structure of genome A is drawn and the 
adjacencies are grouped into colored localities. Accord-
ing to Véron et al.  [27] and our recent results [28], rear-
rangements are more likely to occur between adjacencies 
at the same position.

Locality and the adjacency graph
Each adjacency edge in G corresponds to an adjacency in 
genome A or B. The color of an adjacency is given to the 
adjacency edge it corresponds to. Figure 1 shows a coloring 
for the adjacencies of genome A that matches the localities 
in Fig. 3. The application of a DCJ operation to a genome 
has the effect of swapping the endpoints of two adjacency 
edges, or splitting an adjacency edge as in the case of Fig. 4e.

Throughout a DCJ sorting scenario, adjacency edges 
always keep the same color. Thus, each DCJ operation 
corresponds to one of two possible updates of the same 
pair of adjacency edges, as depicted in Fig. 4a.

A positional weight function
Categorize rearrangements into two sets: those that are 
likely, and those that are not. Such a categorization of 
rearrangements is powerful enough to encapsulate the 
positional property discussed earlier.

A DCJ ρ acts on one or two adjacencies. Our model 
labels each adjacency with some color from an alphabet 
�, and weights a DCJ based on the colors that are acted 
upon. Call iρ and jρ the adjacencies affected by ρ; iρ = jρ 
if the DCJ acts on only a single adjacency, e.g., case (e) 
in Fig.  2. The color of an adjacency iρ is written col(iρ). 
Given a DCJ ρ, our weight function is

We call those DCJ moves that have zero weight likely, 
while we call all others rare. It is trivial to evaluate our 
weight function for a given DCJ; simply check the colors 
of the two adjacency edges that are affected.

Two restricted versions of the general problem are now 
described. The problem Minimum Local Scenario is 
exactly Minimum Weighted Rearrangements with 
the positional weight function w.

Problem 2 (MLS ) Minimum Local Scenario 
INPUT: Genomes A and B and positional weight func-
tion w.
OUTPUT: A scenario of rearrangements turning A 
into B.
MEASURE: The weight of the scenario.

The problem Minimum Local Parsimonious Sce-
nario introduces the constraint that the scenario output 
is also a parsimonious scenario, i.e., a scenario of mini-
mum length.

w(ρ) =

{

0 if iρ = jρ or col(iρ) = col(jρ)
1 otherwise.

AB C

Fig. 3 A A 2D cartoon of a possible 3D configuration for genome A. Adjacencies between syntenic blocks are classified by physically close regions, 
which are marked by dashed circles and labeled by the alphabet {a, b, c, d}. B Genome A after a reciprocal translocation has occurred at position b. C 
Genome A after an excision has occurred at position b
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Problem 3 (MLPS ) Minimum Local Parsimonious 
Scenario 

INPUT: Genomes A and B and positional weight func-
tion w.
OUTPUT: A parsimonious scenario of rearrange-
ments turning A into B.
MEASURE: The weight of the scenario.

Minimum local parsimonious scenario
Since a solution to Minimum Local Parsimonious 
Scenario is limited to sorting moves, most connected 
components of G(A, B, col) must be sorted independently 
of each other, the exception being for even-length paths; 
all but one DCJ in Fig. 2 act on a single connected com-
ponent. We first give a method for computing the num-
ber of rare operations per connected component when 
no pair of even-length paths exist, as in Fig. 2d. We then 
show in the “Even-length paths” section how to solve the 
problem when such pairs exist.

Colored partitions
Consider a connected component C of the graph 
G(A,  B,  col). If C is monochromatic, i.e., has adjacency 
edges of a single color, then the component can be sorted 
with likely DCJs according to the listed moves in Fig.  2; 
the move that operates on more than one component in 
Fig. 2d need not be used since each path can be split on its 
own with a local move, as in Fig. 2e. If C is polychromatic 
then DCJs must be performed to separate the colors, since 
a fully sorted genome has components that each have only 
a single colored adjacency edge in genome A.

Recall that AA-paths and BB-paths are paths that 
start and end in the same genome. In this subsec-
tion, we assume that there does not exist both an AA
-path and a BB-path in the graph (Fig.  2d). Ouangra-
oua and Bergeron established that the DCJs in a sorting 

scenario can be done in any order for such a graph and 
that every component will be sorted independently, 
thereby defining a noncrossing partition on each com-
ponent (see section. 3 and 4 of [17]). Later in this sec-
tion we show that Minimum Local Parsimonious 
Scenario on a single component is equivalent to the 
following problem concerning a generalization of non-
crossing partitions. A partition of a set is a collection of 
pairwise disjoint subsets whose union is the entire set. 
The subsets are called classes. [1,  n] is the set of inte-
gers from 1 to n.

Definition 1 A noncrossing partition is a partition 
P of [1, n] such that for any classes Si, Sj ∈ P if we have 
p < q < p′ < q′ for p, p′ ∈ Si and q, q′ ∈ Sj, then Si = Sj. 
A noncrossing colored partition is a noncrossing partition 
where for any p, p′ ∈ Si, col(p) = col(p′).

Another way to define a noncrossing partition is on 
a convex polygon. A noncrossing partition is a parti-
tion of the vertices of an n-gon with the property that if 
you draw a line between all pairs of vertices in the same 
class, for all classes, then no two lines from different 
classes intersect. A colored partition has colored verti-
ces, and respects the property that any pair of vertices in 
the same class of the partition have the same color (see 
Fig. 5A, B).

Problem 4 (MNCP) Minimum Noncrossing Colored  
Partition 

INPUT: Set size n, color set �, and color function 
col : [1, n] → �.
OUTPUT: A noncrossing colored partition.
MEASURE: The cardinality of the partition.

We present a polynomial-time algorithm for the Mini-
mum Noncrossing Colored Partition problem, 

a b

Fig. 4 The update of colors by a DCJ. a Adjacency edges with colors x and y are reconfigured in two different ways for the same DCJ operation. In 
this case the reconfigurations are achieved by swapping either both right-hand endpoints or both left-hand endpoints of the adjacency edges.  
b The adjacency edge with color x is split to make two adjacencies of color x with two new telomeres
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which according to Lemma 2 (later in this section) gives a 
solution to Minimum Local Parsimonious Scenario 
on a single component. We describe the algorithm on an 
instance that has been embedded on a line where the left-
most vertex ① represents the smallest element of the set, 
as shown in Fig. 5C. For an interval [i, j], let NCP(i, j) be 
the number of classes in the MNCP on that subproblem. 
Thus, NCP(1,  n) corresponds to the Minimum Non-
crossing Colored Partition of [1, n].

For any interval [i, j] we have NCP(i, i) = 1, and the fol-
lowing recurrence.

The first case corresponds to the creation of a new class 
with the single element j. The second case is applicable 
when element j is the same color as element i; in this 
case i and j become part of the same class, all the other 
classes staying the same. The third case tests combina-
tions of subproblems; this case is pertinent when the 
col(i) = col(k − 1) or col(k) = col(j). It is easy to con-
firm that any feasible solution to MNCP is scored by the 
recurrence. This dynamic program runs in O(n3) time.

We now show the link between MLPS and MNCP. 
Consider component C to be sorted. Pick an arbitrary 
vertex of C if it is a cycle, or either endpoint of C if it is a 
path, and consider an ordering of the vertices of genome 
A based on a traversal of the edges of C from that ver-
tex. Embed the vertices of the component on a cir-
cle with respect to that ordering, and the edges so that 
they remain inside the circle. Call this a circular embed-
ding of the component. Consider a sorting scenario for 
C that corresponds to a sequence of adjacency graphs 

NCP(i, j) = min



























NCP(i, j − 1)+ 1 for i < j,

NCP(i, j − 1) for i < j

and col(i) = col(j)

NCP(i, k − 1)+ NCP(k , j) for all k

where i < k < j

C0,C1, . . . ,Cd (C = C0). Call C◦
i  the graph Ci with vertices 

embedded according to the circular embedding of C0.

Lemma 1 [17] C◦
i  has no pair of crossing adjacency 

edges for any i.

Proof By construction, all adjacency edges in C◦
0 con-

nect adjacent vertices on the circle, so none of them 
cross. Assume that C◦

j  has crossing adjacency edges and 
C◦
j−1 does not. This implies that the jth DCJ did not split 

a component. This is a contradiction since every sorting 
move on C splits a component, never creating both an 
AA-path and BB-path.  �

Lemma 2 Given a connected component C, Minimum 
Local Parsimonious Scenario on C can be solved by 
Minimum Noncrossing Colored Partition.

Proof First, transform an instance of MLPS on a single 
component to an instance of MNCP. Given a cycle C rep-
resenting genomes A and B, map the set of elements [1, n] 
from the set of adjacency edges of A ordered according to 
a circular embedding of C. The color function col maps 
each element to its corresponding adjacency edge’s color.

Now transform an optimal solution of MNCP into an 
optimal solution for MLPS. Clearly, any partition of [1, n] 
corresponds to a partition of adjacency edges of genome A. 
We show that there always exists a scenario of DCJs whose 
prefix separates C into connected components according 
to the partition. Any two edges of the same component 
can be chosen for a DCJ [17] and the DCJs on a cycle can 
be done in any order (Lemma 1). Since the ordering of the 
edges on the cycle corresponds to the ordering on [1, n], an 
edge partition of size k can be achieved with k − 1 DCJs. 
Since k is minimum over all feasible partitions and the 
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1 2 3 4 5 6 7 8

Fig. 5 Colored partitions for the set [1, 8] where col(1) = b, col(2) = a, col(3) = b, col(4) = c, col(5) = a, col(6) = d, col(7) = a, and col(8) = c.  
Vertices are circles numbered by their order in the set [1, 8] and labeled by their color. Thick black lines are drawn between vertices that are in the 
same class of the partition. A The crossing partition {{1, 3}, {2, 5, 7}, {4, 8}, {6}}. B The optimal noncrossing partition {{1, 3}, {2}, {4, 8}, {5, 7}, {6}}. C The 
instance embedded on a line
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remaining DCJs of the scenario are likely, the constructed 
scenario has a minimum number of rare DCJs.  �

In fact, the two problems are equivalent. We omit the 
reduction in the other direction since it is out of the 
scope of this paper.

Even‑length paths
A Minimum Noncrossing Colored Partition can 
be computed in polynomial time for a single component 
independent of all others. Yet it is possible to mix com-
ponents in a parsimonious DCJ scenario. As described in 
Fig. 2, the only parsimonious DCJs that mix components 
are those that act on one edge from an AA-path and one 
edge from a BB-path. Call AA (BB respectively) the set 
of AA-paths (BB-paths respectively) in the adjacency 
graph. The key observation is that once a path has been 
mixed with another, the result is always two odd-length 
paths which subsequently cannot be mixed with any 
other. Thus we devote this section to the computation of 

which pairs of paths (p, q) ∈ AA× BB will be mixed in an 
optimal solution, and which paths will remain unmixed.

Any pair (p,  q) can be mixed in several ways. For all 
possible DCJs that mix them, we compute the MNCP on 
the resulting components. The minimum MNCP over 
all mixings is the cost in rare moves for mixing the two 
paths. To compute the pairs of paths to be mixed in an 
optimal solution, we use the inverse of these costs—the 
number of likely moves—as weights in a bipartite graph.

Take the elements of AA and BB as vertices in a com-
plete bipartite graph, and label each edge (p,  q) with the 
maximum number of likely DCJs for the mixing of paths 
p and q. Any even-length path could alternatively be used 
independently of any other, so there is a vertex v′ for each 
v ∈ AA ∪ BB with a single edge (v, v′) labeled by the num-
ber of likely moves on v alone (computed using the MNCP 
on that component). Algorithm 1 computes the minimum 
number of rare DCJs in a parsimonious scenario. It is easy 
to modify the algorithm to give the list of DCJs. 

Algorithm 1 MLPS(A,B)
Require: genomes A and B.
Ensure: cost of parsimonious scenario with a minimum number of rare DCJs.

� Sort the graph components by type:
C ← set of cycles in G(A,B, col)
P ← set of odd-length paths in G(A,B, col)
AA ← set of AA-paths in G(A,B, col)
BB ← set of BB-paths in G(A,B, col)

� Compute the cost of the cycles and odd-length paths:
cost ← 0
for c ∈ C do

cost ← cost+MNCPonComp(c, col)− 1
end for
for p ∈ P do

cost ← cost+MNCPonComp(p, col)− 1
end for

� Compute the cost of the even-length paths:
for p ∈ AA do � Compute weights for not mixing AA vertices:

VA ← VA ∪ {p, p′}
w(p, p′) ← MNCPonComp(p, col)− 1

end for
for q ∈ BB do � Compute weights for not mixing BB vertices:

VB ← VB ∪ {q, q′}
w(q, q′) ← MNCPonComp(q, col)− 1

end for
for p ∈ AA do � Compute weights for mixings:

for q ∈ BB do
w(p, q) ← maxMix(p, q)

end for
end for

� Build the bipartite graph and compute the matching:
cost ← cost+ d(AA) + d(BB)−maxMatching(VA, VB , w)
return cost
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The function MNCPonComp(c,  col) computes the 
Minimum Noncrossing Colored Partition on the 
given component c. In other words it builds the color 
function col according to the component c and then calls 
MNCP(1,  n,  col) where n is the number of adjacency 
edges on the A side of the component c. The function 
maxMix(p, q) computes the maximum number of likely 
DCJs over all possible DCJs that use one edge from p and 
one edge from q. The function d(AA) computes the sum 
of DCJ distances from each component in AA using For-
mula 1. The function maxMatching(VA,VB,w) builds the 
bipartite graph with vertices VA on one side and vertices 
VB on the other, and the edges described by the weight 
function w.

To summarize, any path can be mixed at most once 
in a parsimonious scenario. Potential mixings, as well as 
potential non-mixings, are encoded into a bipartite graph 
with edges weighted by the cost of a mix. A maximum 
weight matching in this graph corresponds to a scenario 
that minimizes the number of rare moves on the paths. 
All other connected components of the graph are sorted 
using the Minimum Noncrossing Colored Parti-
tion on the component.

The running time of our algorithm is dominated by the 
weighting of the edges on the bipartite graph. Consider 
all mixings done between elements of AA and elements 
of BB. A particular adjacency edge e from a given path 
p ∈ AA will take part in exactly one DCJ with every edge 
f from a path q ∈ BB throughout the weighting process. 
Therefore for each pair (e, f), e being an edge from a path 
in AA and f being an edge from a path in BB, we will com-
pute the MNCP on the resulting mix. If the number of 
edges in the paths AA (respectively BB) is n(AA) (respec-
tively n(BB)), then the running time of our algorithm is 
O(n(AA)n(BB)n3). In the worst case, half of the edges are 
used in AA-paths and half in BB-paths, yielding a run-
ning time of O(n5).

Faster mixing of even‑length paths
In the previous section, edges of the bipartite graph are 
scored by the function maxMix that computes the maxi-
mum number of likely DCJs over all possible mixings of 
two paths. The analysis includes the multiplicative term 
n(AA)n(BB) reflecting the process of actually trying all 
possible mixings when labeling the edges of the bipartite 
graph. We now show how to mix paths more efficiently.

Define the A-edges of a component of the graph G(A, B) 
to be those edges connecting two nodes in genome A. 
Consider paths p ∈ AA and q ∈ BB where p is the path 
with A-edges e1, e2, . . . , ek and telomeres t1 and t2, and 
q is the path with A-edges f1, f2, . . . , fℓ and telomeres t3 
and t4 (see Fig. 6). Construct two different cycles from p 
and q, cycle c1 results from joining t1 to t3 and t2 to t4 
by cross edges, and cycle c2 results from joining t1 to t4 
and t2 to t3. The A-edges of p can then be ordered cir-
cularly in c1 where edge e1 follows edge ek. Similarly, f1 
follows fℓ in c2. We show that there is a bijection between 
scenarios that start by mixing p and q, and scenarios that 
act on one of these two cycles by first performing a DCJ 
between an e edge and an f edge.

There is an obvious bijection between edges of p ∪ q 
and c1, and between edges of p ∪ q and c2. Consider the 
mix move acting on edge ei in p and fj in q. The result is 
either:

1. paths e1, e2, . . . , ei, fj−1, fj−2, . . . , f1  
and ek , ek−1, . . . , ei+1, fj , fj+1, . . . , fℓ, or

2. paths e1, e2, . . . , ei−1, fj , fj−1, . . . , f1  
and ek , ek−1, . . . , ei, fj+1, fj+2, . . . , fℓ, or

3. paths e1, e2, . . . , ei, fj+1, fj+2, . . . , fℓ  
and ek , ek−1, . . . , ek , ek−1, . . . , ei+1, fj , fj−1, . . . , f1, or

4. paths e1, e2, . . . , ei−1, fj , fj+1, . . . , fℓ  
and ek , ek−1, . . . , ei, fj−1, fj−2, . . . , f1.

The DCJ acting on ei and fj in c1 yields two cycles par-
titioning the edges as they are in either Case 1 or Case 2. 
The DCJ acting on ei and fj in c2 yields two cycles parti-
tioning the edges as they are in either Case 3 or Case 4. 
Since odd length paths and cycles can only be sorted by 
cycle-extraction moves (see Fig. 2), each scenario mixing 
ei and fj maps to a scenario on c1 or c2. The bijection fol-
lows from the fact that moves on a cycle can be ordered 
in any way (Lemma 1).

Due to the bijection between mixing scenarios 
on p and q, and scenarios on c1 or c2, the MNCP 
by mixing p and q must be either the MNCP on c1 
or the MNCP on c2. Thus, our algorithm to com-
pute maxMix(p,  q) returns the maximum of 
MNCPonComp(c1,  col) or MNCPonComp(c2,  col) or 
MNCPonComp(p, col)+MNCPonComp(q, col).

Our new version of maxMix removes a linear factor 
from the overall computation time. Note a1, . . . , ax the 

... ... ... ...
Fig. 6 An AA-path and a BB-path



Page 9 of 10Swenson et al. Algorithms Mol Biol  (2016) 11:13 

sizes of the paths in AA and b1, . . . , by the sizes of the 
paths in BB so that |AA| =

∑x
i=0 ai and |BB| =

∑y
j=0

bj.
"Colored partitions" section shows that the number of 

steps required to solve MNCP on a component of size 
m is less than c ×m3, for some constant c. For each pair 
of paths, we compute MNCPonComp three times, so 
the number of steps required to label all the edges of the 
complete bipartite graph is at most

The terms y, x, |AA|, and |BB| are clearly O(n). Since the 
largest terms 

∑x
i=0 a

3
i  and 

∑y
j=0

b3i  are in O(n3), the com-
plexity of the bipartite graph labeling step is O(n4). Since 
sorting all non-even paths takes O(n3) time, our complete 
algorithm takes O(n4) time in the worst case.

Conclusion
The number of parsimonious DCJ scenarios between two 
genomes is exponential in the distance between them. 
However, many of the scenarios are probably unrealistic 
in the biological sense. This paper takes a step towards 
modeling realistic scenarios by posing optimization prob-
lems that take into account positional constraints. An 
example of such a positional constraint is the 3D proxim-
ity of genome segments given by Hi-C experiments.

An O(n4) algorithm is proposed for computing a par-
simonious DCJ scenario that is most likely, given an 
edge-coloring function that classifies DCJ as “likely” or 
“unlikely”. In practice the algorithm will be O(n3) since 
we expect long even-length paths to be rare in nature. 
For example, the adjacency graph for the mouse/human 
syntenic map built by Véron et al.  [27] from one-to-one 
orthologs in Biomart has only 182 edges in even-length 
paths out of a total of 13,302 edges. The largest con-
nected component has 35 edges.

From a biological perspective, a solution to Minimum 
Local Parsimonious Scenario corresponds to find-
ing a maximum likelihood scenario in a situation where 
likely and unlikely scenarios are both rare, and the differ-
ence between the likelihoods of likely and unlikely moves 
is not very large. In this situation, a most parsimonious 
scenario made of k unlikely moves is more likely than a 
non-parsimonious scenario made of k + 1 likely moves. 
Thus the maximum likelihood scenario is the most 

3c

x
∑

i=0

y
∑

j=0

(ai + bj)
3 = 3c

x
∑

i=0

y
∑

j=0

(a3i + b3j + 3a2i bj + 3aib
2
j )

= 3c
(

y

x
∑

i=0

a3i + x

y
∑

j=0

b3j + 3|BB|

x
∑

i=0

a2i + 3|AA|

y
∑

j=0

b2j

)

.

parsimonious scenario that involves the smallest number 
of unlikely moves.

We introduce the Minimum Noncrossing Colored 
Partition problem—a generalization of the Maxi-
mum Independent Set problem on circle graphs—for 
weighting the edges of a bipartite graph, on which we 
obtain a maximum matching. While this technique is 
essential to our algorithm for finding DCJ scenarios, we 
believe it will also come in handy for an algorithm that 
finds likely inversion scenarios (e.g., for handling the infa-
mous “hurdles”). A multitude of biologically relevant var-
iations on this problem exist, including variations on the 
model of genome rearrangement, a variant where edges 
have multiple colors, and a bi-directional sorting variant 
where edges are weighted on both genomes according to 
the chromatin conformation on each. Models that incor-
porate uncertainty or evolution in the Hi-C data would 
also be relevant. We hope that this work provokes fur-
ther study from both the algorithmic and the biological 
perspectives.
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