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Abstract 

Background: A number of alignment tools have been developed to align sequencing reads to the human reference 
genome. The scale of information from next-generation sequencing (NGS) experiments, however, is increasing rapidly. 
Recent studies based on NGS technology have routinely produced exome or whole-genome sequences from several 
hundreds or thousands of samples. To accommodate the increasing need of analyzing very large NGS data sets, it is 
necessary to develop faster, more sensitive and accurate mapping tools.

Results: HIA uses two indices, a hash table index and a suffix array index. The hash table performs direct lookup of 
a q-gram, and the suffix array performs very fast lookup of variable-length strings by exploiting binary search. We 
observed that combining hash table and suffix array (hybrid index) is much faster than the suffix array method for 
finding a substring in the reference sequence. Here, we defined the matching region (MR) is a longest common sub-
string between a reference and a read. And, we also defined the candidate alignment regions (CARs) as a list of MRs 
that is close to each other. The hybrid index is used to find candidate alignment regions (CARs) between a reference 
and a read. We found that aligning only the unmatched regions in the CAR is much faster than aligning the whole 
CAR. In benchmark analysis, HIA outperformed in mapping speed compared with the other aligners, without signifi-
cant loss of mapping accuracy.

Conclusions: Our experiments show that the hybrid of hash table and suffix array is useful in terms of speed for 
mapping NGS sequencing reads to the human reference genome sequence. In conclusion, our tool is appropriate for 
aligning massive data sets generated by NGS sequencing.

Keywords: Hybrid index, NGS, Mapper, Sequence alignment, Hash table index, Suffix array index

© 2015 Choi et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Recent studies based on next-generation sequencing 
(NGS) technology have produced hundreds or thousands 
of exome or whole genome sequences with decreas-
ing cost of NGS experiments [1]. As the NGS technolo-
gies evolve, NGS technologies have gradually increased 
read length and decreased error rate [2]. To keep pace 
with developing NGS technologies, many alignment 
tools have been developed for both short and long reads. 
These tools include SSAHA2 [3], BWA [4, 5], AGILE [6], 
SOAP2 [7], Bowtie2 [8], SeqAlto [9] and others. Among 
them, many aligning programs use index-based mapping 

strategy. For example, SSAHA2, AGILE and SeqAlto use 
a hash table (HT) index of a reference genome, whereas 
BWA, SOAP2 and Bowtie2 use an index of the reference 
genome based on the Burrows–Wheeler transform [10].

All HT-based alignment tools use the same seed-and-
extend strategy [11, 12], which proceeds by searching 
for candidate alignment regions (CARs), aligning each 
location, and reporting the best alignments. A HT index 
supports very fast lookup of candidate locations with 
q-grams (strings of length q). Smaller q increases the 
sensitivity and the number of CARs, whereas larger q 
decreases the sensitivity and number of CARs. Further-
more, because q is fixed, the HT must be rebuilt when 
q-grams of a new length are needed. Most BWT-based 
alignment tools use the full-text minute index [13], which 
is memory-efficient and similar to the suffix tree. With 
respect to matching time, the suffix tree is efficient for 
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exact matching, although it is slow for inexact match-
ing. BWA and Bowtie2 follow similar seed-and-extend 
approaches, including the use of HT-based algorithms for 
long reads.

Support of long-read alignment, high speed, accuracy, 
and sensitivity are essential features of the current NGS 
mapping tools. Here, we tried to merge the advantages of 
HT-based and suffix tree-based alignment in a tool that 
satisfies these requirements. To this end, we developed 
a genome mapper using hybrid index-based sequence 
alignment (HIA).

In this article, we describe the HIA tool, and show the 
results of comparisons of performance on simulated and 
real read data between HIA and the other four popular 
alignment tools including BWA, Bowtie2, SOAP2 and 
SeqAlto. The results of the benchmark analysis demon-
strate that HIA outperforms the other aligners, especially 
in speed.

Methods
Hybrid index
Let Σ be an alphabet and S = s0s1 … sm−1 be a string over 
Σ. Let |S| = m be the length of S, S[i] = si be the i-th sym-
bol of S, S[i, j] = si … sj be a substring, and Si = S[i,m−1] 
be a suffix of S. We define a q-gram as a substring of S 
with length q. In the context of DNA sequence, the 
alphabet Σ consists of the four nucleotides A, C, G, and 
T, i.e., Σ = {A, C, G, T}. We assign A, C, G, and T to the 
numbers 0, 1, 2, and 3, respectively. Thus, each q-gram is 
encoded as an unsigned integer with two bits per nucleo-
tide. However, most reference genome sequences con-
tain a nucleotide other than {A, C, G, T}, such as ‘N’. This 
occasionally happens with NGS read sequences as well. 
We replace ‘N’ with a uniform random nucleotide such as 
BWA and many other tools do.

In terms of a hybrid index, SOAP2 implements a hash 
table on the FM-index which is a compressed SA. On 
the other hand, our hybrid index consists of a reference 
sequence, a suffix array (SA), and a hash table (HT), as 
in Fig. 1. Since there are four symbols in the alphabet, a 
reference sequence of length N can be packed into N/4 
bytes. The SA is an array of the starting positions (inte-
gers) of suffixes of the reference sequence in lexicograph-
ical order. The number of suffixes of a sequence of size 
N is N. The HT is an array of pointers into SA indicat-
ing which positions in SA belong to which q-grams. Since 
we define a q-gram as a string of length q, the number 
of elements of HT is 4q  +  1. Given a q-gram, HT[x] 
is the first position of the q-gram in SA, where x is the 
numeric value of the q-gram. We define the range (R) of 
the q-gram in SA by (1):

(1)R(x) = [HT[x], HT[x + 1] − 1]

If the q-gram does not exist in the sequence, HT[x] is 
the first position of next existing q-gram in the sequence 
so that HT[x] and HT[x +  1] are the same, and R(x) is 
empty.

The procedure for constructing the hybrid index con-
sists of four processes, as follows: (1) packing the refer-
ence sequence in a 2-bits per base format (Sequence); (2) 
counting each q-gram in the sequence and set the range 
of q-grams in SA (HT); (3) inserting the sequence posi-
tions of each q-gram into its range of SA; and (4) sorting 
the range for each q-gram (SA) lexicographically. Based 
on the heuristic determining the final positions of most 
of the suffixes using only the first few symbols of each suf-
fix [14], the SA construction algorithm proceeds sorting 
the length-w prefixes of the suffixes in a q-gram range. If 
some suffixes share also a length-w prefix, then the sort 
is repeated by sorting the length-w substrings that follow 
the length-w prefixes, and so on. In order to reduce the 
sequence access time, length-w prefixes are converted 
to integer values. In the case that the size of the memory 
word is 4 bytes and the size of the alphabet is 4, the w is 
set to between 0 and 16. The ranges of q-grams are not 
overlapped so that the fourth process can also be parallel-
ized. Figure 1 describes the underlying data structure and 
the method for constructing a hybrid index of a reference 
sequence.

Retrieving positions of a query Q in the sequence 
is implemented in two steps: HT lookup and binary 
search of the SA. If the prefix of Q of length q (q-gram) 
is a substring of the sequence, we find the range (R) in 
which the q-gram belongs in the SA, using Eq. (1). Oth-
erwise, the range (R) returns an empty range, indicating 
that Q is not in the sequence. If the returned range is 
not empty, we next find the positions at which Q occurs 
in the sequence by binary search of the substring Q[q, 
|Q|  −  1], based on the SA. Theoretically, searching a 
length-m substring in a string of length N by SA can be 
implemented in O(mlogN) time in the worst case. The 
hash table index can reduce the length of searching string 
such as (m′ = m − q) and reduce the size of the searching 
range such as (n′ ≪ N). When the reference sequence is 
the GRCH37 build of the human genome and q is 14, the 
length of packed sequence is 2,861,343,766 and the aver-
age size of the searching range is 14.12. Our experiment 
showed that the hash table index can decrease consider-
ably the searching time (see Additional file 1).

Hybrid mapping: finding candidate alignment region (CAR)
Hybrid mapping follows the same seed-and-extend 
approach used by all HT-based tools. A MR (matching 
region) is a common substring between the reference 
sequence and the read. Let ‘sp’ be the starting posi-
tion in the reference sequence where the MR occurs. 
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We will indicate each MR as 3-tuple <dv, ro, L>, where 
‘ro’ (read offset) is the starting position in the read 
where the MR occurs, ‘dv’ (diagonal value) is defined as 
dv =  sp −  ro, and ‘L’ is the length of the MR. Given a 
length-m′ MR, there are (m′ − q + 1) q-grams having 
the same diagonal values and consecutive read offsets. 
Diagonal values having same values implies that the 
corresponding MRs are close each other in the refer-
ence sequence. A CAR (candidate alignment region) is 
a list of MRs, which are close each other and ordered 
by ‘ro’. We define a CAR as a seed and align only the 
unmatched regions in CAR.

The procedure for finding MRs and CARs of a read is as 
follows: (1) retrieving range of SA of each q-gram using 
HT and SA; (2) computing diagonal values; (3) sort-
ing by diagonal value and offset; (4) grouping MRs with 
same diagonal value and successive offsets; (5) merging 
the adjacent MRs into CARs; (6) sorting the CARs by 
matched bases in descending order. For example, given a 
read (r = GCCATG) and q-gram length (q = 2) and the 
hybrid index constructed in Fig. 1, we can find MRs and 
CARs as follows:

I. Retrieve range of SA of each q-gram using HT and SA

0-th q-gram positions: (GC: SA[10, 11])
1-th q-gram positions: (CC: SA[8])
2-th q-gram positions: (CA: SA[6, 7])
3-th q-gram positions: (AT: SA[3, 4])
4-th q-gram positions: (TG: SA[15])

II. Compute diagonal values

(GC, 5, 0), (GC, 11, 0), (CC, 11, 1), (CA, 4, 2), (CA, 11, 
2), (AT, −2, 3), (AT, 4, 3), (TG, 4, 4)

III. Sort by diagonal value and offset

(AT, −2, 3), (CA, 4, 2), (AT, 4, 3), (TG, 4, 4), (GC, 5, 0), 
(GC, 11, 0), (CC, 11, 1), (CA, 11, 2)

IV. Group MRs with same diagonal value and successive 
offsets

MR0: (AT, −2, 3, 2) ← (AT, −2, 3)
MR1: (CATG, 4, 2, 4) ← (CA, 4, 2), (AT, 4, 3), (TG, 4, 4)
MR2: (GC, 5, 0, 2) ← (GC, 5, 0)
MR3: (GCCA, 11, 0, 4) ← (GC, 11, 0), (CC, 11, 1), (CA, 

11, 2)

a b

Fig. 1 Constructing the hybrid index. Panel a represents the procedure for constructing the hybrid index given Sequence = TATAGGCATGAGCCAC 
and q = 1. Construction proceeds as follows: first, convert the nucleotide symbols in sequence into the corresponding decimal values (I). Second, 
count each q-gram and store the counts in the HT (II-I). Third, set the beginning position of each q-gram based on the counts of q-grams (II-II). 
Fourth, store the positions of each q-gram in the SA such as (III). Finally, sort each q-gram range in the SA and finish hybrid index construction. The 
sizes of Sequence, SA, and HT are 16, 16, and 4q + 1=5, respectively. Panel b shows the constructed hybrid index
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V. Merge the adjacent MRs into CARs and set matched 
bases

CAR0: (MR0; 2)
CAR1: (MR1, MR2; 5)
CAR2: (MR3; 4)

VI. Sort the CARs by matched bases

CAR1: (MR1, MR2; 5)
CAR0: (MR3; 2)
CAR2: (MR2; 2).

Although diagonal values of two adjacent MRs are dif-
ferent, they could be located in a same CAR if there were 
inserted or deleted bases between them. In the case of 
CAR1, the difference value between diagonal value of 
MR1 and diagonal value of MR2 is 1 and there is one 
inserted base (C) between MR1 and MR2. We refer to this 
value as adjacency and we use the value in order to set the 
permitted size of insertion and deletion between MRs.

In order to find MRs and CARs efficiently, we apply 
three heuristics. Let the read length and the error rate be 
m and ε, respectively. The first heuristic is that there is a 
common substring of length at least m/(k + 1) between 
two reads of length m with k differences [15]. Let λ = εm 
be the expected number of errors in a read and let X 
be the random variable. We can compute the chance of 
observing a read with at most k errors as below.

The formula (2) is the cumulative distribution func-
tion of X. We are able to calculate the rate of reads with 
at most k errors according to the formula (2). If we 
set k =  1.5λ, the rate of reads with at most 1.5λ errors 
approach to 0.9 and we can use the q-gram with length 
m/(1.5λ + 1). Using a q-gram with the same length as the 
common substring decreases the number of MRs and 
CARs.

Secondly, since a q-gram that occurs in many regions 
in the sequence is not a good discriminator, such q-gram 
was given less weight than one that occurs in few regions. 
This heuristic is based on the inverse document fre-
quency (IDF) commonly used in the field of informa-
tion retrieval. The IDF is a measure of whether or not the 
term is common across all documents [16]. Applying this 
heuristic, we can filter out the less weight q-grams and 
consequently skip undesirable MRs and CARs.

Finally, given a read (r) and two strings, S1 and S2, 
both of length m, if the number of matched bases 
between r and S1 is greater than the number of matched 
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bases between r and S2, then the number of differences 
between r and S1 is smaller than the number of differ-
ences between r and S2. This heuristic can be used to 
rank CARs by the number of matched bases and to filter 
out the lower-ranked CARs.

Hybrid mapping: aligning candidate alignment region 
(CAR)
To align the top-ranked CARs, we simply align the 
unmatched regions in each CAR, because the MRs are 
already aligned (matched). We classify the unmatched 
regions into three groups: leftmost unmatched region 
(LMUR), which is the left unmatched region of the first MR 
in a CAR; rightmost unmatched region (RMUR), which 
is the right unmatched region of the last MR in a CAR; 
and unmatched regions between two MRs (MRURs). The 
matched and unmatched region can be separated because 
of mismatch, insertion and deletion. We analyze these split 
causes such as Fig. 2. In the cases of LMUR and RMUR, if 
the only adjacent bases between these unmatched regions 
and MR are mismatched and other bases are matched then 
the split cause is Mismatch; if they are inserted and oth-
ers are matched then the split cause is Insertion; if they 
are deleted and others are matched then the split cause 
is Deletion; otherwise the split cause is Mixed. The Mis-
match, Insertion and Deletion information clearly indi-
cate how these unmatched regions are aligned. Thus, we 
can apply the Needleman–Wunsch algorithm [17] only to 
the mixed cause unmatched region so that we can reduce 
computation time for the dynamic programming method 
of the Needleman–Wunsch algorithm.

There are also many split causes of MRUR like as Fig. 2. 
They can be categorized into Mismatch, Insertion, Dele-
tion, and Mixed. As regards Insertion, if there were some 
bases (α) between two adjacent MRs in a read but there 
were no base in the sequence then α bases could be 
inserted (Insertion 1); if there were α bases between two 
adjacent MRs in a read and β bases were overlapped in 
the sequence then α + β bases could be inserted (Inser-
tion 2); if α bases were overlapped in a read and β bases 
were overlapped in the sequence and α were smaller than 
β then β − α bases could be inserted (Insertion 3). With 
respect to Deletion, if there were β bases between two 
adjacent MRs in the sequence but there were no base in 
a read then β bases could be deleted (Deletion 1); if there 
were β bases between two adjacent MRs in the sequence 
and α bases were overlapped in the sequence then α + β 
bases could be deleted (Deletion 2); if α bases were over-
lapped in a read and β bases were overlapped in the 
sequence and α were greater than β then α − β bases could 
be deleted (Deletion 3). As to Mismatch, if there were 
one base between two adjacent MRs in a read and there 
were one base in the sequence then these bases could 
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be mismatched (Mismatch). Except all the causes men-
tioned above, the others are Mixed. We also can apply the 
Needleman–Wunsch algorithm only to the Mixed cause 
MRUR in order to reduce the dynamic programming 
load. For example, in the case of CAR1 in Fig. 3, there is 
one MRUR between MR1 and MR2. Through “Insertion 
2”, we know one insertion between MR1 and MR2, and 
then obtain 2M1I3M (CIGAR format). In the case of CAR 

2, there is one RMUR and the split cause is “Mixed.” Thus 
we can apply Needleman-Wunsch to the RMUR, and then 
obtain 4M1I1M or 5M1I (CIGAR format).

Extended hybrid mapping
Hybrid mapping might miss some CARs and result in 
the failure of mapping (unmapped). The main reasons 
for missed CARs might be one of following reasons: (1) 

a

b

c

Fig. 2 Classification diagram of split causes between matched region and unmatched region. Panel a represents the split causes of LMUR. Panel 
b shows the split cuases of RMUR. There are four split causes (Mismatch, Insertion, Deletion, and Mixed) in LMUR and RMUR. Panel c represents the 
split causes of MRUR, that can be classified in great detail. Yellow block indicates that both blocks of read and sequence are exactly matched. Dark 
gray block means the mismatch region. White block shows that two blocks are gapped. Red block shows that two blocks are overlapped. Finally, blue 
block indicates that there are two more split causes on read block and sequence block
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too many errors in a read; (2) too many highly frequent 
q-grams in a read; and (3) many high-ranked CARs. In 
the first case, a long q-gram based on the first heuristic 
approach results in empty q-gram ranges. In the sec-
ond case, the second heuristic approach causes highly 
frequent informative q-grams to be missed. In the third 
case, the lower-ranked but informative CARs are lost 
because of the third heuristic approach. We applied 
extended hybrid mapping to the unmapped, which uses 
shorter q-grams including some highly frequent q-grams, 
and extends ranked CARs further. Together, these modi-
fications increase the sensitivity of the technique.

Implementation
We implemented HIA on Java to support multiple plat-
forms (see Additional file  2). HIA takes the reference 
sequence FASTA file as the input, builds the hybrid 
index, and then outputs the hybrid index: SA file (.sa), 
HT file (.idx), packed sequence file (.seq), and reference 
sequence information file (.seqInfo). For the alignment, 
HIA takes the hybrid index and a query FASTQ file as 
inputs, and outputs the mapped and unmapped align-
ments in SAM format. To reduce the bottle-neck on 
reading reads and writing mapped results, we divided the 
alignment procedure into reading, mapping, and writ-
ing procedures. Each procedure runs in an independent 
thread and is scheduled using three queues. Furthermore, 
HIA also outputs a report, consisting of a summary file 
of mapping results and two pie chart graphs of the map-
ping rate, to inform the user about the mapping results. 
Additionally, during the alignment, HIA summarizes the 
FASTQ input and reports the basic statistics and base 
quality information: statistics of FASTQ; base quality per 
read position, as a bar graph; base quality, as a heat map; 
and quality score, as a box-plot graph. This summary is 
useful to determine the quality of the NGS sequence data 

that is produced. We used JFreeChart [18] to generate all 
graphs.

Results and discussion
Evaluation data sets and evaluation measurements
We made six datasets from the GRCH37 build of the 
human genome, using Mason [19]. Two of these are 
unpaired Illumina-like datasets, consisting respectively of 
one million 100 bp reads and one million 150 bp reads, 
which Mason simulated with parameters ‘illumina -hn 2 
-sq -n 100 -N 1000000’ and ‘illumina -hn 2 -sq -n 150 -N 
1000000’. The next two datasets are paired Illumina-like 
read datasets, which Mason simulated with parameters 
‘illumina -hn 2 -sq -rn 2 -mp -ll 375 -le 100 -n 100 -N 
1000000’ and ‘illumina -hn 2 -sq -rn 2 -mp -ll 375 -le 100 
-n 150 -N 1000000’. The last two datasets are unpaired 
454-like read datasets, which Mason simulated with 
parameters ‘454 -hn 2 -sq -rn 2 -k 0.3 -bm 0.4 -bs 0.2 
-nm 250 -N 1000000’ and ‘454 -hn 2 -sq rn 2 -k 0.3 -bm 
0.4 -bs 0.2 -nm 400 -N 1000000’. Mason also generated 
the correct alignment results of the six read datasets in 
SAM format. The exact command-line parameters and 
descriptions for each dataset can be found in the Addi-
tional file 1.

To assess the performance on real data, we obtained 
the Illumina dataset from a human re-sequencing 
study [20] and the 454 dataset from the 1000 Genomes 
Project Pilot (1000 Genomes Project Consortium, 
2010). The Illumina dataset consists of 1,296,188,286 
101  bp ×  99  bp paired-end reads. The 454 dataset has 
NCBI Short Read Archive accession number SRR003161 
and contains 1,375,489 reads with an average length of 
355  bp. We made three test datasets from the Illumina 
dataset and one test dataset from the 454 dataset such 
as (1) one million paired-end HiSeq reads, (2) one mil-
lion 101 bp single-end HiSeq reads, (3) the whole of the 
paired-end HiSeq reads, and (4) the whole of the 454 
reads.

We applied the following four evaluation measures 
in benchmark study: Aligned (%), Unique (%), Q10 (%) 
and Time (s). The Aligned (%) denotes the percent of 
aligned reads over total reads and indicates the over-
all mapping rate. The Unique (%) measures the percent 
of uniquely aligned reads over total reads and refers 
to MAPQ ≥  1. The Q10 (%) measures the fraction of 
mapped reads MAPQ  ≥  10. The Time is the elapsed 
time (seconds) including both the index loading time 
and the alignment time. In the case of the simulated 
datasets, the %Err measures the percent of wrong 
aligned reads over the reads satisfying Unique (%) or 
Q10 (%). We adopt the concept of a correct alignment 
from Langmead and Salzberg [8], who determined an 
alignment correct only if the alignment was on the 

Fig. 3 Finding MRs and CARs. Find MRs and CARs given a read 
(r = GCCATG) and the hybrid index constructed in Fig. 1
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same strand and the leftmost position was within 50 bp 
of the assigned position.

Evaluation results
To evaluate the performance of HIA, we compared HIA 
to BWA, Bowtie2, SOAP2 and SeqAlto on six simulated 
datasets and two real datasets. In all tests, we used the 
GRCH37 build of the human genome as the reference 
sequence used in alignment. We performed the align-
ments using a computer with two Intel Xeon 6-Core 
X5670 2.93-GHz processors and 48 GB RAM. All align-
ment tools were run with a single thread for alignment 
except for multi-thread tests.

Performance of index generation
Table  1 shows the results for index generation. These 
results indicate that the indexing time of HIA is compa-
rable to other aligners. Especially, HIA is able to reduce 
the time of index generation by using multiple threads of 
modern multi-core computers (Additional file 1).

In the perspective of SA construction, we performed 
several tests of index generation and compared the results 
from our index generation algorithm and the divsufsort that 
is one of the best SA construction algorithms [21]. It was 
clear that the divsufsort outperforms our algorithm in build-
ing the SA of the human genome (see Additional file 1). We 
bypassed this problem through implementation of the mul-
tiple threading in the construction of the SA of the human 
genome (see comparison of the performance of the multi-
ple threading and divsufort algorithm in Additional file 1). 
Moreover, since the construction of the SA is required once 
in the alignment of the NGS data, we believe that this would 
be not serious problem in practical application.

Results of simulated single‑end reads
We ran six of the aligners with various parameter settings 
for 100, 150, 250 and 400 bp single-end reads. All results 
can be found in the Additional file  1. SeqAlto can only 

align Illumina-like reads, so it was excluded from the 
tests for 454-like datasets.

Table 2 shows the best results from the sensitivity and 
precision perspectives. For both Illumina-like datasets 
and 454-like datasets, HIA is significantly faster than all of 
the other aligners except BWA MEM and SOAP2. SOAP2 
is very fast, but not as sensitive as HIA. BWA is slightly 
more accurate, but not as sensitive as HIA for Illumina-
like datasets. However, HIA is more sensitive and accurate 
than BWA for 454-like datasets. Bowtie2 is similar to HIA 
with regard to sensitivity, but not as accurate as HIA for 
both Illumina-like datasets and 454-like datasets. SeqAlto 
is slightly more accurate, but not as sensitive as HIA for 
Illumina-like datasets. BWA MEM is more accurate and 
more sensitive than HIA for Illumina-like datasets, but 
not as sensitive as HIA for 454-like datasets.

Results of simulated paired‑end reads
We also ran six of the aligners with the same parameter 
settings as in the single-end reads for 100 and 150  bp 
paired-end reads. All results can be found in the Addi-
tional file 1.

Table 1 Results of index generation

Time measurement is elapsed time (minute). Memory is the peak memory for 
the index construction. Size is the sum of all generated files

Aligner Options Time Memory (GB) Size (GB)

HIA -t 1 -q 14 165 20.32 12.63

HIA -t 12 -q 14 28 20.47 12.63

BWA 65 4.53 5.40

bowtie2 99 5.35 4.10

soap2 55 3.39 5.90

seqAlto -I 0 genome.fa 28 33 37.99 22.40

seqAlto -I 1 genome.fa 22 12 13.19 5.52

Table 2 Results for simulated single-end reads

Time measurement is elapsed time (second). Unique refers to MAPQ ≥ 1 if 
MAPQ available. Q10 refers to MAPQ ≥ 10

Aligner Time % Aligned % Unique [% Err] % Q10 [% Err]

(a) Illumina-like 100 bp reads (unpaired)

 HIA 464 100.00 96.57 [0.4314] 95.80 [0.2151]

 BWA 1242 98.11 94.73 [0.1711] 94.60 [0.1562]

 BWA MEM 265 100.00 96.30 [0.0497] 95.27 [0.0153]

 Bowtie2 1291 99.95 99.63 [2.4252] 94.22 [0.0208]

 SOAP2 264 79.37 76.27 [0.4679]

 SeqAlto 1459 99.69 96.33 [0.2861] 96.04 [0.2156]

(b) Illumina-like 150 bp reads (unpaired)

 HIA 530 100.00 97.56 [0.2552] 97.26 [0.1643]

 BWA 2464 98.00 95.55 [0.0953] 95.48 [0.0866]

 BWA MEM 355 100.00 97.36 [0.0210] 96.41 [0.0053]

 Bowtie2 2069 99.97 99.87 [1.6663] 95.99 [0.0094]

 SOAP2 525 68.72 66.78 [0.2806]

 SeqAlto 3608 99.68 97.25 [0.1947] 97.10 [0.1490]

(c) 454-like 250 bp reads (unpaired)

 HIA 1009 99.96 98.28 [0.4189] 94.38 [0.1772]

 BWA-SW 3157 99.86 97.61 [0.6735] 94.38 [0.0357]

 BWA MEM 1497 100.00 97.92 [0.0767] 97.26 [0.0346]

 Bowtie2 2947 99.59 83.40 [0.5980] 36.44 [0.0011]

(d) 454-like 400 bp reads (unpaired)

 HIA 1378 99.76 98.48 [0.1557] 96.17 [0.0397]

 BWA-SW 5144 100.00 95.89 [0.2084] 94.00 [0.0284]

 BWA MEM 2426 99.99 98.46 [0.0471] 97.98 [0.0238]

 Bowtie2 6597 99.96 88.35 [0.3048] 32.93 [0.0000]
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Table 3 shows the best results from the sensitivity and 
precision perspectives. For both datasets, HIA is signifi-
cantly faster than all of the other aligners except BWA 
MEM and SOAP2 while retaining good alignment sensi-
tivity and precision. SOAP2 is very fast, but not as sensi-
tive as HIA. BWA and SeqAlto are similar to HIA with 
respect to sensitivity. BWA MEM is more accurate than 
the other aligners. Bowtie2 is less sensitive as compared 
with HIA, BWA and SeqAlto.

Results of real datasets
We ran six of the aligners with various parameter settings 
for one paired-end reads and two single-end reads. All 
results can be found in the Additional file 1.

Table 4 shows the best results from the total number of 
reads aligned for single-end reads and paired-end reads. 
For two single-ends, HIA and BWA MEM are higher 
ranks than the other aligners in terms of the speed and 
the total number of reads aligned. For the paired-end 
reads, the aligned percentage of Bowtie2 is higher than 
the other aligners, but HIA is faster than all of the other 
aligners except SOAP2.

Results of multithreading tests
We ran six of the aligners with 6 threads and 12 threads 
modes for the whole of the paired-end HiSeq reads. All 
results can be found in the Table 5. HIA is faster than the 
other aligners for both 6 threads and 12 threads modes.

Conclusions
We developed a new sequence alignment tool for align-
ing short and long reads to a reference genome. HIA 
has two indexes, a HT index and a SA index. The HT is 

capable of direct lookup of a q-gram, and the SA can very 
rapidly look up q-grams of variable length. Our experi-
ments show that the hybrid of HT and SA is useful, from 
the perspective of speed, for mapping NGS sequencing 
reads to a reference genome sequence. HIA also sup-
ports the multithreading of mapping. In particular, HIA 
is much faster than all of the other aligners; therefore, our 
tool is appropriate for aligning massive data sets gener-
ated by NGS sequencing.

The accuracy of alignment is very important in re-
sequencing because the main purpose of alignment is 
to discover the variants relative to a reference genome. 
Although these variants (or sequencing errors) cause 
sequencing reads within them to match inexactly to 
the reference, alignment tools should nonetheless cor-
rectly map these reads to the reference. Considering the 

Table 3 Results for simulated paired-end reads

Time measurement is elapsed time (second). Unique refers to MAPQ ≥ 1 if 
MAPQ available. Q10 refers to MAPQ ≥ 10

Aligner Time % Aligned % Unique [% Err] % Q10 [% Err]

(a) Illumina-like 100 bp reads (paired)

 HIA 1009 99.96 97.17 [0.0859] 96.75 [0.0510]

 BWA 2554 99.79 97.70 [0.0954] 97.49 [0.0692]

 BWA MEM 646 99.99 98.03 [0.0282] 97.95 [0.0172]

 Bowtie2 1691 97.13 97.09 [1.2711] 93.73 [0.0128]

 SOAP2 586 84.54 82.75 [0.3356]

 SeqAlto 2945 99.61 97.15 [0.0833] 97.02 [0.0788]

(b) Illumina-like 150 bp reads (paired)

 HIA 1153 99.99 98.10 [0.0780] 97.89 [0.0537]

 BWA 5380 99.78 98.17 [0.0983] 98.06 [0.0876]

 BWA MEM 649 99.99 98.43 [0.0137] 98.39 [0.0083]

 Bowtie2 2348 97.13 97.12 [0.9904] 94.14 [0.0083]

 SOAP2 856 75.25 74.04 [0.3487]

 SeqAlto 7191 99.58 97.80 [0.0723] 97.74 [0.0698]

Table 4 Results for real datasets

Time measurement is elapsed time (second). Unique refers to MAPQ ≥ 1 if 
MAPQ available. Q10 refers to MAPQ ≥ 10

Aligner Time % Aligned % Unique % Q10

(a) Illumina 100 bp reads (unpaired)

 HIA 369 97.71 91.23 86.41

 BWA 2877 85.87 81.82 81.68

 BWA MEM 272 96.86 89.32 86.85

 Bowtie2 1291 94.96 92.11 83.69

 SOAP2 283 87.29 82.29

 SeqAlto 1567 89.16 85.22 84.60

(b) 454 400 bp reads (unpaired)

 HIA 964 99.05 96.90 95.92

 BWA-SW 6369 99.53 96.48 92.63

 BWA MEM 830 99.73 96.36 94.86

 Bowtie2 6597 98.37 96.96 91.02

(c) Illumina 100 bp reads (paired)

 HIA 1111 91.53 87.48 85.25

 BWA 2871 88.90 86.59 86.26

 BWA MEM 690 93.49 90.55 89.80

 Bowtie2 1646 93.13 91.60 84.93

 SOAP2 725 82.18 79.56

 SeqAlto 3370 92.04 87.82 87.55

Table 5 Results of the multithreading tests

Time measurement is elapsed time (minute)

Aligner Time (6 threads) Time (12 threads)

HIA 932 505

BWA 4006 2586

BWA MEM 1162 645

bowtie2 1180 789

soap2 2217 1616

seqAlto 3945 2077
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results of the benchmark analysis, we can conclude that 
HIA performs comparably to four popular alignment 
tools.

Availability and requirements
  • Project name: HIA
  • Project home page: http://biomi.cdc.go.kr/hia/
  • Operating systems: Platform independent
  • Programming language
  • License: GNU GPL
  • Any restrictions to use by non-academics: none.
  •
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