
Swenson et al. Algorithms Mol Biol (2016) 11:13
DOI 10.1186/s13015-016-0065-9

RESEARCH

Models and algorithms for genome
rearrangement with positional constraints
Krister M. Swenson1,2*†, Pijus Simonaitis3† and Mathieu Blanchette4†

Abstract

Background: Traditionally, the merit of a rearrangement scenario between two gene orders has been measured
based on a parsimony criteria alone; two scenarios with the same number of rearrangements are considered equally
good. In this paper, we acknowledge that each rearrangement has a certain likelihood of occurring based on biologi-
cal constraints, e.g. physical proximity of the DNA segments implicated or repetitive sequences.

Results: We propose optimization problems with the objective of maximizing overall likelihood, by weighting the
rearrangements. We study a binary weight function suitable to the representation of sets of genome positions that
are most likely to have swapped adjacencies. We give a polynomial-time algorithm for the problem of finding a mini-
mum weight double cut and join scenario among all minimum length scenarios. In the process we solve an optimiza-
tion problem on colored noncrossing partitions, which is a generalization of the MaxiMuM independent Set problem on
circle graphs.

Conclusions: We introduce a model for weighting genome rearrangements and show that under simple yet reason-
able conditions, a fundamental distance can be computed in polynomial time. This is achieved by solving a generali-
zation of the MaxiMuM independent Set problem on circle graphs. Several variants of the problem are also mentioned.

Keywords: Double cut and join (DCJ), Weighted genome rearrangement, Noncrossing partitions, Chromatin
conformation, Hi-C

© 2016 Swenson et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
A huge body of work exists on modeling the evolution of
whole chromosomes [1]. The main difference between
such models is the set of rearrangements that they allow.
The moves of interest are usually inversion, transposition,
translocation, chromosome fission and fusion, deletion,
insertion, and duplication.

Almost all versions of the problem are NP-Hard if con-
tent modifying operations such at duplication, loss, and
insertion are allowed [2, 3]. Fortunately, a model that
considers genomes with equal content (i.e., no duplica-
tions or insertions/deletions) is quite pertinent, par-
ticularly in eukaryotes, since syntenic blocks of genes
can be assigned between genomes so that each block

occurs exactly once in each genome. For two genomes
with equal content, double cut and join (DCJ) has been
the model of choice since it elegantly includes inversion,
translocation, chromosome circularization and lineariza-
tion, as well as chromosome fission and fusion [4, 5].

One of the most important problems in comparative
genomics is the inference of ancestral gene orders, i.e.,
paleogenetics. Given a realistic model of evolution, one
can infer ancestral adjacencies of high confidence from
present-day genomes [6–8]. However, methods that
attempt to infer deeper structure for ancestral species
suffer due to the huge number of parsimonious scenarios
between genomes [9–11].

The apparent difficulty of the ancestral inference prob-
lem—because of the potentially astronomical num-
ber of parsimonious sorting scenarios—highlights the
importance of methods that infer scenarios that con-
form to some extra biological constraints. Yet, aside

Open Access

Algorithms for
Molecular Biology

*Correspondence: swenson@lirmm.fr
†Krister M. Swenson, Pijus Simonaitis and Mathieu Blanchette contributed
equally to this work
2 Institut de Biologie Computationnelle (IBC), Montpellier, France
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-016-0065-9&domain=pdf

Page 2 of 10Swenson et al. Algorithms Mol Biol (2016) 11:13

from methods that weight inversions based on their
length [12–16], to our knowledge no algorithmic work
exists in this direction.

In this paper we use a weight function on rearrange-
ments suitable for modeling positional constraints, i.e.,
sets of positions in the genome that are likely to swap
adjacencies. Two examples of constraints that fit this par-
adigm are: (1) the physical 3D location of DNA segments
in a nucleus and, (2) repetitive sequences that are the
cause or consequence of rearrangement mechanisms. We
illustrate the utility of our model with 3D constraints in
the “Positional constraints as colored adjacencies” section.

We propose a general optimization problem that mini-
mizes the sum of weights over the moves in a scenario.
A more constrained version of the problem asks for such
a scenario out of all possible unweighted parsimonious
scenarios. Our algorithm solves this version of the prob-
lem in polynomial time given a binary weight function,
despite an exponential growth of the number of parsimo-
nious DCJ scenarios with respect to the distance [17, 18].
The commutation properties of DCJ moves as studied
in [17] link certain DCJ scenarios to noncrossing parti-
tions. Our algorithm relies on solving a new optimization
problem on colored noncrossing partitions, called Mini-
mum Noncrossing Colored Partition. It is a gener-
alization of the Maximum Independent Set problem
on circle graphs [19–21].

Genomes as sets of signed integers
A gene, or more generally a syntenic block of genes, will
be represented by a signed integer. A chromosome is
a sequence of blocks, and a genome is a set of chromo-
somes. Thus, we write a genome in list notation where a
block is a positive integer if read in one direction in the
genome, and a negative integer if read in the opposite
direction. For example, a genome A can be written as

where ◦ represents a telomere at the end of a linear chro-
mosome. Genome A has two linear chromosomes and a
circular chromosome (9, 10).

Alternatively, the organization of the blocks on the
chromosomes can be given by the set of adjacencies
between the extremities of consecutive blocks. A block
b has a tail extremity, written bt, and a head extrem-
ity, written bh. Thus, the adjacency between 5 and −1 in
A is {5h, 1h}. A block that is on the end of a linear chro-
mosome implies a telomeric adjacency. The first chro-
mosome has two such adjacencies: {◦, 5t} and {8t , ◦}. A
circular chromosome has no telomeres, i.e., the last block
is adjacent to the first. We can write genome A using
adjacencies as

{(◦, 5,−1,−2, 6,−4,−8, ◦), (◦,−3, 7, ◦), (9, 10)},

DCJ and sorting DCJs
Double cut and join (DCJ) is an operation on a genome
that cuts one or two adjacencies, and glues the resulting
ends back together according to the following rules [4]:

1. If a single adjacency is cut, then add new telomeres
to the resulting ends (resulting in two new telomeric
adjacencies).

2. If two adjacencies are cut, then glue the adjacencies
back in one of two new ways.

Application of a single DCJ corresponds to diverse
genomic operations such as inversion, chromosome lin-
earization and circularization, transposition, and excision
of a circular chromosome.

The DCJ distance between genomes A and B is the mini-
mum number of DCJ moves needed to transform A into
B. DCJs that move A closer to B, called sorting DCJs, can
be found using a graph. The colored adjacency graph for A
and B is a graph G(A, B, col) whose vertices are the extremi-
ties and telomeres of A and B, and whose edges are colored
by the color function col. For each adjacency in A or B an
adjacency edge links the corresponding nodes of the adja-
cency, and a cross edge links non-telomere vertices from A
to vertices with the same label in B. The graph for genomes

is given in Fig. 1. It is easy to confirm that the adjacency
and cross edges each form a matching, so that each con-
nected component of the graph will be either a cycle or
a path. Note that connected components of the graph
are only loosely related to the chromosomes; connected
components can span multiple chromosomes.

We denote a cross edge by the label of the vertices that
they connect. We denote the connected components of
the graph by the set of cross edges that comprise them.
The connected components of the graph in Fig. 1 are
{5t , 4h, 6h}, {5h, 6t , 2t , 1h, }, {1t , 2h, 3t , 7t}, {8t , 7h}, and
{3h, 4t , 8h}. The length of a path or a cycle is the number
of cross edges it has.

To find sorting DCJs, we categorize the connected
components by length. In Fig. 1 there is one cycle, two
even-length paths, and two odd-length paths. The for-
mula for the DCJ distance is

A =
{{

{◦, 5t}, {5h, 1h}, {1t , 2h}, {2t , 6t}, {6h, 4h}, {4t , 8h}, {8t , ◦}
}

,
{

{◦, 3h}, {3t , 7t}, {7h, ◦}
}

,
{

{9h, 10t}, {10h, 9t}
}}

.

A =
{{

{◦, 5t}, {5h, 1h}, {1t , 2h}, {2t , 6t}, {6h, 4h}, {4t , 8h}, {8t , ◦}
}

,
{

{◦, 3h}, {3t , 7t}, {7h, ◦}
}}

, and

B =
{{

{◦, 1t}, {1h, 2t}, {2h, 3t}, {3h, 4t}, {4h, 5t}, {5h, 6t}, {6h, ◦}
}

,
{

{◦, 7t}, {7h, 8t}, {8h, ◦}
}}

Page 3 of 10Swenson et al. Algorithms Mol Biol (2016) 11:13

where N is the number of blocks, C is the number of cycles,
and I is the number of odd-length paths in G(A, B) [4].
Figure 2 depicts a comprehensive list of the possible sort-
ing DCJs on an adjacency graph, and describes the condi-
tions under which they may be applied. See Proposition 1
of [17] for a more thorough treatment. G(A, A), for some
genome A, will always have 2M paths of length one and
N −M cycles of length two, where M is the number of
chromosomes and N is the number of blocks.

The minimum weighted rearrangements problem
Consider a genome Ai made of a set of linear or circular
chromosomes. Each rearrangement on this genome may
have a certain likelihood of occurring. In the “Local-
ity and the adjacency graph” section we will describe
a DCJ move on G(Ai,B) as a reconnection of two adja-
cency edges of G(Ai,B); the resulting graph G(Ai+1,B) is
identical to G(Ai,B) aside from the connectivity of two
adjacency edges. Therefore there is a bijection between

(1)dDCJ (A,B) = N − (C + I/2)
edges of G(Ai,B) and edges of G(Ai+1,B), so we can
weight all pairs of genome adjacencies occurring in a
sorting scenario by weighting all pairs of adjacency edges
in G(A, B). For the set P of all pairs of adjacency edges in
genome A, the weight function for a pair is w : P �→ R+,
where R+ denotes the non-negative real numbers. The
higher the value of w the less likely the rearrangement
is to occur, e.g., a value of 0 represents a most likely
rearrangement.

A sequence of rearrangements ρ1, ρ2, . . . , ρd such that
(· · · ((Aρ1)ρ2) · · · ρd) = B is called a sorting scenario.
The weight of a scenario is the sum of the weights of all
the rearrangements in the scenario, i.e.,

∑d
i=1 w(ρi). The

Minimum Weighted Rearrangements problem is the
following.

Problem 1 Minimum Weighted Rearrangements
INPUT: Genomes A and B and a weight function w.
OUTPUT: A scenario of rearrangements turning A
into B.
MEASURE: The weight of the scenario.

5 1 2 6 4 8 3 7

1 2 3 4 5 6 7 8

- - - - -

Fig. 1 The colored adjacency graph G(A, B, col). Black edges are adjacency edges and gray edges are cross edges. The color function col maps
adjacency edges of genome A to the alphabet {a, b, c, d}

a b c

ed

Fig. 2 All possible DCJs that move one genome closer to the other. Adjacency edges are contracted, so that only the cross edges are shown in the
connected components. Endpoints that are affected by the DCJ are circled. In the top row, extracting a cycle from (a) an even-length path, (b) an
odd-length path, and (c) a cycle are depicted. Even-length paths can be combined to form two odd-length paths if one of the paths has endpoints
in genome A and the other in genome B, as depicted in (d). An even-length path can be split into two odd length paths if the split is done in the
genome with fewer vertices in the path, as depicted in (e)

Page 4 of 10Swenson et al. Algorithms Mol Biol (2016) 11:13

Positional constraints as colored adjacencies
Although chromosomes are represented as linear or cir-
cular sequences of syntenic blocks, in reality they cor-
respond to molecules whose conformation within the
nucleus is complex. Recent technological advances, called
Hi-C, allow the mapping of chromosome conformation
in various cell types and species [22–26]. The positional
constraints introduced here are based on the principle
that rearrangements (DCJ moves) involving pairs of adja-
cencies that are close in 3D space are more frequent than
others. This model is supported by the pioneering work of
Véron et al. [27], who showed that loci that are distant in
the linear ordering of the human chromosome yet close
in the ordering of the mouse chromosome, are physi-
cally close (in 3D) in the human chromosome. Recently
we have conducted a study on rearrangement scenarios
showing that breakpoint pairs comprising a rearrange-
ment are closer than expected by chance for intrachromo-
somal and interchromosomal rearrangements. This is true
for multiple cell types from multiple laboratories [28]. In
this paper, we use the observation that many moves are
local to constrain the rearrangement scenarios that we
compute. We call this the positional constraint.

We incorporate the constraint by grouping adjacen-
cies of the genome into classes that are more likely to
swap endpoints. This idea is illustrated in Fig. 3, where
the physical (3D) structure of genome A is drawn and the
adjacencies are grouped into colored localities. Accord-
ing to Véron et al. [27] and our recent results [28], rear-
rangements are more likely to occur between adjacencies
at the same position.

Locality and the adjacency graph
Each adjacency edge in G corresponds to an adjacency in
genome A or B. The color of an adjacency is given to the
adjacency edge it corresponds to. Figure 1 shows a coloring
for the adjacencies of genome A that matches the localities
in Fig. 3. The application of a DCJ operation to a genome
has the effect of swapping the endpoints of two adjacency
edges, or splitting an adjacency edge as in the case of Fig. 4e.

Throughout a DCJ sorting scenario, adjacency edges
always keep the same color. Thus, each DCJ operation
corresponds to one of two possible updates of the same
pair of adjacency edges, as depicted in Fig. 4a.

A positional weight function
Categorize rearrangements into two sets: those that are
likely, and those that are not. Such a categorization of
rearrangements is powerful enough to encapsulate the
positional property discussed earlier.

A DCJ ρ acts on one or two adjacencies. Our model
labels each adjacency with some color from an alphabet
�, and weights a DCJ based on the colors that are acted
upon. Call iρ and jρ the adjacencies affected by ρ; iρ = jρ
if the DCJ acts on only a single adjacency, e.g., case (e)
in Fig. 2. The color of an adjacency iρ is written col(iρ).
Given a DCJ ρ, our weight function is

We call those DCJ moves that have zero weight likely,
while we call all others rare. It is trivial to evaluate our
weight function for a given DCJ; simply check the colors
of the two adjacency edges that are affected.

Two restricted versions of the general problem are now
described. The problem Minimum Local Scenario is
exactly Minimum Weighted Rearrangements with
the positional weight function w.

Problem 2 (MLS) Minimum Local Scenario
INPUT: Genomes A and B and positional weight func-
tion w.
OUTPUT: A scenario of rearrangements turning A
into B.
MEASURE: The weight of the scenario.

The problem Minimum Local Parsimonious Sce-
nario introduces the constraint that the scenario output
is also a parsimonious scenario, i.e., a scenario of mini-
mum length.

w(ρ) =

{

0 if iρ = jρ or col(iρ) = col(jρ)
1 otherwise.

AB C

Fig. 3 A A 2D cartoon of a possible 3D configuration for genome A. Adjacencies between syntenic blocks are classified by physically close regions,
which are marked by dashed circles and labeled by the alphabet {a, b, c, d}. B Genome A after a reciprocal translocation has occurred at position b. C
Genome A after an excision has occurred at position b

Page 5 of 10Swenson et al. Algorithms Mol Biol (2016) 11:13

Problem 3 (MLPS) Minimum Local Parsimonious
Scenario

INPUT: Genomes A and B and positional weight func-
tion w.
OUTPUT: A parsimonious scenario of rearrange-
ments turning A into B.
MEASURE: The weight of the scenario.

Minimum local parsimonious scenario
Since a solution to Minimum Local Parsimonious
Scenario is limited to sorting moves, most connected
components of G(A, B, col) must be sorted independently
of each other, the exception being for even-length paths;
all but one DCJ in Fig. 2 act on a single connected com-
ponent. We first give a method for computing the num-
ber of rare operations per connected component when
no pair of even-length paths exist, as in Fig. 2d. We then
show in the “Even-length paths” section how to solve the
problem when such pairs exist.

Colored partitions
Consider a connected component C of the graph
G(A, B, col). If C is monochromatic, i.e., has adjacency
edges of a single color, then the component can be sorted
with likely DCJs according to the listed moves in Fig. 2;
the move that operates on more than one component in
Fig. 2d need not be used since each path can be split on its
own with a local move, as in Fig. 2e. If C is polychromatic
then DCJs must be performed to separate the colors, since
a fully sorted genome has components that each have only
a single colored adjacency edge in genome A.

Recall that AA-paths and BB-paths are paths that
start and end in the same genome. In this subsec-
tion, we assume that there does not exist both an AA
-path and a BB-path in the graph (Fig. 2d). Ouangra-
oua and Bergeron established that the DCJs in a sorting

scenario can be done in any order for such a graph and
that every component will be sorted independently,
thereby defining a noncrossing partition on each com-
ponent (see section. 3 and 4 of [17]). Later in this sec-
tion we show that Minimum Local Parsimonious
Scenario on a single component is equivalent to the
following problem concerning a generalization of non-
crossing partitions. A partition of a set is a collection of
pairwise disjoint subsets whose union is the entire set.
The subsets are called classes. [1, n] is the set of inte-
gers from 1 to n.

Definition 1 A noncrossing partition is a partition
P of [1, n] such that for any classes Si, Sj ∈ P if we have
p < q < p′ < q′ for p, p′ ∈ Si and q, q′ ∈ Sj, then Si = Sj.
A noncrossing colored partition is a noncrossing partition
where for any p, p′ ∈ Si, col(p) = col(p′).

Another way to define a noncrossing partition is on
a convex polygon. A noncrossing partition is a parti-
tion of the vertices of an n-gon with the property that if
you draw a line between all pairs of vertices in the same
class, for all classes, then no two lines from different
classes intersect. A colored partition has colored verti-
ces, and respects the property that any pair of vertices in
the same class of the partition have the same color (see
Fig. 5A, B).

Problem 4 (MNCP) Minimum Noncrossing Colored
Partition

INPUT: Set size n, color set �, and color function
col : [1, n] → �.
OUTPUT: A noncrossing colored partition.
MEASURE: The cardinality of the partition.

We present a polynomial-time algorithm for the Mini-
mum Noncrossing Colored Partition problem,

a b

Fig. 4 The update of colors by a DCJ. a Adjacency edges with colors x and y are reconfigured in two different ways for the same DCJ operation. In
this case the reconfigurations are achieved by swapping either both right-hand endpoints or both left-hand endpoints of the adjacency edges.
b The adjacency edge with color x is split to make two adjacencies of color x with two new telomeres

Page 6 of 10Swenson et al. Algorithms Mol Biol (2016) 11:13

which according to Lemma 2 (later in this section) gives a
solution to Minimum Local Parsimonious Scenario
on a single component. We describe the algorithm on an
instance that has been embedded on a line where the left-
most vertex ① represents the smallest element of the set,
as shown in Fig. 5C. For an interval [i, j], let NCP(i, j) be
the number of classes in the MNCP on that subproblem.
Thus, NCP(1, n) corresponds to the Minimum Non-
crossing Colored Partition of [1, n].

For any interval [i, j] we have NCP(i, i) = 1, and the fol-
lowing recurrence.

The first case corresponds to the creation of a new class
with the single element j. The second case is applicable
when element j is the same color as element i; in this
case i and j become part of the same class, all the other
classes staying the same. The third case tests combina-
tions of subproblems; this case is pertinent when the
col(i) = col(k − 1) or col(k) = col(j). It is easy to con-
firm that any feasible solution to MNCP is scored by the
recurrence. This dynamic program runs in O(n3) time.

We now show the link between MLPS and MNCP.
Consider component C to be sorted. Pick an arbitrary
vertex of C if it is a cycle, or either endpoint of C if it is a
path, and consider an ordering of the vertices of genome
A based on a traversal of the edges of C from that ver-
tex. Embed the vertices of the component on a cir-
cle with respect to that ordering, and the edges so that
they remain inside the circle. Call this a circular embed-
ding of the component. Consider a sorting scenario for
C that corresponds to a sequence of adjacency graphs

NCP(i, j) = min

NCP(i, j − 1)+ 1 for i < j,

NCP(i, j − 1) for i < j

and col(i) = col(j)

NCP(i, k − 1)+ NCP(k , j) for all k

where i < k < j

C0,C1, . . . ,Cd (C = C0). Call C◦
i the graph Ci with vertices

embedded according to the circular embedding of C0.

Lemma 1 [17] C◦
i has no pair of crossing adjacency

edges for any i.

Proof By construction, all adjacency edges in C◦
0 con-

nect adjacent vertices on the circle, so none of them
cross. Assume that C◦

j has crossing adjacency edges and
C◦
j−1 does not. This implies that the jth DCJ did not split

a component. This is a contradiction since every sorting
move on C splits a component, never creating both an
AA-path and BB-path. �

Lemma 2 Given a connected component C, Minimum
Local Parsimonious Scenario on C can be solved by
Minimum Noncrossing Colored Partition.

Proof First, transform an instance of MLPS on a single
component to an instance of MNCP. Given a cycle C rep-
resenting genomes A and B, map the set of elements [1, n]
from the set of adjacency edges of A ordered according to
a circular embedding of C. The color function col maps
each element to its corresponding adjacency edge’s color.

Now transform an optimal solution of MNCP into an
optimal solution for MLPS. Clearly, any partition of [1, n]
corresponds to a partition of adjacency edges of genome A.
We show that there always exists a scenario of DCJs whose
prefix separates C into connected components according
to the partition. Any two edges of the same component
can be chosen for a DCJ [17] and the DCJs on a cycle can
be done in any order (Lemma 1). Since the ordering of the
edges on the cycle corresponds to the ordering on [1, n], an
edge partition of size k can be achieved with k − 1 DCJs.
Since k is minimum over all feasible partitions and the

a

b

b
c

c

a

a

d

1

2

3

4

5

6

7

8

a

b

b
c

c

a

a

d

1

2

3

4

5

6

7

8

A B C

b a b c a d a c
1 2 3 4 5 6 7 8

Fig. 5 Colored partitions for the set [1, 8] where col(1) = b, col(2) = a, col(3) = b, col(4) = c, col(5) = a, col(6) = d, col(7) = a, and col(8) = c.
Vertices are circles numbered by their order in the set [1, 8] and labeled by their color. Thick black lines are drawn between vertices that are in the
same class of the partition. A The crossing partition {{1, 3}, {2, 5, 7}, {4, 8}, {6}}. B The optimal noncrossing partition {{1, 3}, {2}, {4, 8}, {5, 7}, {6}}. C The
instance embedded on a line

Page 7 of 10Swenson et al. Algorithms Mol Biol (2016) 11:13

remaining DCJs of the scenario are likely, the constructed
scenario has a minimum number of rare DCJs. �

In fact, the two problems are equivalent. We omit the
reduction in the other direction since it is out of the
scope of this paper.

Even‑length paths
A Minimum Noncrossing Colored Partition can
be computed in polynomial time for a single component
independent of all others. Yet it is possible to mix com-
ponents in a parsimonious DCJ scenario. As described in
Fig. 2, the only parsimonious DCJs that mix components
are those that act on one edge from an AA-path and one
edge from a BB-path. Call AA (BB respectively) the set
of AA-paths (BB-paths respectively) in the adjacency
graph. The key observation is that once a path has been
mixed with another, the result is always two odd-length
paths which subsequently cannot be mixed with any
other. Thus we devote this section to the computation of

which pairs of paths (p, q) ∈ AA× BB will be mixed in an
optimal solution, and which paths will remain unmixed.

Any pair (p, q) can be mixed in several ways. For all
possible DCJs that mix them, we compute the MNCP on
the resulting components. The minimum MNCP over
all mixings is the cost in rare moves for mixing the two
paths. To compute the pairs of paths to be mixed in an
optimal solution, we use the inverse of these costs—the
number of likely moves—as weights in a bipartite graph.

Take the elements of AA and BB as vertices in a com-
plete bipartite graph, and label each edge (p, q) with the
maximum number of likely DCJs for the mixing of paths
p and q. Any even-length path could alternatively be used
independently of any other, so there is a vertex v′ for each
v ∈ AA ∪ BB with a single edge (v, v′) labeled by the num-
ber of likely moves on v alone (computed using the MNCP
on that component). Algorithm 1 computes the minimum
number of rare DCJs in a parsimonious scenario. It is easy
to modify the algorithm to give the list of DCJs.

Algorithm 1 MLPS(A,B)
Require: genomes A and B.
Ensure: cost of parsimonious scenario with a minimum number of rare DCJs.

� Sort the graph components by type:
C ← set of cycles in G(A,B, col)
P ← set of odd-length paths in G(A,B, col)
AA ← set of AA-paths in G(A,B, col)
BB ← set of BB-paths in G(A,B, col)

� Compute the cost of the cycles and odd-length paths:
cost ← 0
for c ∈ C do

cost ← cost+MNCPonComp(c, col)− 1
end for
for p ∈ P do

cost ← cost+MNCPonComp(p, col)− 1
end for

� Compute the cost of the even-length paths:
for p ∈ AA do � Compute weights for not mixing AA vertices:

VA ← VA ∪ {p, p′}
w(p, p′) ← MNCPonComp(p, col)− 1

end for
for q ∈ BB do � Compute weights for not mixing BB vertices:

VB ← VB ∪ {q, q′}
w(q, q′) ← MNCPonComp(q, col)− 1

end for
for p ∈ AA do � Compute weights for mixings:

for q ∈ BB do
w(p, q) ← maxMix(p, q)

end for
end for

� Build the bipartite graph and compute the matching:
cost ← cost+ d(AA) + d(BB)−maxMatching(VA, VB , w)
return cost

Page 8 of 10Swenson et al. Algorithms Mol Biol (2016) 11:13

The function MNCPonComp(c, col) computes the
Minimum Noncrossing Colored Partition on the
given component c. In other words it builds the color
function col according to the component c and then calls
MNCP(1, n, col) where n is the number of adjacency
edges on the A side of the component c. The function
maxMix(p, q) computes the maximum number of likely
DCJs over all possible DCJs that use one edge from p and
one edge from q. The function d(AA) computes the sum
of DCJ distances from each component in AA using For-
mula 1. The function maxMatching(VA,VB,w) builds the
bipartite graph with vertices VA on one side and vertices
VB on the other, and the edges described by the weight
function w.

To summarize, any path can be mixed at most once
in a parsimonious scenario. Potential mixings, as well as
potential non-mixings, are encoded into a bipartite graph
with edges weighted by the cost of a mix. A maximum
weight matching in this graph corresponds to a scenario
that minimizes the number of rare moves on the paths.
All other connected components of the graph are sorted
using the Minimum Noncrossing Colored Parti-
tion on the component.

The running time of our algorithm is dominated by the
weighting of the edges on the bipartite graph. Consider
all mixings done between elements of AA and elements
of BB. A particular adjacency edge e from a given path
p ∈ AA will take part in exactly one DCJ with every edge
f from a path q ∈ BB throughout the weighting process.
Therefore for each pair (e, f), e being an edge from a path
in AA and f being an edge from a path in BB, we will com-
pute the MNCP on the resulting mix. If the number of
edges in the paths AA (respectively BB) is n(AA) (respec-
tively n(BB)), then the running time of our algorithm is
O(n(AA)n(BB)n3). In the worst case, half of the edges are
used in AA-paths and half in BB-paths, yielding a run-
ning time of O(n5).

Faster mixing of even‑length paths
In the previous section, edges of the bipartite graph are
scored by the function maxMix that computes the maxi-
mum number of likely DCJs over all possible mixings of
two paths. The analysis includes the multiplicative term
n(AA)n(BB) reflecting the process of actually trying all
possible mixings when labeling the edges of the bipartite
graph. We now show how to mix paths more efficiently.

Define the A-edges of a component of the graph G(A, B)
to be those edges connecting two nodes in genome A.
Consider paths p ∈ AA and q ∈ BB where p is the path
with A-edges e1, e2, . . . , ek and telomeres t1 and t2, and
q is the path with A-edges f1, f2, . . . , fℓ and telomeres t3
and t4 (see Fig. 6). Construct two different cycles from p
and q, cycle c1 results from joining t1 to t3 and t2 to t4
by cross edges, and cycle c2 results from joining t1 to t4
and t2 to t3. The A-edges of p can then be ordered cir-
cularly in c1 where edge e1 follows edge ek. Similarly, f1
follows fℓ in c2. We show that there is a bijection between
scenarios that start by mixing p and q, and scenarios that
act on one of these two cycles by first performing a DCJ
between an e edge and an f edge.

There is an obvious bijection between edges of p ∪ q
and c1, and between edges of p ∪ q and c2. Consider the
mix move acting on edge ei in p and fj in q. The result is
either:

1. paths e1, e2, . . . , ei, fj−1, fj−2, . . . , f1
and ek , ek−1, . . . , ei+1, fj , fj+1, . . . , fℓ, or

2. paths e1, e2, . . . , ei−1, fj , fj−1, . . . , f1
and ek , ek−1, . . . , ei, fj+1, fj+2, . . . , fℓ, or

3. paths e1, e2, . . . , ei, fj+1, fj+2, . . . , fℓ
and ek , ek−1, . . . , ek , ek−1, . . . , ei+1, fj , fj−1, . . . , f1, or

4. paths e1, e2, . . . , ei−1, fj , fj+1, . . . , fℓ
and ek , ek−1, . . . , ei, fj−1, fj−2, . . . , f1.

The DCJ acting on ei and fj in c1 yields two cycles par-
titioning the edges as they are in either Case 1 or Case 2.
The DCJ acting on ei and fj in c2 yields two cycles parti-
tioning the edges as they are in either Case 3 or Case 4.
Since odd length paths and cycles can only be sorted by
cycle-extraction moves (see Fig. 2), each scenario mixing
ei and fj maps to a scenario on c1 or c2. The bijection fol-
lows from the fact that moves on a cycle can be ordered
in any way (Lemma 1).

Due to the bijection between mixing scenarios
on p and q, and scenarios on c1 or c2, the MNCP
by mixing p and q must be either the MNCP on c1
or the MNCP on c2. Thus, our algorithm to com-
pute maxMix(p, q) returns the maximum of
MNCPonComp(c1, col) or MNCPonComp(c2, col) or
MNCPonComp(p, col)+MNCPonComp(q, col).

Our new version of maxMix removes a linear factor
from the overall computation time. Note a1, . . . , ax the

...
Fig. 6 An AA-path and a BB-path

Page 9 of 10Swenson et al. Algorithms Mol Biol (2016) 11:13

sizes of the paths in AA and b1, . . . , by the sizes of the
paths in BB so that |AA| =

∑x
i=0 ai and |BB| =

∑y
j=0

bj.
"Colored partitions" section shows that the number of

steps required to solve MNCP on a component of size
m is less than c ×m3, for some constant c. For each pair
of paths, we compute MNCPonComp three times, so
the number of steps required to label all the edges of the
complete bipartite graph is at most

The terms y, x, |AA|, and |BB| are clearly O(n). Since the
largest terms

∑x
i=0 a

3
i and

∑y
j=0

b3i are in O(n3), the com-
plexity of the bipartite graph labeling step is O(n4). Since
sorting all non-even paths takes O(n3) time, our complete
algorithm takes O(n4) time in the worst case.

Conclusion
The number of parsimonious DCJ scenarios between two
genomes is exponential in the distance between them.
However, many of the scenarios are probably unrealistic
in the biological sense. This paper takes a step towards
modeling realistic scenarios by posing optimization prob-
lems that take into account positional constraints. An
example of such a positional constraint is the 3D proxim-
ity of genome segments given by Hi-C experiments.

An O(n4) algorithm is proposed for computing a par-
simonious DCJ scenario that is most likely, given an
edge-coloring function that classifies DCJ as “likely” or
“unlikely”. In practice the algorithm will be O(n3) since
we expect long even-length paths to be rare in nature.
For example, the adjacency graph for the mouse/human
syntenic map built by Véron et al. [27] from one-to-one
orthologs in Biomart has only 182 edges in even-length
paths out of a total of 13,302 edges. The largest con-
nected component has 35 edges.

From a biological perspective, a solution to Minimum
Local Parsimonious Scenario corresponds to find-
ing a maximum likelihood scenario in a situation where
likely and unlikely scenarios are both rare, and the differ-
ence between the likelihoods of likely and unlikely moves
is not very large. In this situation, a most parsimonious
scenario made of k unlikely moves is more likely than a
non-parsimonious scenario made of k + 1 likely moves.
Thus the maximum likelihood scenario is the most

3c

x
∑

i=0

y
∑

j=0

(ai + bj)
3 = 3c

x
∑

i=0

y
∑

j=0

(a3i + b3j + 3a2i bj + 3aib
2
j)

= 3c
(

y

x
∑

i=0

a3i + x

y
∑

j=0

b3j + 3|BB|

x
∑

i=0

a2i + 3|AA|

y
∑

j=0

b2j

)

.

parsimonious scenario that involves the smallest number
of unlikely moves.

We introduce the Minimum Noncrossing Colored
Partition problem—a generalization of the Maxi-
mum Independent Set problem on circle graphs—for
weighting the edges of a bipartite graph, on which we
obtain a maximum matching. While this technique is
essential to our algorithm for finding DCJ scenarios, we
believe it will also come in handy for an algorithm that
finds likely inversion scenarios (e.g., for handling the infa-
mous “hurdles”). A multitude of biologically relevant var-
iations on this problem exist, including variations on the
model of genome rearrangement, a variant where edges
have multiple colors, and a bi-directional sorting variant
where edges are weighted on both genomes according to
the chromatin conformation on each. Models that incor-
porate uncertainty or evolution in the Hi-C data would
also be relevant. We hope that this work provokes fur-
ther study from both the algorithmic and the biological
perspectives.

Authors’ contributions
All authors contributed to this paper. All authors read and approved the final
manuscript.

Author details
1 LIRMM, CNRS, Université Montpellier, 161 rue Ada, 34392 Montpellier, France.
2 Institut de Biologie Computationnelle (IBC), Montpellier, France. 3 ENS
Lyon, 46 allée d’Italie, 69364 Lyon, France. 4 McGill Centre for Bioinformatics
and School of Computer Science, McGill University, Montréal H3C2B4, Canada.

Acknowledgements
We would like to thank Anne Bergeron for her helpful comments during the
preparation of this manuscript. This work was funded in part by a Grant from
the Fonds de Recherche du Québec en Nature et Technologies.

A preliminary version of this paper appeared in the 15th Workshop on
Algorithms in Bioinformatics (WABI 2015).

Competing interests
The authors declare that they have no competing interests.

Received: 1 February 2016 Accepted: 30 March 2016

References
 1. Fertin G, Labarre A, Rusu I, Tannier E, Vialette S. Combinatorics of genome

rearrangements. Cambridge: MIT press; 2009.
 2. Blin G, Fertin G, Sikora F, Vialette S. The exemplar breakpoint distance for

non-trivial genomes cannot be approximated. WALCOM: algorithms and
computation. Berlin: Springer; 2009. p. 357–68.

 3. Jiang M. The zero exemplar distance problem. J Comput Biol.
2011;18(9):1077–86.

 4. Bergeron A, Mixtacki J, Stoye J. A unifying view of genome rearrange-
ments. In: Bucher P, Moret BME, editors. Proceedings of 6th international
workshop algorithms in bioinformatics (WABI’06). Lecture notes in
computer science. vol. 4175. Berlin: Springer; 2006. p. 163–73.

 5. Yancopoulos S, Attie O, Friedberg R. Efficient sorting of genomic permu-
tations by translocation, inversion and block interchange. Bioinformatics.
2005;21(16):3340–6.

Page 10 of 10Swenson et al. Algorithms Mol Biol (2016) 11:13

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

 6. Bertrand D, Gagnon Y, Blanchette M, El-Mabrouk N. Reconstruction of
ancestral genome subject to whole genome duplication, speciation, rear-
rangement and loss. Algorithms in bioinformatics. Berlin: Springer; 2010.
p. 78–89.

 7. Ouangraoua A, Tannier E, Chauve C. Reconstructing the architecture of
the ancestral amniote genome. Bioinformatics. 2011;27(19):2664–71.

 8. Jones BR, Rajaraman A, Tannier E, Chauve C. Anges: reconstructing ances-
tral genomes maps. Bioinformatics. 2012;28(18):2388–90.

 9. Rajan V, Xu AW, Lin Y, Swenson KM, Moret BME. Heuristics for the
inversion median problem. BMC Bioinform. 2010;11(Suppl 1):54.
doi:10.1186/1471-2105-11-S1-S30.

 10. Aganezov S, Alekseyev M. On pairwise distances and median score of
three genomes under DCJ. BMC Bioinform. 2012;13(Suppl 19):1.

 11. Haghighi M, Sankoff D. Medians seek the corners, and other conjectures.
BMC Bioinform. 2012;13(Suppl 19):5.

 12. Blanchette M, Kunisawa T, Sankoff D. Parametric genome rearrangement.
Gene. 1996;172(1):11–7.

 13. Pinter RY, Skiena S. Genomic sorting with length-weighted reversals.
Genome Inform. 2002;13:103–11.

 14. Lefebvre JF, El-Mabrouk N, Tillier ERM, Sankoff D. Detection and validation
of single gene inversions. In: Proceedings of 11th international confer-
ence on intelligent systems for molecular biology (ISMB’03). Bioinformat-
ics. vol. 19. Oxford: Oxford University Press; 2003. p. 190–96.

 15. Bender MA, Ge D, He S, Hu H, Pinter RY, Skiena S, Swidan F. Improved
bounds on sorting by length-weighted reversals. J Comp Syst Sci.
2008;74(5):744–74.

 16. Galvão GR, Dias Z. Approximation algorithms for sorting by signed short
reversals. In: Proceedings of the 5th ACM conference on bioinformatics,
computer biology, and health informatics. ACM; 2014. p. 360–69

 17. Ouangraoua A, Bergeron A. Combinatorial structure of genome rear-
rangements scenarios. J Comput Biol. 2010;17(9):1129–44.

 18. Braga MDV, Stoye J. The solution space of sorting by DCJ. J Comput Biol.
2010;17(9):1145–65.

 19. Gavril F. Algorithms for a maximum clique and a maximum independent
set of a circle graph. Networks. 1973;3:261–73.

 20. Valiente G. A new simple algorithm for the maximum-weight independ-
ent set problem on circle graphs. In: Proceedings of 14th international
symposium algorithms and computation. (ISAAC’03). Lecture notes in
computer science. vol. 2906. Berlin: Springer; 2003. p. 129–137

 21. Nash N, Gregg D. An output sensitive algorithm for computing
a maximum independent set of a circle graph. Inf Process Lett.
2010;110(16):630–4.

 22. Duan Z, Andronescu M, Schutz K, McIlwain S, Kim YJ, Lee C, Shendure
J, Fields S, Blau CA, Noble WS. A three-dimensional model of the yeast
genome. Nature. 2010;465(7296):363–7.

 23. Zhang Y, McCord RP, Ho Y-J, Lajoie BR, Hildebrand DG, Simon AC, Becker
MS, Alt FW, Dekker J. Spatial organization of the mouse genome and its
role in recurrent chromosomal translocations. Cell. 2012;148(5):908–21.
doi:10.1016/j.cell.2012.02.002.

 24. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B. Topolog-
ical domains in mammalian genomes identified by analysis of chromatin
interactions. Nature. 2012;485(7398):376–80.

 25. Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, Hoichman
M, Parrinello H, Tanay A, Cavalli G. Three-dimensional folding and
functional organization principles of the Drosophila genome. Cell.
2012;148(3):458–72.

 26. Le TBK, Imakaev MV, Mirny LA, Laub MT. High-resolution mapping
of the spatial organization of a bacterial chromosome. Science.
2013;342(6159):731–4.

 27. Veron A, Lemaitre C, Gautier C, Lacroix V, Sagot M-F. Close 3d proximity
of evolutionary breakpoints argues for the notion of spatial synteny. BMC
Genomics. 2011;12(1):303. doi:10.1186/1471-2164-12-303.

 28. Swenson KM, Blanchette M. Large-scale mammalian rearrangements
preserve chromatin conformation. Preparation. Berlin: Springer; 2015. p.
243–56.

http://dx.doi.org/10.1186/1471-2105-11-S1-S30
http://dx.doi.org/10.1016/j.cell.2012.02.002
http://dx.doi.org/10.1186/1471-2164-12-303

	Models and algorithms for genome rearrangement with positional constraints
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Genomes as sets of signed integers
	DCJ and sorting DCJs
	The minimum weighted rearrangements problem
	Positional constraints as colored adjacencies
	Locality and the adjacency graph
	A positional weight function

	Minimum local parsimonious scenario
	Colored partitions
	Even-length paths
	Faster mixing of even-length paths

	Conclusion
	Authors’ contributions
	References

