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Abstract 

Background: Knowledge of interaction types in biological networks is important for understanding the functional 
organization of the cell. Currently information-based approaches are widely used for inferring gene regulatory interac-
tions from genomics data, such as gene expression profiles; however, these approaches do not provide evidence 
about the regulation type (positive or negative sign) of the interaction.

Results: This paper describes a novel algorithm, “Signing of Regulatory Networks” (SIREN), which can infer the 
regulatory type of interactions in a known gene regulatory network (GRN) given corresponding genome-wide gene 
expression data. To assess our new approach, we applied it to three different benchmark gene regulatory networks, 
including Escherichia coli, prostate cancer, and an in silico constructed network. Our new method has approximately 
68, 70, and 100 percent accuracy, respectively, for these networks. To showcase the utility of SIREN algorithm, we used 
it to predict previously unknown regulation types for 454 interactions related to the prostate cancer GRN.

Conclusions: SIREN is an efficient algorithm with low computational complexity; hence, it is applicable to large bio-
logical networks. It can serve as a complementary approach for a wide range of network reconstruction methods that 
do not provide information about the interaction type.
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Background
With increasing amounts of biological data generated 
by modern high-throughput technologies, we are faced 
with a challenging problem: how to extract meaning-
ful information from the data. A prominent direction 
for addressing this problem is using computational data 
mining approaches for the analysis of high-throughput 
biological data, such as gene expression data [1–4]. In 
particular, analysis methods have been developed to infer 
regulatory interactions from transcriptome data [5–14].
These regulatory interactions link regulators, such as 
transcription factors and kinases, to their targets and 
may include the regulatory type of the interaction, which 
indicates whether there is an activating (positive) or 

inhibitory (negative) association between the interactor 
pair. Knowing the interaction type can be beneficial for a 
wide range of analyses including module-centric analysis 
[15] and network simulation [16]. A growing number of 
approaches use co-expression measures, either correla-
tion-based (generally linear) or information theory-based 
(can consider non-linear relationships) [17], to infer 
GRNs.

Although information theory-based approaches have 
been widely applied to decipher GRNs [18–20], they are 
not currently used to determine the type of the regula-
tion between two connected genes in a reconstructed 
GRN. Here, we present SIREN, a statistical framework 
that uses a new information theory-based measure to 
predict regulatory type. Our novel framework is capable 
of accurately predicting the type of regulation between 
two interacting genes. The fundamental assumption in 
our approach is that if two connected genes in the net-
work have similar expression patterns, there is likely an 
activating (positive) association, among them. On the 
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other hand, if their expression patterns are anti-cor-
related, the interacting genes likely have an inhibitory 
(negative) influence on each other. SIREN uses a mutual 
information-based measure to predict the interaction 
type. Extending mutual information has been exten-
sively used as a similarity measure for feature selection 
fields [21–24]. In our novel approach, a rescaling matrix 
was introduced to convert the MI function, which nor-
mally generates non-negative scores, to a function that 
can have negative values. The resulting sign is used to 
predict the interaction type. While SIREN detects the 
regulation type, it cannot detect the direction of regu-
lation. We evaluated SIREN by testing it on E. coli, 
prostate cancer, and in silico GRN benchmarks. In 
each case, SIREN reliably identified positive and nega-
tive regulatory types. Besides, comparison of SIREN 
with a baseline method based on Pearson coefficient 
correlation (PCC) revealed that it has a greater perfor-
mance on biological GRNs. The R implementation of 
the algorithm is freely available at http://baderlab.org/
PegahKhosravi/SIREN.

Methods
Information theory based metrics
Mutual information (MI) is a measure of the information 
dependency between two random variables, defined as:

where p(x,y) is the joint probability of x and y and p(x) 
and p(y) are marginal probabilities.

If we define the function f (x, y) = log(p(x, y)/p(x)p(y)),  
then MI =

∑

p(x, y)f (x, y) which is equivalent to the 
expected value of function f(x,y), i.e., MI = E(f (x, y)).  
f (x, y) is defined to be the point-wise mutual informa-
tion (PMI) [25]. PMI is a measure of how much the joint 
probability of a particular co-occurrence of events, p(x,y), 
differs from the expected joint probability, assuming the 
independence of x and y, p(x)*p(y) [25].

Discretization of continuous data
For a computationally feasible calculation of MI and 
PMI, discretizing and binning of the expression data is 
required. In conventional binning approaches, each data 
point is assigned to exactly one bin. This can be prob-
lematic for data points close to the margins between 
bins: small, noisy fluctuations may cause these data 
points to be improperly assigned to a neighboring bin. 
Additionally, the choice of bin size can strongly influence 
the MI values for datasets of moderate size [26, 27]. To 
address these problems, we used a B-spline approach for 
data binning [27–30] that allows each data point to be 

MI =
∑

p(x, y) log(p(x, y)/p(x)p(y))

assigned to multiple bins. To accomplish this, the indi-
cator function, which typically maps each data point to 
a specific bin, was improved to allow each data-point to 
be assigned to several bins, with weights obtained from a 
B-spline function summing to one (schematically shown 
in Additional file 1: Figure S1). The B-spline function has 
a spline order that defines the shape of the function and 
influences the number of bins to which each data point 
is assigned.

For the discretization of continuous expression data 
in SIREN, we tested different number of bins and the 
spline orders. Consistent with previous studies [27], we 
found the number of bins does not affect the SIREN per-
formance remarkably as long as it is within a reasonable 
range (Figure  1a) and using spline order greater than 
three does not improve the quality of prediction signifi-
cantly (Figure  1b), but rather it increases the computa-
tional cost of the algorithm.

MI versus correlation based methods
Both MI and correlation are measures of dependency 
between two random variables. MI calculates the amount 
of information that two genes provide about each other 
and is always a non-negative value. Consequently, a 
higher mutual information value for two genes indi-
cates that one gene is non-randomly related with the 
other [19]. The Pearson correlation coefficient (PCC) is 
a measure that indicates the intensity and trend of the 
linear relationship between two variables [31]. Despite 
the fact that the PCC can characterize linear correlations 
with Gaussian noise, the mutual information measure is 
more powerful mainly because it is able to detect non-
linear dependencies that are invisible to PCC [27, 32]. 
Both PCC [33–37] and MI [6, 18, 27, 38–41] have been 
used to capture dependencies between random variables  
(e.g., genes).

Benchmarks GRNs and corresponding data
To assess our algorithm, we applied SIREN to three 
benchmark GRNs with associated gene expression data 
(Additional file 2).

In silico constructed GRN
To assess the performance of SIREN on a completely 
known network, we constructed an in silico GRN based 
on a prostate cancer gene expression data. This GRN is a 
clique network composed of two groups of genes. Genes 
in each group have a similar expression pattern to each 
other and opposite pattern with members of the other 
group (Figure  2). Because there is a clear expression 
pattern for each gene, we know the putative interaction 
types in this network by visual inspection.

http://baderlab.org/PegahKhosravi/SIREN
http://baderlab.org/PegahKhosravi/SIREN
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Prostate cancer GRN
We extracted the prostate cancer GRN from the 
STRING functional interaction database [42], consid-
ering only regulatory interactions among genes with 
changed expression levels during cancer progression. 
To determine these genes, we focused on those which 
are up- or down-regulated significantly (fold change 
≥2 and p value ≤0.05) in at least one state, considering 
the normal state as control. Thus the GRN is composed 
of genes which putatively play a role in prostate can-
cer and contains 1,436 interactions among 526 genes 

(53.8% of total genes with available transcriptome 
data).

Prostate cancer microarray data
We extracted gene expression data from the GEO data-
base with accession number GDS2545. This dataset con-
sists of 171 samples monitoring gene expression in four 
different cell states: normal prostate tissue free of any 
pathology (normal), normal prostate tissue adjacent to 
tumor (adjacent), primary prostate tumor tissue (tumor), 
and metastatic prostate cancer tissue (metastatic) [43].

E. coli high confidence GRN
We extracted the high confidence GRN of E. coli from 
the RegulonDB database [44]. This GRN contains 4,005 
experimentally confirmed regulatory interactions among 
1,696 genes. We created a sub-network from RegulonDB 
GRN by considering genes with available data in our 
transcriptomics data set. The resulting sub-network con-
tains 2,687 interactions among 1,419 genes and was used 
for further analysis.

E. coli gene expression data
We extracted a microarray dataset consisting of 907 sam-
ples from the Many Microbe Microarray Database (M3D) 
Web site [45].

SIREN algorithm
The fundamental assumption in our approach is that if 
two connected genes in the network have similar expres-
sion patterns, there is likely an activating (positive) 
association, between them. On the other hand, if their 
expression patterns are conversely related, the interacting 

Figure 1 Accuracy-retrieval curves (ARCs) for different number of bins and spline orders. The relationship between accuracy and retrieval for differ-
ent a number of bins and b spline orders on prostate cancer network. NB number of bins, SO spline order.

Figure 2 Heatmap of selected genes for the in silico network. The 
heatmap composed of two groups of genes. Genes in each group 
have similar expression pattern with each other while have opposite 
pattern with members of the other group. Genes in the red and blue 
parts are consistently up-regulated and down-regulated, respectively, 
during cancer progression. These groups of genes were selected 
based on the prostate cancer expression data.
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genes likely have an inhibitory (negative) influence on 
each other.

Our method is useful for the analysis of reconstructed 
GRNs from any reconstruction method used to gener-
ate the input network. In addition to the GRN, SIREN 
also needs corresponding expression data. SIREN 
determines the regulation type for each pair of con-
nected genes in the network by computing a similarity 
score between their expression profiles. As shown sche-
matically in Additional file  1: Figure S2, SIREN deter-
mines the similarity between the expression profiles 
of two genes in four steps: (1) a B-spline discretization 
method is used to discretize expression data into ten 
bins, allowing overlap between bins to smooth the data 
as described in [27], (2) co-occurrence scores are cal-
culated for each combination of bins of the genes (for 
example the first bin of first gene with the first bin of 
second gene, the first bin of first gene with the second 
bin of second gene, etc.) using the information-based 
metrics, (3) the calculated co-occurrence scores are 
rescaled according to the given rescaling matrix, which 
enables SIREN to distinguish between co-occurrences 
resulting from an activating or an inhibitory effect 
between two genes; and (4) determines the SIREN score 
by calculating the expected value of the rescaled co-
occurrence probability scores. Mathematically speak-
ing, the expected value of function f (X ,Y ) is defined as: 
E(f (X ,Y )) =

∑

x,y p(x, y)f (x, y). Therefore, SIREN score 
for two genes of X and Y is: 

∑

x,y p(x, y)(W (x, y)CoS(x, y)),  
where CoS(x,y) is the co-occurrence score, W(x,y) refers 
to the rescaling matrix and p(x,y) is the co-occurrence 
probability when X = x and Y = y.

To optimize results, we compared four distinct scoring 
functions and four rescaling matrices as well as tested a 
range of different cut-off scores for SIREN to determine a 
reliable threshold.

SIREN scoring functions
To optimize the algorithm, we investigated four possible 
interaction scoring functions:

S1
Based on the definitions of MI and PMI, the first scor-
ing function was defined as S1 =

∑

W (x, y)p(x, y)

log(p(x, y)/p(x)p(y)), where W(x,y) is the rescaling 
matrix. If g(x, y) = W (x, y) log(p(x, y)/p(x)p(y)), then 
S1 =

∑

p(x, y)g(x, y) or S1 = E(g(x, y)) according to the 
Law of the Unconscious Statistician (LOTUS) [46]. The 
defined S1 score is known as the weighted mutual infor-
mation concept, as described in [47].

S2
To give PMI a fixed upper bound, we normalize it to 
have a maximum value of 1 in the case of a perfect 
association. The advantage of normalized PMI over 
PMI is that the value of PMI is usually high for rare 
events. It is hoped that the normalized version will 
reduce the low frequency bias [25]. As stated above, 
PMI = log(p(x, y)/p(x)p(y)). In case of perfect asso-
ciation, we have p(x) = p(y) = p(x, y), consequently 
PMI = log(p(x, y) / p(x)p(y)) = log(p(x) / p(x)p(x)) =

− log(p(x)).
Therefore, we can define Normalized PMI (NPMI) as

We define the second scoring function S2 = E(W (x, y)×

NPMI).

S3
The third scoring function is defined as S3 =
∑

p(x, y)[W (x, y)]. This score measures the expected 
value of the rescaling matrix W(x,y).

S4
In a similar approach to the second scoring function, to 
give MI a fixed upper bound, we normalize MI to have 
a maximum value of 1 in the case of a perfect associa-
tion [25]. As above, MI =

∑

p(x, y) log(p(x, y)/p(x)p(y)).  
If p(x) = p(y) = p(x, y), then MI(x, y) = MI(x, x) =
∑

p (x, x) log (p (x, x) / p(x)p(x)). Consequently, 
MI(x, x) =

∑

p(x, x)(− log(p(x))) = −
∑

p(x) log(p(x)) . 
Therefore Normalized MI(NMI) =

∑

p(x, y)(log(p(x, y)/

p(x)p(y))
/

−
∑

p(x, y) log(p(x, y)).
We defined Normalized Rescaled MI (NRMI) as S4 =

∑

p(x, y)
(

W (x, y)
(

log(p(x, y)/p(x)p(y))
))

/−
∑

p(x, y)

(W (x, y)(log(p(x, y))).

SIREN performance assessment
To measure SIREN performance, we defined two meas-
ures: true number (TNu) and false number (FNu). posi-
tive true positive (PTP) and negative true negative (NTN) 
is the number of interactions correctly signed positive 
and negative, respectively, whereas negative false positive 
(NFP) and positive false negative (PFN) is the number 
of interaction types that SIREN has assigned incorrectly 
positive and negative, respectively. TNu is the number 
of PTP plus the number of NTN, while FNu is the num-
ber of NFP plus the number of PFN. Accuracy, defined 
as TNu/(TNu + FNu), is the fraction of correctly signed 
interactions among all interactions signed by SIREN, 
while retrieval is the number of regulatory interactions 

NPMI = log(p(x, y)/p(x)p(y))/− log(p(x, y)).
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signed by SIREN among all interactions (some of which 
are not signed). Performance of the algorithm is assessed 
using accuracy-retrieval curves.

Results and discussion
Determining the interaction types in GRNs
MI is used extensively for reconstructing GRNs because 
it has a low computational complexity and is able to cap-
ture nonlinear dependencies among variables [48–50]. 
However, using MI has some disadvantages, including 
that it does not reveal the interaction type between two 
random variables. In the context of GRN reconstruction, 
this means that it does not identify whether a regulatory 
interaction is positive (activating) or negative (inhibiting) 
to overcome this challenge, we modified the conventional 
mutual information formula by adding a rescaling matrix. 
This rescaling matrix converts the MI function, which 
normally generates a non-negative score to a function 
that can have negative values. The resulting sign is used 
to predict the interaction type.

Using expression data, our new method can determine 
the interaction type between two interacting genes in a 
GRN. SIREN discriminates activating from inhibitory 
associations based on the premise that the effect of two 
interacting genes on each other will be reflected in their 
expression patterns across multiple cellular conditions. 
Similar expression profiles indicate a positive interaction 
and dissimilar profiles indicates a negative interaction.

Selecting the optimum interaction scoring function
To optimize SIREN, we defined four different scoring 
functions as well as four different rescaling matrices. To 
evaluate the performance of our algorithm in each case, 
we considered three different GRNs: an in silico con-
structed GRN, a prostate cancer GRN, and an E. coli high 
confidence GRN. The results, averaged across the four 
possible rescaling matrices, are presented in Figure 3.

In silico GRN
To evaluate the performance of SIREN algorithm, we 
selected nine (CXCR4, IGHM, TFAP2A, IGHV4-31, 
CLDN4, LOC100126583, CYAT1, TRPV6, FOXA1) and 
six (IFI27, RARRES1, GPX3, AGT, ACTA1, TTN) genes 
that were consistently up-or down- regulated during 
cancer progression, respectively (Figure 2). We then gen-
erated a clique network consisting of all possible inter-
actions between these genes (105 interactions). This 
network consists of 51 positive (up–up or down–down) 
and 54 negative (up–down) interactions (Figure  4). 
Application of SIREN on the in silico network, as shown 
in Figure 3a, indicated that the scoring functions S1 and 
S2 have comparable performance while out-performing 
S3 and S4. Closer examination of the results showed that 
S3 is not sensitive enough to detect negative interactions 
because negative interactions are often derived from 
small magnitudes of the changes in expression levels. The 
logarithmic component of the S1 and S2 scoring functions 
magnifies these small differences in expression levels, 
but this is not present in S3. S4 had the lowest accuracy. 
Hence, we selected S1 and S2 scoring functions for fur-
ther evaluations.

Prostate cancer GRN
STRING is a functional interaction database that 
includes regulatory interactions. We extracted a func-
tional interaction network based on genes that show 
alteration in their expression profile during prostate can-
cer progression, limited to regulatory interactions which 
we define as the prostate cancer GRN (see “Methods” 
for details). The extracted GRN was composed of 1,436 
interactions among 526 genes (102 negative, 176 positive 
and 1,158 interactions with no sign). We then ran SIREN 
on this network and compared SIREN’s predicted inter-
action type to the known interaction type from STRING. 
As shown in Figure 3b, both S1 and S2 scoring functions 

Figure 3 Comparison of four possible scoring functions. Plots compare four different scoring functions on three different GRNs: a in silico con-
structed GRN with four possible scoring functions, b prostate cancer GRN with S1 and S2, and c E. coli high confidence GRN with S1 and S2.
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had, again, comparable results on this GRN with about 
70% accuracy.

E. coli GRN
We applied SIREN to an experimentally constructed 
GRN of E. coli containing 1,408 positive and 1,279 nega-
tive interactions. As shown in Figure  3c, both scoring 
functions S1 and S2 resulted in similar accuracies (56% 
maximum). In this test, the experimentally constructed 
GRN of E. coli and the gene expression data where from 
independent sources. The low performance of SIREN in 
this case is most probably because some regulatory cir-
cuits may not be reflected in the gene expression data. As 
an illustration, for two genes that have negative regula-
tion on each other via negative feedback loop, we expect 
to observe that up-regulation of the regulator leads to the 

down-regulation of the regulated gene. However, if the 
expression level of regulator gene does not increase per-
ceptibly, the expression patterns will not reflect the inhib-
itory effect. Thus, both genes will show similar expression 
patterns, and consequently, an activating interaction will 
be wrongly inferred. Considering this fact, our approach 
can reliably detect interaction types only for genes that 
show some level of alteration in the expression in the cor-
responding expression data set. Consistently, we found 
restricting the E. coli GRN to 10% most fluctuated genes 
(this sub-network was composed of 31 positive and 13 
negative interactions) resulted in the precision of 68.18% 
(22 PTP and 8 NTN) for SIREN algorithm.

Scores obtained from the S1 scoring function have a 
wider range compared with the scores of S2 scoring func-
tions in all three GRNs (Figure  5). Also, the S1 scoring 
function has a lower computational complexity. Con-
sidering these points, we selected S1 as the best scoring 
function for further investigations.

Selecting the optimum rescaling matrix
We have used a rescaling matrix to convert the MI func-
tion, which normally generates a non-negative score, to 
a function that can produce negative values. The result-
ing sign is used to predict either an activating (simi-
lar expression profiles) or inhibitory effect (different 
expression profiles) between genes. Using the B-spline 
approach, we smoothly discretized the expression pro-
file of each gene into 10 bins. For each interacting pair, 
SIREN creates a two-dimensional grid with 100 cells. The 
distribution pattern of expression data in these 100 cells 
is used for predicting the interaction type. The interac-
tion type can be inferred from this grid because the dis-
tribution pattern for genes with positively correlated 
expression patterns will be different from the distribution 
pattern of genes with a negative association. To discrimi-
nate the distribution patterns from each other, we have 
introduced the rescaling matrix (Figure 6). The design of 
four rescaling matrices evaluated for use in SIREN. For 

Figure 4 The in silico network. The constructed network clique is 
visualized with Cytoscape [51] (version 3.0.0). Red and green edges 
indicate positive and negative interaction types, respectively. Edge 
width shows the SIREN score for each edge.

Figure 5 Comparing S1 and S2 scoring functions. Plots compare accuracy and retrieval of S1 and S2 scoring functions on three different GRNs: a in 
silico constructed GRN, b prostate cancer GRN, and c E. coli high confidence GRN. The x-axis represents threshold (0 to ±1) and the y-axis shows 
accuracy and retrieval percentage.
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all the matrices, we initially assigned −1 to the two most 
negative bins and +1 to the most positive bins, on the 
diagonal of the matrix. We also arranged the matrices to 
each have equal number of positive and negative cells (42 
positive, 42 negative, and 16 zero cells).

For matrix 1, for the other negative bins, we repeatedly 
subtracted 0.166667 (one divided by six negative levels) 
as we moved towards the border between positive and 
negative. The positive cells were treated similarly. The 
positive cells in matrix 2 are the same as in matrix 1; 
however, to improve detection of negative interactions, 
and to compensate for the +10 discrepancy in overall 
weight arising from the matrix’s diagonal, we increased 
the weight on the negative cells such that the overall 
weight in the matrix was equal to zero. For matrix 3, we 
simply assigned −1 and +1 to each non-zero cell. The 
negative cells in matrix 4 are the same with matrix 1; for 
the positive cells, we used a multiplicative scaling factor 
rather than an additive one.

To select the best performing matrix from these four 
matrices, we examined the performance of each of them 

on the three selected benchmark GRNs (Figure  7). Our 
results indicate that SIREN is robust to the selected res-
caling matrix, especially for the experimentally derived 
GRNs. However, the M3 rescaling matrix (Matrix 3)  
(Figure  6) performs better with the in silico network  
(Figure 7). This may be caused by the higher ratio of neg-
ative interactions in the in silico network (51.43%). Con-
sidering results obtained from this step, we chose M3 as 
the optimum rescaling matrix.

Selecting the best threshold
To select the best threshold on the resulting SIREN score, 
we applied it to the E. coli, prostate and in silico bench-
marks, using the S1 scoring function and the M3 rescal-
ing matrix. We tested a range of different cut-off scores 
(20 different thresholds between 0 and 1) for SIREN to 
determine a reliable threshold for various networks. The 
results showed that when the cut-off threshold is greater 
than +0.158 or smaller than −0.158, SIREN does not 
detect any interaction type in random data (generated 
by 106 times of shuffling gene expression data) (Figure 8), 

Figure 6 Four rescaling matrices. The design of four rescaling matrices evaluated for use in SIREN.

Figure 7 Evaluation of four rescaling matrices. Three plots show the result of applying SIREN using scoring function S1 with each rescaling matrix 
on three GRNs. a The M3 rescaling matrix performs best with the in silico network. b, c SIREN is robust to choice of rescaling matrix for experimen-
tally derived GRNs.
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while many interactions are predicted to be signed in the 
benchmark GRNs.

Figure 9 demonstrates the application of SIREN (with 
optimized parameters) on two example interactions, 
one activating and one inhibitory. As mentioned earlier, 

SIREN detects the interaction type in four steps: (1) dis-
cretizing the expression profile of each gene into 10 bins; 
(2) calculating the co-occurrence probability for each 
combination of bins using the PMI metric; (3) defining an 
activating or inhibitory relationship for each combination 

Figure 8 Selecting the best threshold for SIREN. The relationship between accuracy and retrieval and the best threshold with highest accuracy and 
fair retrieval. A accuracy, R retrieval; E E. coli, P prostate, S in silico. As the figure shows in ±0.158, no interaction type was detected randomly by SIREN 
where the color spectrums were changed to be completely white in accuracy and retrieval of all three random networks.

Figure 9 Deciphering interaction type from co-expression patterns. a, b The two-dimensional grids are constructed for two selected gene 
pairs with known activating or inhibitory effect on each other. The color density for each cell in the grid represents the computed PMI for that cell 
multiplied in the occurrence probability of the cell and corresponding rescaling value (determined based on the rescaling matrix). The PMI and 
occurrence probability is calculated based on the associated transcriptome data. Red indicates positive score and blue represents negative score 
(defined based on the M3 rescaling matrix). SIREN score is determined by summing up the calculated values for each combination of bins. a For two 
example genes with known activating relationships (JUN and ATF3), cells defined as activating have non-zero values and cells defined as inhibitory 
relationship, have zero values. b This situation is reversed for two genes with known inhibitory relationship (ZEB1 and CDH1).
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of bins by aid of a rescaling matrix; and (4) calculating a 
final score by integrating the calculated values for each 
combination of bins. For example, with two genes with 
a known activating relationship from STRING (JUN and 
ATF3) [52, 53], bins defined as activating have non-zero 
values while bins defined as inhibitory have mostly zero 
values (Figure 9a). This situation is reversed for two genes 
with a known inhibitory relationship (ZEB1 and CDH1) 
[54] (Figure 9b).

Deficiency in current knowledge about interaction types
PCC has been widely used to decipher the interaction 
type based on transcriptome data [55, 56]. We compared 
SIREN with PCC by applying both to all three GRNs. 
This comparison revealed that their overall results are 
similar, suggesting that most regulatory associations in 
the considered GRNs have a linear or monotonic nature 
(Figure  10). However, the results of PCC and SIREN 
are inconsistent for some interactions. For example two 
genes with an activating relationship from STRING 
(EGR1 and FGF2) [57] are determined to have an inhibi-
tion relationship using PCC while SIREN inferred a posi-
tive association. On the other hand MICA and IL10 show 
an inhibition association [58] by STRING and SIREN; 
while they have positive association based on PCC. Ulti-
mately, SIREN shows superior performance in all but the 
in silico network case (Figure 11), indicating that consid-
eration of non-linear relationships in the gene expression 
data is useful.

Our SIREN predictions on the prostate cancer GRN 
included 454 interactions for which no regulatory type 
existed in STRING (Additional file 3). A literature search 
on a sample of these newly signed GRN supports the 
reliability of our results. For example, we predict a posi-
tive association between EGR1 and ATF3 genes, which is 
in line with previous studies that have shown these two 
genes associated with each other and ATF3 is a target of 

EGR1 that induces an up-regulation of ATF3 [59].We also 
found a negative association between FASN and CAV-1 
which is consistent with previous reports that showed 
FASN interact with CAV-1, a marker for metastasis state 
of prostate cancer, and inactivation of CAV-1 mediates by 
FASN [52].

Conclusion
At present, there is no information theory-based frame-
work to detect regulatory interaction types in gene regu-
latory networks. In this work, we tried to fill this gap by 
exploiting the notion that the effect two interacting genes 
have on each other can be observed in their expression 
patterns. This idea allowed us to develop an information 
theory-based solution, SIREN, to identify interaction 
types using gene expression data. SIREN increases the 

Figure 10 Close relationship between Pearson correlation coefficient and SIREN. Three figures illustrate the relationship between PCC and SIREN 
results for three GRNs: a in silico GRN, b prostate cancer GRN, and c E. coli high confidence GRN.

Figure 11 SIREN versus Pearson correlation coefficient. The relation-
ship between accuracy and retrieval of SIREN was compared with 
PCC on three GRNs.
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amount of information available for GRNs compared to 
standard GRN inference algorithms. SIREN runs reason-
ably fast; computing the 2,687 interactions among 1,419 
genes took 6 min on an Intel Core i5 system with 4 GB of 
RAM; hence it is usable with large biological networks. 
Additionally, we have shown the method is applicable to 
prokaryotic and eukaryotic GRNs.
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