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Abstract 

Background:  The rational, in silico prediction of gene-knockouts to turn organisms into efficient cell factories is an 
essential and computationally challenging task in metabolic engineering. Elementary flux mode analysis in combina-
tion with constraint minimal cut sets is a particularly powerful method to identify optimal engineering targets, which 
will force an organism into the desired metabolic state. Given an engineering objective, it is theoretically possible, 
although computationally impractical, to find the best minimal intervention strategies.

Results: We developed a genetic algorithm (GA-MCS) to quickly find many (near) optimal intervention strategies 
while overcoming the above mentioned computational burden. We tested our algorithm on Escherichia coli  meta-
bolic networks of three different sizes to find intervention strategies satisfying three different engineering objectives.

Conclusions: We show that GA-MCS finds all practically relevant targets for any (non)-linear engineering objective. 
Our algorithm also found solutions comparable to previously published results. We show that for large networks opti-
mal solutions are found within a fraction of the time used for a complete enumeration.
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Background
The availability of high amount of biological data has 
led to the reconstruction of genome-scale metabolic 
networks for many organisms [1–4] which can be ana-
lysed and probed using mathematical and computational 
methods [5, 6]. Prominent among these are constraint 
based modelling approaches which depend on the stoi-
chiometry of the reactions. These include methods like 
flux balance analysis, FBA, [7] and elementary flux mode 
analysis, EFMA [8, 9]. The major difference between 
these approaches is that FBA seeks particular flux solu-
tions whereas EFMA seeks to describe the entire flux 
space by enumerating all its elementary and balanced 
pathways which are called elementary flux modes, EFMs. 
Thus, the complete set of EFMs describes all possible cel-
lular states. The disadvantage is that enumerating all the 
EFMs of a metabolic network is computationally very 

demanding as the number of EFMs explodes with net-
work size [10]. However, the ability to enumerate EFMs 
has been steadily improving [11–14].

An important application of an EFMA is the predic-
tion of gene knockouts to turn wild-type organisms into 
efficient minimal cell factories [15]. The design of effi-
cient cell factories is based on the concept of networks of 
minimal functionality. These are derived from wildtype 
metabolic networks by keeping typically very few, spe-
cifically selected metabolic functions, e.g., EFMs with 
high yields of products of interest, while diminishing all 
other unwanted (wildtype) functionality by appropriately 
selected gene/reaction knockouts. These interventions 
channel the available carbon flux towards the product 
of interest. Based on EFMA the concept of constrained 
minimal cut sets, cMCS can be used to redirect cellular 
resources towards the product of interest [16]. cMCS 
are minimal (reaction) knock-out strategies, that disable 
unwanted EFMs (e.g., low product yield/growth) while 
the desired EFMs (e.g., high product yield) are preserved. 
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In particular, cMCSs of minimal cardinality are impor-
tant as these solutions minimize the experimental effort 
when knockouts are actually implemented in  vivo. Sev-
eral methods for the computation of cMCS based on a 
given EFM spectrum are known [16–18]. Alternatively, 
cMCS can also be calculated directly without first cal-
culating EFMs [19–21]. However, in all these methods, 
explicit design criteria must be used (e.g. by providing 
boundaries for the desired minimal product yield). This 
is problematic in so far as a slight change in the design 
criteria might lead to large changes in the minimal cardi-
nality of the cMCSs, i.e. the minimal number of required 
knockouts. For example, Trinh et  al. [15] optimized E. 
coli for ethanol production with seven reaction knock-
outs. Jungreuthmayer et al. [22] on the other hand, were 
able to design a strain with identical key features and 
almost identical overall functionality, which required 
only five reaction knockouts.

If the EFMs are known it is theoretically possible but 
generally impractical to find all optimal partitions of 
EFMs and their corresponding cMCSs (of minimal cardi-
nality). In a recent work Ruckerbauer et al. [23] approach 
this problem by first finding the smallest possible cMCS 
which contributes towards the engineering objective. 
Then cMCSs of higher cardinality are successively enu-
merated such that the engineering objective value is 
greater than or equal to that of the previous smaller 
cMCS. This circumvents the problem of large number 
of binning possibilities but will work, in a reasonable 
amount of time, only for small scale networks.

Here we present a novel approach which uses a genetic 
algorithm, GA to “evolve” near optimal solutions from 
starting sets of randomly partitioned modes. This results 
in minimal strains such that only that fraction of the 
total EFMs which contribute towards the design objec-
tive are active after deletion of the predicted cMCSs. This 
approach combines the simplicity of a GA with the power 
of EFMA and cMCS. The GA not only circumvents the 
manual partitioning of EFMs but also finds increasingly 
better solutions in a relatively short amount of time. This 
method can be used to satisfy not only traditional design 
objectives like product yield and growth but can also 
incorporate more complex design objectives like high 
growth-coupled product yield using minimal number of 
knockouts or even non-linear objectives.

Preliminaries
Elementary flux modes, EFMs
The material balances in a metabolic network with m 
internal metabolites and r reactions in steady state can be 
represented by

(1)N · v = 0.

where N is the m× r stoichiometric matrix and v is a flux 
vector containing the fluxes through the network and 
v ∈ R

r, i.e., v = (v1, . . . , vr)
T. The set of reactions can be 

partitioned based on thermodynamic constraints into 
sets of reversible and irreversible reactions. If Irrev is the 
index set of irreversible reactions,

The support of the flux vector v can be defined as 
supp(v) = {j|vj �= 0}, which is the set of reaction indices 
in v with non-zero flux values. An EFM, e, is a flux vector 
v �= 0 which satisfies (1), (2) and a non-decomposability 
condition which states that, there is no non-trivial flux 
vector w satisfying (1), (2) and whose support is a proper 
subset of e, i.e., supp(w) ⊂ supp(e). The non-decom-
posability condition means that the removal of any sup-
porting reaction in an EFM will block a steady state flux 
through it. The set of all EFMs of a network completely 
describes the entire metabolic capabilities of the network. 
Every possible flux through the network can be expressed 
as a non-negative weighted combination of EFMs with-
out cancellation. This means that if the flux through a 
reaction is 0, then all the contributing EFMs necessarily 
will have 0 flux through that reaction. For more informa-
tion on EFMs, see [24].

We will use the following notation henceforth, 
E = supp(e). Let E = {E1, . . . ,En} represent the full set of 
all n EFMs in support notation.

Constrained minimal cutsets, cMCSs
Suppose there are certain network states which need to 
be suppressed. These states can be represented by a set of 
EFMs T, where T ⊂ E. The problem then becomes one of 
“killing” all the EFMs in T. This can be done by “knock-
ing-out” a cutset C of reactions which will “hit” all of T. 
That is,

C will be a minimal cut set, MCS, if there is no proper 
subset B ⊂ C which satisfies (3) [25].

Suppose that in addition to network states which need 
to be suppressed, there are certain states which we need 
to preserve when knockouts are applied (e.g. biomass 
production and product formation). This can be done 
using the concept of cMCS [16]. The set of desired EFMs 
D corresponds to the network states to be preserved. 
Since in general it cannot be expected that an MCS will 
not hit any of D, we will say that we would like to have 
at least k EFMs untouched by an MCS where k ≤ | D |. 
Given an MCS C, let the set of EFMs DC represent D ∈ D 
which survive after applying C,

(2)vj ≥ 0 ∀ j ∈ Irrev.

(3)∀T ∈ T, C ∩ T �= ∅,

(4)D
C = {D ∈ D | C ∩ D = ∅}.
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An MCS which satisfies (3) and the following constraint 
is a cMCS

Thus an intervention problem

is defined by a set of target EFMs T which need to be 
“killed” and a set of desired modes D of which at least k 
have to be “kept”. Several methods to solve (6) are availa-
ble [16–18]. Note that D ∪ T does not necessarily unite to 
the full set of EFMs since there could be EFMs which we 
do not want to either kill or keep but instead have a “don’t 
care” status. However, we do not need to specify such 
an association since we will not operate on these EFMs. 
We will operate only on the EFMs we are interested in (D 
and T) and do not bother with what happens to the EFMs 
with “don’t care” status because by definition it wouldn’t 
matter to us if these EFMs survive or are killed.

In the following we describe a GA to solve the interven-
tion problem (6). For simplicity our implementation par-
titions the complete set of EFMs into D and T and does 
not make use of the “don’t care” option.

Methods
The EFM kill/keep problem
Equation (6) allows to search for cMCS which keep cer-
tain EFMs and kill others. However, it is not intuitive 
which EFMs to keep and which to kill in order to mini-
mize the cardinality of the cMCSs. Thus the question 
arises: What is the best partitioning of EFMs in order to 
reach a specific engineering objective? Even in a modest 
sized network, the possible combination of EFMs to keep 
or kill is very large. For example, in a small scale network 
with 5000 EFMs, the number of possible kill/keep combi-
nations is 25000. It is practically impossible to explore all 
points in such a large solution space. Therefore, it makes 
sense to utilize a program that finds the best set of EFMs 
to keep, and the corresponding cMCSs which will achieve 
this for a given an engineering objective [23]. We do this 
using a GA, the working of which is described below.

The genetic algorithm, GA
GAs are heuristics inspired by the theory of evolution, 
generally used when the extreme of the function can-
not be analytically established or when it is impractical 
to search the whole solution space. GAs work on prob-
lems by encoding possible solutions into a population of 
individuals. These individuals are chromosome like data 
structures which are iteratively refined to “evolve” better 
solutions by applying strategies inspired by Darwinian 
evolution [26–29]. In our implementation each individ-
ual represents an intervention problem (6).

(5)|DC | ≥ k.

(6)I = I(T,D, k)

Given a population size p, we randomly generate indi-
viduals Si = {s1i , . . . , s

n
i }, 1 ≤ i ≤ p, where each element sji 

of Si indicates if the EFM Ej is present (sji = 1) in the indi-
vidual Si or not (sji = 0). Thus each individual Si codes an 
intervention problem (6) with

where wk ∈ [0, 1] is a freely adjustable GA parameter. sji
-values are assigned randomly but we provided for the 
possibility to pre-process EFMs such that EFMs with 
desirable characteristics have a higher chance of being 1. 
For example, suppose a cell is described by the following 
set of EFMs {E1, . . . ,E7}, where only E1, E3 and E7 support 
product formation. If we want to optimize for product 
formation, we clearly do not want to keep the non-pro-
ducer. So we choose sji such that undesirable states never 
get selected. In our example possible randomly selected 
individuals could look like S1 = {1, 0, 1, 0, 0, 0, 1}, 
S2 = {1, 0, 1, 0, 0, 0, 0}, etc. while {1, 1, 1, 0, 0, 0, 1} would 
not be generated because it includes E2 which we want 
to eliminate. This leads to a significant reduction in the 
search space. Finally, for each individual Si, cMCS are cal-
culated using the MHScalculator [30].

GAs aim to proceed towards better solutions by evalu-
ating each individual Si against a fitness function F and 
selecting the top-performers for procreation. The fitness 
function reflects the design objective since those are the 
traits we want to improve. In our implementation indi-
viduals are selected for mating using a fitness propor-
tionate selection [31]. In addition, we use the concept 
of “elitism” where a pre-specified percentage of top-per-
formers will propagate into the next generation without 
any modification as shown in Fig. 2c. This guarantees that 
the population’s maximum fitness does not decrease. We 
use crossover, mutation [26, 27], and random selection 
based on previous information about surviving EFMs to 
produce a new generation of individuals. These mecha-
nisms are explained below.

Crossover
We take two parent individuals, S1 and S2, and randomly 
exchange their elements to create two new offspring S3 
and S4. We implemented the following three standard 
types of crossovers. For 1point crossover, generate a ran-
dom integer rc, 1 ≤ rc < n for each pair of parents, then 
the offspring of crossover are S3 = {s11, ...s

rc
1 , s

rc+1
2 , ...sn2} 

and S4 = {s12, ...s
rc
2 , s

rc+1
1 , ...sn1}, (see Fig.  2a). In 2point 

crossover, two random integers rc1, rc2, 1 ≤ rc1 < rc2 < n 
are generated for each pair of parents. The offspring in this 
scenario are S3 = {s11, ...s

rc1
1 , s

rc1+1
2 , ...s

rc2
2 , s

rc2+1
1 , ...sn1} and 

(7)

Ii = Ii[T(Si),D(Si), k(Si)],

with T(Si) = {Ej|s
j
i = 0},

D(Si) = {Ej|s
j
i = 1},

k(Si) = wk |D(Si)|

1 ≤ i ≤ p, 1 ≤ j ≤ n
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S4 = {s12, ...s
rc1
2 , s

rc1+1
1 , ...s

rc2
1 , s

rc2+1
2 , ...sn2}. In uniform cross-

over, for each EFM a random number 0 ≤ r
j
u < 1 is gen-

erated and the offspring are S3 = {s
j
1 if r

j
u < 0.5 else s

j
2} 

and S4 = {s
j
2 if r

j
u < 0.5 else s

j
1}.

Mutation
Given an individual S1 and a random integer r, 1 ≤ r < n , 
the mutated individual is S2 = {si1 if i �= r, else 1− si1}. 
The absolute number of such random integers generated 
for each individual is given by ρrm, where rm is a freely 
adjustable GA parameter, the mutation rate, 0 ≤ rm < 1 
and ρ the maximum number of EFMs with desirable 
characteristics, ρ ≤ n (see Fig. 2a).

Pattern‑based individual generation
In addition to mutation and crossover we create new 
individuals based on the fittest patterns. For each indi-
vidual S, whose corresponding intervention problem has 
solution(/s), we generate a “design pattern”, which con-
tains only the surviving EFMs,

Given a binary individual S = 1010001, if only EFM 3 
and 7 survive the intervention, the resulting pattern will 
be 0010001. Thus a pattern is a specific strain design for 
an intervention problem. A solvable intervention prob-
lem typically produces more than one solution. There-
fore, one individual will usually have more than one 
pattern associated with it. Since the fitness depends on 
the surviving EFMs, each pattern will have its own fitness 
value. Thus one individual may be associated with more 
than one fitness value. Here, the fitness of an individual S 
is defined as the fitness of the fittest pattern P.

To create the new individuals, we start by weighting 
each EFM proportional to the number of times the EFM 
survived in all previous patterns. Let Pt represent the 
entire set of patterns found until a given generation t. The 
weight wi

t for an EFM Ei is calculated by

Next we generate a set of desired candidate EFMs by ran-
domly selecting a random number of EFMs with non-
vanishing wi

t. Out of these desired candidate EFMs new 
individuals were composed by including those candidate 
EFMs for which a randomly selected number ri was not 
larger than the weight of the corresponding candidate 
EFM, 0 ≤ ri < maxwt and maxwt is the maximum of all 
such weights (see Fig. 2b),

(8)P = {pj | pj = 1 if Ej ∈ D
C else pj = 0}.

(9)wi
t =

|Pt |∑

j=1

(Pt)
i
j .

(10)

Snew = {sinew| if wi
t ≥ ri, s

i
new = 1 else sinew = 0}.

The number of individuals generated by this method can 
be controlled by the GA parameter ‘new_S’, Table 1. It is 
a way to consider all good solutions obtained so far and 
ensures that more EFMs with desirable properties find 
their way into the set of desired EFMs. This helps the GA 
to reach the optimum faster.

The GA stops after reaching a pre-specified number 
of generations or when the maximum fitness doesn’t 
improve for a given number of generations, outputting 
all MCSs of minimal cardinality associated with each 
desired pattern. The schematic of the GA implemented 
and used here is shown in Fig. 1 along with a small illus-
tratory example in Fig. 2.

Implementation
The GA was implemented in Perl http://www.perl.org/. 
cMCSs were calculated with MHScalculator which is 
an open source C-program that is freely available [30]. 
EFMs were calculated using the regEfmtool [13]. All runs 
were performed on a machine with the following specifi-
cations—2 CPUs, 12 cores, Intel Xeon X5650 2.67 GHz 
and an Ubuntu 14.04 LTS operating system, allowing the 
used programs to utilise 10 threads in parallel. Caching 
in form of look-up tables is employed to store previously 
obtained MCS, patterns and corresponding fitnesses, to 
avoid repetition of calculation. We also use tmpfs, a tem-
porary file storage created on the RAM, for faster i/o on 
intermediate files. A general description of the param-
eters used for controlling the GA are shown in Table 1. 
Specific parameter values for the individual runs are 
shown in Table 2.

Validation
We ran the GA on an E. coli core model, M3, [15] and 
two smaller models, M1 and M2, which were derived 
from the parent model, M3, by removing several reac-
tions. M3 describes the central carbon metabolism of E. 
coli including the uptake and utilization of several hexose 
and pentose sugars. Compared to M3, M2 is restricted to 
model only glucose utilization (all other carbon uptake 
relations were removed). Finally, M1, the smallest model 
of the three, describes glucose utilization under anaero-
bic conditions. The main topological properties of the 
three models are summarized in Table 3.

Results
Our aim is to design optimised E. coli strains for etha-
nol production. The optimization objectives considered 
in this study were ethanol yield (YEtoh), substrate specific 
productivity which is the product of normalised specific 
ethanol production and normalised biomass production 
[32] also called “efficiency” (ηEtoh = YEtoh × YBiomass), and 
an objective which considers both the yield and efficiency 

http://www.perl.org/
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together. In all objectives, we favour solutions with low 
cardinalities (for details see Table 4).

Benchmarking
We tested the performance of the GA against the auto-
matic partitioning method, APM developed by Rucker-
bauer et al. [23] using the models M1, M2 and M3. The 
APM was selected for comparison, as for any given, lin-
ear engineering objective APM enumerates all optimal 
knockout strategies without requiring any manual inter-
ference. We tested for maximum efficiency and ethanol 
production using the fitness function F1 and F2, respec-
tively as given in Table 4. For the three models used we 
listed the main characteristics of the optimal solutions 
with respect to the fitness functions in Table 3. All simu-
lations were run five times. In the following we reported 
averages over these five runs, unless otherwise stated.

Maximizing for efficiency
We used the fitness function F2 (Table 4) with the param-
eters shown in Table  2 to optimize for efficiency. The 
GA was terminated when the fitness function remained 
unchanged for 15 generations.

The GA found all optimal solutions for the small model 
M1 (see Fig. 3a). In the bigger models M2 and M3 the GA 
did not find the best solutions but got within 3 and 1.2  % 
of the maximum fitness, respectively.

In M2 and within the selected runtime, the GA mostly 
found near optimal solutions (see Fig.  3b), and rarely 
converged to the optimal solution. In the case of M3 the 
GA got stuck in a local optimum (see Fig. 3c).

While the GA does not necessarily identify the absolute 
best solutions, it generally finds near-optimal solutions 
extremely quickly. In M2 and M3 near-optimal solutions 
are found in about 25 and 2.5 % of the time taken by the 
APM, respectively (see Fig.  3). Only in the small-scale 
model M1, which is easy to enumerated fully, the GA is 
slower than the APM.

Comparing the MCSs obtained with the GA to the ones 
obtained with the APM, as shown in Fig.  4a–c, reveals 
that our algorithm retrieves 100 % of all low cardinality 
MCS. The number drops with increasing MCS’ cardi-
nality. This behavior is expected as our fitness functions 
favors low cardinality solutions. Thus it is very unlikely 
that the GA will identify many high cardinality solutions. 
In fact, this explains the non-monotonic behavior of the 
line of maximum efficiency in Fig. 3c. Because the fitness 
function F2 allows for a trade off between cardinality and 
maximum efficiency, the efficiency might decrease. Yet 
the fitness function still increases.

Maximizing for ethanol production
We used the fitness function F1 (Table 4) with the param-
eters shown in Table 2 to maximise for ethanol yield. The 
GA was terminated when the fitness function remained 
unchanged for 15 generations.

Unlike the previous case, here our algorithm found 
all optimal solutions for all models. Also, we were faster 
than the APM in reaching the optimum for all models 
(see Fig. 3d–f).

Again, like in the case of maximising for efficiency, the 
GA retrieves 100 % of lower cardinality MCSs (Fig. 4d–f), 

Table 1 The GA parameters

These parameters are used to control the running of the GA and also to get more specific results

No GA parameter Description

1 t This parameter is used to specify the number of generations for which the GA will run

2 p This parameter is used to specify the number of individuals S present in one generation of the GA

3 rm This parameter is used to set the mutation rate which specifies the number of bits in an individual S that will be flipped from 0 to 
1 or vice versa

4 cross This parameter is used to select among the three types of crossover operations possible here: 1point, 2point and uniform

5 elit This parameter is used to specify the fraction of the number of total individuals from the previous generation which will be 
retained in the subsequent generation

6 new_S This parameter specifies the number of new individuals which will be generated in each generation, based upon information 
from previous generations

7 t_stop This parameter is used to set the maximum number of generations after which the GA terminates if the maximum fitness 
remains unchanging

8 min_1s This parameter specifies the fraction of maximum number of possible good modes which must be present in the initial popula-
tion

8 wk This parameter is used by the MHSCalculator to specify the minimum number of EFMs which have to survive in given a set of 
desired modes D (provided as fraction of the number of EFMs in D)

9 threads This parameter specifies the maximum number of threads to be used by the program
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and not many of the higher cardinality solutions, when 
compared to the solutions obtained using APM. This is 
a result of the fitness function, F1, which favors towards 
lower cardinality MCSs. The effect of this can be 
observed in Fig. 3d, e where the GA first finds higher car-
dinality solutions for the optimal ethanol yield and set-
tles down to the lowest possible cardinality in subsequent 
generations.

Optimizing for a complex design
Although maximising for ethanol yield and efficiency, 
produces sub-optimal to optimal designs, these designs 
may not be the best to implement in vivo. For example, 
the EFMs which result in the maximum ethanol yield do 
not support growth. However, two of these EFMs provide 
maintenance energy. On the other hand, designs with 

maximum efficiency do not include maximum ethanol 
producing EFMs. It would be preferable to have a design 
which combines these features. We used the fitness func-
tion F3 (Table 4) with the parameters shown in Table 2 to 
find optimal designs.

A similar problem was looked at in [23] where the 
authors optimised M1 for efficiency while ensuring that 
at least one of the maximal ethanol producing EFMs sur-
vive in the final design. Their design included the most 
efficient ethanol producing EFMs as well as EFMs with 
maximum ethanol yield, achieved with an MCS cardi-
nality of 6. A similar design was used by Trinh et al. [15] 
using 7 reaction knockouts. Our algorithm produces 
designs of similar functionality with MCSs of cardinal-
ity 5, Fig. 5b. Similar results were obtained for M2, and 
M3 as shown in Fig. 5d and f respectively, both with MCS 
cardinalities of 5. Also, our algorithm was very quick in 
finding these designs, taking a few minutes for M1 and 
M2 and a few hours for M3.

Conclusion
We have presented a method for the design of minimal 
microbial strains of desired functionality. The designs are 
minimal in the sense that only a few of the total number 
of pathways (EFMs) are active after deletion of the pre-
dicted cMCSs. Our GA uses the MHScalculator [30] to 
find cMCSs for a given set of desired and target EFMs. 
However, the optimal selection of such sets is non-intu-
itive. Hence, the aim was finding the best possible set of 
pathways which maximise a given engineering objective.

Another GA, called the OptGene method has been 
previously reported which finds reaction cuts to achieve 
a design objective [33]. This algorithm works by testing 
different combinations of reaction knockouts. In con-
trast, we test partitions of EFMs. Thus our search space is 
by orders of magnitude larger than theirs. OptGene finds 
many solutions too, but it cannot be guaranteed that 
these are minimal. Also, the knockout cardinalities are 
restricted to 1–10. Our approach is based on the concept 
of EFMs which enumerate all possible network states. 
OptGene however uses methods like FBA, MOMA [34], 
etc. to calculate the fitness which, unlike EFMs do not 
account for alternative pathways. Although methods 
which use FBA and MOMA predict optimal solutions, 
there is no guarantee that the predicted optimum will be 
achieved. In a similar vein, the method presented here 
has advantages over other methods which use a biased 
biological objective like OptKnock [35], RobustKnock 
[36] and tilting of the objective function [32].

Boghigian et  al. [37] also use a GA and EFMs to 
design strains with higher product yields. Their 
approach however differs from the method presented 

  START

individuals    

calculate cMCS

store patterns

output results

 STOP

No

Yes

fitnesses
with highest

initialise GA

create new generation

select individuals used to
generate next generation

generation
compute fitness
& generate
patterns

using stored patterns

using crossover and mutation

true

n1 + n2 + n3

high fitness in the previous

?
stop =

n2B. generate new individuals

n1A. generate new individuals

havingn3C. take individuals

Fig. 1 Flowchart of the GA. The GA stops when a stopping condition 
is met, which here is if the number of generations reaches a pre-
specified maximum or if the maximum fitness remains unchanged for 
a pre-specified number of generations (Table 1)
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in this paper in a few major ways. First, the aim of the 
GA presented in [37] is to only improve product yields 
without considering the minimality of the knockouts. 

Hence, in contrast to us their predicted knockouts 
are not guaranteed to be minimal. Second, the basic 
problems considered by both methods are different, 

Complete EFMs of the network
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

E1 0.0 1.0 0.0 0.25 0.0 0.5 1.0 0.0 0.25 0.5 0.0
E2 0.0 1.0 0.0 0.5 0.0 0.0 0.5 0.5 0.0 0.0 0.0
E3 0.0 0.0 1.0 0.5 0.0 1.0 1.0 0.0 0.5 1.0 0.0
E4 0.5 1.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
E5 1.0 0.0 0.0 1.0 0.0 0.0 -1.0 1.0 0.0 0.0 0.0
E6 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
E7 0.0 1.0 0.0 0.25 0.5 0.0 0.5 0.0 0.25 0.0 0.5
E8 0.5 1.0 0.0 0.5 1.0 0.0 0.0 0.0 0.5 0.0 1.0
E9 0.0 0.0 1.0 0.5 1.0 0.0 0.0 0.0 0.5 0.0 1.0
E10 1.0 0.0 0.0 0.5 1.0 0.0 -1.0 0.0 0.5 0.0 1.0
E11 1.0 0.0 0.0 0.5 0.0 1.0 0.0 0.0 0.5 1.0 0.0

Initial population and results
i Ei ∈ D Si Ci Pi YR4,i Ci Fiti
1 E2, E5, E7, E11 01001010001 R2 R3 R9 00001000000 1 3 1.73
2 E4, E5, E8, E9 00011001100 R3 R7 R9 00010000000 1 3 1.73
3 E2, E3, E4, E5, E8, E9, E11 01111001101 R3 R7 00010001001 0.5 2 1.32
4 E2, E3, E4, E5, E6, E9, E11 01111100101 R9 01011100000 0.5 1 1.4

EFMs are randomly selected encoding GA individuals Si such that a 1 & 0 indicates inclusion of the corresponding EFM in D & T respectively.
Searching for cMCS such that at least one EFM of D survives results in patterns Pi. YR4,i is the least value corresponding to R4 in the surviving
EFMs. Fiti = YR4,i + 1− (Ci/n).

Creating second generation individuals

A
RWS crossover mutation n1
S1
S2

01001010001
00011001100

01001011100
00011000001

00111001100
01011001100

00111001100
01011001100

S1new
S2new

B
patterns n2

00001000000
00010000000
00010001001
01011100000

wt 01032101001 00011100000 S3new

C
Fittest individuals n3
01001010001
00011001100

01001010001 S4new

n1 is generated by randomly selecting from Si based on F and subjecting these to GA operations. n2 is generated by randomly selecting EFMs
based on wt, which represents survival of corresponding EFMs in the previous generations. n3 is for elitism. A, B and C correspond to sections
in the flowchart in Figure 1 with the same names.

Second generation and results
i Ei ∈ D Si Ci Pi YR4,i Ci Fiti
1new E3, E4, E5, E8, E9 00111001100 R3 R7 R9 00010000000 1 3 1.73
2new E2, E4, E5, E8, E9 01011001100 R3 R9 01011000000 0.5 2 1.32
3new E4, E5, E6 00011100000 R7 R9 00010100000 1 2 1.81
4new E2, E5, E7, E11 01001010001 R2 R3 R9 00001000000 1 3 1.73

Fig. 2 GA example. Running the GA on the given toy network of 11 EFMs with the aim of maximizing production of P. The initial individuals Si and 
the effect of applying the mutation, crossover and elitism operators to generate new individuals are shown. Here the GA finds the best solution 
with a fitness of 1.81 and yield (YR4) of 1 in the second generation
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Table 2 GA parameters for different runs

Parameters used in the various runs

GA param-
eter

M1 ethanol M1 effi-
ciency

M1 complex M2 ethanol M2  
efficiency

M2 complex M3 ethanol M3  
efficiency

M3 complex

w1 1 0 1 1 0 1 2 0 1

w2 0 50 50 0 50 50 0 10 50

w3 1 1 1 1 1 1 1 1 1

w4 1 1 1 1 1 1 1 1 1

t 100 100 100 100 100 100 100 100 100

p 50 50 50 50 50 50 50 50 50

rm 0.00025 0.00025 0.00025 0.00025 0.00025 0.00025 0.000025 0.000025 0.000025

cross 1point 1point 1point 1point 1point 1point 1point 1point 1point

elit 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025

wk 0.03 0.017 0.04 0.025 0.01 0.03 0.01 0.0075 0.03

new_S 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

t_stop 15 15 15 15 15 15 15 15 15

min_1s 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

threads 10 10 10 10 10 10 10 10 10

Table 3 Features of models used

Features of the networks on which the GA was tested. The maximum possible values for ethanol yield, YEtoh and efficiency, ηEtoh are presented. The minimal cardinality 
of MCSs which will force the network into these optimal values are also shown along with the total number of such MCSs and the number of EFMs which will survive 
after application of these MCSs. The corresponding fitness values, Fi have been obtained using the fitness functions presented in Table 4

Model M1 M2 M3

Model source [15] [15] [15]

Growth conditions Anaerobic, glucose + minimal media Aerobic, glucose + minimal media Aerobic, xylose, arabinose, glucose, galactose and 
mannose + minimal media

No: reactions 59 60 71

No: metabolites 47 49 68

Total no: EFMs 5010 38001 429275

F1 1.6170 1.6103 2.2770

 max YEtoh 0.6667 0.6667 0.6667

 MCS cardinality 3 4 4

 Number of MCSs 22 82 76

  Number of EFMs 14 28 62

F2 7.7860 8.5283 2.3169

 max ηEtoh 0.1390 0.1542 0.1542

 MCS cardinality 10 13 16

 Number of MCSs 240 240 2880

 Number of EFMs 4 2 6

Table 4 Fitness functions used

Fitness functions used, where, w1, w2, w3 and w4 are weights associated with ethanol yield (YEtoh), ethanol efficiency (ηEtoh), MCS cardinality (|C|) and number of surviving 
modes (|DC |) respectively. These weights are used primarily to ensure desired contribution of the different variables towards the fitness function. They can also be 
used to give higher preference to a particular variable. C is the MCS, n the total number of reactions and E the set of all EFMs in a network. All fitness functions were 
maximised

i Design objective Fitness function Fi

1 Ethanol production with minimal MCS size w1 min YEtoh + w3(1− |C|/n)

2 Substrate specific productivity with minimal MCS size w2 min ηEtoh + w3(1− |C|/n)

3 Growth coupled product yield with minimal MCS size and maximum number of  
surviving modes

w1 min YEtoh × w2 max ηEtoh + w3(1− |C|/n)+ w4|D
C |/|E|
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although the final aim is the same, namely strain 
improvement. Boghigian et al. look for reaction knock-
outs which will improve product yields. Our GA not 

only maximizes the product yield but also simultane-
ously searches for optimal partitions in the set of EFMs. 
Finally, we deal with networks where the number of 
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EFMs are one order of magnitude larger than that used 
in [37].

Tools which use EFMs to find intervention strategies 
include the MHScalculator [17, 30] and a tool to cal-
culate cMCSs as part of the CellNetAnalyzer, a MAT-
LAB package providing comprehensive structural and 

functional analysis of biochemical networks [38]. These 
methods use EFMs and hence consider the entire met-
abolic landscape of the organism. The limitation of 
these methods is that the EFMs which must survive 
or be killed by an intervention have to be manually 
partitioned.
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Fig. 5 Complex designs optimized by the GA. a, c and e show the complete set of EFMs of the M1, M2 and M3 models respectively and b, d and 
f represent corresponding solutions obtained using the GA which were obtained in 22, 28 min and 8 h, 48 min respectively. EFMs are represented 
as a function of ethanol and biomass production. Each circle represents a set of EFMs with the same yield and efficiency. The diameter of the circle 
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graph. R_ETOHt2r, R_BIOt and R_GLCpts represent the ethanol secretion, biomass and glucose uptake reactions in the model. In b, the cutset 
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A recent method (APM [23]) overcomes this issue by 
calculating all partitions of EFMs for MCSs of increas-
ing cardinality such that the objective is higher than that 
corresponding to the previous smaller MCS size. This is 
an exhaustive and exact method for finding intervention 
strategies in metabolic networks. However, this method 
is impractical for large networks given current compu-
tational capabilities. Although the GA is not faster than 
the APM at very small network sizes like M1, its com-
parative performance improves with increasing net-
work sizes, Fig. 3. Also, when optimizing for efficiency, 
the GA does not reach the global optimum when APM 
does, Fig.  3b, c. Note that however, an exact compari-
son to APM is not possible since APM tries to find all 
MCS whereas the GA tries to find the best cut set for 
a particular objective. Our method also incorporates the 
freedom to encode complex design criteria, which is not 
possible with the APM. Also, since the APM is based 
on linear programming, it is limited to linear objective 
functions whereas we can implement non-linear objec-
tive functions as well.

An important new approach initially proposed by 
Ballerstein et  al. [19] with further improvements in [20, 
21] is able to directly find MCSs without first needing 
to calculate the EFMs by using the concept of hyper-
graph dualisation. This gets rid of the problem of explo-
sion in the number of EFMs with increasing network 
sizes, allowing for prediction of intervention strategies in 
genome-scale metabolic networks. However, these meth-
ods have to specify design criteria like minimal product 
yield [20]. This is a limitation in that slight changes in the 
value of the specified design criteria may lead to different 
MCSs. In contrast, our algorithm tries to automatically 
find the best design criteria.

The GA implemented here is able to predict numer-
ous good solutions to problems of product maximiza-
tion which are comparable to experimentally verified 
designs [15]. One advantage of this method is the short 
time taken while dealing with bigger systems. The big-
gest advantage though is the flexibility in the selection of 
the design criteria using the fitness function. The fitness 
function can be arbitrarily complex to accurately reflect 
the design criteria. Here it has allowed us to produce 
good designs without knowing the specific properties of 
EFMs which need to survive.

Since our approach mainly relies on a GA, it may be 
affected by inherent limitations of GAs, including the 
possibility of getting stuck at a local optimum. This may 
be overcome by employing multiple runs or changing the 
GA parameters. Note that we have considered reaction 
knockouts here but this can be easily translated into gene 
knockouts using gene-reaction associations.

Finally, we provide a brief description of the parame-
ter values used. The mutation rate was set such that only 
two to four positions in an individual are affected, an 
increase in this number resulted in the GA not producing 
any good solutions. Decreasing this number resulted in a 
slower rate of improvement in fitness (data not shown). 
It is also possible to completely turn off mutation by set-
ting rm to 0. In any case the performance of the GA can 
be improved with pattern-based individual generation 
rather than relying solely on mutation and crossover. 
The number of such individuals can be adjusted with 
the ‘new_S’ parameter. However, too high ‘new_S’ values 
led to a comparatively worse GA performance (data not 
shown). The parameter wk specifies the minimum num-
ber of EFMs which should survive an intervention. The 
lesser this value, the higher the probability of finding bet-
ter solutions—because typically, optimal solutions have 
very few surviving EFMs, Table 3. However, small wk also 
produces more solutions which in turn takes more time 
for pattern and fitness calculations. In order to reach the 
optimum with as few solutions as possible, we found that 
in general, wk can be large for small models (e.g., M1) 
and must decrease for growing models (e.g., M2 and M3) 
(for exact values see Table  4). ‘min_1s’ determines the 
minimum number of possible good EFMs that will end 
up in the set of desired EFMs D in the initial population. 
Because the EFMs are randomly selected to be in D, not 
all individuals will generate viable solutions. Also, it is 
important that the union of Ds in the whole population 
nearly covers the set of good EFMs. The EFMs which are 
not covered must otherwise rely on mutation to be trans-
ferred from T to D. The probability of this happening 
decreases with increasing individual size. Hence, ‘min_1s’ 
was set to a high value of 0.9 for all of the runs. A future 
direction of this work would be to study the effect of 
these parameters in detail. This will help get rid of the 
empirical setting of parameters in our GA and allow for 
the implementation of a protocol to automatically deter-
mine these values during the running of the GA.

In summary, our algorithm is able to quickly find 
(near) optimal intervention strategies satisfying non-lin-
ear engineering objectives in large metabolic networks. 
However, EFMs are still necessary for our method which 
is a significant bottleneck when it comes to genome-scale 
networks. We expect that combining the dual method 
[19–21], which will allow for the calculation of cMCS 
directly from the stoichiometric matrix, with a GA will 
overcome this hurdle.
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